1
|
Pain and Pain Management in Sea Turtle and Herpetological Medicine: State of the Art. Animals (Basel) 2022; 12:ani12060697. [PMID: 35327093 PMCID: PMC8944618 DOI: 10.3390/ani12060697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Rescue and rehabilitative medicine of sea turtles must deal with several circumstances that would be certainly considered painful in other species (trauma, situations that require surgery); thus, it would be natural to consider the use of analgesic drugs to manage the pain and avoid its deleterious systemic effects to guarantee a rapid recovery and release. However, in these animals (as well as in reptiles in general), many obstacles stand in the way of the application of safe and effective therapeutic protocols. It has been demonstrated that, anatomically and physiologically, turtles and reptiles in general must be considered able to experience pain in its definition of an “unpleasant sensory and emotional experience”. Unfortunately, specific studies concerning sea turtles and reptiles on pain assessment, safety, and clinical efficacy of analgesic drugs currently in use (mostly opioids and non-steroidal anti-inflammatory drugs—NSAIDs) are scarce and fragmentary and suffer from some basic gaps or methodological bias that prevent a correct interpretation of the results. At present, the general understanding of the physiology of reptiles’ pain and the possibility of its reasonable treatment is still in its infancy, considering the enormous amount of information still needed, and the use of analgesic drugs is still anecdotal or dangerously inferred from other species. Abstract In sea turtle rescue and rehabilitative medicine, many of the casualties suffer from occurrences that would be considered painful in other species; therefore, the use of analgesic drugs should be ethically mandatory to manage the pain and avoid its deleterious systemic effects to guarantee a rapid recovery and release. Nonetheless, pain assessment and management are particularly challenging in reptilians and chelonians. The available scientific literature demonstrates that, anatomically, biochemically, and physiologically, the central nervous system of reptiles and chelonians is to be considered functionally comparable to that of mammals albeit less sophisticated; therefore, reptiles can experience not only nociception but also “pain” in its definition of an unpleasant sensory and emotional experience. Hence, despite the necessity of appropriate pain management plans, the available literature on pain assessment and clinical efficacy of analgesic drugs currently in use (prevalently opioids and NSAIDs) is fragmented and suffers from some basic gaps or methodological bias that prevent a correct interpretation of the results. At present, the general understanding of the physiology of reptiles’ pain and the possibility of its reasonable treatment is still in its infancy, considering the enormous amount of information still needed, and the use of analgesic drugs is still anecdotal or dangerously inferred from other species.
Collapse
|
2
|
Sarkar S, Atoji Y. Distribution of vesicular glutamate transporters in the brain of the turtle (Pseudemys scripta elegans). J Comp Neurol 2018; 526:1690-1702. [PMID: 29603220 DOI: 10.1002/cne.24439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/20/2018] [Accepted: 03/20/2018] [Indexed: 12/18/2022]
Abstract
The distribution of glutamatergic neurons has been extensively studied in mammalian and avian brains, but its distribution in a reptilian brain remains unknown. In the present study, the distribution of subpopulations of glutamatergic neurons in the turtle brain was examined by in situ hybridization using probes for vesicular glutamate transporter (VGLUT) 1-3. Strong VGLUT1 expression was observed in the telencephalic pallium; the mitral cells of the olfactory bulb, the medial, dorsomedial, dorsal, and lateral parts of the cerebral cortex, pallial thickening, and dorsal ventricular ridge; and also, in granule cells of the cerebellar cortex. Moderate to weak expression was found in the lateral and medial amygdaloid nuclei, the periventricular cellular layer of the optic tectum, and in some brainstem nuclei. VGLUT2 was weakly expressed in the telencephalon but was intensely expressed in the dorsal thalamic nuclei, magnocellular part of the isthmic nucleus, brainstem nuclei, and the rostral cervical segment of the spinal cord. The cerebellar cortex was devoid of VGLUT2 expression. The central amygdaloid nucleus did not express VGLUT1 or VGLUT2. VGLUT3 was localized in the parvocellular part of the isthmic nucleus, superior and inferior raphe nuclei, and cochlear nucleus. Our results indicate that the distribution of VGLUTs in the turtle brain is similar to that in the mammalian brain rather than that in the avian brain.
Collapse
Affiliation(s)
- Sonjoy Sarkar
- Department of Basic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasuro Atoji
- Laboratory of Veterinary anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| |
Collapse
|
3
|
Abstract
Reptiles have the anatomic and physiologic structures needed to detect and perceive pain. Reptiles are capable of demonstrating painful behaviors. Most of the available literature indicates pure μ-opioid receptor agonists are best to provide analgesia in reptiles. Multimodal analgesia should be practiced with every reptile patient when pain is anticipated. Further research is needed using different pain models to evaluate analgesic efficacy across reptile orders.
Collapse
Affiliation(s)
- Sean M Perry
- Department of Veterinary Clinical Sciences, Louisiana State University, School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803, USA.
| | - Javier G Nevarez
- Department of Veterinary Clinical Sciences, Louisiana State University, School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| |
Collapse
|
4
|
Bruce LL, Erichsen JT, Reiner A. Neurochemical compartmentalization within the pigeon basal ganglia. J Chem Neuroanat 2016; 78:65-86. [PMID: 27562515 DOI: 10.1016/j.jchemneu.2016.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 01/20/2023]
Abstract
The goals of this study were to use multiple informative markers to define and characterize the neurochemically distinct compartments of the pigeon basal ganglia, especially striatum and accumbens. To this end, we used antibodies against 12 different neuropeptides, calcium-binding proteins or neurotransmitter-related enzymes that are enriched in the basal ganglia. Our results clarify boundaries between previously described basal ganglia subdivisions in birds, and reveal considerable novel heterogeneity within these previously described subdivisions. Sixteen regions were identified that each displayed a unique neurochemical organization. Four compartments were identified within the dorsal striatal region. The neurochemical characteristics support previous comparisons to part of the central extended amygdala, somatomotor striatum, and associational striatum of mammals, respectively. The medialmost part of the medial striatum, however, has several unique features, including prominent pallidal-like woolly fibers and thus may be a region unique to birds. Four neurochemically distinct regions were identified within the pigeon ventral striatum: the accumbens, paratubercular striatum, ventrocaudal striatum, and the ventral area of the lateral part of the medial striatum that is located adjacent to these regions. The pigeon accumbens is neurochemically similar to the mammalian rostral accumbens. The pigeon paratubercular and ventrocaudal striatal regions are similar to the mammalian accumbens shell. The ventral portions of the medial and lateral parts of the medial striatum, which are located adjacent to accumbens shell-like areas, have neurochemical characteristics as well as previously reported limbic connections that are comparable to the accumbens core. Comparisons to neurochemically identified compartments in reptiles, mammals, and amphibians indicate that, although most of the basic compartments of the basal ganglia were highly conserved during tetrapod evolution, uniquely avian compartments may exist as well.
Collapse
Affiliation(s)
- Laura L Bruce
- Department of Biomedical Sciences, Creighton University, Omaha NE, 68178, USA.
| | | | - Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
5
|
Puelles L, Ayad A, Alonso A, Sandoval J, MartÍnez-de-la-Torre M, Medina L, Ferran J. Selective early expression of the orphan nuclear receptorNr4a2identifies the claustrum homolog in the avian mesopallium: Impact on sauropsidian/mammalian pallium comparisons. J Comp Neurol 2015; 524:665-703. [DOI: 10.1002/cne.23902] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 12/17/2022]
Affiliation(s)
- L. Puelles
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - A. Ayad
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - A. Alonso
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - J.E. Sandoval
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - M. MartÍnez-de-la-Torre
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| | - L. Medina
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine; University of Lleida, and IRBLleida Institute of Biomedical Research of Lleida; Lleida 25198 Spain
| | - J.L. Ferran
- Department of Human Anatomy, Faculty of Medicine; University of Murcia, and Instituto Murciano de Investigación Biosanitaria; Murcia 30071 Spain
| |
Collapse
|
6
|
Kenigfest NB, Belekhova MG. Neurochemical characteristics of the turtle optic tectum: Comparison with other reptilian species and birds. J EVOL BIOCHEM PHYS+ 2012. [DOI: 10.1134/s0022093012010100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Belekhova MG, Chudinova TV, Repérant J, Ward R, Jay B, Vesselkin NP, Kenigfest NB. Core-and-belt organisation of the mesencephalic and forebrain auditory centres in turtles: expression of calcium-binding proteins and metabolic activity. Brain Res 2010; 1345:84-102. [PMID: 20478279 DOI: 10.1016/j.brainres.2010.05.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Revised: 05/07/2010] [Accepted: 05/08/2010] [Indexed: 10/19/2022]
Abstract
The distribution of immunoreactivity to the calcium-binding proteins parvalbumin, calbindin and calretinin and of cytochrome oxidase activity was studied in the mesencephalic (torus semicircularis), thalamic (nucleus reuniens) and telencephalic (ventromedial part of the anterior dorsal ventricular ridge) auditory centres of two chelonian species Emys orbicularis and Testudo horsfieldi. In the torus semicircularis, the central nucleus (core) showed intense parvalbumin immunoreactivity and high cytochrome oxidase activity, whereas the laminar nucleus (belt) showed low cytochrome oxidase activity and dense calbindin/calretinin immunoreactivity. Within the central nucleus, the central and peripheral areas could be distinguished by a higher density of parvalbumin immunoreactivity and cytochrome oxidase activity in the core than in the peripheral area. In the nucleus reuniens, the dorsal and ventromedial (core) regions showed high cytochrome oxidase activity and immunoreactivity to all three calcium-binding proteins, while its ventrolateral part (belt) was weakly immunoreactive and showed lower cytochrome oxidase activity. In the telencephalic auditory centre, on the other hand, no particular region differed in either immunoreactivity or cytochrome oxidase activity. Our findings provide additional arguments in favour of the hypothesis of a core-and-belt organisation of the auditory sensory centres in non-mammalian amniotes though this organisation is less evident in higher order centres. The data are discussed in terms of the evolution of the auditory system in amniotes.
