1
|
Zhang J, Chen D, Srirangarajan T, Theriault J, Kragel PA, Hartley L, Lee KM, McVeigh K, Wager TD, Wald LL, Satpute AB, Quigley KS, Whitfield-Gabrieli S, Barrett LF, Bianciardi M. Cortical and subcortical mapping of the allostatic-interoceptive system in the human brain: replication and extension with 7 Tesla fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.20.548178. [PMID: 37546889 PMCID: PMC10401932 DOI: 10.1101/2023.07.20.548178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The brain continuously anticipates the energetic needs of the body and prepares to meet those needs before they arise, a process called allostasis. In support of allostasis, the brain continually models the internal state of the body, a process called interoception. Using published tract-tracing studies in non-human animals as a guide, we previously identified a large-scale system supporting allostasis and interoception in the human brain with functional magnetic resonance imaging (fMRI) at 3 Tesla. In the present study, we replicated and extended this system in humans using 7 Tesla fMRI (N = 91), improving the precision of subgenual and pregenual anterior cingulate topography as well as brainstem nuclei mapping. We verified over 90% of the anatomical connections in the hypothesized allostatic-interoceptive system observed in non-human animal research. We also identified functional connectivity hubs verified in tract-tracing studies but not previously detected using 3 Tesla fMRI. Finally, we demonstrated that individuals with stronger fMRI connectivity between system hubs self-reported greater interoceptive awareness, building on construct validity evidence from our earlier paper. Taken together, these results strengthen evidence for the existence of a whole-brain system supporting interoception in the service of allostasis and we consider the implications for mental and physical health.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Danlei Chen
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Jordan Theriault
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02139
| | | | - Ludger Hartley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kent M. Lee
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kieran McVeigh
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Lawrence L. Wald
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02139
| | - Ajay B. Satpute
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA 02115
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02139
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02139
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02139
- Division of Sleep Medicine, Harvard University, Boston, MA
| |
Collapse
|
2
|
Jeczmien-Lazur JS, Sanetra AM, Pradel K, Izowit G, Chrobok L, Palus-Chramiec K, Piggins HD, Lewandowski MH. Metabolic cues impact non-oscillatory intergeniculate leaflet and ventral lateral geniculate nucleus: standard versus high-fat diet comparative study. J Physiol 2023; 601:979-1016. [PMID: 36661095 DOI: 10.1113/jp283757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues. Both receive information about environmental light from photoreceptors, exhibit infra-slow oscillations (ISO) in vivo, and connect to the master circadian clock. Although current evidence demonstrates that the IGL/VLG communicate metabolic information and are crucial for entrainment of circadian rhythms to time-restricted feeding, their sensitivity to food intake-related peptides has not been investigated yet. We examined the effect of metabolically relevant peptides on the spontaneous activity of IGL/VLG neurons. Using ex vivo and in vivo electrophysiological recordings as well as in situ hybridisation, we tested potential sensitivity of the IGL/VLG to anorexigenic and orexigenic peptides, such as cholecystokinin, glucagon-like peptide 1, oxyntomodulin, peptide YY, orexin A and ghrelin. We explored neuronal responses to these drugs during day and night, and in standard vs. high-fat diet conditions. We found that IGL/VLG neurons responded to all the substances tested, except peptide YY. Moreover, more neurons responded to anorexigenic drugs at night, while a high-fat diet affected the IGL/VLG sensitivity to orexigenic peptides. Interestingly, ISO neurons responded to light and orexin A, but did not respond to the other food intake-related peptides. In contrast, non-ISO cells were activated by metabolic peptides, with only some being responsive to light. Our results show for the first time that peptides involved in the body's energy homeostasis stimulate the thalamus and suggest functional separation of the IGL/VLG cells. KEY POINTS: The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) of the rodent thalamus process various signals and participate in circadian entrainment. In both structures, cells exhibiting infra-slow oscillatory activity as well as non-rhythmically firing neurons being observed. Here, we reveal that only one of these two groups of cells responds to anorexigenic (cholecystokinin, glucagon-like peptide 1 and oxyntomodulin) and orexigenic (ghrelin and orexin A) peptides. Neuronal responses vary depending on the time of day (day vs. night) and on the diet (standard vs. high-fat diet). Additionally, we visualised receptors to the tested peptides in the IGL/VLG using in situ hybridisation. Our results suggest that two electrophysiologically different subpopulations of IGL/VLG neurons are involved in two separate functions: one related to the body's energy homeostasis and one associated with the subcortical visual system.
Collapse
Affiliation(s)
- Jagoda S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anna M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
3
|
Caputo R, Poirel VJ, Challet E, Meijer JH, Raison S. Bimodal serotonin synthesis in the diurnal rodent, Arvicanthis ansorgei. FASEB J 2022; 36:e22255. [PMID: 35294080 DOI: 10.1096/fj.202101726r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 02/05/2022] [Accepted: 03/04/2022] [Indexed: 11/11/2022]
Abstract
In mammals, behavioral activity is regulated both by the circadian system, orchestrated by the suprachiasmatic nucleus (SCN), and by arousal structures, including the serotonergic system. While the SCN is active at the same astronomical time in diurnal and nocturnal species, little data are available concerning the serotonergic (5HT) system in diurnal mammals. In this study, we investigated the functioning of the 5HT system, which is involved both in regulating the sleep/wake cycle and in synchronizing the SCN, in a diurnal rodent, Arvicanthis ansorgei. Using in situ hybridization, we characterized the anatomical extension of the raphe nuclei and we investigated 24 h mRNA levels of the serotonin rate-limiting enzyme, tryptophan hydroxylase 2 (tph2). Under both 12 h:12 h light/dark (LD) and constant darkness (DD) conditions, tph2 mRNA expression varies significantly over 24 h, displaying a bimodal profile with higher values around the (projected) light transitions. Furthermore, we considered several SCN outputs, namely melatonin, corticosterone, and locomotor activity. In both LD and DD, melatonin profiles display peak levels during the biological night. Corticosterone plasma levels show a bimodal rhythmic profile in both conditions, with higher levels preceding the two peaks of Arvicanthis locomotor activity, occurring at dawn and dusk. These data demonstrate that serotonin synthesis in Arvicanthis is rhythmic and reflects its bimodal behavioral phenotype, but differs from what has been previously described in nocturnal species.
