1
|
Lackey EP, Sillitoe RV. Eph/ephrin Function Contributes to the Patterning of Spinocerebellar Mossy Fibers Into Parasagittal Zones. Front Syst Neurosci 2020; 14:7. [PMID: 32116578 PMCID: PMC7033604 DOI: 10.3389/fnsys.2020.00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Purkinje cell microcircuits perform diverse functions using widespread inputs from the brain and spinal cord. The formation of these functional circuits depends on developmental programs and molecular pathways that organize mossy fiber afferents from different sources into a complex and precisely patterned map within the granular layer of the cerebellum. During development, Purkinje cell zonal patterns are thought to guide mossy fiber terminals into zones. However, the molecular mechanisms that mediate this process remain unclear. Here, we used knockout mice to test whether Eph/ephrin signaling controls Purkinje cell-mossy fiber interactions during cerebellar circuit formation. Loss of ephrin-A2 and ephrin-A5 disrupted the patterning of spinocerebellar terminals into discrete zones. Zone territories in the granular layer that normally have limited spinocerebellar input contained ectopic terminals in ephrin-A2 -/-;ephrin-A5 -/- double knockout mice. However, the overall morphology of the cerebellum, lobule position, and Purkinje cell zonal patterns developed normally in the ephrin-A2 -/-;ephrin-A5 -/- mutant mice. This work suggests that communication between Purkinje cell zones and mossy fibers during postnatal development allows contact-dependent molecular cues to sharpen the innervation of sensory afferents into functional zones.
Collapse
Affiliation(s)
- Elizabeth P Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.,Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States.,Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
2
|
Beckinghausen J, Sillitoe RV. Insights into cerebellar development and connectivity. Neurosci Lett 2018; 688:2-13. [PMID: 29746896 DOI: 10.1016/j.neulet.2018.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
The cerebellum has a well-established role in controlling motor functions such coordination, balance, posture, and skilled learning. There is mounting evidence that it might also play a critical role in non-motor functions such as cognition and emotion. It is therefore not surprising that cerebellar defects are associated with a wide array of diseases including ataxia, dystonia, tremor, schizophrenia, dyslexia, and autism spectrum disorder. What is intriguing is that a seemingly uniform circuit that is often described as being "simple" should carry out all of these behaviors. Analyses of how cerebellar circuits develop have revealed that such descriptions massively underestimate the complexity of the cerebellum. The cerebellum is in fact highly patterned and organized around a series of parasagittal stripes and transverse zones. This topographic architecture partitions all cerebellar circuits into functional modules that are thought to enhance processing power during cerebellar dependent behaviors. What are arguably the most remarkable features of cerebellar topography are the developmental processes that produce them. This review is concerned with the genetic and cellular mechanisms that orchestrate cerebellar patterning. We place a major focus on how Purkinje cells control multiple aspects of cerebellar circuit assembly. Using this model, we discuss evidence for how "zebra-like" patterns in Purkinje cells sculpt the cerebellum, how specific genetic cues mediate the process, and how activity refines the patterns into an adult map that is capable of executing various functions. We also discuss how defective Purkinje cell patterning might impact the pathogenesis of neurological conditions.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Erekat NS. Autophagy precedes apoptosis among at risk cerebellar Purkinje cells in the shaker mutant rat: an ultrastructural study. Ultrastruct Pathol 2018; 42:162-169. [PMID: 29419349 DOI: 10.1080/01913123.2018.1424744] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Cerebellar Purkinje cell (PC) death has been shown to occur in essential tremor, ataxia, and many other neurodegenerative diseases in humans. Shaker mutant rats have an X-linked recessive mutation that causes hereditary degeneration of "at risk" cerebellar PCs. This defect can occur in the restricted anterior (ADC) and posterior (PDC) vermal degeneration compartments postnatally within 7 to 14 weeks of age as a natural phenotype in the shaker mutant rat. "Secure" PCs persist in a flocculonodular survival compartment (FNSC). Because we have previously shown that "at risk" PCs die due to apoptosis in the shaker mutant rat, we hypothesized that the PC death observed in the hereditary shaker mutant rat may be due to the activation of more than one type of death pathway. This ultrastructural investigation suggests that "at risk" PCs die due to apoptosis as a result of autophagic activation. Moreover, our data suggest that both apoptosis and autophagy must be simultaneously inhibited to rescue "at risk" PCs from death.
Collapse
Affiliation(s)
- Nour S Erekat
- a Department of Anatomy, Faculty of Medicine , Jordan University of Science and Technology (JUST) , Irbid , Jordan
| |
Collapse
|
4
|
Erekat NS. Cerebellar Purkinje cells die by apoptosis in the shaker mutant rat. Brain Res 2017; 1657:323-332. [DOI: 10.1016/j.brainres.2016.12.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 10/29/2016] [Accepted: 12/27/2016] [Indexed: 12/15/2022]
|
5
|
Early Purkinje Cell Development and the Origins of Cerebellar Patterning. CONTEMPORARY CLINICAL NEUROSCIENCE 2017. [DOI: 10.1007/978-3-319-59749-2_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
6
|
Leto K, Arancillo M, Becker EBE, Buffo A, Chiang C, Ding B, Dobyns WB, Dusart I, Haldipur P, Hatten ME, Hoshino M, Joyner AL, Kano M, Kilpatrick DL, Koibuchi N, Marino S, Martinez S, Millen KJ, Millner TO, Miyata T, Parmigiani E, Schilling K, Sekerková G, Sillitoe RV, Sotelo C, Uesaka N, Wefers A, Wingate RJT, Hawkes R. Consensus Paper: Cerebellar Development. CEREBELLUM (LONDON, ENGLAND) 2016; 15:789-828. [PMID: 26439486 PMCID: PMC4846577 DOI: 10.1007/s12311-015-0724-2] [Citation(s) in RCA: 256] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The development of the mammalian cerebellum is orchestrated by both cell-autonomous programs and inductive environmental influences. Here, we describe the main processes of cerebellar ontogenesis, highlighting the neurogenic strategies used by developing progenitors, the genetic programs involved in cell fate specification, the progressive changes of structural organization, and some of the better-known abnormalities associated with developmental disorders of the cerebellum.
Collapse
Affiliation(s)
- Ketty Leto
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy.
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy.
| | - Marife Arancillo
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Esther B E Becker
- Medical Research Council Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Chin Chiang
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 4114 MRB III, Nashville, TN, 37232, USA
| | - Baojin Ding
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - William B Dobyns
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
- Department of Pediatrics, Genetics Division, University of Washington, Seattle, WA, USA
| | - Isabelle Dusart
- Sorbonne Universités, Université Pierre et Marie Curie Univ Paris 06, Institut de Biologie Paris Seine, France, 75005, Paris, France
- Centre National de la Recherche Scientifique, CNRS, UMR8246, INSERM U1130, Neuroscience Paris Seine, France, 75005, Paris, France
| | - Parthiv Haldipur
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, NY, 10065, USA
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo, 187-8502, Japan
| | - Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, 10065, USA
| | - Masanobu Kano
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Daniel L Kilpatrick
- Department of Microbiology and Physiological Systems and Program in Neuroscience, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA, 01605-2324, USA
| | - Noriyuki Koibuchi
- Department of Integrative Physiology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Silvia Marino
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Salvador Martinez
- Department Human Anatomy, IMIB-Arrixaca, University of Murcia, Murcia, Spain
| | - Kathleen J Millen
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, USA
| | - Thomas O Millner
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi Montalcini, University of Turin, via Cherasco 15, 10026, Turin, Italy
- Neuroscience Institute Cavalieri-Ottolenghi, University of Turin, Regione Gonzole 10, 10043, Orbassano, Torino, Italy
| | - Karl Schilling
- Anatomie und Zellbiologie, Anatomisches Institut, Rheinische Friedrich-Wilhelms-Universität, Bonn, Germany
| | - Gabriella Sekerková
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Roy V Sillitoe
- Departments of Pathology & Immunology and Neuroscience, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute of Texas Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Constantino Sotelo
- Institut de la Vision, UPMC Université de Paris 06, Paris, 75012, France
| | - Naofumi Uesaka
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Annika Wefers
- Center for Neuropathology, Ludwig-Maximilians-University, Munich, Germany
| | - Richard J T Wingate
- MRC Centre for Developmental Neurobiology, King's College London, London, UK
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, T2N 4NI, AB, Canada
| |
Collapse
|
7
|
Aavani T, Rana SA, Hawkes R, Pittman QJ. Maternal immune activation produces cerebellar hyperplasia and alterations in motor and social behaviors in male and female mice. THE CEREBELLUM 2016; 14:491-505. [PMID: 25863812 DOI: 10.1007/s12311-015-0669-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There have been suggestions that maternal immune activation is associated with alterations in motor behavior in offspring. To explore this further, we treated pregnant mice with polyinosinic:polycytidylic acid (poly(I:C)), a viral mimetic that activates the innate immune system, or saline on embryonic days 13-15. At postnatal day (P) 18, offspring cerebella were collected from perfused brains and immunostained as whole-mounts for zebrin II. Measurements of zebrin II+/- stripes in both sexes indicated that prenatal poly(I:C)-exposed offspring had significantly wider stripes; this difference was also seen in similarly treated offspring in adulthood (~P120). When sagittal sections of the cerebellum were immunostained for calbindin and Purkinje cell numbers were counted, we observed greater numbers of Purkinje cells in poly(I:C) offspring at both P18 and ~ P120. In adolescence (~P40), both male and female prenatal poly(I:C)-exposed offspring exhibited poorer performance on the rotarod and ladder rung tests; deficits in performance on the latter test persisted into adulthood. Offspring of both sexes from poly(I:C) dams also exhibited impaired social interaction in adolescence, but this difference was no longer apparent in adulthood. Our results suggest that maternal immune exposure at a critical time of cerebellum development can enhance neuronal survival or impair normal programmed cell death of Purkinje cells, with lasting consequences on cerebellar morphology and a variety of motor and non-motor behaviors.