Collapse
Affiliation(s)
- Margarita G Belekhova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, Russia
| | | | | | | | | | | | | |
Collapse
|
8
|
Piñuela C, Northcutt RG. Immunohistochemical Organization of the Forebrain in the White Sturgeon, Acipenser transmontanus. BRAIN, BEHAVIOR AND EVOLUTION 2007; 69:229-53. [PMID: 17299256 DOI: 10.1159/000099612] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Accepted: 12/20/2005] [Indexed: 11/19/2022]
Abstract
The distribution of substance P (SP), leucine-enkephalin (LENK), serotonin (5HT), dopamine (DA), and tyrosine hydroxylase (TH) was examined in the forebrain of the white sturgeon in order to evaluate several anatomical hypotheses based on cytoarchitectonics, and to gain a better understanding of the evolution of the forebrain in ray-finned fishes. The subpallium of the telencephalon has the highest concentration of the neuropeptides SP and LENK, allowing the pallial-subpallial border to be easily distinguished. The distribution of dopamine is similar to that of serotonin in the subpallium, fibers positive for these transmitters are particularly dense in the dorsal and ventral divisions of the subpallium. In addition, a small population of DA- and 5HT-positive cell bodies--which appear to be unique to sturgeons--was identified at the level of the anterior commissure. The internal granular layer of the olfactory bulbs had large numbers of TH-positive cell bodies and fibers, as did the rostral subpallium. The occurrence of cell bodies positive for LENK in the dorsal nucleus of the rostral subpallium supports the hypothesis that this nucleus is homologous to the striatum in other vertebrates. This is further reinforced by the apparent origin of an ascending dopaminergic pathway from cells in the posterior tubercle that are likely homologous to the ventral tegmental area/substantia nigra in land vertebrates. Finally, the differential distribution of SP and TH in the pallium supports the hypothesis that the pallium, or area dorsalis, can be divided medially into a rostral division (Dm), a caudal division (Dp) that is the main pallial target of secondary olfactory projections, and a narrow lateral division (Dd+Dl) immediately adjacent to the attachment of the tela choroidea along the entire rostrocaudal length of the telencephalic hemisphere.
Collapse
Affiliation(s)
- Carmen Piñuela
- Facultad de Medicina, Universidad de Cadiz, Cadiz, Spain
| | | |
Collapse
|
9
|
Belekhova MG, Kenigfest NB, Gapanovich SO, Rio JP, Peperant J. Neurochemical organization of reptilian thalamus. Comparative analysis of amniote optical centers. J EVOL BIOCHEM PHYS+ 2006. [DOI: 10.1134/s0022093006060019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Guglielmotti V, Cristino L. The interplay between the pineal complex and the habenular nuclei in lower vertebrates in the context of the evolution of cerebral asymmetry. Brain Res Bull 2006; 69:475-88. [PMID: 16647576 DOI: 10.1016/j.brainresbull.2006.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2005] [Revised: 02/24/2006] [Accepted: 03/19/2006] [Indexed: 10/24/2022]
Abstract
This paper presents an overview on the epithalamus of vertebrates, with particular reference to the pineal and to the asymmetrical organization of the habenular nuclei in lower vertebrates. The relationship between the pineal and the habenulae in the course of phylogenesis is here emphasized, taking data in the frog as example. Altogether the data support the hypothesis, put forward also in earlier studies, of a correlation of habenular asymmetry in lower vertebrates with phylogenetic modification of the pineal complex. The present re-visitation was also stimulated by recent data on the asymmetrical expression of Nodal genes, which involves the pineal and habenular structures in zebrafish. The comparative analysis of data, from cyclostomes to mammals, suggests that transformation of epithalamic structures may play an important role in brain evolution. In addition, in mammals, including rodents, a remarkable complexity has evolved in the organization of the habenulae and their functional interactions with the pineal gland. The evolution of these two epithalamic structures seems to open also new perspectives of knowledge on their implication in the regulation of biological rhythms.
Collapse
Affiliation(s)
- Vittorio Guglielmotti
- Institute of Cybernetics E. Caianiello, Consiglio Nazionale delle Ricerche, via Campi Flegrei, 34, 80078 Pozzuoli, Naples, Italy.
| | | |
Collapse
|
11
|
Zhu D, Lustig KH, Bifulco K, Keifer J. Thalamocortical Connections in the Pond Turtle Pseudemys scripta elegans. BRAIN, BEHAVIOR AND EVOLUTION 2005; 65:278-92. [PMID: 15761219 DOI: 10.1159/000084317] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Indexed: 11/19/2022]
Abstract
Thalamocortical connections are a neuroanatomical feature shared among vertebrates, although the extent and organization of these connections vary among species. From an evolutionary standpoint, reptiles represent early stages of the pattern of connectivity between the thalamus and cortex, and elucidation of these pathways may help to reveal the biological significance of these projections. The present tract tracing study was performed to examine the organization of thalamocortical projections in the pond turtle, Pseudemys scripta elegans. All experiments were carried out using in vitro brain preparations. Injections of neurobiotin into the medial cortex resulted in labeled neurons in the ipsilateral dorsomedial anterior nucleus of the thalamus, those in the dorsomedial cortex labeled neurons in the dorsolateral anterior nucleus, and injections into the dorsal cortex resulted in labeled neurons in the dorsal lateral geniculate nucleus of the thalamus. Injections of neurobiotin into these thalamic nuclei confirmed the projections to the cortex. Finally, neurobiotin injections primarily into the medial cortex resulted in bilateral label of axons and terminals in the suprapeduncular nucleus of the hypothalamus. The results of the neurobiotin injections revealed a topographic pattern of thalamocortical connections such that medial cortical regions connect with medial thalamic nuclei and lateral cortical regions connect with lateral nuclei. These findings suggest that the presence of functionally segregated thalamocortical projections is a conserved feature of brain organization among amniotes. Moreover, this work describes a descending pathway linking cortical regions with the red nucleus via the hypothalamus thereby providing indirect cortical control of the reptilian rubrospinal system.
Collapse
Affiliation(s)
- Dantong Zhu
- Neuroscience Group, Division of Basic Biomedical Sciences, University of South Dakota School of Medicine, 414 E. Clark St., Vermillion, SD 57069, USA
| | | | | | | |
Collapse
|
12
|
Auclair F, Lund JP, Dubuc R. Immunohistochemical distribution of tachykinins in the CNS of the lamprey Petromyzon marinus. J Comp Neurol 2005; 479:328-46. [PMID: 15457504 DOI: 10.1002/cne.20324] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The presence of tachykinins in the CNS of vertebrates has been known for many decades, and numerous studies have described their distribution in mammals. Tachykinins were also reported in the CNS of lampreys using immunohistochemistry, chromatography, and radioimmunoassay methods, but the use of substance P (SP)-specific antibodies to reveal those tachykinins could have led to an underestimation of their number in this genus. Therefore, we carried out a new immunohistochemical study on Petromyzon marinus using a commercial polyclonal antibody that binds not only to mammalian SP, but also to other neurokinins. This antibody labeled all previously described lamprey tachykinin-containing neuronal populations, but more important, labeled new populations in several parts of the brain. These include the dorsal gray of the rostral spinal cord, the dorsal column nuclei, the octavolateral area, the nucleus of the solitary tract, the medial rhombencephalic reticular formation, the lateral tegmentum of the rostral rhombencephalon, the torus semicircularis, the optic tectum, the habenula, the mammillary area, the dorsal thalamic area, the lateral hypothalamus, and the septum area. Preabsorption experiments confirmed the binding of the antibody to neurokinins and allowed us to propose that the CNS of P. marinus contains at least two different tachykinins.
Collapse
Affiliation(s)
- François Auclair
- Département de Physiologie, Université de Montréal, C.P. 6128, succursale Centre-ville, Montréal H3C 3J7, Canada
| | | | | |
Collapse
|
13
|
Goodson JL, Evans AK, Lindberg L. Chemoarchitectonic subdivisions of the songbird septum and a comparative overview of septum chemical anatomy in jawed vertebrates. J Comp Neurol 2004; 473:293-314. [PMID: 15116393 PMCID: PMC2576523 DOI: 10.1002/cne.20061] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Available data demonstrate that the avian septal region shares a number of social behavior functions and neurochemical features in common with mammals. However, the structural and functional subdivisions of the avian septum remain largely unexplored. In order to delineate chemoarchitectural zones of the avian septum, we prepared a large dataset of double-, triple-, and quadruple-labeled material in a variety of songbird species (finches and waxbills of the family Estrildidae and a limited number of emberizid sparrows) using antibodies against 10 neuropeptides and enzymes. Ten septal zones were identified that were placed into lateral, medial, caudocentral, and septohippocampal divisions, with the lateral and medial divisions each containing multiple zones. The distributions of numerous immunoreactive substances in the lateral septum closely match those of mammals (i.e., distributions of met-enkephalin, vasotocin, galanin, calcitonin gene-related peptide, tyrosine hydroxylase, vasoactive intestinal polypeptide, substance P, corticotropin-releasing factor, and neuropeptide Y), enabling detailed comparisons with numerous chemoarchitectonic zones of the mammalian lateral septum. Our septohippocampal and caudocentral divisions are topographically comparable to the mammalian septohippocampal and septofimbrial nuclei, respectively, although additional data will be required to establish homology. The present data also demonstrate the presence of a medial septal nucleus that is histochemically comparable to the medial septum of mammals. The avian medial septum is clearly defined by peptidergic markers and choline acetyltransferase immunoreactivity. These findings should provide a useful framework for functional and comparative studies, as they suggest that many features of the septum are highly conserved across vertebrate taxa.
Collapse
Affiliation(s)
- James L Goodson
- Psychology Department, University of California, San Diego, La Jolla, California 92093, USA.
| | | | | |
Collapse
|
14
|
Partata WA, Krepsky AMR, Xavier LL, Marques M, Achaval M. Substance P immunoreactivity in the lumbar spinal cord of the turtle Trachemys dorbigni following peripheral nerve injury. Braz J Med Biol Res 2003; 36:515-20. [PMID: 12700831 DOI: 10.1590/s0100-879x2003000400015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals.
Collapse
Affiliation(s)
- W A Partata
- Departamento de Fisiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
| | | | | | | | | |
Collapse
|
15
|
Partata WA, Cerveira JF, Xavier LL, Viola GG, Achaval M. Sciatic nerve transection decrease substance P immunoreactivity in the lumbosacral spinal cord of the frog (Rana catesbeiana). Comp Biochem Physiol B Biochem Mol Biol 2002; 131:807-14. [PMID: 11923093 DOI: 10.1016/s1096-4959(02)00041-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Using immunohistochemistry and optical densitometry, substance P (SP) was investigated in the lumbar spinal cord of the frog Rana catesbeiana after sciatic nerve transection. In control animals, there was a high density of SP fibers in the Lissauer's tract and in the mediolateral band of the dorsal gray matter. Other SP immunoreactive fibers were observed in the dorsal part of the lateral funiculus and in the ventral horn. No SP label was found in any cell bodies. After axotomy, SP immunoreactive fibers decreased in the Lissauer's tract on the same side of the lesion. The other regions remained labeled. The changes were observed at 3 days following axonal injury and persisted at 5, 8 and 15 days. At 20 days, there was no significant difference between the axotomized side and the control one, thus indicating a recovery of the SP expression. These results indicate that the frog may be used as a model to study the effects of peripheral axotomy, contributing to elucidate the SP actions in the pain neuropath.