Collapse
Affiliation(s)
- Rosanna Caputo
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France.,Department of Molecular Cell Biology, Division of Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Vincent-Joseph Poirel
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| | - Johanna H Meijer
- Department of Molecular Cell Biology, Division of Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sylvie Raison
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| |
Collapse
|
4
|
Lee R, McGee A, Fernandez FX. Systematic review of drugs that modify the circadian system's phase-shifting responses to light exposure. Neuropsychopharmacology 2022; 47:866-879. [PMID: 34961774 PMCID: PMC8882192 DOI: 10.1038/s41386-021-01251-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/08/2021] [Accepted: 11/30/2021] [Indexed: 11/09/2022]
Abstract
We searched PubMed for primary research quantifying drug modification of light-induced circadian phase-shifting in rodents. This search, conducted for work published between 1960 and 2018, yielded a total of 146 papers reporting results from 901 studies. Relevant articles were those with any extractable data on phase resetting in wildtype (non-trait selected) rodents administered a drug, alongside a vehicle/control group, near or at the time of exposure. Most circadian pharmacology experiments were done using drugs thought to act directly on either the brain's central pacemaker, the suprachiasmatic nucleus (SCN), the SCN's primary relay, the retinohypothalamic tract, secondary pathways originating from the medial/dorsal raphe nuclei and intergeniculate leaflet, or the brain's sleep-arousal centers. While the neurotransmitter systems underlying these circuits were of particular interest, including those involving glutamate, gamma-aminobutyric acid, serotonin, and acetylcholine, other signaling modalities have also been assessed, including agonists and antagonists of receptors linked to dopamine, histamine, endocannabinoids, adenosine, opioids, and second-messenger pathways downstream of glutamate receptor activation. In an effort to identify drugs that unduly influence circadian responses to light, we quantified the net effects of each drug class by ratioing the size of the phase-shift observed after administration to that observed with vehicle in a given experiment. This allowed us to organize data across the literature, compare the relative efficacy of one mechanism versus another, and clarify which drugs might best suppress or potentiate phase resetting. Aggregation of the available data in this manner suggested that several candidates might be clinically relevant as auxiliary treatments to suppress ectopic light responses during shiftwork or amplify the circadian effects of timed bright light therapy. Future empirical research will be necessary to validate these possibilities.
Collapse
Affiliation(s)
- Robert Lee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Austin McGee
- Department of Psychology, University of Arizona, Tucson, AZ, USA
| | - Fabian-Xosé Fernandez
- Department of Psychology, University of Arizona, Tucson, AZ, USA.
- Department of Neurology, University of Arizona, Tucson, AZ, USA.
- BIO5 and McKnight Brain Research Institutes, Tucson, AZ, USA.
| |
Collapse
|
5
|
Chrobok L, Pradel K, Janik ME, Sanetra AM, Bubka M, Myung J, Ridla Rahim A, Klich JD, Jeczmien-Lazur JS, Palus-Chramiec K, Lewandowski MH. Intrinsic circadian timekeeping properties of the thalamic lateral geniculate nucleus. J Neurosci Res 2021; 99:3306-3324. [PMID: 34758124 DOI: 10.1002/jnr.24973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/07/2021] [Accepted: 09/17/2021] [Indexed: 01/08/2023]
Abstract
Circadian rhythmicity in mammals is sustained by the central brain clock-the suprachiasmatic nucleus of the hypothalamus (SCN), entrained to the ambient light-dark conditions through a dense retinal input. However, recent discoveries of autonomous clock gene expression cast doubt on the supremacy of the SCN and suggest circadian timekeeping mechanisms devolve to local brain clocks. Here, we use a combination of molecular, electrophysiological, and optogenetic tools to evaluate intrinsic clock properties of the main retinorecipient thalamic center-the lateral geniculate nucleus (LGN) in male rats and mice. We identify the dorsolateral geniculate nucleus as a slave oscillator, which exhibits core clock gene expression exclusively in vivo. Additionally, we provide compelling evidence for intrinsic clock gene expression accompanied by circadian variation in neuronal activity in the intergeniculate leaflet and ventrolateral geniculate nucleus (VLG). Finally, our optogenetic experiments propose the VLG as a light-entrainable oscillator, whose phase may be advanced by retinal input at the beginning of the projected night. Altogether, this study for the first time demonstrates autonomous timekeeping mechanisms shaping circadian physiology of the LGN.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Marcelina Elzbieta Janik
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anna Magdalena Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Monika Bubka
- Department of Glycoconjugate Biochemistry, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Jihwan Myung
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Amalia Ridla Rahim
- Graduate Institute of Mind, Brain, and Consciousness, Taipei Medical University, Taipei, Taiwan.,Brain and Consciousness Research Centre, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City, Taiwan
| | - Jasmin Daniela Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Jagoda Stanislawa Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
6
|
Modulation of the Rat Intergeniculate Leaflet of the Thalamus Network by Norepinephrine. Neuroscience 2021; 469:1-16. [PMID: 34174371 DOI: 10.1016/j.neuroscience.2021.06.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Circadian rhythms are regulated by a set of brain structures, one of which is the Intergeniculate Leaflet of the Thalamus (IGL). The most recognised role of the IGL is the integration of a variety of stimuli affecting rhythmicity, such as lighting conditions, received by the eye, or light-independent (non-photic) cues, the information about which is delivered via the activation of the non-specific projections. One of them is the norepinephrinergic system originating in the brainstem Locus Coeruleus (LC). In order to investigate the effect of norepinephrine (NE) on the IGL neurons we have performed ex vivo recordings using the extracellular multi-electrode array technique as well as the intracellular whole-cell patch clamp. Using both agonists and antagonists of specific NE receptor subtypes, we confirmed the presence of functional α1-, α2- and β-adrenergic receptors within the investigated structure, allowing NE to exert multiple types of effects on different IGL neurons, mainly depolarisation of the neurons projecting to the Suprachiasmatic Nuclei - the master circadian pacemaker, and various responses exhibited by the cells creating the connection with the contralateral IGL. Moreover, NE was shown to affect IGL cells both directly and via modulation of the synaptic network, in particular the miniature inhibitory postsynaptic currents. To the best of our knowledge, these are the first studies to confirm the effects of NE on the activity of the IGL network.