Collapse
Affiliation(s)
- Tooka Aavani
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Alberta, Canada
| | - Shadna A Rana
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Alberta, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy, Genes & Development Research Group, Hotchkiss Brain Institute, Cumming School of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta, T2N 4N1, Canada
| | - Quentin J Pittman
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, Cumming School of Medicine, Health Sciences Centre, University of Calgary, 3330 Hospital Drive NW, Calgary, T2N 4N1, Alberta, Canada.
| |
Collapse
|
8
|
Corfield JR, Kolominsky J, Craciun I, Mulvany-Robbins BE, Wylie DR. Is Cerebellar Architecture Shaped by Sensory Ecology in the New Zealand Kiwi (Apteryx mantelli). BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:88-104. [PMID: 27192984 DOI: 10.1159/000445315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/09/2016] [Indexed: 11/19/2022]
Abstract
Among some mammals and birds, the cerebellar architecture appears to be adapted to the animal's ecological niche, particularly their sensory ecology and behavior. This relationship is, however, not well understood. To explore this, we examined the expression of zebrin II (ZII) in the cerebellum of the kiwi (Apteryx mantelli), a fully nocturnal bird with auditory, tactile, and olfactory specializations and a reduced visual system. We predicted that the cerebellar architecture, particularly those regions receiving visual inputs and those that receive trigeminal afferents from their beak, would be modified in accordance with their unique way of life. The general stripe-and-transverse region architecture characteristic of birds is present in kiwi, with some differences. Folium IXcd was characterized by large ZII-positive stripes and all Purkinje cells in the flocculus were ZII positive, features that resemble those of small mammals and suggest a visual ecology unlike that of other birds. The central region in kiwi appeared reduced or modified, with folium IV containing ZII+/- stripes, unlike that of most birds, but similar to that of Chilean tinamous. It is possible that a reduced visual system has contributed to a small central region, although increased trigeminal input and flightlessness have undoubtedly played a role in shaping its architecture. Overall, like in mammals, the cerebellar architecture in kiwi and other birds may be substantially modified to serve a particular ecological niche, although we still require a larger comparative data set to fully understand this relationship.
Collapse
Affiliation(s)
- Jeremy R Corfield
- Department of Biological Sciences, Salisbury University, Salisbury, Md., USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
ABSTRACT:Most descriptions treat the cerebellum as a uniform structure, and the possibility of important regional heterogeneities in either chemistry or physiology is rarely considered. However, it is now clear that such an assumption is inappropriate. Instead, there is substantial evidence that the cerebellum is composed of hundreds of distinct modules, each with a precise pattern of inputs and outputs, and expressing a range of molecular signatures. By screening a monoclonal antibody library against cerebellar polypeptides we have identified antigens – zebrins – that reveal some of the cerebellum’s covert heterogeneity. This article reviews some of these findings, relates them to the patterns of afferent connectivity, and considers some possible mechanisms through which the modular organization may arise.
Collapse
|
10
|
Aspden JW, Armstrong CL, Gutierrez-Ibanez CI, Hawkes R, Iwaniuk AN, Kohl T, Graham DJ, Wylie DR. Zebrin II / aldolase C expression in the cerebellum of the western diamondback rattlesnake (Crotalus atrox). PLoS One 2015; 10:e0117539. [PMID: 25692946 PMCID: PMC4334253 DOI: 10.1371/journal.pone.0117539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/27/2014] [Indexed: 11/19/2022] Open
Abstract
Aldolase C, also known as Zebrin II (ZII), is a glycolytic enzyme that is expressed in cerebellar Purkinje cells of the vertebrate cerebellum. In both mammals and birds, ZII is expressed heterogeneously, such that there are sagittal stripes of Purkinje cells with high ZII expression (ZII+), alternating with stripes of Purkinje cells with little or no expression (ZII-). The patterns of ZII+ and ZII- stripes in the cerebellum of birds and mammals are strikingly similar, suggesting that it may have first evolved in the stem reptiles. In this study, we examined the expression of ZII in the cerebellum of the western diamondback rattlesnake (Crotalus atrox). In contrast to birds and mammals, the cerebellum of the rattlesnake is much smaller and simpler, consisting of a small, unfoliated dome of cells. A pattern of alternating ZII+ and ZII- sagittal stripes cells was not observed: rather all Purkinje cells were ZII+. This suggests that ZII stripes have either been lost in snakes or that they evolved convergently in birds and mammals.
Collapse
Affiliation(s)
- Joel W. Aspden
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Carol L. Armstrong
- Department of Biology, Mount Royal University, 4825 Mount Royal Gate SW, Calgary, Alberta, Canada, T3E 6K6
| | - Cristian I. Gutierrez-Ibanez
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
- Lehrstuhl für Zoologie, Technische Universität München, Liesel-Beckmann Straße 4, 85354, Freising-Weihenstephan, Germany
| | - Richard Hawkes
- Department of Cell Biology & Anatomy, Genes and Development Research Group, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada, T2N 4N1
| | - Andrew N. Iwaniuk
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada, T1K 3M4
| | - Tobias Kohl
- Lehrstuhl für Zoologie, Technische Universität München, Liesel-Beckmann Straße 4, 85354, Freising-Weihenstephan, Germany
| | - David J. Graham
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Douglas R. Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
- * E-mail:
| |
Collapse
|
11
|
Bailey K, Rahimi Balaei M, Mannan A, Del Bigio MR, Marzban H. Purkinje cell compartmentation in the cerebellum of the lysosomal Acid phosphatase 2 mutant mouse (nax - naked-ataxia mutant mouse). PLoS One 2014; 9:e94327. [PMID: 24722417 PMCID: PMC3983142 DOI: 10.1371/journal.pone.0094327] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 03/15/2014] [Indexed: 12/11/2022] Open
Abstract
The Acp2 gene encodes the beta subunit of lysosomal acid phosphatase, which is an isoenzyme that hydrolyzes orthophosphoric monoesters. In mice, a spontaneous mutation in Acp2 results in severe cerebellar defects. These include a reduced size, abnormal lobulation, and an apparent anterior cerebellar disorder with an absent or hypoplastic vermis. Based on differential gene expression in the cerebellum, the mouse cerebellar cortex can normally be compartmentalized anteroposteriorly into four transverse zones and mediolaterally into parasagittal stripes. In this study, immunohistochemistry was performed using various Purkinje cell compartmentation markers to examine their expression patterns in the Acp2 mutant. Despite the abnormal lobulation and anterior cerebellar defects, zebrin II and PLCβ4 showed similar expression patterns in the nax mutant and wild type cerebellum. However, fewer stripes were found in the anterior zone of the nax mutant, which could be due to a lack of Purkinje cells or altered expression of the stripe markers. HSP25 expression was uniform in the central zone of the nax mutant cerebellum at around postnatal day (P) 18–19, suggesting that HSP25 immunonegative Purkinje cells are absent or delayed in stripe pattern expression compared to the wild type. HSP25 expression became heterogeneous around P22–23, with twice the number of parasagittal stripes in the nax mutant compared to the wild type. Aside from reduced size and cortical disorganization, both the posterior zone and nodular zone in the nax mutant appeared less abnormal than the rest of the cerebellum. From these results, it is evident that the anterior zone of the nax mutant cerebellum is the most severely affected, and this extends beyond the primary fissure into the rostral central zone/vermis. This suggests that ACP2 has critical roles in the development of the anterior cerebellum and it may regulate anterior and central zone compartmentation.