Collapse
Affiliation(s)
- Wania A Partata
- Departamento de Fisiologia, Laboratório de Neurobiologia Comparada, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500, 90050-170, RS, Porto Alegre, Brazil.
| | | | | | | | | |
Collapse
|
16
|
Belekhova MG, Kenigfest-Rio NB, Vesselkin NP, Rio JP, Repérant J, Ward R. Evolutionary significance of different neurochemical organisation of the internal and external regions of auditory centres in the reptilian brain: an immunocytochemical and reduced NADPH-diaphorase histochemical study in turtles. Brain Res 2002; 925:100-6. [PMID: 11755904 DOI: 10.1016/s0006-8993(01)03255-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
An immunocytochemical and histochemical study was undertaken of the torus semicircularis and nucleus reuniens, the mesencephalic and diencephalic auditory centres, in two chelonian species, Testudo horsfieldi and Emys orbicularis. The nucleus centralis of the torus semicircularis receives few 5-HT-, TH-, substance P-, and menkephalin-immunoreactive fibres and terminals, in marked contrast to the external nucleus laminaris of the torus semicircularis, in which 5-HT-, TH-, substance P-, and menkephalin-immunoreactive elements and cell bodies show a laminar distribution. Dense NPY-positive terminal-like profiles and cell bodies were observed in both the nuclei centralis and laminaris, and many NADPH-d-positive cell bodies were observed in the cell layers of the latter. In the nucleus reuniens, the distribution of 5-HT-, TH-, substance P-, and menkephalin-immunolabelling resembles that seen in the torus semicircularis, but at a lower density. The dorsorostral regions of the nucleus reuniens, as in the nucleus centralis, is insignificantly labelled, in contrast to the ventrocaudal regions in which labelled elements abound. NPY-positive elements are uniformly distributed throughout the nucleus, but no labelled cell bodies were observed. NADPH-d-positive fibres and terminals were observed in both dorsal and ventral regions of the nucleus reuniens, but the few labelled cell bodies to be observed were located in the peripheral regions of the nucleus. These findings are discussed in terms of the evolution of the core-and-belt organisation of sensory nuclei observed in other vertebrate species.
Collapse
Affiliation(s)
- M G Belekhova
- Laboratory of Evolution of Neuronal Interactions, Sechenov Institute, St. Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
17
|
Zhang W, Li JL, Hosaka M, Janz R, Shelton JM, Albright GM, Richardson JA, Südhof TC, Victor RG. Cyclosporine A-induced hypertension involves synapsin in renal sensory nerve endings. Proc Natl Acad Sci U S A 2000; 97:9765-70. [PMID: 10920204 PMCID: PMC16939 DOI: 10.1073/pnas.170160397] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Indexed: 11/18/2022] Open
Abstract
The calcineurin inhibitor cyclosporine A (CsA) has emerged as a major cause of secondary hypertension in humans, but the underlying pathogenetic mechanisms have remained enigmatic. Synapsins are a family of synaptic vesicle phosphoproteins that are essential for normal regulation of neurotransmitter release at synapses. In addition to synaptic vesicles, synapsins and other vesicle proteins are found on microvesicles in sensory nerve endings in peripheral tissues. However, the functions of the sensory microvesicles in general, and of synapsins in particular, are unknown. We now demonstrate in a mouse model that CsA raises blood pressure by stimulating renal sensory nerve endings that contain synapsin-positive microvesicles. In knockout mice lacking synapsin I and II, sensory nerve endings are normally developed but not stimulated by CsA whereas a control stimulus, capsaicin, is fully active. The reflex activation of efferent sympathetic nerve activity and the increase in blood pressure by CsA seen in control are greatly attenuated in synapsin-deficient mice. These results provide a mechanistic explanation for CsA-induced acute hypertension and suggest that synapsins could serve as a drug target in this refractory condition. Furthermore, these data establish evidence that synapsin-containing sensory microvesicles perform an essential role in sensory transduction and suggest a role for synapsin phosphorylation in this process.
Collapse
Affiliation(s)
- W Zhang
- Departments of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75390, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Guirado S, Dávila JC, Real MA, Medina L. Nucleus accumbens in the lizard Psammodromus algirus: chemoarchitecture and cortical afferent connections. J Comp Neurol 1999; 405:15-31. [PMID: 10022193 DOI: 10.1002/(sici)1096-9861(19990301)405:1<15::aid-cne2>3.0.co;2-v] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To better understand the organization and evolution of the basal ganglia of vertebrates, in the present study we have analyzed the chemoarchitecture and the cortical input to the nucleus accumbens in the lacertid lizard Psammodromus algirus. The nucleus accumbens contains many gamma-aminobutyric acid (GABA)-positive neurons and calbindin-positive neurons, the majority of which may be spiny projection neurons, and a few dispersed neuropeptide Y-positive neurons that likely represent aspiny interneurons. The nucleus accumbens contains two chemoarchitectonically different fields: a rostromedial field that stains heavily for substance P, dopamine, GABA(A) receptor, and a caudolateral field that stains only lightly to moderately for them, appearing more similar to the adjacent striatum. Injections of biotinylated dextran amine were placed in either the medial, dorsomedial, or dorsal cortices of Psammodromus. The medial and the dorsal cortices project heavily to the rostromedial field of the accumbens, whereas they project lightly to moderately to the caudolateral field. Cortical terminals make asymmetric, presumably excitatory, synaptic contacts with distal dendrites and the head of spines. Our results indicate that the hippocampal-like projection to the nucleus accumbens is similar between mammals and reptiles in that cortical terminals make mainly excitatory synapses on spiny, putatively projection neurons. However, our results and results from previous investigations indicate that important differences exist between the nucleus accumbens of mammals and reptiles regarding local modulatory interactions between cortical, dopaminergic, and cholinergic elements, which suggest that the reptilian nucleus accumbens may be as a whole comparable to the shell of the mammalian nucleus accumbens.
Collapse
Affiliation(s)
- S Guirado
- Departamento de Biología Celular y Genética, Facultad de Ciencias, Universidad de Málaga, Spain.
| | | | | | | |
Collapse
|
19
|
Reiner A, Medina L, Veenman CL. Structural and functional evolution of the basal ganglia in vertebrates. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1998; 28:235-85. [PMID: 9858740 DOI: 10.1016/s0165-0173(98)00016-2] [Citation(s) in RCA: 261] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
While a basal ganglia with striatal and pallidal subdivisions is 1 clearly present in many extant anamniote species, this basal ganglia is cell sparse and receives only a relatively modest tegmental dopaminergic input and little if any cortical input. The major basal ganglia influence on motor functions in anamniotes appears to be exerted via output circuits to the tectum. In contrast, in modern mammals, birds, and reptiles (i.e., modern amniotes), the striatal and pallidal parts of the basal ganglia are very neuron-rich, both consist of the same basic populations of neurons in all amniotes, and the striatum receives abundant tegmental dopaminergic and cortical input. The functional circuitry of the basal ganglia also seems very similar in all amniotes, since the major basal ganglia influences on motor functions appear to be exerted via output circuits to both cerebral cortex and tectum in sauropsids (i.e., birds and reptiles) and mammals. The basal ganglia, output circuits to the cortex, however, appear to be considerably more developed in mammals than in birds and reptiles. The basal ganglia, thus, appears to have undergone a major elaboration during the evolutionary transition from amphibians to reptiles. This elaboration may have enabled amniotes to learn and/or execute a more sophisticated repertoire of behaviors and movements, and this ability may have been an important element of the successful adaptation of amniotes to a fully terrestrial habitat. The mammalian lineage appears, however, to have diverged somewhat from the sauropsid lineage with respect to the emergence of the cerebral cortex as the major target of the basal ganglia circuitry devoted to executing the basal ganglia-mediated control of movement.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee-Memphis, 855 Monroe Avenue, Memphis, TN 38163,
| | | | | |
Collapse
|
20
|
Medina L, Reiner A. The efferent projections of the dorsal and ventral pallidal parts of the pigeon basal ganglia, studied with biotinylated dextran amine. Neuroscience 1997; 81:773-802. [PMID: 9316028 DOI: 10.1016/s0306-4522(97)00204-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study we have investigated the efferent projections of both the dorsal and the ventral pallidum of the pigeon basal ganglia, using the sensitive anterograde tracer biotinylated dextran amine [Veenman C. L. et al. (1992) J. Neurosci. Meth. 41, 239-254]. Injections of biotinylated dextran amine in the pigeon dorsal pallidum produced numerous fibers and terminals in specific nuclei of the thalamus, hypothalamus, pretectum and midbrain tegmentum. In the thalamus, labeled fibers and terminals were observed in the avian thalamic reticular nucleus, the proposed motor part of the avian ventral tier (ventrointermediate area), the avian parafascicular nucleus (nucleus dorsointermedius posterior), as well as in the avian nucleus subrotundus (which may be comparable to the posterior intralaminar nuclei of mammals). Labeled fibers and terminals were also observed in the avian subthalamic nucleus (anterior nucleus of the ansa lenticularis), in the pretectum (nucleus spiriformis lateralis) and in the avian substantia nigra pars reticulata. Injections of biotinylated dextran amine in the pigeon ventral pallidum produced fibers and terminals in specific centers of the telencephalon, hypothalamus, thalamus, epithalamus, and midbrain and isthmic tegmentum. Labeled fibers and terminals were also observed in the avian subthalamic nucleus and the inmediately adjacent lateral hypothalamus, the avian thalamic reticular nucleus, the avian medidorsal nucleusaand posterior intralaminar nuclei, and the lateral habenula. Finally, labeled fibers and terminals were found in the ventral tegmental area, the avian substantia nigra pars compacta and the midbrain/isthmic tegmentum, which includes the pedunculopontine tegmental nucleus. Our results indicate that both the dorsal and ventral pallida of birds have unique and specific projection patterns, which are very similar to those of their counterparts in mammals. Our study suggests that these avian basal ganglia regions may be related mainly to somatomotor and limbic functions, respectively.