Collapse
|
7
|
Szalontai Ö, Tóth A, Pethő M, Keserű D, Hajnik T, Détári L. Homeostatic sleep regulation in the absence of the circadian sleep-regulating component: effect of short light-dark cycles on sleep-wake stages and slow waves. BMC Neurosci 2021; 22:13. [PMID: 33639837 PMCID: PMC7913432 DOI: 10.1186/s12868-021-00619-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 02/17/2021] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Aside from the homeostatic and circadian components, light has itself an important, direct as well as indirect role in sleep regulation. Light exerts indirect sleep effect by modulating the circadian rhythms. Exposure to short light-dark cycle (LD 1:1, 1:1 h light - dark) eliminates the circadian sleep regulatory component but direct sleep effect of light could prevail. The aim of the present study was to examine the interaction between the light and the homeostatic influences regarding sleep regulation in a rat model. METHODS Spontaneous sleep-wake and homeostatic sleep regulation by sleep deprivation (SD) and analysis of slow waves (SW) were examined in Wistar rats exposed to LD1:1 condition using LD12:12 regime as control. RESULTS Slow wave sleep (SWS) and REM sleep were both enhanced, while wakefulness (W) was attenuated in LD1:1. SWS recovery after 6-h total SD was more intense in LD1:1 compared to LD12:12 and SWS compensation was augmented in the bright hours. Delta power increment during recovery was caused by the increase of SW number in both cases. More SW was seen during baseline in the second half of the day in LD1:1 and after SD compared to the LD12:12. Increase of SW number was greater in the bright hours compared to the dark ones after SD in LD1:1. Lights ON evoked immediate increase in W and decrease in both SWS and REM sleep during baseline LD1:1 condition, while these changes ceased after SD. Moreover, the initial decrease seen in SWS after lights ON, turned to an increase in the next 6-min bin and this increase was stronger after SD. These alterations were caused by the change of the epoch number in W, but not in case of SWS or REM sleep. Lights OFF did not alter sleep-wake times immediately, except W, which was increased by lights OFF after SD. CONCLUSIONS Present results show the complex interaction between light and homeostatic sleep regulation in the absence of the circadian component and indicate the decoupling of SW from the homeostatic sleep drive in LD1:1 lighting condition.
Collapse
Affiliation(s)
- Örs Szalontai
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Attila Tóth
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Máté Pethő
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Dóra Keserű
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Tünde Hajnik
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - László Détári
- In vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Institute of Biology, Department of Physiology and Neurobiology, Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
| |
Collapse
|
8
|
Jha PK, Bouâouda H, Kalsbeek A, Challet E. Distinct feedback actions of behavioural arousal to the master circadian clock in nocturnal and diurnal mammals. Neurosci Biobehav Rev 2021; 123:48-60. [PMID: 33440199 DOI: 10.1016/j.neubiorev.2020.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/16/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
The master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus provides a temporal pattern of sleep and wake that - like many other behavioural and physiological rhythms - is oppositely phased in nocturnal and diurnal animals. The SCN primarily uses environmental light, perceived through the retina, to synchronize its endogenous circadian rhythms with the exact 24 h light/dark cycle of the outside world. The light responsiveness of the SCN is maximal during the night in both nocturnal and diurnal species. Behavioural arousal during the resting period not only perturbs sleep homeostasis, but also acts as a potent non-photic synchronizing cue. The feedback action of arousal on the SCN is mediated by processes involving several brain nuclei and neurotransmitters, which ultimately change the molecular functions of SCN pacemaker cells. Arousing stimuli during the sleeping period differentially affect the circadian system of nocturnal and diurnal species, as evidenced by the different circadian windows of sensitivity to behavioural arousal. In addition, arousing stimuli reduce and increase light resetting in nocturnal and diurnal species, respectively. It is important to address further question of circadian impairments associated with shift work and trans-meridian travel not only in the standard nocturnal laboratory animals but also in diurnal animal models.
Collapse
Affiliation(s)
- Pawan Kumar Jha
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; Department of Endocrinology and Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, the Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| | - Hanan Bouâouda
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, the Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Etienne Challet
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France
| |
Collapse
|
9
|
Dijkstra N, Ambrogioni L, Vidaurre D, van Gerven M. Neural dynamics of perceptual inference and its reversal during imagery. eLife 2020; 9:e53588. [PMID: 32686645 PMCID: PMC7371419 DOI: 10.7554/elife.53588] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 06/30/2020] [Indexed: 12/27/2022] Open
Abstract
After the presentation of a visual stimulus, neural processing cascades from low-level sensory areas to increasingly abstract representations in higher-level areas. It is often hypothesised that a reversal in neural processing underlies the generation of mental images as abstract representations are used to construct sensory representations in the absence of sensory input. According to predictive processing theories, such reversed processing also plays a central role in later stages of perception. Direct experimental evidence of reversals in neural information flow has been missing. Here, we used a combination of machine learning and magnetoencephalography to characterise neural dynamics in humans. We provide direct evidence for a reversal of the perceptual feed-forward cascade during imagery and show that, during perception, such reversals alternate with feed-forward processing in an 11 Hz oscillatory pattern. Together, these results show how common feedback processes support both veridical perception and mental imagery.