Collapse
Affiliation(s)
- Karen Bailey
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maryam Rahimi Balaei
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Ashraf Mannan
- Institute of Human Genetics, University Medical Center Goettingen, Georg-August University, Goettingen, Germany
| | - Marc R. Del Bigio
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pathology, Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
12
|
Hawkes R. Purkinje cell stripes and long-term depression at the parallel fiber-Purkinje cell synapse. Front Syst Neurosci 2014; 8:41. [PMID: 24734006 PMCID: PMC3975104 DOI: 10.3389/fnsys.2014.00041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
The cerebellar cortex comprises a stereotyped array of transverse zones and parasagittal stripes, built around multiple Purkinje cell subtypes, which is highly conserved across birds and mammals. This architecture is revealed in the restricted expression patterns of numerous molecules, in the terminal fields of the afferent projections, in the distribution of interneurons, and in the functional organization. This review provides an overview of cerebellar architecture with an emphasis on attempts to relate molecular architecture to the expression of long-term depression (LTD) at the parallel fiber-Purkinje cell (pf-PC) synapse.
Collapse
Affiliation(s)
- Richard Hawkes
- Department of Cell Biology and Anatomy, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Genes and Development Research Group, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| |
Collapse
|
13
|
Affiliation(s)
| | - Richard Hawkes
- Department of Cell Biology and Anatomy, Genes and Development Research Group and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary
| |
Collapse
|
14
|
Purkinje cell compartmentalization in the cerebellum of the spontaneous mutant mouse dreher. Brain Struct Funct 2012; 219:35-47. [PMID: 23160833 DOI: 10.1007/s00429-012-0482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/01/2012] [Indexed: 12/19/2022]
Abstract
The cerebellar morphological phenotype of the spontaneous neurological mutant mouse dreher (Lmx1a(dr-J)) results from cell fate changes in dorsal midline patterning involving the roof plate and rhombic lip. Positional cloning revealed that the gene Lmx1a, which encodes a LIM homeodomain protein, is mutated in dreher, and is expressed in the developing roof plate and rhombic lip. Loss of Lmx1a causes reduction of the roof plate, an important embryonic signaling center, and abnormal cell fate specification within the embryonic cerebellar rhombic lip. In adult animals, these defects result in variable, medial fusion of the cerebellar vermis and posterior cerebellar vermis hypoplasia. It is unknown whether deleting Lmx1a results in displacement or loss of specific lobules in the vermis. To distinguish between an ectopic and absent vermis, the expression patterns of two Purkinje cell-specific compartmentation antigens, zebrin II/aldolase C and the small heat shock protein HSP25 were analyzed in dreher cerebella. The data reveal that despite the reduction in volume and abnormal foliation of the cerebellum, the transverse zones and parasagittal stripe arrays characteristic of the normal vermis are present in dreher, but may be highly distorted. In dreher mutants with a severe phenotype, zebrin II stripes are fragmented and distributed non-symmetrically about the cerebellar midline. We conclude that although Purkinje cell agenesis or selective Purkinje cell death may contribute to the dreher phenotype, our data suggest that aberrant anlage patterning and granule cell development lead to Purkinje cell ectopia, which ultimately causes abnormal cerebellar architecture in dreher.
Collapse
|
15
|
Abstract
The cerebellum controls smooth and skillful movements and it is also involved in higher cognitive and emotional functions. The cerebellum is derived from the dorsal part of the anterior hindbrain and contains two groups of cerebellar neurons: glutamatergic and gamma-aminobutyric acid (GABA)ergic neurons. Purkinje cells are GABAergic and granule cells are glutamatergic. Granule and Purkinje cells receive input from outside of the cerebellum from mossy and climbing fibers. Genetic analysis of mice and zebrafish has revealed genetic cascades that control the development of the cerebellum and cerebellar neural circuits. During early neurogenesis, rostrocaudal patterning by intrinsic and extrinsic factors, such as Otx2, Gbx2 and Fgf8, plays an important role in the positioning and formation of the cerebellar primordium. The cerebellar glutamatergic neurons are derived from progenitors in the cerebellar rhombic lip, which express the proneural gene Atoh1. The GABAergic neurons are derived from progenitors in the ventricular zone, which express the proneural gene Ptf1a. The mossy and climbing fiber neurons originate from progenitors in the hindbrain rhombic lip that express Atoh1 or Ptf1a. Purkinje cells exhibit mediolateral compartmentalization determined on the birthdate of Purkinje cells, and linked to the precise neural circuitry formation. Recent studies have shown that anatomy and development of the cerebellum is conserved between mammals and bony fish (teleost species). In this review, we describe the development of cerebellar neurons and neural circuitry, and discuss their evolution by comparing developmental processes of mammalian and teleost cerebellum.
Collapse
Affiliation(s)
- Mitsuhiro Hashimoto
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan.
| | | |
Collapse
|
16
|
Wylie DR, Pakan JMP, Huynh H, Graham DJ, Iwaniuk AN. Distribution of zebrin-immunoreactive Purkinje cell terminals in the cerebellar and vestibular nuclei of birds. J Comp Neurol 2012; 520:1532-46. [PMID: 22105608 DOI: 10.1002/cne.22810] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Zebrin II (aldolase C) is expressed in a subset of Purkinje cells in the mammalian and avian cerebella such that there is a characteristic parasagittal organization of zebrin-immunopositive stripes alternating with zebrin-immunonegative stripes. Zebrin is expressed not only in the soma and dendrites of Purkinje cells but also in their axonal terminals. Here we describe the distribution of zebrin immunoreactivity in both the vestibular and the cerebellar nuclei of pigeons (Columba livia) and hummingbirds (Calypte anna, Selasphorus rufus). In the medial cerebellar nucleus, zebrin-positive labeling was particularly heavy in the “shell,” whereas the “core” was zebrin negative. In the lateral cerebellar nucleus, labeling was not as heavy, but a positive shell and negative core were also observed. In the vestibular nuclear complex, zebrin-positive terminal labeling was heavy in the dorsolateral vestibular nucleus and the lateral margin of the superior vestibular nucleus. The central and medial regions of the superior nucleus were generally zebrin negative. Labeling was moderate to heavy in the medial vestibular nucleus, particulary the rostral half of the parvocellular subnucleus. A moderate amount of zebrin-positive labeling was present in the descending vestibular nucleus: this was heaviest laterally, and the central region was generally zebrin negative. Zebrin-positive terminals were also observed in the the cerebellovestibular process, prepositus hypoglossi, and lateral tangential nucleus. We discuss our findings in light of similar studies in rats and with respect to the corticonuclear projections to the cerebellar nuclei and the functional connections of the vestibulocerebellum with the vestibular nuclei.
Collapse
Affiliation(s)
- Douglas R Wylie
- University Centre for Neuroscience, Department of Psychology, University of Alberta, Edmonton, Alberta, T6G 2E9 Canada.
| | | | | | | | | |
Collapse
|
17
|
Gilbert EA, Lim YH, Vickaryous MK, Armstrong CL. Heterochronic protein expression patterns in the developing embryonic chick cerebellum. Anat Rec (Hoboken) 2012; 295:1669-82. [PMID: 22865685 DOI: 10.1002/ar.22544] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 06/12/2012] [Accepted: 07/11/2012] [Indexed: 12/18/2022]
Abstract
The advantages of the embryonic chick as a model for studying neural development range from the relatively low cost of fertilized eggs to the rapid rate of development. We investigated in ovo cerebellar development in the chick, which has a nearly identical embryonic period as the mouse (19-22 days). We focused on three antigens: Calbindin (CB), Zebrin II (ZII), and Calretinin (CR), and our results demonstrate asynchronous expression patterns during cerebellar development. Presumptive CB+ Purkinje cells are first observed at embryonic day (E)10 in clusters in posterior cerebellum. At E12, corresponding with global expression of CB across the cerebellum, Purkinje cells began to express ZII. By E14-E16, Purkinje cells disperse into a monolayer and develop a pattern of alternating immunopositive and immunonegative ZII stripes. CR is initially expressed by clusters of presumptive Purkinje cells in the nodular zone at E8. However, this expression is transient and at later stages, CR is largely confined to the granule and molecular layers. Before hatch (E18-E20), Purkinje cells adopt a morphologically mature phenotype with complex dendritic arborizations. Comparing this data to that seen in mice, we found that the sequence of Purkinje cell formation, protein expression, and development is similar in both species, but these events consistently begin ∼5-7 days earlier in the precocial chick cerebellum, suggesting an important role for heterochrony in neurodevelopment.
Collapse
Affiliation(s)
- E A Gilbert
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, 50 Stone Road, Guelph, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Dastjerdi FV, Consalez GG, Hawkes R. Pattern formation during development of the embryonic cerebellum. Front Neuroanat 2012; 6:10. [PMID: 22493569 PMCID: PMC3318227 DOI: 10.3389/fnana.2012.00010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/14/2012] [Indexed: 12/04/2022] Open
Abstract
The patterning of the embryonic cerebellum is vital to establish the elaborate zone and stripe architecture of the adult. This review considers early stages in cerebellar Purkinje cell patterning, from the organization of the ventricular zone to the development of Purkinje cell clusters—the precursors of the adult stripes.