Collapse
Affiliation(s)
- L Medina
- Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee, Memphis 38163, USA
| | | |
Collapse
|
21
|
|
22
|
Font C, Mart�nez-Marcos A, Lanuza E, Hoogland PV, Mart�nez-Garci� F. Septal complex of the telencephalon of the lizardPodarcis hispanica. II. afferent connections. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19970714)383:4<489::aid-cne7>3.0.co;2-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
23
|
Brüning G, Wiese S, Mayer B. Nitric oxide synthase in the brain of the turtle Pseudemys scripta elegans. J Comp Neurol 1994; 348:183-206. [PMID: 7529267 DOI: 10.1002/cne.903480203] [Citation(s) in RCA: 81] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distribution pattern of nitric oxide synthase (NOS) was investigated in the brain of the turtle by NADPH-diaphorase histochemistry. The specificity of the histochemical staining was tested by immunocytochemical colocalization with an antiserum specific for NOS. In the forebrain, neurons staining intensely for nitric oxide synthase were localized in the olfactory tubercle, the basal ganglia complex, the basal amygdaloid nucleus, suprapeduncular nucleus, and the posterior hypothalamic area. Many positive fibers course in a tract connecting the basal amygdaloid nucleus with the hypothalamus, corresponding to the stria terminalis. Bundles of nitroxergic fibers were seen to course at the ventromedial edge of the optic tract and to cross in the supraoptic decussation, apparently consisting of tectothalamic and thalamotectal fibers. In the midbrain, strongly NOS-positive neurons were present in the substantia nigra, the nucleus profundus mesencephali, the periventricular grey of the optic tectum, the laminar nucleus of the torus semicircularis, and the nucleus of the lateral lemniscus. The area of the locus coeruleus harbored an accumulation of intensely stained neurons, which, as in mammals, might represent a cholinergic cell group of the reptilian brainstem. In the cerebellum, strong staining was confined to bundles of afferent fibers running in the lower molecular and in the Purkinje cell layer. These axons appeared to include ascending projections from the dorsal funicular nucleus or the spinal cord. NOS-positive cells in the caudal brainstem were found in the cerebellar nuclei, in the superior vestibular nucleus, in the reticular nuclei, ventrolateral to the nucleus of the solitary tract, in the perihypoglossal, and in the dorsal funicular nucleus. Taken together, these results suggest that nitric oxide acts as a messenger molecule in different areas of the reptilian brain and spinal cord. In certain areas, the pattern of expression of NOS appears to have evolved before radiation of present mammalian, avian, and reptilian species.
Collapse
Affiliation(s)
- G Brüning
- Department of Anatomy, Free University of Berlin, Federal Republic of Germany
| | | | | |
Collapse
|
24
|
Siemen M, Künzle H. Connections of the basal telencephalic areas c and d in the turtle brain. ANATOMY AND EMBRYOLOGY 1994; 189:339-59. [PMID: 8074323 DOI: 10.1007/bf00190590] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Tracer substances were injected into the basal telencephalic areas c and d of the turtle brain. These areas (Acd) have recently been shown to be connected reciprocally with the dorsal spino-medullary region, though the particular subregions involved in these projections remained unclear. We demonstrated that the efferent projections of area d terminate predominantly within or immediately adjacent to the trigeminal nuclear complex and in the high cervical spinal gray. The dendritic domain of the vagus-solitarius complex and the dorsal column nuclear complex might also receive some basal telencephalic efferents. The afferent projections to Acd, on the other hand, arise predominantly in the dorsal column nuclei as defined according to cytoarchitectural and hodological criteria. A few retrogradely labeled cells were found in the vagus-solitarius complex, the principal trigeminal nucleus and the high cervical spinal cord. Numerous labeled cells were found in the dorsolateral isthmo-rhombencephalic tegmentum, especially the n. visceralis secundarius, the n. vestibularis superior and parts of the lateral lemniscal complex. Aminergic cell populations projecting to Acd were the n. raphes inferior and superior, the locus coeruleus, the substantia nigra, pars compacta and the ventral tegmental area. Other meso-diencephalic cell groups were the griseum centrale (including the n. laminaris of the torus semicircularis), the n. interpeduncularis dorsalis, the nucleus of the fasciculus longitudinalis medialis, the nucleus and the nucleus interstitialis of flm, the n. interstitialis commissuralis posterior and then n. caudalis. Several hypothalamic regions, the reuniens complex and the perirotundal region of the thalamus also appeared to project heavily to Acd. Telencephalic areas retrogradely labeled after injection of tracer into Acd and its immediate surroundings were the rostral part of the lateral (olfactory) cortex, adjacent regions of the basal dorsal ventricular ridge and the n. centralis amygdalae, the n. tractus olfactorius lateralis as well as the areas g and h. The data suggest that areas c and d may correlate best with the 'extended' amygdala in mammals; further correlation with structures similar to the ventral striopallidum, however, cannot be excluded. Homostrategies are discussed with regard to the processing of higher-order somatovisceral information in turtles, birds and mammals.
Collapse
Affiliation(s)
- M Siemen
- Institute of Anatomy, University of Munich, Germany
| | | |
Collapse
|
25
|
Veenman CL, Reiner A. The distribution of GABA-containing perikarya, fibers, and terminals in the forebrain and midbrain of pigeons, with particular reference to the basal ganglia and its projection targets. J Comp Neurol 1994; 339:209-50. [PMID: 8300906 DOI: 10.1002/cne.903390205] [Citation(s) in RCA: 152] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Immunohistochemical techniques were used to study the distributions of glutamic acid decarboxylase (GAD) and gamma-aminobutyric acid (GABA) in pigeon forebrain and midbrain to determine the organization of GABAergic systems in these brain areas in birds. In the basal ganglia, numerous medium-sized neurons throughout the striatum were labeled for GABA, while pallidal neurons, as well as a small population of large, aspiny striatal neurons, labeled for GAD and GABA. GAD+ and GABA+ fibers and terminals were abundant throughout the basal ganglia, and GABAergic fibers were found in all extratelencephalic targets of the basal ganglia. Most of these targets also contained numerous GABAergic neurons. In pallial regions, approximately 10-12% of the neurons were GABAergic. The outer rind of the pallium was more intensely labeled for GABAergic fibers than the core. The olfactory tubercle region, the ventral pallidum, and the hypothalamus were extremely densely labeled for GABAergic fibers, while GABAergic neurons were unevenly distributed in the hypothalamus. GABAergic neurons and fibers were abundant in the dorsalmost part of thalamus and the dorsal geniculate region, while GABAergic neurons and fibers were sparse (or lightly labeled) in the thalamic nuclei rotundus, triangularis, and ovoidalis. Further, GABAergic neurons were abundant in the superficial tectal layers, the magnocellular isthmic nucleus, the inferior colliculus, the intercollicular region, the central gray, and the reticular formation. GABAergic fibers were particularly abundant in the superficial tectal layers, the parvocellular isthmic nucleus, the inferior colliculus, the intercollicular region, the central gray, and the interpeduncular nucleus. These results suggest that GABA plays a role as a neurotransmitter in nearly all fore- and midbrain regions of birds, and in many instances the observed distributions of GABAergic neurons and fibers closely resemble the patterns seen in mammals, as well as in other vertebrates.
Collapse
Affiliation(s)
- C L Veenman
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163
| | | |
Collapse
|
26
|
Bennis M, Araneda S, Calas A. Distribution of substance P-like immunoreactivity in the chameleon brain. Brain Res Bull 1994; 34:349-57. [PMID: 7521779 DOI: 10.1016/0361-9230(94)90028-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The distribution of substance P-like immunoreactivity in the chameleon brain and spinal cord was studied with immunohistochemical methods using polyclonal antibodies against substance P. In the telencephalon, immunoreactive cell bodies and fibers were located primarily in the striatum and in the globus pallidus. In addition, few substance P-like fibers were observed in the cortical areas, in the septum, and in the amygdala. In the diencephalon, a high density of immunostained neurons and fibers were seen in the periventricular and ventrolateral hypothalamus. Another group of cell bodies was located in the optic tectum and particularly in the stratum griseum central. A large number of immunoreactive fibers were also detected in the thalamic nuclei and in the median eminence. In the mesencephalon, few immunoreactive neurons were observed in the ventral tegmental area, in the substantia nigra, and in the nucleus reticularis isthmi. These latter nuclei, the periventricular area, the posterior commissure, the nucleus lentiformis mesencephali, the oculomotor nucleus, and the raphe nuclei contained a dense plexus of substance P immunoreactive fibers. No immunoreactive cell bodies were observed in raphe nuclei. In the spinal cord, no substance P-like immunoreactive neurons were observed, but a large number of substance P immunostained fibers were seen in the dorsal and lateral part of the dorsal horn and surrounding the dorsal parts of the central canal. The results of the present study are discussed with respect to those obtained in other species of reptiles, the main differences concerning the lateral septum, the habenula, the area of the paraventricular organ, and the raphe nuclei.
Collapse
Affiliation(s)
- M Bennis
- Université Cadi Ayyad, Faculté des Sciences Semlalia, Laboratoire de Neurosciences, Marrakech, Marocco
| | | | | |
Collapse
|
27
|
Sas E, Maler L, Weld M. Connections of the olfactory bulb in the gymnotiform fish, Apteronotus leptorhynchus. J Comp Neurol 1993; 335:486-507. [PMID: 8227532 DOI: 10.1002/cne.903350403] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
This work examines the connectivity of the olfactory bulb in the gynmotiform fish Apteronotus leptorhynchus. Wheat germ agglutinin conjugated horseradish peroxidase was iontophoresed in different areas and depths of the bulb in order to define its efferent and afferent connections. The olfactory bulb projects bilaterally via the medial (medial and centromedial fascicles) and lateral olfactory (lateral and centrolateral fascicles) tracts. The nervus terminalis courses through the ventromedial aspect of the bulb to terminate in parts of the medial subpallium and hypothalamus. Its telencephalic component could be identified by a nonpreadsorbable substance P-like immunoreactivity. Fibers within the medial olfactory tract form four telencephalic terminal fields: peduncular, medial, intermediate and posterior fields. The diencephalic terminal fields in the habenula, preoptic, and hypothalamic areas appear to correspond to some of the nervus terminalis fibers (von Bartheld and Meyer [1986] Cell Tissue Res. 245:143-158, Krishna et al. [1992] Gen. Comp. Endocrinol. 85:111-117), and to axons of telencephalic bulbopetal cells of area dorsalis posterior. The terminal fields of the medial olfactory tract and nervus terminalis partially overlap in the ventral telencephalic areas partes ventralis, supracommissuralis, and rostral preoptic region. The lateral olfactory tract forms a lateral terminal field and contributes to the intermediate and posterior terminal fields. Olfactory fibers cross in the interbulbar, anterior, and habenular commissures and tuberal decussation. Consistent differences were noted between the medial and lateral olfactory bulb, with respect to their cytoarchitectonics, immunohistochemistry, and connections. In addition to the olfactory nerve, bulbar afferents are predominantly ipsilateral, with minor inputs originating from the contralateral bulb and telencephalic area dorsalis posterior, nucleus raphe centralis, and locus ceruleus.