Collapse
Affiliation(s)
- Nadine Dijkstra
- Donders Centre for Cognition, Radboud University, Donders Institute for Brain, Cognition and BehaviourNijmegenNetherlands
- Wellcome Centre for Human Neuroimaging, University College LondonLondonUnited Kingdom
| | - Luca Ambrogioni
- Donders Centre for Cognition, Radboud University, Donders Institute for Brain, Cognition and BehaviourNijmegenNetherlands
| | - Diego Vidaurre
- Oxford Centre for Human Brain Activity, Oxford UniversityOxfordUnited Kingdom
- Department of Clinical Health, Aarhus UniversityAarhusDenmark
| | - Marcel van Gerven
- Donders Centre for Cognition, Radboud University, Donders Institute for Brain, Cognition and BehaviourNijmegenNetherlands
| |
Collapse
|
10
|
El Allali K, Achaâban MR, Piro M, Ouassat M, Challet E, Errami M, Lakhdar-Ghazal N, Calas A, Pévet P. The Suprachiasmatic Nucleus of the Dromedary Camel ( Camelus dromedarius): Cytoarchitecture and Neurochemical Anatomy. Front Neuroanat 2017; 11:103. [PMID: 29249943 PMCID: PMC5715321 DOI: 10.3389/fnana.2017.00103] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 10/27/2017] [Indexed: 12/05/2022] Open
Abstract
In mammals, biological rhythms are driven by a master circadian clock located in the suprachiasmatic nucleus (SCN) of the hypothalamus. Recently, we have demonstrated that in the camel, the daily cycle of environmental temperature is able to entrain the master clock. This raises several questions about the structure and function of the SCN in this species. The current work is the first neuroanatomical investigation of the camel SCN. We carried out a cartography and cytoarchitectural study of the nucleus and then studied its cell types and chemical neuroanatomy. Relevant neuropeptides involved in the circadian system were investigated, including arginine-vasopressin (AVP), vasoactive intestinal polypeptide (VIP), met-enkephalin (Met-Enk), neuropeptide Y (NPY), as well as oxytocin (OT). The neurotransmitter serotonin (5-HT) and the enzymes tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) were also studied. The camel SCN is a large and elongated nucleus, extending rostrocaudally for 9.55 ± 0.10 mm. Based on histological and immunofluorescence findings, we subdivided the camel SCN into rostral/preoptic (rSCN), middle/main body (mSCN) and caudal/retrochiasmatic (cSCN) divisions. Among mammals, the rSCN is unusual and appears as an assembly of neurons that protrudes from the main mass of the hypothalamus. The mSCN exhibits the triangular shape described in rodents, while the cSCN is located in the retrochiasmatic area. As expected, VIP-immunoreactive (ir) neurons were observed in the ventral part of mSCN. AVP-ir neurons were located in the rSCN and mSCN. Results also showed the presence of OT-ir and TH-ir neurons which seem to be a peculiarity of the camel SCN. OT-ir neurons were either scattered or gathered in one isolated cluster, while TH-ir neurons constituted two defined populations, dorsal parvicellular and ventral magnocellular neurons, respectively. TH colocalized with VIP in some rSCN neurons. Moreover, a high density of Met-Enk-ir, 5-HT-ir and NPY-ir fibers were observed within the SCN. Both the cytoarchitecture and the distribution of neuropeptides are unusual in the camel SCN as compared to other mammals. The presence of OT and TH in the camel SCN suggests their role in the modulation of circadian rhythms and the adaptation to photic and non-photic cues under desert conditions.
Collapse
Affiliation(s)
- Khalid El Allali
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohamed R Achaâban
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohammed Piro
- PMC-EC, Department of Medicine, Surgery and Reproduction, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohammed Ouassat
- Comparative Anatomy Unit/URAC49, Department of Biological and Pharmaceutical Veterinary Sciences, Hassan II Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Etienne Challet
- Neurobiology of Rhythms UPR 3212 CNRS, Institute for Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| | - Mohammed Errami
- Department of Biology, Faculty of Science, Abdelmalek Essaâdi University, Tétouan, Morocco
| | - Nouria Lakhdar-Ghazal
- Unit of Research on Biological Rhythms, Neuroscience and Environment, Faculty of Science, Mohammed V-Agdal University, Rabat, Morocco
| | - André Calas
- IINS, CNRS UMR 5297, University of Bordeaux, Bordeaux, France
| | - Paul Pévet
- Neurobiology of Rhythms UPR 3212 CNRS, Institute for Cellular and Integrative Neurosciences, University of Strasbourg, Strasbourg, France
| |
Collapse
|
11
|
Nakamura H. Cerebellar projections to the ventral lateral geniculate nucleus and the thalamic reticular nucleus in the cat. J Neurosci Res 2017. [DOI: 10.1002/jnr.24105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hiroyuki Nakamura
- Department of Morphological Neuroscience; Gifu University Graduate School of Medicine; Gifu 501-1194 Japan
| |
Collapse
|
12
|
Enkephalin and neuropeptide-Y interaction in the intergeniculate leaflet network, a part of the mammalian biological clock. Neuroscience 2017; 343:10-20. [DOI: 10.1016/j.neuroscience.2016.11.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/22/2016] [Accepted: 11/22/2016] [Indexed: 11/20/2022]
|
13
|
Monavarfeshani A, Sabbagh U, Fox MA. Not a one-trick pony: Diverse connectivity and functions of the rodent lateral geniculate complex. Vis Neurosci 2017; 34:E012. [PMID: 28965517 PMCID: PMC5755970 DOI: 10.1017/s0952523817000098] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Often mislabeled as a simple relay of sensory information, the thalamus is a complicated structure with diverse functions. This diversity is exemplified by roles visual thalamus plays in processing and transmitting light-derived stimuli. Such light-derived signals are transmitted to the thalamus by retinal ganglion cells (RGCs), the sole projection neurons of the retina. Axons from RGCs innervate more than ten distinct nuclei within thalamus, including those of the lateral geniculate complex. Nuclei within the lateral geniculate complex of nocturnal rodents, which include the dorsal lateral geniculate nucleus (dLGN), ventral lateral geniculate nucleus (vLGN), and intergeniculate leaflet (IGL), are each densely innervated by retinal projections, yet, exhibit distinct cytoarchitecture and connectivity. These features suggest that each nucleus within this complex plays a unique role in processing and transmitting light-derived signals. Here, we review the diverse cytoarchitecture and connectivity of these nuclei in nocturnal rodents, in an effort to highlight roles for dLGN in vision and for vLGN and IGL in visuomotor, vestibular, ocular, and circadian function.
Collapse
Affiliation(s)
- Aboozar Monavarfeshani
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Ubadah Sabbagh
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| | - Michael A Fox
- Developmental and Translational Neurobiology Center,Virginia Tech Carilion Research Institute,Roanoke,Virginia
| |
Collapse
|
14
|
Chrobok L, Palus K, Jeczmien-Lazur JS, Chrzanowska A, Kepczynski M, Lewandowski MH. Disinhibition of the intergeniculate leaflet network in the WAG/Rij rat model of absence epilepsy. Exp Neurol 2016; 289:103-116. [PMID: 28041911 DOI: 10.1016/j.expneurol.2016.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/21/2016] [Accepted: 12/25/2016] [Indexed: 01/18/2023]
Abstract
The intergeniculate leaflet (IGL) of the thalamus is a retinorecipient structure implicated in orchestrating circadian rhythmicity. The IGL network is highly GABAergic and consists mainly of neuropeptide Y-synthesising and enkephalinergic neurons. A high density of GFAP-immunoreactive astrocytes has been observed in the IGL, with a probable function in guarding neuronal inhibition. Interestingly, putatively enkephalinergic IGL neurons generate action potentials with an infra-slow oscillatory (ISO) pattern in vivo in urethane anesthetised Wistar rats, under light-on conditions only. Absence epilepsy (AE) is a disease characterised by spike-wave discharges present in the encephalogram, directly caused by hypersynchronous thalamo-cortical oscillations. Many pathologies connected with the arousal system, such as abnormalities in sleep architecture and an insufficient brain sleep-promoting system accompany the epileptic phenotype. We hypothesise that disturbances in the function of biological clock structures, controlling this rhythmic physiological process, may be responsible for the observed pathomechanism. To test this hypothesis, we performed an in vitro patch-clamp study on WAG/Rij rats, a well-validated genetic model of AE, in order to assess dampened GABAergic synaptic transmission in the IGL expressed as a lower IPSC amplitude and reduced sIPSC frequency. Moreover, our in vivo extracellular recordings showed higher firing rate of ISO IGL neurons with an abnormal reaction to a change in constant illumination (maintenance of rhythmic neuronal activity in darkness) in the AE model. Additional immunohistochemical experiments indicated astrogliosis in the area of the IGL, which may partially underlie the observed changes in inhibition. Altogether, the data presented here show for the first time the disinhibition of IGL neurons in a model of AE, thereby proposing the possible involvement of circadian-related brain structures in the epileptic phenotype.