Collapse
Affiliation(s)
- F V Dastjerdi
- Faculty of Medicine, Department of Cell Biology and Anatomy, Genes and Development Research Group, Hotchkiss Brain Institute, University of Calgary, Calgary AB, Canada
| | | | | |
Collapse
|
19
|
Marzban H, Hawkes R. On the architecture of the posterior zone of the cerebellum. THE CEREBELLUM 2012; 10:422-34. [PMID: 20838950 DOI: 10.1007/s12311-010-0208-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of many molecules, in particular, zebrin II/aldolase C. By using a combination of Purkinje cell antigenic markers and afferent tracing, four transverse zones have been identified: in mouse, these are the anterior zone (∼lobules I-V), the central zone (∼lobules VI-VII), the posterior zone (PZ: ∼lobules VIII-dorsal IX), and the nodular zone (∼ventral lobule IX + lobule X). A fifth transverse zone-the lingular zone (∼lobule I)-is found in birds and bats. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. To explore this model further and to broaden our understanding of the evolution of cerebellar patterning, stripes in the PZ have been compared in multiple mammalian species. We conclude that a posterior zone with a conserved stripe organization is a common feature of the mammalian and avian cerebellar vermis and that zonal boundaries are independent of cerebellar lobulation.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology & Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | | |
Collapse
|
20
|
Marzban H, Hoy N, Aavani T, Sarko DK, Catania KC, Hawkes R. Compartmentation of the cerebellar cortex in the naked mole-rat (Heterocephalus glaber). THE CEREBELLUM 2012; 10:435-48. [PMID: 21298580 DOI: 10.1007/s12311-011-0251-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the apparent uniformity in cellular composition of the adult mammalian cerebellar cortex, it is actually highly compartmentalized into transverse zones and within each zone further subdivided into a reproducible array of parasagittal stripes. This basic cerebellar architecture is highly conserved in birds and mammals. However, different species have very different cerebellar morphologies, and it is unclear if cerebellar architecture reflects taxonomic relations or ecological niches. To explore this, we have examined the cerebellum of the naked mole-rat Heterocephalus glaber, a burrowing rodent with adaptations to a subterranean life that include only a rudimentary visual system. The cerebellum of H. glaber resembles that of other rodents with the remarkable exception that cerebellar regions that are prominent in the handling of visual information (the central zone, nodular zone, and dorsal paraflocculus) are greatly reduced or absent. In addition, there is a notable increase in size in the posterior zone, consistent with an expanded role for the trigeminal somatosensory system. These data suggest that cerebellar architecture may be substantially modified to serve a particular ecological niche.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, and Genes and Development Research Group, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, AB, T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
21
|
Namba K, Sugihara I, Hashimoto M. Close correlation between the birth date of Purkinje cells and the longitudinal compartmentalization of the mouse adult cerebellum. J Comp Neurol 2011; 519:2594-614. [PMID: 21456012 DOI: 10.1002/cne.22640] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adult cerebellum is organized into longitudinal compartments that are revealed by specific axonal projections (olivocerebellar and corticonuclear projections). These compartments in the adult cerebellum are closely correlated with the striped expression of zebrin II (aldolase C), a late-onset marker of Purkinje cells. Similarly, the embryonic cerebellum is organized into longitudinal compartments that are revealed by striped expression of other genes (early-onset markers). The cerebellar compartments are thought to be the basic and functional subdivisions of the cerebellum. However, the relationship between the embryonic (early-onset) and the adult (late-onset) compartments has remained unknown, because the pattern of the embryonic compartments is distinct from that of the adult compartments. To examine this issue, we labeled Purkinje cells (PCs) born at embryonic day (E) 10.5, E11.5, and E12.5 by using an adenoviral vector and traced their fated positions in the adult cerebellum. By comparing the striped distribution of each cohort of birth date-related PCs with the striped pattern of zebrin II immunoreactivity (zebrin II bands) in the entire adult cerebellum, we found that the striped distribution of PCs correlated strikingly with zebrin II bands. Generally, a single early-onset compartment was transformed directly into a single late-onset compartment. Therefore, our observation also indicated the close correlation between the compartments formed by birth date-related PCs and olivocerebellar projections. Furthermore, we found that the cerebellum was composed of three units showing lateral-to-medial developmental gradients, as revealed by the birth dates of PCs. The results suggest that PC birth dates play an important role in organizing cerebellar compartmentalization.
Collapse
Affiliation(s)
- Kazunori Namba
- Hashimoto Research Unit, RIKEN BSI, Saitama 351-0198, Japan
| | | | | |
Collapse
|
22
|
Furutama D, Morita N, Takano R, Sekine Y, Sadakata T, Shinoda Y, Hayashi K, Mishima Y, Mikoshiba K, Hawkes R, Furuichi T. Expression of the IP3R1 promoter-driven nls-lacZ transgene in Purkinje cell parasagittal arrays of developing mouse cerebellum. J Neurosci Res 2010; 88:2810-25. [PMID: 20632399 DOI: 10.1002/jnr.22451] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The cerebellar Purkinje cell monolayer is organized into heterogeneous Purkinje cell compartments that have different molecular compositions. Here we describe a transgenic mouse line, 1NM13, that shows heterogeneous transgene expression in parasagittal Purkinje cell arrays. The transgene consists of a nuclear localization signal (nls) fused to the beta-galactosidase (lacZ) composite gene driven by the type 1 inositol 1,4,5-trisphosphate receptor (IP(3)R1) gene promoter. IP(3)R1-nls-lacZ transgene expression was detected at a single Purkinje cell level over the surface of a whole-mount X-gal-stained cerebellum because of nuclear accumulation of the nls-lacZ activity. Developing cerebella of 1NM13 mice showed stripe-like X-gal staining patterns of parasagittal Purkinje cell subsets. The X-gal stripe pattern was likely determined by an intrinsic property as early as E15 and showed increasing complexity with cerebellar development. The X-gal stripe pattern was reminiscent of, but not identical to, the stripe pattern of zebrin II immunoreactivity. We designated the symmetrical X-gal-positive (transgene-positive, Tg(+)) Purkinje cell stripes about the midline as vermal Tg1(+), Tg2(a, b)(+) and Tg3(a, b)(+) stripes and hemispheric Tg4(a, b)(+), Tg5(a, b)(+), Tg6(a, b, c)(+), and Tg7(a, b)(+) stripes, where a, b, and c indicate substripes. We also assigned three parafloccular substripes Tg8(a, b, c)(+). The boundaries of X-gal stripes at P5 were consistent with raphes in the Purkinje cell layer through which granule cells migrate, suggesting a possible association of the X-gal stripes with raphe formation. Our results indicate that 1NM13 is a good mouse model with a reproducible and clear marker for the compartmentalization of Purkinje cell arrays.
Collapse
Affiliation(s)
- Daisuke Furutama
- First Department of Internal Medicine, Osaka Medical College, Takatsuki, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
On the architecture of the posterior zone of the cerebellum. CEREBELLUM (LONDON, ENGLAND) 2010. [PMID: 20838950 DOI: 10.1007/s12311‐010‐0208‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of many molecules, in particular, zebrin II/aldolase C. By using a combination of Purkinje cell antigenic markers and afferent tracing, four transverse zones have been identified: in mouse, these are the anterior zone (∼lobules I-V), the central zone (∼lobules VI-VII), the posterior zone (PZ: ∼lobules VIII-dorsal IX), and the nodular zone (∼ventral lobule IX + lobule X). A fifth transverse zone-the lingular zone (∼lobule I)-is found in birds and bats. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. To explore this model further and to broaden our understanding of the evolution of cerebellar patterning, stripes in the PZ have been compared in multiple mammalian species. We conclude that a posterior zone with a conserved stripe organization is a common feature of the mammalian and avian cerebellar vermis and that zonal boundaries are independent of cerebellar lobulation.