Collapse
Affiliation(s)
- E Sas
- University of Ottawa, Faculty of Medicine, Department of Anatomy and Neurobiology, Ontario, Canada
| | | | | |
Collapse
|
28
|
Reiner A. Neurotransmitter organization and connections of turtle cortex: implications for the evolution of mammalian isocortex. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. COMPARATIVE PHYSIOLOGY 1993; 104:735-48. [PMID: 8097979 DOI: 10.1016/0300-9629(93)90149-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Telencephalic cortex in turtles is a simple three layered-structure. The dorsal most part of this structure is thought to resemble the reptilian forerunner of at least parts of mammalian isocortex. This dorsal part of turtle cortex contains several functionally distinct regions that show similarity in their connections and function to specific areas in mammalian isocortex. The types of neurons found in turtle dorsal cortex (as defined by their morphology and neurotransmitter content) also show great similarity to those observed in mammals, with the major exception that turtle cortex appears to lack the types of neurons found in granular and supragranular layers of mammalian isocortex. Similar results have also been observed in other living reptiles. Thus, one major step in the evolution of reptilian cortex into mammalian cortex must have been the addition of the types of neurons found in the granular and supragranular layers of mammalian isocortex. These observations for turtles also suggest that turtle cortex in particular and reptilian telencephalic cortex in general must differ functionally from mammalian isocortex with respect to those features associated with the laminar and columnar organization of isocortex. These issues are discussed in more detail below and in Reiner (1991).
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163
| |
Collapse
|
29
|
Cytoarchitectonic pattern of the hypothalamus in the turtle, Lissemys punctata granosa. Cell Tissue Res 1992. [DOI: 10.1007/bf00381892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
30
|
Reiner A, Northcutt RG. An immunohistochemical study of the telencephalon of the senegal bichir (Polypterus senegalus). J Comp Neurol 1992; 319:359-86. [PMID: 1351063 DOI: 10.1002/cne.903190305] [Citation(s) in RCA: 97] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The telencephalon in ray-finned fish (actinopterygians) is everted, in contrast to the evaginated telencephalic hemispheres in all other vertebrates. In the more derived ray-finned fish, the teleosts, proliferation of neurons and their migration from the ependymal zone of the pallium renders comparisons between telencephalic cell groups of the teleosts and members of other vertebrate groups extremely difficult. The telencephalon of Polypterus (a primitive living ray-finned fish), although everted, is cytoarchitecturally much simpler than that of teleosts. We have thus applied immunohistochemical techniques to the study of the telencephalon of Polypterus to help clarify the evolution of the telencephalon in teleosts and facilitate comparisons between the telencephalon in ray-finned fish and other vertebrates. Antisera against the following neuroactive substances were used: 1) serotonin (5HT), 2) tyrosine hydroxylase (TH), 3) substance P (SP), 4) leucine-enkephalin (ENK), 5) neuropeptide Y (NPY), and 6) the neurotensin-related hexapeptide LANT6. Several features of the labeling patterns obtained suggested that the dorsal and ventral subdivisions of the area ventralis are homologous as a field to the basal ganglia and septum plus other basal telencephalic regions of land vertebrates, sharks and lungfish: 1) an abundance of SP+, NPY+, and ENK+ fibers; 2) an abundance of TH+ fibers, possibly of posterior tubercle/tegmental origin; 3) the presence of an SP+ fiber bundle that appeared to descend from basal telencephalic levels and terminate in the posterior tubercle/tegmentum, which contain TH+ (possibly dopaminergic) neurons; and 4) an abundance of 5HT+ fibers, presumably of posterior tubercle/tegmental origin. It was not possible, however, to recognize distinct pallidal and striatal subdivisions within the area ventralis of Polypterus. The olfactory pallium (P1) was generally poor in most of the substances examined, except for the presence of LANT6+ fibers. The P3 pallial field was conspicuously rich in SP+ and ENK+ fibers throughout its extent, and the caudal and lateral parts of the P2 field were rich in SP+ fibers and ENK+ fibers. Since this is characteristic of the medial pallial and/or dorsomedial pallial walls of the telencephalon in lungfish, sharks, frogs, and reptiles, the P3 field and caudolateral part of the P2 field may be homologous to these portions of the telencephalon in other vertebrates. More rostromedial parts of P2 may correspond to those parts of the pallium in land vertebrates that are in receipt of specific sensory input from the thalamus, since low neuropeptide levels are characteristic of these regions.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Reiner
- Dept. of Anatomy and Neurobiology, University of Tennessee-Memphis 38163
| | | |
Collapse
|
31
|
Medina L, Martí E, Artero C, Fasolo A, Puelles L. Distribution of neuropeptide Y-like immunoreactivity in the brain of the lizard Gallotia galloti. J Comp Neurol 1992; 319:387-405. [PMID: 1602050 DOI: 10.1002/cne.903190306] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The distribution of neuropeptide Y (NPY)-like immunoreactivity was studied in the brain of the lizard Gallotia galloti, in order to gain insight into the comparative topography of this peptide. Antisera against both NPY and its C-terminal flanking peptide (C-PON) were used, demonstrating a general coexistence of both peptides, as described in other vertebrates. Most NPY-like immunoreactive (NPY-LI) cell bodies were observed in the telencephalon, specifically in various olfactory structures, all cortices, septum, basal ganglia (except for the globus pallidus), the nucleus of the diagonal band of Broca, the amygdaloid complex, and the bed nucleus of the anterior commissure. NPY-LI cells were also seen in the preoptic and hypothalamic regions and the dorsal thalamus (mainly in the perirotundal belt), as well as in the mesencephalic tegmentum (in the ventral tegmental area, the substantia nigra, and the retrorubral area). NPY-LI fibers and terminals were widely distributed in the brain. All visual and auditory neuropiles were densely innervated. Specially dense plexuses were seen in the nucleus accumbens, the ventral pallidum, the suprachiasmatic and ventromedial hypothalamic nuclei, the nucleus medialis thalami, the left habenula, and the central nucleus of the torus semicircularis. Our analysis shows that the distribution of NPY-like immunoreactivity in the forebrain of Gallotia largely resembles that of other vertebrates, whereas differences are mainly observed in the brainstem. The widespread distribution of NPY in the lizard brain suggests several modulatory functional roles, either in local-circuit systems of the forebrain, or in various limbic, neuroendocrine, and sensory pathways.
Collapse
Affiliation(s)
- L Medina
- U.D.I. Biología Celular, Facultad de Biología, Universidad de La Laguna, Tenerife, Spain
| | | | | | | | | |
Collapse
|
32
|
Weld MM, Maler L. Substance P-like immunoreactivity in the brain of the gymnotiform fish Apteronotus leptorhynchus: presence of sex differences. J Chem Neuroanat 1992; 5:107-29. [PMID: 1375031 DOI: 10.1016/0891-0618(92)90038-r] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The distribution of substance P-like immunoreactivity (SPli) was charted in the brain of the gymnotiform fish Apteronotus leptorhynchus, and correlated with the circuitry underlying intraspecific electrocommunication. Cell bodies were found predominantly in the lateral hypothalamus and in certain paraventricular organs: nucleus preopticus periventricularis, anterior subdivision; anterior hypothalamus; nucleus posterioris periventricularis; nucleus recessus lateralis, medial subdivision 2; nucleus recessus posterioris and nucleus recessus lateralis, lateral subdivision. Cell bodies were also found in the rostral olfactory nucleus, ventral telencephalon (ventral and central subdivisions), the habenula, the vagal sensory and motor nuclei and in the subtrigeminal nucleus. The distribution of SPli fibers was similar in some respects to that reported for other vertebrates. SPli was found in the rhombencephalon associated with vagal afferent fibers and in the funicular nucleus (possibly related to nociception). In the diencephalon and midbrain SPli fibers were found in the habenular-interpeduncular tract, in the hypothalamus and pituitary. SPli fibers were also found in preoptic and forebrain areas. The most striking result was the sexually dimorphic SPli innervation of certain hypothalamic and septal nuclei, and of the prepacemaker nucleus (PPn), a diencephalic cell group which controls communication ('chirping') in gymnotiforms. The PPn and septal/hypothalamic nuclei were densely innervated by SPli in males but devoid of SPli in females.
Collapse
Affiliation(s)
- M M Weld
- Department of Anatomy, Faculty of Medicine, University of Ottawa, Ontario, Canada
| | | |
Collapse
|
33
|
Villani L, Guarnieri T, Salsi U, Bollini D. Substance P in the habenulo-interpeduncular system of the goldfish. Brain Res Bull 1991; 26:225-8. [PMID: 1707327 DOI: 10.1016/0361-9230(91)90231-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The distribution of substance P (SP)-like immunoreactivity has been studied in the habenulo-interpeduncular system of the goldfish in normal conditions and after habenular ablation. In normal conditions intense SP-like immunoreactivity was observed in the neuropilar structure of the interpeduncular nucleus (IPN). No SP-like immunoreactive cell bodies were observed in the habenular nuclei (HBN), but some SP-like immunoreactive fibres were localized in the central core of the nucleus. Following surgical habenular ablation SP-like immunoreactivity was reduced in the IPN. The image analysis performed on the IPN showed clear-cut transmittance changes in the area examined. The results suggest that SP is involved in connecting HBN and IPN in goldfish, and are consistent with the data of mammals and other vertebrates.