Collapse
Affiliation(s)
- Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland.
| | - Katarzyna Palus
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland.
| | | | - Anna Chrzanowska
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland.
| | - Mariusz Kepczynski
- Faculty of Chemistry, Jagiellonian University in Krakow, Krakow, Poland.
| | - Marian Henryk Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology, Jagiellonian University in Krakow, Krakow, Poland.
| |
Collapse
|
15
|
Chrobok L, Palus K, Lewandowski MH. Two distinct subpopulations of neurons in the thalamic intergeniculate leaflet identified by subthreshold currents. Neuroscience 2016; 329:306-17. [DOI: 10.1016/j.neuroscience.2016.05.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/04/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
|
16
|
Stricker-Krongrad A, Burlet A, Nicolas JP, Burlet C, Beck B. Neuropeptide Y in the Ventromedial and Suprachiasmatic Nuclei: Role in the Feeding Pattern of Monosodium Glutamate-Treated Rats. Nutr Neurosci 2016; 1:183-9. [DOI: 10.1080/1028415x.1998.11747228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
17
|
Ramkisoensing A, Meijer JH. Synchronization of Biological Clock Neurons by Light and Peripheral Feedback Systems Promotes Circadian Rhythms and Health. Front Neurol 2015; 6:128. [PMID: 26097465 PMCID: PMC4456861 DOI: 10.3389/fneur.2015.00128] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN) functions as a circadian clock that drives 24-h rhythms in both physiology and behavior. The SCN is a multicellular oscillator in which individual neurons function as cell-autonomous oscillators. The production of a coherent output rhythm is dependent upon mutual synchronization among single cells and requires both synaptic communication and gap junctions. Changes in phase-synchronization between individual cells have consequences on the amplitude of the SCN’s electrical activity rhythm, and these changes play a major role in the ability to adapt to seasonal changes. Both aging and sleep deprivation negatively affect the circadian amplitude of the SCN, whereas behavioral activity (i.e., exercise) has a positive effect on amplitude. Given that the amplitude of the SCN’s electrical activity rhythm is essential for achieving robust rhythmicity in physiology and behavior, the mechanisms that underlie neuronal synchronization warrant further study. A growing body of evidence suggests that the functional integrity of the SCN contributes to health, well-being, cognitive performance, and alertness; in contrast, deterioration of the 24-h rhythm is a risk factor for neurodegenerative disease, cancer, depression, and sleep disorders.
Collapse
Affiliation(s)
- Ashna Ramkisoensing
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center , Leiden , Netherlands
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Molecular Cell Biology, Leiden University Medical Center , Leiden , Netherlands
| |
Collapse
|
18
|
The neuroinvasive profiles of H129 (herpes simplex virus type 1) recombinants with putative anterograde-only transneuronal spread properties. Brain Struct Funct 2014; 220:1395-420. [PMID: 24585022 DOI: 10.1007/s00429-014-0733-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 02/11/2014] [Indexed: 10/25/2022]
Abstract
The use of viruses as transneuronal tracers has become an increasingly powerful technique for defining the synaptic organization of neural networks. Although a number of recombinant alpha herpesviruses are known to spread selectively in the retrograde direction through neural circuits only one strain, the H129 strain of herpes simplex virus type 1, is reported to selectively spread in the anterograde direction. However, it is unclear from the literature whether there is an absolute block or an attenuation of retrograde spread of H129. Here, we demonstrate efficient anterograde spread, and temporally delayed retrograde spread, of H129 and three novel recombinants. In vitro studies revealed no differences in anterograde and retrograde spread of parental H129 and its recombinants through superior cervical ganglion neurons. In vivo injections of rat striatum revealed a clear bias of anterograde spread, although evidence of deficient retrograde transport was also present. Evidence of temporally delayed retrograde transneuronal spread of H129 in the retina was observed following injection of the lateral geniculate nucleus. The data also demonstrated that three novel recombinants efficiently express unique fluorescent reporters and have the capacity to infect the same neurons in dual infection paradigms. From these experiments we conclude that H129 and its recombinants not only efficiently infect neurons through anterograde transneuronal passage, but also are capable of temporally delayed retrograde transneuronal spread. In addition, the capacity to produce dual infection of projection targets following anterograde transneuronal passage provides an important addition to viral transneuronal tracing technology.
Collapse
|
19
|
Abdallah K, Artola A, Monconduit L, Dallel R, Luccarini P. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats. PLoS One 2013; 8:e73022. [PMID: 23951340 PMCID: PMC3737186 DOI: 10.1371/journal.pone.0073022] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 07/17/2013] [Indexed: 11/25/2022] Open
Abstract
Several lines of evidence suggest that the hypothalamus is involved in trigeminal pain processing. However, the organization of descending hypothalamic projections to the spinal trigeminal nucleus caudalis (Sp5C) remains poorly understood. Microinjections of the retrograde tracer, fluorogold (FG), into the Sp5C, in rats, reveal that five hypothalamic nuclei project to the Sp5C: the paraventricular nucleus, the lateral hypothalamic area, the perifornical hypothalamic area, the A11 nucleus and the retrochiasmatic area. Descending hypothalamic projections to the Sp5C are bilateral, except those from the paraventricular nucleus which exhibit a clear ipsilateral predominance. Moreover, the density of retrogradely FG-labeled neurons in the hypothalamus varies according to the dorso-ventral localization of the Sp5C injection site. There are much more labeled neurons after injections into the ventrolateral part of the Sp5C (where ophthalmic afferents project) than after injections into its dorsomedial or intermediate parts (where mandibular and maxillary afferents, respectively, project). These results demonstrate that the organization of descending hypothalamic projections to the spinal dorsal horn and Sp5C are different. Whereas the former are ipsilateral, the latter are bilateral. Moreover, hypothalamic projections to the Sp5C display somatotopy, suggesting that these projections are preferentially involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in rats. Therefore, our results suggest that the control of trigeminal and spinal dorsal horn processing of nociceptive information by hypothalamic neurons is different and raise the question of the role of bilateral, rather than unilateral, hypothalamic control.