Collapse
|
24
|
|
25
|
Sillitoe RV, Gopal N, Joyner AL. Embryonic origins of ZebrinII parasagittal stripes and establishment of topographic Purkinje cell projections. Neuroscience 2008; 162:574-88. [PMID: 19150487 DOI: 10.1016/j.neuroscience.2008.12.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2008] [Revised: 12/15/2008] [Accepted: 12/15/2008] [Indexed: 11/29/2022]
Abstract
The establishment of neural circuits involves both the precise positioning of cells within brain regions and projection of axons to specific target cells. In the cerebellum (Cb), the medial-lateral (M-L) and anterior-posterior (A-P) position of each Purkinje cell (PC) and the topography of its axon can be defined with respect to two coordinate systems within the Cb; one based on the pattern of lobules and the other on PC gene expression in parasagittal clusters in the embryo (e.g. Pcp2) and stripes in the adult (e.g. ZebrinII). The relationship between the embryonic clusters of molecularly defined PCs and particular adult PC stripes is not clear. Using a mouse genetic inducible fate mapping (GIFM) approach and a Pcp2-CreER-IRES-hAP transgene, we marked three bilateral clusters of PC clusters with myristolated green fluorescent protein (mGfp) on approximately embryonic day (E) 15 and followed their fate into adulthood. We found that these three clusters contributed specifically to ZebrinII-expressing PCs, including nine of the adult stripes. This result suggests that embryonic PCs maintain a particular molecular identity, and that each embryonic cluster can contribute PCs to more than one adult M-L stripe. Each PC projects a primary axon to one of the deep cerebellar nuclei (DCN) or the vestibular nuclei in the brainstem in an organized fashion that relates to the position of the PCs along the M-L axis. We characterized when PC axons from the three M-L clusters acquire topographic projections. Using a combination of GIFM to mark the PC clusters with mGfp and staining for human placental alkaline phosphatase (hAP) in Pcp2-CreER-IRES-hAP transgenic embryos we found that axons from each embryonic PC cluster intermingled with neurons within particular DCN or projected out of the Cb toward the vestibular nuclei by E14.5. These studies show that PC molecular patterning, efferent circuitry, and DCN nucleogenesis occur simultaneously, suggesting a link between these processes.
Collapse
Affiliation(s)
- R V Sillitoe
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10021, USA
| | | | | |
Collapse
|
26
|
Chung SH, Marzban H, Croci L, Consalez GG, Hawkes R. Purkinje cell subtype specification in the cerebellar cortex: early B-cell factor 2 acts to repress the zebrin II-positive Purkinje cell phenotype. Neuroscience 2008; 153:721-32. [PMID: 18403128 DOI: 10.1016/j.neuroscience.2008.01.090] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/23/2008] [Accepted: 01/30/2008] [Indexed: 11/16/2022]
Abstract
The mammalian cerebellar cortex is highly compartmentalized. First, it is subdivided into four transverse expression domains: the anterior zone (AZ), the central zone (CZ), the posterior zone (PZ), and the nodular zone (NZ). Within each zone, the cortex is further subdivided into a symmetrical array of parasagittal stripes. The most extensively studied compartmentation antigen is zebrin II/aldolase c, which is expressed by a subset of Purkinje cells forming parasagittal stripes. Stripe phenotypes are specified early in cerebellar development, in part through the action of early B-cell factor 2 (Ebf2), a member of the atypical helix-loop-helix transcription factor family Collier/Olf1/EBF. In the murine cerebellum, Ebf2 expression is restricted to the zebrin II-immunonegative (zebrin II-) Purkinje cell population. We have identified multiple cerebellar defects in the Ebf2 null mouse involving a combination of selective Purkinje cell death and ectopic expression of multiple genes normally restricted to the zebrin II- subset. The nature of the cerebellar defect in the Ebf2 null is different in each transverse zone. In contrast to the ectopic expression of genes characteristic of the zebrin II+ Purkinje cell phenotype, phospholipase Cbeta4 expression, restricted to zebrin II- Purkinje cells in control mice, is well maintained, and the normal number of stripes is present. Taken together, these data suggest that Ebf2 regulates the expression of genes associated with the zebrin II+ Purkinje cell phenotype and that the zebrin II- Purkinje cell subtype is specified independently.
Collapse
Affiliation(s)
- S-H Chung
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
27
|
Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 2007; 23:549-77. [PMID: 17506688 DOI: 10.1146/annurev.cellbio.23.090506.123237] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The most noticeable morphological feature of the cerebellum is its folded appearance, whereby fissures separate its anterior-posterior extent into lobules. Each lobule is molecularly coded along the medial-lateral axis by parasagittal stripes of gene expression in one cell type, the Purkinje cells (PCs). Additionally, within each lobule distinct combinations of afferents terminate and supply the cerebellum with synchronized sensory and motor information. Strikingly, afferent terminal fields are organized into parasagittal domains, and this pattern bears a close relationship to PC molecular coding. Thus, cerebellum three-dimensional complexity obeys a basic coordinate system that can be broken down into morphology and molecular coding. In this review, we summarize the sequential stages of cerebellum development that produce its laminar structure, foliation, and molecular organization. We also introduce genes that regulate morphology and molecular coding, and discuss the establishment of topographical circuits within the context of the two coordinate systems. Finally, we discuss how abnormal cerebellar organization may result in neurological disorders like autism.
Collapse
Affiliation(s)
- Roy V Sillitoe
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA.
| | | |
Collapse
|
28
|
Marzban H, Chung S, Watanabe M, Hawkes R. Phospholipase cβ4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol 2007; 502:857-71. [PMID: 17436294 DOI: 10.1002/cne.21352] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mediolateral boundaries divide the mouse cerebellar cortex into four transverse zones, and within each zone the cortex is further subdivided into a symmetrical array of parasagittal stripes. Various expression markers reveal this complexity, and detailed maps have been constructed based on the differential expression of zebrin II/aldolase C in a Purkinje cell subset. Recently, phospholipase (PL) Cbeta4 expression in adult mice was shown to be restricted to, and coextensive with, the zebrin II-immunonegative Purkinje cell subset. The Purkinje cell expression of PLCbeta4 during embryogenesis and postnatal development begins just before birth in a subset of Purkinje cells that are clustered to form a reproducible array of parasagittal stripes. Double label and serial section immunocytochemistry revealed that the early PLCbeta4-immunoreactive clusters in the neonate are complementary to those previously identified by neurogranin expression. The PLCbeta4 expression pattern can be traced continuously from embryo to adult, revealing the continuity of the topographical map from perinatal to adult cerebella. The only exception, as has been seen for other antigenic markers, is that transient PLCbeta4 expression (which subsequently disappears) is seen in some Purkinje cell stripes during the second postnatal week. Furthermore, the data confirm that some adult Purkinje cell stripes are composite in origin, being derived from two or more distinct embryonic clusters. Thus, the zone and stripe topography of the cerebellum is conserved from embryo to adult, confirming that the early- and late-antigenic markers share a common cerebellar topography.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology and Anatomy, Genes and Development Research Group, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
29
|
Williams BL, Yaddanapudi K, Hornig M, Lipkin WI. Spatiotemporal analysis of purkinje cell degeneration relative to parasagittal expression domains in a model of neonatal viral infection. J Virol 2006; 81:2675-87. [PMID: 17182680 PMCID: PMC1865998 DOI: 10.1128/jvi.02245-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Infection of newborn Lewis rats with Borna disease virus (neonatal Borna disease [NBD]) results in cerebellar damage without the cellular inflammation associated with infections in later life. Purkinje cell (PC) damage has been reported for several models of early-life viral infection, including NBD; however, the time course and distribution of PC pathology have not been investigated rigorously. This study examined the spatiotemporal relationship between PC death and zonal organization in NBD cerebella. Real-time PCR at postnatal day 28 (PND28) revealed decreased cerebellar levels of mRNAs encoding the glycolytic enzymes aldolase C (AldoC, also known as zebrin II) and phosphofructokinase C and the excitatory amino acid transporter 4 (EAAT4). Zebrin II and EAAT4 immunofluorescence analysis in PND21, PND28, PND42, and PND84 NBD rat cerebella revealed a complex pattern of PC degeneration. Early cell loss (PND28) was characterized by preferential apoptotic loss of zebrin II/EAAT4-negative PC subsets in the anterior vermis. Consistent with early preferential loss of zebrin II/EAAT4-negative PCs in the vermis, the densities of microglia and the Bergmann glial expression of metallothionein I/II and the hyaluronan receptor CD44 were higher in zebrin II/EAAT4-negative zones. In contrast, early loss in lateral cerebellar lobules did not reflect a similar discrimination between PC phenotypes. Patterns of vermal PC loss became more heterogeneous at PND42, with the loss of both zebrin II/EAAT4-negative and zebrin II/EAAT4-positive neurons. At PND84, zebrin II/EAAT4 patterning was abolished in the anterior cerebellum, with preferential PC survival in lobule X. Our investigation reveals regional discrimination between patterns of PC subset loss, defined by zebrin II/EAAT4 expression domains, following neonatal viral infection. These findings suggest a differential vulnerability of PC subsets during the early stages of virus-induced neurodegeneration.