Collapse
Affiliation(s)
- L Villani
- Department of Biology, University of Bologna, Italy
| | | | | | | |
Collapse
|
34
|
Anderson KD, Reiner A. Striatonigral projection neurons: a retrograde labeling study of the percentages that contain substance P or enkephalin in pigeons. J Comp Neurol 1991; 303:658-73. [PMID: 1707424 DOI: 10.1002/cne.903030410] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Two largely separate populations of neuropeptide-containing striatonigral projection neurons have been distinguished in pigeons, one population whose neurons contain substance P (SP) and dynorphin (DYN) and a second population whose neurons contain enkephalin (ENK) (Reiner, '86a; Anderson and Reiner, '90a). In the present study, we investigated the abundance of these two types of neurons relative to all striatonigral projection neurons by combining retrograde labeling by the fluorescent dye fluorogold with immunofluorescence labeling for SP and ENK. Pigeons received large intranigral injections of fluorogold to retrogradely label the striatonigral projection neurons, and several days later they were treated with colchicine (32 hours before transcardial perfusion). Adjacent series of sections through the basal ganglia were labeled for SP and ENK using immunofluorescence techniques. The tissue was examined using fluorescence microscopy and the percentages of retrogradely labeled neurons containing either SP or ENK were quantified. We found that 85-95% of the fluorogold-labeled striatonigral neurons were SP+, whereas only 1-4% were ENK+. Thus the majority of striatonigral projection neurons in pigeons appear to contain SP, whereas a small percentage contain ENK. Only a small percentage of striatonigral neurons did not contain either. Since striatal projection neurons also contain GABA (Reiner, '86b), the present results suggest that a high percentage of striatonigral projection neurons coexpress SP, DYN and GABA, whereas a small fraction coexpress ENK and GABA. The available data are consistent with the conclusion that this is true in reptilian and mammalian species as well.
Collapse
Affiliation(s)
- K D Anderson
- Department of Anatomy and Neurobiology, University of Tennessee, Memphis 38163
| | | |
Collapse
|
35
|
|
36
|
Cortical Circuitry Underlying Visual Motion Analysis in Turtles. ACTA ACUST UNITED AC 1991. [DOI: 10.1007/978-3-642-84545-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
37
|
Luthman J, Fernández A, Radmilovich M, Trujillo-Cenóz O. Immunohistochemical studies on the spinal dorsal horn of the turtle Chrysemys d'orbigny. Tissue Cell 1991; 23:515-23. [PMID: 1718054 DOI: 10.1016/0040-8166(91)90009-i] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Immunohistochemical methods were used to characterize some of the systems of nerve fibers occurring in the spinal dorsal horns of the turtle Chrysemys d'orbigny. Substance P (SP), calcitonin gene-related peptide (CGRP) and leuenkephalin (Enk) immunoreactive fibers were found concentrated in the superficial horn region, termed here synaptic field Ia. From this zone the immunoreactive fibers project to deeper dorsal horn regions. Comparison with histological images obtained after HRP labeling of dorsal root axons indicates that SP-, CGRP- and Enk-immunoreactive fibers are small-diameter primary sensory fibers entering the cord via synaptic field Ia. It is posulated here that these three substances may coexist in the same fibers. Enk-positive fibers also occur randomly scattered in the lateral funiculi, showing a conspicuous increase in density at the perimedullary plexus level. Tyrosine hydroxylase (TH) immunoreactive fibers were found in the more compact dorsal horn neuropil (synaptic field II) and also forming bilateral conspicuous bundles in the lateral funiculi. TH-immunoreactive cell bodies were found in the epithelium lining the central canal. Taking into account data derived from Golgi impregnated material it is proposed that they represent epithelial cells undergoing neural differentiation.
Collapse
Affiliation(s)
- J Luthman
- Department of Histology and Neurobiology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
38
|
Batten TF, Cambre ML, Moons L, Vandesande F. Comparative distribution of neuropeptide-immunoreactive systems in the brain of the green molly, Poecilia latipinna. J Comp Neurol 1990; 302:893-919. [PMID: 2081820 DOI: 10.1002/cne.903020416] [Citation(s) in RCA: 226] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The comparative distribution of peptidergic neural systems in the brain of the euryhaline, viviparous teleost Poecilia latipinna (green molly) was examined by immunohistochemistry. Topographically distinct, but often overlapping, systems of neurons and fibres displaying immunoreactivity (ir) related to a range of neuropeptides were found in most brain areas. Neurosecretory and hypophysiotrophic hormones were localized to specific groups of neurons mostly within the preoptic and tuberal hypothalamus, giving fibre projections to the neurohypophysis, ventral telencephalon, thalamus, and brain stem. Separate vasotocin (AVT)-ir and isotocin (IST)-ir cells were located in the nucleus preopticus (nPO), but many AVT-ir nPO neurons also displayed growth hormone-releasing factor (GRF)-like-ir, and in some animals corticotrophin-releasing factor (CRF)-like-ir. The main group of CRF-ir neurons was located in the nucleus recessus anterioris, where coexistence with galanin (GAL) was observed in some cells. Enkephalin (ENK)-like-ir was occasionally present in a few IST-ir cells of the nPO and was also found in small neurons in the posterior tuberal hypothalamus and in a cluster of large cells in the dorsal midbrain tegmentum. Thyrotrophin-releasing hormone (TRH)-ir cells were found near the rostromedial tip of the nucleus recessus lateralis. Gonadotrophin-releasing hormone (GnRH)-ir cells were present in the nucleus olfactoretinalis, ventral telencephalon, preoptic area, and dorsal midbrain tegmentum. Molluscan cardioexcitatory peptide (FMRF-amide)-ir was colocalized with GnRH-ir in the ganglion cells and central projections of the nervus terminalis. Melanin-concentrating hormone (MCH)-ir neurons were restricted to the tuberal hypothalamus, mostly within the nucleus lateralis tuberis pars lateralis, and somatostatin (SRIF)-ir neurons were numerous throughout the periventricular areas of the diencephalon. A further group of SRIF-ir neurons extending from the ventral telencephalon into the dorsal telencephalon pars centralis also contained neuropeptide Y (NPY)-, peptide YY (PYY)-, and NPY flanking peptide (PSW)-like-ir. These immunoreactivities were, however, also observed in non-SRIF-ir cells and fibres, particularly in the mesencephalon. Calcitonin gene-related peptide (CGRP)-like-ir had a characteristic distribution in cells grouped in the isthmal region and fibre tracts running forward into the hypothalamus, most strikingly into the inferior lobes. Antisera to cholecystokinin (CCK) and neurokinin A (NK) or substance P (SP) stained very extensive, separate systems throughout the brain, with cells most consistently seen in the ventral telencephalon and periventricular hypothalamus. Broadly similar, but much more restricted, distributions of cells and fibres were seen with antisera to neurotensin (NT) and vasoactive intestinal peptide (VIP).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- T F Batten
- Department of Cardiovascular Studies, University Leeds, England
| | | | | | | |
Collapse
|
39
|
Vecino E, Ekström P. Distribution of Met-enkephalin, Leu-enkephalin, substance P, neuropeptide Y, FMRFamide, and serotonin immunoreactivities in the optic tectum of the Atlantic salmon (Salmo salar L.). J Comp Neurol 1990; 299:229-41. [PMID: 2229479 DOI: 10.1002/cne.902990207] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The distribution of the neuropeptides methionine- and leucine-enkephalins, substance P, FMRFamide, neuropeptide Y, and vasoactive intestinal peptide, as well as the biogenic amine serotonin was studied in the optic tectum of the Atlantic salmon by means of immunocytochemistry. Peroxidase-antiperoxidase and indirect immunofluorescence methods were used to compare the differential laminar distribution of each of these substances. Nine parts of the optic tectum were selected for analysis on frontal sections: median, dorsolateral, and ventrolateral areas at rostral, medial, and caudal levels. Methionine- and leucine-enkephalin immunoreactive fibers were found in discrete sublayers in the following strata: stratum opticum, stratum fibrosum et griseum superficiale, stratum griseum centrale, stratum, and album centrale. Most of the substance P-, serotonin-, and vasoactive intestinal peptide-immunoreactive fibers were found in the stratum album centrale, whereas the FMRFamide- and neuropeptide Y-immunoreactive fibers were more or less randomly distributed within most of the strata of the optic tectum. Neuropeptide Y-immunoreactive cell bodies were located in the stratum periventriculare. We suggest an extrinsic origin for most of the immunoreactive fibers observed in the optic tectum, except for the neuropeptide Y-immunoreactive fibers that probably originate in the periventricular neurons. Although retinal peptidergic input to the optic tectum has been proposed in other vertebrates, there is no evidence that any of the neuropeptidelike or serotonin immunoreactive fibers in the optic tectum of the salmon should be of retinal origin. Differences and similarities with the distribution of neuropeptides in the optic tectum in representatives of other vertebrate classes are discussed.
Collapse
Affiliation(s)
- E Vecino
- Department of Cell Biology and Pathology, Faculty of Biology, University of Salamanca, Spain
| | | |
Collapse
|
40
|
Reiner A, Anderson KD. The patterns of neurotransmitter and neuropeptide co-occurrence among striatal projection neurons: conclusions based on recent findings. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 1990; 15:251-65. [PMID: 1981156 DOI: 10.1016/0165-0173(90)90003-7] [Citation(s) in RCA: 246] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The neurotransmitter organization of striatal projection neurons appears to be less complex than once thought. Only 4 major evolutionarily conserved populations appear to be present. The neurons of two of these populations contain SP, DYN and GABA, with one of these two populations consisting of striatonigral projection neurons and the other of striatopallidal projection neurons. The two additional major populations of striatal projection neurons consist of striatopallidal and striato-nigral neurons that both contain both ENK and GABA. Although these conclusions greatly simplify the understanding of the organization of striatal projection neurons by suggesting that only a few major populations are present, these conclusions complicate understanding of neurotransmission between these neurons and their target areas by suggesting that each neuron utilizes multiple neuroactive substances to influence target neurons. Further studies will therefore be required to explore the mechanisms of neurotransmission by which striatal neurons communicate with their target areas.