Collapse
Affiliation(s)
- Khaled Abdallah
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
| | - Alain Artola
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
| | - Lénaic Monconduit
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
| | - Radhouane Dallel
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
- * E-mail: (RD) (PL)
| | - Philippe Luccarini
- Clermont Université, Université d’Auvergne, NEURO-DOL: Trigeminal Pain and Migraine, BP 10448, Clermont-Ferrand; Inserm, U1107, Clermont-Ferrand, France
- * E-mail: (RD) (PL)
| |
Collapse
|
20
|
Differential firing pattern and response to lighting conditions of rat intergeniculate leaflet neurons projecting to suprachiasmatic nucleus or contralateral intergeniculate leaflet. Neuroscience 2013; 228:315-24. [DOI: 10.1016/j.neuroscience.2012.10.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/19/2012] [Accepted: 10/19/2012] [Indexed: 11/21/2022]
|
21
|
Horvath TL, Abizaid A, Dietrich MO, Li Y, Takahashi JS, Bass J. Ghrelin-immunopositive hypothalamic neurons tie the circadian clock and visual system to the lateral hypothalamic arousal center. Mol Metab 2012; 1:79-85. [PMID: 24024121 DOI: 10.1016/j.molmet.2012.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2012] [Revised: 08/01/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022] Open
Abstract
Ghrelin, a circulating gut-hormone, has emerged as an important regulator of growth hormone release and appetite. Ghrelin-immunopositive neurons have also been identified in the hypothalamus with a unique anatomical distribution. Here, we report that ghrelin-labeled neurons receive direct synaptic input from the suprachiasmatic nucleus, the central circadian timekeeper of the brain, and lateral geniculate nucleus, a visual center, and project synaptically to the lateral hypothalamic orexin/hypocretin system, a region of the brain critical for arousal. Hypothalamic ghrelin mRNA oscillates in a circadian pattern peaking in the dark phase prior to the switch from arousal to sleep. Ghrelin inhibits the electrophysiological activity of identified orexin/hypocretin neurons in hypothalamic slices. These observations indicate that the hypothalamic neurons identified by ghrelin immunolabeling may be a key mediator of circadian and visual cues for the hypothalamic arousal system.
Collapse
Affiliation(s)
- Tamas L Horvath
- Program in Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT 06520, USA ; Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | |
Collapse
|
22
|
Morin LP. Neuroanatomy of the extended circadian rhythm system. Exp Neurol 2012; 243:4-20. [PMID: 22766204 DOI: 10.1016/j.expneurol.2012.06.026] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/19/2012] [Accepted: 06/24/2012] [Indexed: 01/09/2023]
Abstract
The suprachiasmatic nucleus (SCN), site of the primary clock in the circadian rhythm system, has three major afferent connections. The most important consists of a retinohypothalamic projection through which photic information, received by classical rod/cone photoreceptors and intrinsically photoreceptive retinal ganglion cells, gains access to the clock. This information influences phase and period of circadian rhythms. The two other robust afferent projections are the median raphe serotonergic pathway and the geniculohypothalamic (GHT), NPY-containing pathway from the thalamic intergeniculate leaflet (IGL). Beyond this simple framework, the number of anatomical routes that could theoretically be involved in rhythm regulation is enormous, with the SCN projecting to 15 regions and being directly innervated by about 35. If multisynaptic afferents to the SCN are included, the number expands to approximately brain 85 areas providing input to the SCN. The IGL, a known contributor to circadian rhythm regulation, has a still greater level of complexity. This nucleus connects abundantly throughout the brain (to approximately 100 regions) by pathways that are largely bilateral and reciprocal. Few of these sites have been evaluated for their contributions to circadian rhythm regulation, although most have a theoretical possibility of doing so via the GHT. The anatomy of IGL connections suggests that one of its functions may be regulation of eye movements during sleep. Together, neural circuits of the SCN and IGL are complex and interconnected. As yet, few have been tested with respect to their involvement in rhythm regulation.
Collapse
Affiliation(s)
- Lawrence P Morin
- Department of Psychiatry, Stony Brook University Medical Center, Stony Brook, NY 11794-8101, USA.
| |
Collapse
|
23
|
Koletar MM, Cheng HYM, Penninger JM, Ralph MR. Loss ofdexras1Alters Nonphotic Circadian Phase Shifts and Reveals a Role for the Intergeniculate Leaflet (IGL) in Gene-Targeted Mice. Chronobiol Int 2011; 28:553-62. [DOI: 10.3109/07420528.2011.592235] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Ying SW, Tibbs GR, Picollo A, Abbas SY, Sanford RL, Accardi A, Hofmann F, Ludwig A, Goldstein PA. PIP2-mediated HCN3 channel gating is crucial for rhythmic burst firing in thalamic intergeniculate leaflet neurons. J Neurosci 2011; 31:10412-23. [PMID: 21753018 PMCID: PMC6623048 DOI: 10.1523/jneurosci.0021-11.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 04/21/2011] [Accepted: 05/30/2011] [Indexed: 01/26/2023] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate a pacemaking current, I(h), which regulates neuronal excitability and oscillatory activity in the brain. Although all four HCN isoforms are expressed in the brain, the functional contribution of HCN3 is unknown. Using immunohistochemistry, confocal microscopy, and whole-cell patch-clamp recording techniques, we investigated HCN3 function in thalamic intergeniculate leaflet (IGL) neurons, as HCN3 is reportedly preferentially expressed in these cells. We observed that I(h) recorded from IGL, but not ventral geniculate nucleus, neurons in HCN2(+/+) mice and rats activated slowly and were cAMP insensitive, which are hallmarks of HCN3 channels. We also observed strong immunolabeling for HCN3, with no labeling for HCN1 and HCN4, and only very weak labeling for HCN2. Deletion of HCN2 did not alter I(h) characteristics in mouse IGL neurons. These data together indicate that the HCN3 channel isoform generated I(h) in IGL neurons. Intracellular phosphatidylinositol-4,5-bisphosphate (PIP(2)) shifted I(h) activation to more depolarized potentials and accelerated activation kinetics. Upregulation of HCN3 function by PIP(2) augmented low-threshold burst firing and spontaneous oscillations; conversely, depletion of PIP(2) or pharmacologic block of I(h) resulted in a profound inhibition of excitability. The results indicate that functional expression of HCN3 channels in IGL neurons is crucial for intrinsic excitability and rhythmic burst firing, and PIP(2) serves as a powerful modulator of I(h)-dependent properties via an effect on HCN3 channel gating. Since the IGL is a major input to the suprachiasmatic nucleus, regulation of pacemaking function by PIP(2) in the IGL may influence sleep and circadian rhythms.