Collapse
Affiliation(s)
- Brent L Williams
- Jerome L. and Dawn Greene Infectious Disease Laboratory, Mailman School of Public Health, Columbia University, 722 West 168th Street, Rm. 1801, New York, NY 10032, USA
| | | | | | | |
Collapse
|
30
|
Croci L, Chung SH, Masserdotti G, Gianola S, Bizzoca A, Gennarini G, Corradi A, Rossi F, Hawkes R, Consalez GG. A key role for the HLH transcription factor EBF2COE2,O/E-3 in Purkinje neuron migration and cerebellar cortical topography. Development 2006; 133:2719-29. [PMID: 16774995 DOI: 10.1242/dev.02437] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Early B-cell factor 2 (EBF2) is one of four mammalian members of an atypical helix-loop-helix transcription factor family (COE). COE proteins have been implicated in various aspects of nervous and immune system development. We and others have generated and described mice carrying a null mutation of Ebf2, a gene previously characterized in the context of Xenopus laevis primary neurogenesis and neuronal differentiation. In addition to deficits in neuroendocrine and olfactory development, and peripheral nerve maturation, Ebf2 null mice feature an ataxic gait and obvious motor deficits associated with clear-cut abnormalities of cerebellar development. The number of Purkinje cells (PCs) in the Ebf2 null is markedly decreased, resulting in a small cerebellum with notable foliation defects,particularly in the anterior vermis. We show that this stems from the defective migration of a molecularly defined PC subset that subsequently dies by apoptosis. Part of the striped cerebellar topography is disrupted due to cell death and, in addition, many of the surviving PCs, that would normally adopt a zebrin II-negative phenotype, transdifferentiate to Zebrin II-positive, an unprecedented finding suggesting that Ebf2 is required for the establishment of a proper cerebellar cortical map.
Collapse
Affiliation(s)
- Laura Croci
- San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Larouche M, Hawkes R. From clusters to stripes: The developmental origins of adult cerebellar compartmentation. THE CEREBELLUM 2006; 5:77-88. [PMID: 16818382 DOI: 10.1080/14734220600804668] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many aspects of the adult cerebellum are organized into parasagittal stripes, including several types of neurons and prominent afferent and efferent projections. Purkinje cells are the best-studied example of parasagittal organization in the cerebellum and, in particular, zebrin II/aldolase C is the stereotypical molecular marker of Purkinje cell stripe heterogeneity in the adult. Zebrin II is a member of the so-called 'late-onset' class of parasagittal markers, which are first expressed shortly after the birth of the mouse and do not reach maturity until 2-3 weeks postnatal. In contrast, 'early-onset' pattern markers are expressed in ordered Purkinje cell clusters in the embryonic cerebellum but become expressed homogeneously shortly after birth. The approximately 10 day temporal gap between the patterned expression of early and late markers has impeded the identification of putative genealogical relationships between clusters and stripes. This review will describe Purkinje cell patterns and their transitions, and critically discuss the evidence for genealogical relationships between early and late patterns.
Collapse
Affiliation(s)
- Matt Larouche
- Department of Cell Biology and Anatomy, Genes and Development Research Group, Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
32
|
Larouche M, Che PM, Hawkes R. Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J Comp Neurol 2006; 494:215-27. [PMID: 16320235 DOI: 10.1002/cne.20791] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Markers that reveal the parasagittal organization of cerebellar Purkinje cells may be grouped into two classes based on the time during development when they are expressed. In mice, early-onset markers are defined by their heterogeneous expression in clusters of Purkinje cells during late embryogenesis, which disappears shortly following birth. Late-onset markers are generally not expressed until about 1 week after birth and do not reach a stable striped expression pattern until about 3 weeks postnatally. Currently, no endogenous markers are known that are heterogeneously expressed in the temporal gap between these two classes. Here we present immunocytochemical evidence that parasagittal stripes of Purkinje cells express a member of the calpacitin protein family, neurogranin, possibly from as early as embryonic day (E) 13 and definitively from E15, in a pattern that persists up to postnatal day (P) 20. Neurogranin is thus the first endogenous marker of a Purkinje cell subset capable of bridging the temporal gap between the early- and late-onset patterns. In the early neonate, up to five pairs of neurogranin-immunopositive Purkinje cell stripes run parasagittally through the cerebellum, with the exact number dependent on the rostrocaudal position. Expression is lost during postnatal development in a transverse zone-dependent fashion. Purkinje cells in the central and nodular zones lose neurogranin expression between approximately P4 and P6, whereas expression in the posterior zone persists until approximately P20. Neurogranin immunoreactivity will be a valuable tool in helping to clarify the relationships between early- and late-onset patterns.
Collapse
Affiliation(s)
- Matt Larouche
- Department of Cell Biology and Anatomy, Genes and Development Research Group, Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
33
|
Armstrong CL, Vogel MW, Hawkes R. Development of Hsp25 expression compartments is not constrained by Purkinje cell defects in the Lurcher mouse mutant. J Comp Neurol 2006; 491:69-78. [PMID: 16127699 DOI: 10.1002/cne.20703] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Four transverse zones can be distinguished in the adult mouse cerebellar cortex based on differential expression of cell-specific antigens, termination patterns of mossy fiber afferents, and phenotypes of mouse mutants with cerebellar defects: the anterior zone (AZ), central zone (CZ), posterior zone (PZ), and nodular zone (NZ). In the heterozygous Lurcher (Lc/+) mouse a zonally restricted abnormality in Purkinje cell development is seen. The Purkinje cell-specific antigen zebrin II is normally differentially expressed in all four zones of the adult cerebellum, but in the Lc/+ mutant is confined to the PZ and NZ, caudal to a transverse boundary in the dorsal aspect of lobule VIII. In this study we wanted to understand why zebrin II expression is arrested at this boundary and whether the Lc mutation affects the differentiation of additional Purkinje cell antigens in a similar manner. To determine this, we took advantage of the dynamic developmental timetable of another Purkinje cell antigen, the small heat shock protein Hsp25. Using immunohistochemistry we demonstrate that cerebellar maturation anterior to the CZ/PZ transverse boundary appears to be unaffected by the Lc allele, in that initial progression of Hsp25 expression in the Lc/+ cerebellum was similar to controls. Double-labeling experiments with anti-Hsp25 and anti-calbindin suggest that characteristic banding patterns of Hsp25 in Lc/+ cerebellum develop and are preserved despite cell loss. Thus, since simple temporal or spatial models cannot account for the zonal restriction seen during Lc/+ cerebellar development, the abnormality may be zebrin II-specific.
Collapse
Affiliation(s)
- Carol L Armstrong
- Department of Cell Biology & Anatomy, Genes and Development Research Group, Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
34
|
Shumway C, Morissette J, Bower JM. Mechanisms underlying reorganization of fractured tactile cerebellar maps after deafferentation in developing and adult rats. J Neurophysiol 2005; 94:2630-43. [PMID: 15987764 DOI: 10.1152/jn.00161.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies showed that fractured tactile cerebellar maps in rats reorganize after deafferentation during development and in adulthood while maintaining a fractured somatotopy. Several months after deafferentation of the infraorbital branch of the trigeminal nerve, the missing upper lip innervation is replaced in the tactile maps in the granule cell layer of crus IIa. The predominant input into the denervated area is always the upper incisor representation. This study examined whether this reorganization was caused by mechanisms intrinsic to the cerebellum or extrinsic, i.e., occurring in somatosensory structures afferent to the cerebellum. We first compared normal and deafferented maps and found that the expansion of the upper incisor is not caused by a preexisting bias in the strength or abundance of upper incisor input in normal animals. We then mapped tactile representations before and immediately after denervation. We found that the pattern of reorganization observed in the cerebellum several months later is not caused by unmasking of a silent or weaker upper incisor representation. Both results indicate that the reorganization is not a result of subsequent growth or sprouting mechanism within the cerebellum itself. Finally, we compared postlesion maps in the cerebellum and the somatosensory cortex. We found that the upper incisor representation significantly expands in both regions and that this expansion is correlated, suggesting that reorganization in the cerebellum is a passive consequence of reorganization in afferent cerebellar pathways. This result has important developmental and functional implications.
Collapse
Affiliation(s)
- Caroly Shumway
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, USA.
| | | | | |
Collapse
|
35
|
Tominaga M, Honda S, Okada A, Ikeda A, Kinoshita S, Tomooka Y. A bipotent neural progenitor cell line cloned from a cerebellum of an adultp53-deficient mouse generates both neurons and oligodendrocytes. Eur J Neurosci 2005; 21:2903-11. [PMID: 15978002 DOI: 10.1111/j.1460-9568.2005.04119.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Here we report developmental characteristics of a clonal cell line 2Y-3t established from a multifocal neoplasm that arose in a cerebellum of an adult p53-deficient mouse. The tumorigenicity of the line was not observed in soft agar assay or in nude mouse assay. In serum-containing medium, 2Y-3t cells were epithelial-like in morphology and were mitotic. When they were cultured in serum-free medium, the expressions of neural stem and/or progenitor cell markers were decreased. Concomitantly, the expressions of neuronal and oligodendrocyte markers were increased in concert with morphological differentiation, and DNA synthesis ceased. None of astrocyte markers were detected under these culture conditions. Double-labelling studies revealed that two cell populations coexisted, expressing neuronal or oligodendrocyte markers. Triiodothyronine (T3) increased the oligodendrocyte population when 2Y-3t cells were cultured in serum-free medium. Recloning of the line gave rise to three types of subclones. Sixteen subclones were capable of generating both neurons and oligodendrocytes, four subclones were capable of generating only neurons and one subclone was capable of generating only oligodendrocytes. Thus, 2Y-3t cells have characteristics of bipotent neural progenitor cells capable of generating both neurons and oligodendrocytes. In addition, the line expressed mRNA for Pax-2 and had GAD67-positive cells when cultured in serum-free medium. However, none of the mRNAs for Zic-1, Math1, zebrin or Calbindin-D28k were detected, suggesting that the 2Y-3t line might generate the GABAergic interneuron lineage of the mouse cerebellum.