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163
| | | |
Collapse
|
41
|
Anderson KD, Reiner A. Extensive co-occurrence of substance P and dynorphin in striatal projection neurons: an evolutionarily conserved feature of basal ganglia organization. J Comp Neurol 1990; 295:339-69. [PMID: 1693632 DOI: 10.1002/cne.902950302] [Citation(s) in RCA: 165] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A number of different neuroactive substances have been found in striatal projection neurons and in fibers and terminals in their target areas, including substance P (SP), enkephalin (ENK), and dynorphin (DYN). In a preliminary report on birds and reptiles, we have suggested that SP and DYN are to a large extent found in the same striatal projection neurons and that ENK is found in a separate population of striatal projection neurons. In the present study, we have examined this issue in more detail in pigeons and turtles. Further, we have also explored this issue in rats to determine whether this is a phylogenetically conserved feature of basal ganglia organization. Simultaneous immunofluorescence double-labeling procedures were employed to explore the colocalization of SP and DYN, SP and ENK, and ENK and DYN in striatal neurons and in striatal, nigral, and pallidal fibers in pigeons, turtles, and rats. To guard against possible cross-reactivity of DYN and ENK antisera with each others' antigens, separate double-label studies were carried out with several different antisera that were specific for DYN peptides (e.g., dynorphin A 1-17, dynorphin B, leumorphin) or ENK peptides (leucine-enkephalin, metenkephalin-arg6-gly7-leu8, methionine-enkephalin-arg6-phe7). The results showed that SP and DYN co-occur extensively in specific populations of striatal projection neurons, whereas ENK typically is present in different populations of striatal projection neurons. In pigeons, 95-99% of all striatal neurons containing DYN were found to contain SP and vice versa. In contrast, only 1-3% of the SP+ striatal neurons and no DYN neurons contained ENK. Similarly, in turtles, greater than 75% of the SP+ neurons were DYN+ and vice versa, whereas ENK was observed in fewer than 5% of the SP+ neurons and 2% of the DYN+ neurons. Finally, in rats, more than 70% of the SP+ neurons contained DYN and vice versa, but ENK was found in only 5% of the SP+ neurons and in none of the DYN+ perikarya. Fiber double-labeling in the striatum and its target areas (the pallidum and substantia nigra) was also consonant with these observations in pigeons, turtles, and rats. These results, in conjunction with studies in cats by M.-J. Besson, A.M. Graybiel, and B. Quinn (1986; Soc Neurosci. Abs. 12:876) strongly indicate that the co-occurrence of SP and DYN in large numbers of striatonigral and striatopallidal projection neurons in a phylogenetically widespread, and therefore evolutionarily conserved, feature of basal ganglia organization.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- K D Anderson
- Department of Anatomy and Neurobiology, University of Tennessee Health Sciences Center, Memphis 38163
| | | |
Collapse
|
42
|
Cuenca N, Kolb H. Morphology and distribution of neurons immunoreactive for substance P in the turtle retina. J Comp Neurol 1989; 290:391-411. [PMID: 2480373 DOI: 10.1002/cne.902900308] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immunocytochemical staining procedures with the HRP-complexed antibody to substance P have been carried out on the turtle retina. Examination by light microscopy of wholemount retinas has allowed us to evaluate the morphology and distribution of the substance P immunoreactive cell types. Two amacrine cell types and two or more ganglion cell types are stained in our hands. Type A amacrines are tri-stratified wide-field amacrines. They have their major dendrites in S1 and S3 of the inner plexiform layer and they emit fine dendrites from the major dendrites that end in varicose boutons in S5 on and around cell bodies in the ganglion cell layer. Some of the dendrites in S1 radiate out in axon-like fashion for 1 mm across the retina. The type B amacrine cells are small to medium-field in dendritic extent. They have smaller cell bodies than type A and a single or, at most, two primary dendrites that pass directly to S3 before branching profusely into an intricate net-like dendritic field. The ganglion cells that are stained with substance P antibodies appear to be of several types but their exact morphologies are in doubt because only portions of their major dendrites are stained. Substance P immunoreactive axons are clearly seen to project from the cell bodies to the optic nerve head and axons are stained in the optic nerve itself. The substance P-stained ganglion cells occur in an irregular distribution that reaches a peak density in an elongated band parallel to and 1 mm below the visual streak. The type B amacrine cells reach a maximum density in the visual streak and are distributed in a highly regular mosaic decreasing in density in elliptical isodensity contours from the visual streak. In contrast the type A amacrine cells are rare or absent in the streak, being located in an irregular mosaic in peripheral retina.
Collapse
Affiliation(s)
- N Cuenca
- Department of Physiology, University of Utah School of Medicine, Salt Lake City 84108
| | | |
Collapse
|
43
|
Britto LR, Hamassaki DE, Keyser KT, Karten HJ. Neurotransmitters, receptors, and neuropeptides in the accessory optic system: an immunohistochemical survey in the pigeon (Columba livia). Vis Neurosci 1989; 3:463-75. [PMID: 2577270 DOI: 10.1017/s0952523800005964] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Immunohistochemical techniques were used to survey the distribution of several conventional transmitters, receptors, and neuropeptides in the pigeon nucleus of the basal optic root (nBOR), a component of the accessory optic system. Amongst the conventional neurotransmitters/modulators, the most intense labeling of fibers/terminals within the nBOR was obtained with antisera directed against glutamic acid decarboxylase (GAD) and serotonin (5-HT). Moderately dense fiber plexuses were seen to label with antibodies directed against tyrosine hydroxylase (TH) and choline acetyltransferase (ChAT). GAD-like immunoreactivity (GAD-LI) was found in many small and medium-sized perikarya within the nBOR. Some of the medium-sized cells were occasionally positive for ChAT-LI. Cell body and dendritic staining was also commonly seen with the two tested antisera against receptors-anti-GABA-A receptor and anti-nicotinic acetylcholine receptor. The antisera directed against various neuropeptides produced only fiber labeling within the nBOR. The densest fiber plexus staining was observed with antiserum against neuropeptide Y (NPY-LI), while intermediate fiber densities were seen for substance P (SP-LI) and cholecystokinin (CCK-LI). A few varicose fibers were labeled with antisera against neurotensin (NT), leucine-enkephalin (L-ENK), and the vasoactive intestinal polypeptide (VIP). Unilateral enucleation produced an almost complete elimination of TH-LI in the contralateral nBOR. SP-LI and CCK-LI were also decreased after enucleation. No apparent changes were seen for all other substances. These results indicate that a wide variety of chemically-specific systems arborize within the nBOR. Three of the immunohistochemically defined fiber systems (TH-LI, SP-LI, and CCK-LI fibers) were reduced after removal of the retina, which may indicate the presence of these substances in retinal ganglion cells. In contrast, the fibers exhibiting ChAT-LI, GAD-LI, 5-HT-LI, NPY-LI, NT-LI, L-ENK-LI, and VIP-LI appear to be of nonretinal origin. Two different populations of nBOR neurons exhibited GAD-LI and ChAT-LI. However, these two populations together constituted only about 20% of the nBOR neurons.
Collapse
Affiliation(s)
- L R Britto
- Department of Physiology and Biophysics, São Paulo State University (USP), Brazil
| | | | | | | |
Collapse
|
44
|
Gleason E, Wilson M. Development of synapses between chick retinal neurons in dispersed culture. J Comp Neurol 1989; 287:213-24. [PMID: 2477404 DOI: 10.1002/cne.902870205] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Morphological criteria allow several kinds of synapse to be recognized in the vertebrate retina. It is, however, not presently known if, or how, these morphological differences reflect physiological distinctions. Since a proper investigation of synaptic physiology in the intact retina is compromised by technical difficulties, we have examined dispersed cultures to discover if they are likely to provide a more tractable physiological preparation. The chief question addressed here concerns the extent to which normal synaptic development takes place in the impoverished conditions of dispersed cell culture. Cultures were established from embryonic day 8 chick retina and fixed for microscopy on embryonic equivalent (E.E.) days 12, 14, 16, and 18. Neuronal processes appeared shortly after plating and continued to increase in number and extent through E.E. 16. Cone cells were recognizable by virtue of their distinctive oil droplets. Two classes of cone could be distinguished on the basis of the density of their cytoplasmic staining. Presynaptic ribbons could be observed in cone cells on E.E. 12, but characteristic dyad and triad postsynaptic organization was seldom present at this stage nor was it often observed at subsequent times. An increase in the number of ribbon synapses in culture was seen on E.E. 18. These synapses may represent those of bipolar cells. Conventional synapses were found at all times examined but the number of these increased greatly between E.E. 14 and 16. Of these conventional synapses, we found some whose anatomy was characteristic of synapses made by amacrine cells as well as some whose anatomy was characteristic of synapses made by bipolar cells.