Collapse
Affiliation(s)
- Shui-Wang Ying
- Department of Anesthesiology, Weill Cornell Medical College, New York, New York 10065, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Schwartz MD, Urbanski HF, Nunez AA, Smale L. Projections of the suprachiasmatic nucleus and ventral subparaventricular zone in the Nile grass rat (Arvicanthis niloticus). Brain Res 2010; 1367:146-61. [PMID: 20971082 DOI: 10.1016/j.brainres.2010.10.058] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/14/2010] [Accepted: 10/14/2010] [Indexed: 12/31/2022]
Abstract
The phases of many circadian rhythms differ between diurnal and nocturnal species. However, rhythms within the hypothalamic suprachiasmatic nucleus (SCN), which contains the central circadian pacemaker, are very similar, suggesting that the mechanisms underlying phase preference lie downstream of the SCN. Rhythms in Fos expression in the ventral subparaventricular zone (vSPVZ), a major target of the SCN, differ substantially between diurnal Nile grass rats and nocturnal lab rats, raising the possibility that the vSPVZ modulates the effects of SCN signals at its targets. To understand better how and where the SCN and vSPVZ communicate circadian signals within the grass rat brain, we mapped their projections using the anterograde tracer biotinylated dextran amine (BDA). Adult female grass rats received unilateral BDA injections directed at the SCN or vSPVZ and their brains were perfusion-fixed several days later. Immunohistochemistry revealed that the distribution patterns of SCN and vSPVZ efferents were very similar. Labeled fibers originating in each region were heavily concentrated in the medial preoptic area, paraventricular thalamic nucleus, the subparaventricular zone, and the hypothalamic paraventricular and dorsomedial nuclei. BDA-labeled fibers from the SCN and vSPVZ formed appositions with orexin neurons and gonadotropin-releasing hormone neurons, two cell populations whose rhythms in Fos expression track temporally reversed patterns of locomotor and reproductive behavior, respectively, in diurnal and nocturnal rodents. These data demonstrate that projections of the SCN and vSPVZ are highly conserved in diurnal and nocturnal rodents, and the vSPVZ projections may enable it to modulate the responsiveness of target cells to signals from the SCN.
Collapse
Affiliation(s)
- Michael D Schwartz
- Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | |
Collapse
|
26
|
Hundahl C, Hannibal J, Fahrenkrug J, Dewilde S, Hay-Schmidt A. Neuroglobin expression in the rat suprachiasmatic nucleus: Colocalization, innervation, and response to light. J Comp Neurol 2010; 518:1556-69. [DOI: 10.1002/cne.22290] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Nascimento ES, Souza AP, Duarte RB, Magalhães MA, Silva SF, Cavalcante JC, Cavalcante JS, Costa MS. The suprachiasmatic nucleus and the intergeniculate leaflet in the rock cavy (Kerodon rupestris): Retinal projections and immunohistochemical characterization. Brain Res 2010; 1320:34-46. [DOI: 10.1016/j.brainres.2010.01.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 11/29/2022]
|
28
|
Trbovic SM. Schizophrenia as a possible dysfunction of the suprachiasmatic nucleus. Med Hypotheses 2010; 74:127-31. [DOI: 10.1016/j.mehy.2009.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 07/06/2009] [Accepted: 07/06/2009] [Indexed: 10/20/2022]
|
29
|
Lee JE, Atkins N, Hatcher NG, Zamdborg L, Gillette MU, Sweedler JV, Kelleher NL. Endogenous peptide discovery of the rat circadian clock: a focused study of the suprachiasmatic nucleus by ultrahigh performance tandem mass spectrometry. Mol Cell Proteomics 2009; 9:285-97. [PMID: 19955084 DOI: 10.1074/mcp.m900362-mcp200] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Understanding how a small brain region, the suprachiasmatic nucleus (SCN), can synchronize the body's circadian rhythms is an ongoing research area. This important time-keeping system requires a complex suite of peptide hormones and transmitters that remain incompletely characterized. Here, capillary liquid chromatography and FTMS have been coupled with tailored software for the analysis of endogenous peptides present in the SCN of the rat brain. After ex vivo processing of brain slices, peptide extraction, identification, and characterization from tandem FTMS data with <5-ppm mass accuracy produced a hyperconfident list of 102 endogenous peptides, including 33 previously unidentified peptides, and 12 peptides that were post-translationally modified with amidation, phosphorylation, pyroglutamylation, or acetylation. This characterization of endogenous peptides from the SCN will aid in understanding the molecular mechanisms that mediate rhythmic behaviors in mammals.