Collapse
Affiliation(s)
- Mitsutoshi Tominaga
- Department of Biological Science and Technology and Tissue Engineering Research Center, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-8510, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Narboux-Nême N, Louvi A, Alexandre P, Wassef M. Regionalization of the isthmic and cerebellar primordia. PROGRESS IN BRAIN RESEARCH 2005; 148:29-36. [PMID: 15856550 DOI: 10.1016/s0079-6123(04)48003-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The complex migrations of neurons born in the dorsal neural tube of the isthmic and rhombomere l (rl) domains complicate the delineation of the cerebellar primordium. We show that Purkinje cells (P) are likely generated over a wide territory before gathering in the future cerebellar primordium under the developing external granular layer. Later expansion of the cerebellum over a restricted ependymal domain could rely on mutual interations between P cells and granule cell progenitors (GCP). P are attracted by GCP and in turn stimulate their proliferation, increasing the surface of the developing cortex. At later stages, regionalization of the developing and adult cerebellar cortex can be detected through regional variations in the distribution of several P cell markers. Whether and how the developmental and adult P subtypes are related is still unknown and it is unclear if they delineate the same sets of cerebellar subdivisions. We provide evidence that the early P regionalization is involved in intrinsic patterning of the cerebellar primordium, in particular it relate to the organization of the corticonuclear connection. We propose that the early P regionalization provides a scaffold to the mature P regionalization but that the development of functional afferent connections induces a period of P plasticity during which the early regional identity of P could be remodeled.
Collapse
Affiliation(s)
- Nicolas Narboux-Nême
- Régionalisation Nerveuse CNRS/ENS, UMR 8542, Ecole normale supérieure, 46 rue d'Ulm, 75005 Paris, France
| | | | | | | |
Collapse
|
37
|
Sillitoe RV, Marzban H, Larouche M, Zahedi S, Affanni J, Hawkes R. Conservation of the architecture of the anterior lobe vermis of the cerebellum across mammalian species. PROGRESS IN BRAIN RESEARCH 2005; 148:283-97. [PMID: 15661197 DOI: 10.1016/s0079-6123(04)48022-4] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Roy V Sillitoe
- Department of Cell Biology & Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, AB T2N 4N1, Canada
| | | | | | | | | | | |
Collapse
|
38
|
Rivkin A, Herrup K. Development of cerebellar modules: extrinsic control of late-phase zebrin II pattern and the exploration of rat/mouse species differences. Mol Cell Neurosci 2004; 24:887-901. [PMID: 14697656 DOI: 10.1016/s1044-7431(03)00240-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
The vertebrate cerebellum is divided into a characteristic set of 13 parasagittal "bands" or modules that are revealed in many different domains-ranging from patterns of gene and protein expression to the organization of afferent input. We have used the expression of Zebrin II/aldolase C in Purkinje cells as a marker of these bands and have discovered several new features of their regulation. We find that appearance of the banded expression of aldolase C during development differs between rat and mouse. In agreement with previous reports there is, in rat, a transient period during which all Purkinje cells are positive for aldolase C expression. By contrast, in mouse, the pattern emerges in its adult (banded) form from the earliest postnatal times. This species difference is found in both mRNA and protein expression. There also appears to be a transition that occurs in vivo between postnatal days 8 and 10. Slice cultures established from cerebella at the younger age do not develop a complete banding pattern, even after 6 days in culture. Slice cultures established from postnatal day 10 mice develop the full pattern within 2 days. This difference cannot be overcome by manipulating the levels of neuronal activity in the cultures. Thus some event must occur in vivo that "releases" the adult pattern and allows it to be realized in the more artificial situation of the slice culture. Taken together the results offer a more complete picture of the regulation of the aldolase C gene in cerebellar Purkinje cells and suggest important species differences in its developmental expression pattern.
Collapse
Affiliation(s)
- Anna Rivkin
- Department of Neurosciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | |
Collapse
|
39
|
Abstract
The adult cerebellum is functionally compartmentalized into clusters along the mediolateral axis (M-L clusters), and a variety of molecular makers are expressed in specific subsets of M-L clusters. These M-L clusters appear to be the basic structure in which cerebellar functions are performed, but the mechanisms by which cerebellar mediolateral compartmentalization is established are still unclear. To address these questions, we examined the development of M-L clusters using replication-defective adenoviral vectors. The adenoviral vectors effectively introduced foreign genes into the neuronal progenitor cells of the cerebellum in a birth date-specific manner, allowing us to observe the native behavior of each cohort of birth date-related progenitor cells. When the adenoviral vectors were injected into the midbrain ventricle of mouse embryos on embryonic days 10.5 (E10.5), E11.5, and E12.5, the virally infected cerebellar progenitor cells developed into Purkinje cells. Notably, the Purkinje cells that shared the same birth date formed specific subsets of M-L clusters in the cerebellum. Each subset of M-L clusters displayed nested and, in part, mutually complementary patterns, and these patterns were unchanged from the late embryonic stage to adulthood, suggesting that Purkinje cell progenitors are fated to form specific subsets of M-L clusters after their birth between E10.5 and E12.5. This study represents the first such direct observation of Purkinje cell development. Moreover, we also show that there is a correlation between the M-L clusters established by the birth date-related Purkinje cells and the domains of engrailed-2, Wnt-7B, L7/pcp2, and EphA4 receptor tyrosine kinase expression.
Collapse
|
40
|
Abstract
The object of this review is to assemble much of the literature concerning Purkinje cell death in cerebellar pathology and to relate this to what is now known about the complex topography of the cerebellar cortex. A brief introduction to Purkinje cells, and their regionalization is provided, and then the data on Purkinje cell death in mouse models and, where appropriate, their human counterparts, have been arranged according to several broad categories--naturally-occurring and targeted mutations leading to Purkinje cell death, Purkinje cell death due to toxins, Purkinje cell death in ischemia, Purkinje cell death in infection and in inherited disorders, etc. The data reveal that cerebellar Purkinje cell death is much more topographically complex than is usually appreciated.
Collapse
Affiliation(s)
- Justyna R Sarna
- Genes Development Research Group, Department of Cell Biology & Anatomy, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | | |
Collapse
|
41
|
Abstract
Despite the apparent uniformity in cellular composition of the mammalian cerebellar cortex, a complex topography is revealed by several expression patterns. Zebrin II, a polypeptide antigen identified as aldolase C, is one such marker which, in several species of mammals, is restricted to a subset of Purkinje cells that are clustered together to form a symmetrical and reproducible array of zones and stripes. In rodents the cerebellar cortex is divided into four transverse zones--anterior, central, posterior, and nodular. Each transverse zone is further subdivided mediolaterally into an array of parasagittal stripes. The similar zone and stripe organization partitions the hemispheres. Based upon a novel whole mount immunohistochemical staining procedure, we have now identified homologous zones and stripes in the feline cerebellum. In the cat cerebellum the somata of most Purkinje cells express zebrin II but parasagittal stripes may still be delineated owing to the alternating high and low zebrin II expression levels in the dendritic arbors. As in rodents, the cat cerebellum consists of four transverse zones with each zone subdivided into a unique combination of zebrin II parasagittal stripes, suggesting that a common architecture underlies the organization of the mammalian cerebellum.