Collapse
Affiliation(s)
- E Gleason
- Department of Zoology, University of California, Davis 95616
| | | |
Collapse
|
45
|
Reiner A, Brauth SE, Kitt CA, Quirion R. Distribution of mu, delta, and kappa opiate receptor types in the forebrain and midbrain of pigeons. J Comp Neurol 1989; 280:359-82. [PMID: 2537344 DOI: 10.1002/cne.902800304] [Citation(s) in RCA: 94] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Ligands that are highly specific for the mu, delta, and kappa opiate receptor binding sites in mammalian brains have been identified and used to map the distribution of these receptor types in the brains of various mammalian species. In the present study, the selectivity and binding characteristics in the pigeon brain of three such ligands were examined by in vitro receptor binding techniques and found to be similar to those reported in previous studies on mammalian species. These ligands were then used in conjunction with autoradiographic receptor binding techniques to study the distribution of mu, delta, and kappa opiate receptor binding sites in the forebrain and midbrain of pigeons. The autoradiographic results indicated that the three opiate receptor types showed similar but not identical distributions. For example, mu, delta, and kappa receptors were all abundant within several parts of the cortical-equivalent region of the telencephalon, particularly the hyperstriatum ventrale and the medial neostriatum. In contrast, in other parts of the cortical-equivalent region of the avian telencephalon, such as the dorsal archistriatum and caudal neostriatum, only kappa receptors appeared to be abundant. Within the basal ganglia, all three types of opiate receptors were abundant in the striatum and low in the pallidum. Within the diencephalon, kappa and delta binding was high in the dorsal and dorsomedial thalamic nuclei, but the levels of all three receptor types were generally low in the specific sensory relay nuclei of the thalamus. Kappa binding and delta binding were high, but mu was low in the hypothalamus. Within the midbrain, all three receptor types were abundant in both the superficial and deep tectal layers, in periventricular areas, and in the tegmental dopaminergic cell groups. In many cases, the distribution of opiate receptors in the pigeon forebrain generally showed considerable overlap with the distribution of opioid peptide-containing fiber systems (for example, in the striatal portion of the basal ganglia), but there were some clear examples of receptor-ligand mismatch. For example, although all three receptor types are very abundant in the hyperstriatum ventrale, opioid peptide-containing fibers are sparse in this region. Conversely, within the pallidal portion of the basal ganglia, opioid peptide-containing fibers are abundant, but the levels of opiate receptors appear to be considerably lower than would be expected. Thus, receptor-ligand mismatches are not restricted to the mammalian brain, since they are a prominent feature of the organization of the brain opiate systems in pigeons.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A Reiner
- Department of Anatomy and Neurobiology, University of Tennessee-Memphis 38163
| | | | | | | |
Collapse
|
46
|
Northcutt RG, Reiner A, Karten HJ. Immunohistochemical study of the telencephalon of the spiny dogfish, Squalus acanthias. J Comp Neurol 1988; 277:250-67. [PMID: 2466059 DOI: 10.1002/cne.902770207] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The paucity of experimental data and the differences in telencephalic organization between sharks and other jawed vertebrates have complicated telencephalic comparisons. The distribution of neuropeptides has been extremely useful in recognizing and comparing major subdivisions of the telencephalon among vertebrates. Immunohistochemical techniques were therefore used to study the distribution of substance P (SP), leucin-enkephalin (LENK), and serotonin (5HT), as well as tyrosine hydroxylase (TH), an indicator of catecholamines, in the telencephalon of the spiny dogfish. The distribution of SP and LENK provides a clear distinction between pallial and subpallial portions of the telencephalon. Two regions of the ventrolateral telencephalon, area superficialis basalis and area periventricularis ventrolateralis, exhibit histochemical similarities to the pallidal and striatal subdivisions, respectively, of the basal ganglia in amniotes. Lower densities of LENK+ and SP+ perikarya and fibers occur in the medial pallium and the pars centralis of the dorsal pallium. Similar histochemical traits characterize the sensory thalamorecipient telencephalic structures in amniotes. The lateral pallium in dogfishes is distinguished by the presence of large numbers of TH+ neurons with radially oriented processes. The presence of these distinctive cells also in the medial wall of the rostral telencephalon suggests that the lateral pallium has a medial extension that is situated ventral to the medial pallium. Neurons containing TH were widely distributed in the telencephalon of spiny dogfish and were particularly abundant in the dorsal pallium, olfactory pallium, and area superficialis basalis. It is currently unclear whether these TH+ telencephalic neurons are, in fact, catecholaminergic or merely contain a TH-like substance unrelated to catecholamine synthesis.
Collapse
Affiliation(s)
- R G Northcutt
- Neurobiology Unit, Scripps Institution of Oceanography, University of California, San Diego, La Jolla 92093
| | | | | |
Collapse
|
47
|
Russchen FT, Jonker AJ. Efferent connections of the striatum and the nucleus accumbens in the lizard Gekko gecko. J Comp Neurol 1988; 276:61-80. [PMID: 3192764 DOI: 10.1002/cne.902760105] [Citation(s) in RCA: 68] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The efferent connections of the striatum and the nucleus accumbens of the lizard Gekko gecko were studied with the anterograde tracer Phaseolus vulgaris-leucoagglutinin (PHA-L). These structures were found to have segregated output systems. The striatum shows a major projection to the globus pallidus. Striatal fibers which are more caudally directed run through the lateral forebrain bundle and can be traced as far caudally as the pars reticularis of the substantia nigra where they exhibit many varicosities. Along its course, the lateral forebrain bundle issues fibers with varicosities to the anterior and posterior entopeduncular nuclei. The major recipient structure of the nucleus accumbens is the ventral pallidum. The nucleus accumbens, in addition, projects to the portion of the lateral hypothalamus in the path of the medial forebrain bundle and to the ventral tegmental area, which is its most caudal target. Subsequently, the same technique was used in an attempt to study the efferents of the globus pallidus and the ventral pallidum, the major recipient structures of the striatum and the nucleus accumbens. The globus pallidus was found to project to the rostral part of the suprapeduncular nucleus in the ventral thalamus and, in addition, may distribute fibers to the same structures as does the striatum. The ventral pallidum distributes fibers to the ventromedial thalamic nucleus. It probably also projects diffusely to the hypothalamus, the habenula, and the mesencephalic tegmentum.
Collapse
Affiliation(s)
- F T Russchen
- Department of Anatomy, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
48
|
Guiloff GD, Jones J, Kolb H. Organization of the inner plexiform layer of the turtle retina: an electron microscopic study. J Comp Neurol 1988; 272:280-92. [PMID: 3397409 DOI: 10.1002/cne.902720210] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
We have performed a serial-section electron microscopic study of the inner plexiform layer (IPL) of the retina of the turtle Pseudemys scripta elegans. A qualitative and quantitative assessment of the neuropil of the IPL has been done from photomontages taken from the linear visual streak area and peripheral retina. Counts of conventional, ribbon, serial, and reciprocal synapses, of ganglion cell dendrites, and of profiles containing large, dense-cored vesicles were made in five equal-thickness strata in each montage. Averages of these different features were plotted for each stratum in the linear visual streak and compared with peripheral retina. The trend was for stratum 2 to have the highest overall absolute number of amacrine and bipolar interactions, and also of serial synapses, both in the linear visual streak and in peripheral regions. Stratum 4 tended to have the second-highest number of synapses. The total number of synapses for the entire thickness of the IPL, regardless of stratification, is higher in the streak than in the periphery. The total amacrine-to-bipolar-synapse ratio in the IPL is the highest of any vertebrate studied to date (11.0 in the streak and 14.5 in the periphery) but the number of synapses/micron 2 was found to be similar to that reported for other vertebrates. Amacrine-to-amacrine synaptic contacts greatly outnumber other types of synapses; amacrines constitute the principal input to ganglion cells, whereas bipolar output is mainly onto amacrines. The trend for higher numbers of synaptic interactions in strata 2 and 4 of the streak region of the turtle IPL can be correlated with the branching of small-field amacrine and ganglion cells described in Golgi studies (Kolb: Philos. Trans. R. Soc. Lond. B 298:355-393, '82). In peripheral retina, branching of large-field amacrines and a lower number of bipolar pathways may account for the trend for larger numbers of amacrine synapses in strata 2 and 4. Profiles having large, dense-cored vesicles tend to occur most frequently in strata 1 and 5, which correlates well with the stratification in the IPL of the processes of immunoreactive amacrine cells described in other studies.
Collapse
Affiliation(s)
- G D Guiloff
- Physiology Department, School of Medicine, University of Utah, Salt Lake City 84108
| | | | | |
Collapse
|
49
|
Smeets WJ, Steinbusch HW. Distribution of serotonin immunoreactivity in the forebrain and midbrain of the lizard Gekko gecko. J Comp Neurol 1988; 271:419-34. [PMID: 3385015 DOI: 10.1002/cne.902710309] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The distribution of serotonin (5-hydroxytryptamine, 5-HT) in the forebrain and midbrain of the lizard Gekko gecko was studied by means of antibodies against serotonin. In the diencephalon, serotonin-immunoreactive (5-HTi) cell bodies were found in the hypothalamic periventricular organ and the ependymal wall of the infundibular recess. In the midbrain, 5-HTi cells were observed in the nucleus raphes superior and the lateral portion of the nucleus reticularis superior. In addition, 5-HTi cell bodies were found lateral to the ventral interpeduncular nucleus and around the ventral aspect of the medial longitudinal fasciculus. Serotonin-immunoreactive fibers and varicosities are present throughout the forebrain and the midbrain, but particularly in the nucleus accumbens, the septal area, the dorsal cortex, the dorsal thalamus, the lateral geniculate body, the ventromedial hypothalamic nucleus, the pretectal nucleus, and the basal optic nucleus. The medial habenular nucleus contains a dense 5-HTi plexus that shows a patchlike pattern. A laminar organization of 5-HTi fibers and varicosities is present in the midbrain tectum. When compared with data obtained in other vertebrates, the present study has confirmed that in the phylogenetic series fishes-amphibians-reptiles-birds-mammals there appears to be (1) a gradual decrease in the number of cerebrospinal-fluid-contacting serotoninergic cells in the hypothalamic periventricular layer and (2) a remarkable increase in number of serotoninergic cells in the midbrain tegmentum. As in mammals, a strong serotoninergic innervation of structures related to sensory, in particular visual, pathways could be recognized.
Collapse
Affiliation(s)
- W J Smeets
- Department of Anatomy, Faculty of Medicine, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
50
|
Smeets WJ. Distribution of dopamine immunoreactivity in the forebrain and midbrain of the snake Python regius: a study with antibodies against dopamine. J Comp Neurol 1988; 271:115-29. [PMID: 3385007 DOI: 10.1002/cne.902710112] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The distribution of dopamine (DA) immunoreactivity in the forebrain and midbrain of the ball python, Python regius, was studied by using recently developed antibodies against DA. In order to determine general and species-specific features of the DA system in reptiles, we have selected the ball python as a representative of a reptilian radiation that hitherto has not been the subject of (immuno)histochemical studies. Dopamine-containing cell bodies were found around the glomeruli and in the external plexiform layer of both the main and accessory olfactory bulb, but not in the telencephalon proper. In the diencephalon, DA cells were observed in several parts of the periventricular hypothalamic nucleus, in the periventricular organ, the ependymal wall of the infundibular recess, the lateral hypothalamic area, the magnocellular ventrolateral thalamic nucleus, and the pretectal posterodorsal nucleus. In the midbrain, DA cells were found in the ventral tegmental area, the substantia nigra, and the presumed reptilian homologue of the mammalian A8 cell group. Dopaminergic fibers and varicosities were observed throughout the whole brain, particularly in the telencephalon and diencephalon. The nucleus accumbens, striatum, olfactory tubercle, and nucleus of the accessory olfactory tract appear to have the most dense innervation, but the lateral septal nucleus, the dorsal ventricular ridge, and the nucleus sphericus also show numerous DA-containing fibers and varicosities. Except for the lateral cortex, cortical areas are not densely innervated by DA fibers. The DA system of the snake Python regius shares many features with that of lizards and turtles as determined with the same antibodies. The taxonomically close relationship between lizards and snakes, which together constitute the Squamata, is reflected in a similar distribution of DA fibers and varicosities to the dorsal ventricular ridge and the lateral cortex, and in the limited number of CSF-contacting DA neurons in the hypothalamus.
Collapse
Affiliation(s)
- W J Smeets
- Department of Anatomy, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|