Collapse
Affiliation(s)
- Roy V Sillitoe
- Department of Cell Biology & Anatomy, Genes and Development Research Group, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
42
|
Marzban H, Khanzada U, Shabir S, Hawkes R, Langnaese K, Smalla KH, Bockers TM, Gundelfinger ED, Gordon-Weeks PR, Beesley PW. Expression of the immunoglobulin superfamily neuroplastin adhesion molecules in adult and developing mouse cerebellum and their localisation to parasagittal stripes. J Comp Neurol 2003; 462:286-301. [PMID: 12794733 DOI: 10.1002/cne.10719] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuroplastin (np) 55 and 65 are immunoglobulin superfamily members that arise by alternative splicing of the same gene and have been implicated in long-term activity-dependent synaptic plasticity. Both biochemical and immunocytochemical data suggest that np55 is the predominant isoform (>95% of total neuroplastin) in cerebellum. Neuroplastin immunoreactivity is concentrated in the molecular layer and synaptic glomeruli in the granule cell layer. Expression in the molecular layer appears to be postsynaptic. First, neuroplastin is associated with Purkinje cell dendrites in two mouse granuloprival cerebellar mutants, disabled and cerebellar deficient folia. Second, in an acid sphingomyelinase knockout mouse with widespread protein trafficking defects, neuroplastin accumulates in the Purkinje cell somata. Finally, primary cerebellar cultures show neuroplastin expression in Purkinje cell dendrites and somata lacking normal histotypic organization and synaptic connections, and high-magnification views indicate a preferential association with dendritic spines. In the molecular layer, differences in neuroplastin expression levels present as a parasagittal array of stripes that alternates with that revealed by the expression of another compartmentation antigen, zebrin II/aldolase c. Neuroplastin immunoreactivity is first detected weakly at postnatal day 3 (P3) in the anterior lobe vermis. By P5, parasagittal stripes are already apparent in the immature molecular layer. At this stage, punctate deposits are also localised at the perimeter of the Purkinje cell perikarya; these are no longer detected by P15. The data suggest a role for neuroplastins in the development and maintenance of normal synaptic connections in the cerebellum.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology and Anatomy, Genes and Development Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Larouche M, Diep C, Sillitoe RV, Hawkes R. Topographical anatomy of the cerebellum in the guinea pig, Cavia porcellus. Brain Res 2003; 965:159-69. [PMID: 12591133 DOI: 10.1016/s0006-8993(02)04160-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Zebrin II/aldolase C is expressed in a stereotyped array of parasagittal bands and transverse zones in the cerebellum of many animals including birds and mammals. Here, section and whole mount immunohistochemistry has been used to characterize the expression of zebrin II in the cerebellum of the adult guinea pig. Purkinje cells in the adult guinea pig express zebrin II immunoreactivity at three different levels of intensity-high, medium and low. This expression pattern reveals an arrangement of parasagittal bands that are symmetrical about the midline and reproducible between individuals. The expression of zebrin II divides the vermis into four transverse expression domains from rostral to caudal: an anterior zone consisting of one zebrin II-immunoreactive band at the midline and at least three symmetrical bands laterally; a central zone, in which broad zebrin II-positive bands are separated by narrow bands of zebrin II-negative Purkinje cells that disappear caudally to leave no overt compartmentation; a posterior zone consisting of alternating bands of zebrin II-positive and -negative Purkinje cells; and finally, a nodular zone in which nearly all Purkinje cells express zebrin II. In the anterior and posterior hemispheres, zebrin II is also expressed in a banded pattern. These rostrocaudal and mediolateral patterns of zebrin II expression are reminiscent of those in other mammals including rabbit, rat, and mouse, and suggest that there may be a fundamental compartmental organization of the cerebellum that is conserved in mammals.
Collapse
Affiliation(s)
- Matt Larouche
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Alberta, Calgary, Canada T2N 4N1
| | | | | | | |
Collapse
|
44
|
Karam SD, Dottori M, Ogawa K, Henderson JT, Boyd AW, Pasquale EB, Bothwell M. EphA4 is not required for Purkinje cell compartmentation. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2002; 135:29-38. [PMID: 11978390 DOI: 10.1016/s0165-3806(02)00278-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Purkinje cells of both the adult and the developing cerebellar cortex are organized into parasagittal stripes or 'segments' expressing a variety of biochemical markers. We show that in the developing mouse cerebellar cortex, members of the Eph receptor gene family are expressed in mediolaterally alternating Purkinje cell segments. Since members of the Eph receptors family have been shown to play a role in hindbrain segmentation and boundary formation (Philos. Trans. R. Soc. Lond. B: Biol. Sci. 355 (2000) 993), we analyzed the effect of a null mutation of the EphA4 gene on Purkinje cell compartmentation. Using well characterized markers of Purkinje cell compartmentation in both the developing and the adult cerebellum, we observed no significant alteration in the banding pattern of these markers between the EphA4 knockout mice and their wild type controls. The ribboned pattern of migrating granule cells in the developing cerebellum also appears unaltered. The expression of other members of this gene family, including ephrin-B2, EphA2, and ephrin-A1, in a compartmentalized pattern within the Purkinje cell layer suggests a possible redundancy and/or a compensation of EphA4 function in the segmental patterning of cerebellar Purkinje cells.
Collapse
Affiliation(s)
- Sana D Karam
- Department of Physiology and Biophysics, University of Washington, P.O. Box 357290, Seattle, WA 98195, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Sarna J, Miranda SR, Schuchman EH, Hawkes R. Patterned cerebellar Purkinje cell death in a transgenic mouse model of Niemann Pick type A/B disease. Eur J Neurosci 2001; 13:1873-80. [PMID: 11403680 DOI: 10.1046/j.0953-816x.2001.01564.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Niemann Pick disease is a family of autosomal recessive disorders characterized by cholesterol accumulation. The most common type is Niemann Pick type A/B (NPA/B), resulting from deficient acid sphingomyelinase activity, which leads to sphingomyelin and cholesterol accumulation. The neuropathology of NPA/B includes widespread neuronal degeneration. An acid sphingomyelinase knockout mouse model of NPA/B (ASMKO) has been developed by the targeted deletion of the acid sphingomyelinase gene. When cerebellar morphology was examined in the ASMKO mouse at postnatal day 60 (P60), a dramatic pattern of longitudinal stripes was revealed in which roughly half the Purkinje cells had died, leaving a highly stereotyped, bilaterally symmetrical array of stripes. Antizebrin II immunocytochemistry revealed that the absent Purkinje cells corresponded exactly to the zebrin II-negative subset, leaving the zebrin II-positive subset apparently intact. By P120, some of the zebrin II-positive Purkinje cells had also been eliminated from the posterior vermis and hemispheres. By P180, all Purkinje cells had been lost from the anterior lobe. Finally at P240, almost all Purkinje cells had disappeared to leave a stereotyped distribution in lobules VI, IX-X and the flocculus and paraflocculus. The temporal pattern of Purkinje cell death demonstrates differential susceptibility of morphologically identical cells that appear to be linked to their molecular phenotypes.
Collapse
Affiliation(s)
- J Sarna
- Department of Cell Biology and Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
46
|
Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Expression of heat-shock protein Hsp25 in mouse Purkinje cells during development reveals novel features of cerebellar compartmentation. J Comp Neurol 2001; 429:7-21. [PMID: 11086286 DOI: 10.1002/1096-9861(20000101)429:1<7::aid-cne2>3.0.co;2-q] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The small heat shock protein Hsp25 is constitutively expressed in the adult mouse cerebellum by parasagittal stripes of Purkinje cells confined to the caudal central zone ( approximately lobules VI and VII), the nodular zone ( approximately ventral lobule IX and lobule X), and the paraflocculi/flocculi. During development several distinct phases in Hsp25 expression can be distinguished. Hsp25-immunopositive Purkinje cells are first seen at birth, when four clusters are visible in the vermis of lobules IV/V, and scattered Hsp25-immunoreactive Purkinje cells are seen in lobule VIII. By postnatal day 2/3, six narrow parasagittal stripes of Hsp25-immunopositive Purkinje cells are seen in the vermis of the anterior lobe. In the posterior lobules, most Purkinje cells in the vermis of lobules VIII and IX express Hsp25. This initial limited expression is followed by a phase of widespread expression (postnatal days 6-9) in which Hsp25 immunoreactivity is detected in virtually all Purkinje cells. This global cerebellar expression of Hsp25 then gradually disappears, first in the anterior zone and the hemispheres and subsequently in the posterior zone, to leave the restricted adult expression pattern. Western blotting analysis and immunoprecipitation with anti-Hsp25 suggest that all immunocytochemistry can be attributed the expression of Hsp25. Furthermore, visual deprivation had no effect on the development of Hsp25 expression in Purkinje cells, suggesting that visuomotor input is not responsible for the establishment of constitutive Hsp25 expression in the cerebellar cortex.
Collapse
Affiliation(s)
- C L Armstrong
- Department of Cell Biology & Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
47
|
Beierbach E, Park C, Ackerman SL, Goldowitz D, Hawkes R. Abnormal dispersion of a purkinje cell subset in the mouse mutant cerebellar deficient folia (cdf). J Comp Neurol 2001. [DOI: 10.1002/cne.1052] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Abstract
The cerebellar cortex is subdivided rostrocaudally and mediolaterally into a reproducible array of zones and stripes. This makes the cerebellum a valuable model for studying pattern formation in the vertebrate central nervous system. The structure of the adult mouse cerebellar cortex and the series of embryological events that generate the topography are reviewed.Key words: zebrin, Hsp25, Purkinje cells.
Collapse
|
49
|
Eisenman LM. Antero-posterior boundaries and compartments in the cerebellum: evidence from selected neurological mutants. PROGRESS IN BRAIN RESEARCH 2000; 124:23-30. [PMID: 10943114 DOI: 10.1016/s0079-6123(00)24005-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Affiliation(s)
- L M Eisenman
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
50
|
|