Collapse
Affiliation(s)
- Ji Eun Lee
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Pinato L, Frazão R, Cruz-Rizzolo R, Cavalcante J, Nogueira M. Immunocytochemical characterization of the pregeniculate nucleus and distribution of retinal and neuropeptide Y terminals in the suprachiasmatic nucleus of the Cebus monkey. J Chem Neuroanat 2009; 37:207-13. [DOI: 10.1016/j.jchemneu.2009.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Revised: 12/18/2008] [Accepted: 01/30/2009] [Indexed: 11/16/2022]
|
31
|
Morin LP, Blanchard J, Moore RY. Intergeniculate leaflet and suprachiasmatic nucleus organization and connections in the golden hamster. Vis Neurosci 2009; 8:219-30. [PMID: 1372173 DOI: 10.1017/s095252380000287x] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AbstractThe intergeniculate leaflet (IGL) is a distinct subdivision of the lateral geniculate complex which receives retinal input and projects upon a circadian pacemaker, the suprachiasmatic nucleus (SCN). In the present study, we have analyzed the organization of the IGL and its connections in the hamster, a species commonly used in circadian rhythm studies. The location of the IGL is defined by the presence of retinal afferents demonstrated by anterograde transport of cholera toxin-HRP, neuropeptide Y-containing neurons and axons, cells retrogradely labeled from the regions of the SCN and contralateral IGL, and substance P-containing axons. It is a long nucleus extending the entire rostrocaudal axis of the geniculate. The most rostral IGL lies between the lateral dorsal thalamus, ventrolateral part, and the horizontal cerebral fissure. It then enlarges ventral to the rostral dorsal lateral geniculate, medial to the optic tract. The mid-portion of the leaflet is a thin lamina intercalated between the dorsal and ventral geniculate nuclei. The extended caudal portion of the nucleus lies lateral and ventral to the medial geniculate and is contiguous with the zona incerta and the lateral terminal nucleus. The IGL contains populations of neuropeptide Y (NPY+) and enkephalin (ENK+) neurons which project to the retinorecipient portion of the SCN. In addition to the immunoreactive perikarya, the IGL contains plexuses of NPY+, ENK +, substance P-, serotonin-, and glutamic acid decarboxylase-immunoreactive axons.Retrograde transport studies demonstrate that, in addition to the NPY+ neurons, there is a population of non-NPY+ neurons projecting upon the SCN. There is also a reciprocal projection upon the IGL from neurons in the SCN region, particularly the retrochiasmatic area. The hamster SCN differs from the rat in containing a distinct subdivision of substance P-immunoreactive neurons.
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry, State University of New York, Stony Brook 11794
| | | | | |
Collapse
|
32
|
De Vries MJ, De Vries AJ. A change in the pattern in circadian running‐wheel activity after lesions of the intergeniculate leaflet and ventral lateral geniculate nucleus in the Syrian hamster. BIOL RHYTHM RES 2008. [DOI: 10.1080/09291019509360346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Martinus J. De Vries
- a Department of Physiology, Div. of Medical Chronobiology , University of Leiden , P.O. Box 9604, Leiden, 2300 RC, The Netherlands
| | - Anthonie J. De Vries
- b Institute of Health Policy and Management , Erasmus University , P.O. Box 1738, Rotterdam, 3000 DR, The Netherlands
| |
Collapse
|
33
|
Rojas-Castañeda J, Vigueras-Villaseñor RM, Rojas P, Rojas C, Cintra L. Immunoreactive vasoactive intestinal polypeptide and vasopressin cells after a protein malnutrition diet in the suprachiasmatic nucleus of the rat. Lab Anim 2008; 42:360-8. [DOI: 10.1258/la.2007.007008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of the present study was to evaluate the effects of prenatal and postnatal protein deprivation on the morphology and density of vasopressin (VP) and vasoactive intestinal polypeptide (VIP) immunoreactive neurons in the suprachiasmatic nucleus (SCN) of young rats. Female Wistar rats were fed either 6% (malnourished group) or 25% (control group) casein diet five weeks before conception, during gestation and lactation. After weaning, the pups were maintained on the same diet until sacrificed at 30 days of age. The major and minor axes, somatic area and the density of VP- and VIP-immunoreactive neurons were evaluated in the middle sections of the SCN. The present study shows that chronic protein malnutrition (ChPM) in VP neurons induces a significant decrease in number of cells (–31%,) and a significant increase in major and minor axes and somatic area (+12.2%, +21.1% and +15.0%, respectively). The VIP cells showed a significant decrease in cellular density (–41.5%) and a significant increase in minor axis (+13.5%) and somatic area (+10.1%). Our findings suggest that ChPM induces abnormalities in the density and morphology of the soma of VP and VIP neurons. These alterations may be a morphological substrate underlying circadian alterations previously observed in malnourished rats.
Collapse
Affiliation(s)
- J Rojas-Castañeda
- Laboratorio de Histomorfología, Torre de Investigación ‘Dr Joaquín Cravioto’, Instituto Nacional de Pediatría, SS, Av Insurgentes Sur No 3700-C, Col Insurgentes Cuicuilco, CP 04530, México
| | - R M Vigueras-Villaseñor
- Laboratorio de Histomorfología, Torre de Investigación ‘Dr Joaquín Cravioto’, Instituto Nacional de Pediatría, SS, Av Insurgentes Sur No 3700-C, Col Insurgentes Cuicuilco, CP 04530, México
- Departamento de Morfología, Facultad de Medicina Veterinaria y Zootécnia, Universidad Nacional Autónoma de México, México DF, México
| | - P Rojas
- Laboratorio de Neurotoxicología, Instituto Nacional de Neurología y Neurocirugía, Manuel Velasco Suárez SS, Av Insurgentes Sur No 3877, México DF, CP 14269, México
| | - C Rojas
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Apartado Postal 70228, México DF, CP 04510, México
| | - L Cintra
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM, Juriquilla, Qro, Km 15 Carr Qro-SLP, CP 76230, México
| |
Collapse
|
34
|
Sánchez S, Sánchez C, Paredes SD, Cubero J, Rodríguez AB, Barriga C. Circadian variations of serotonin in plasma and different brain regions of rats. Mol Cell Biochem 2008; 317:105-11. [PMID: 18563534 DOI: 10.1007/s11010-008-9836-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 06/03/2008] [Indexed: 11/25/2022]
Abstract
Most of the physiological processes that take place in the organism follow a circadian rhythm. Serotonin is one of the most important neurotransmitters in our nervous system, and has been strongly implicated in the regulation on the mammalian circadian clock, located in the suprachiasmatic nuclei (SCN). The present study analysed the levels of serotonin over a period of 24 h in the plasma and in different brain regions. The model used was of male Wistar rats, 14 +/- 2 weeks of age (n = 120), maintained under conditions of 12 h light and 12 h dark, and food and water ad libitum. The serotonin levels were measured by ELISA every hour at night (20:00-08:00 h) and every 4 h during the daytime (08:00-20:00 h). Ours results show that the maximum levels of serotonin in plasma were obtained at 09:00 and 22:00 and a minor peak at 01:00 h. In hypothalamus there was a significant peak at 22:00 and two minor peaks at 17:00 and 02:00 h; the same occurred in hippocampus with a significant peak at 21:00, and two secondary peaks at 24:00 and 05:00 h; in cerebellum there were two peaks at 21:00 and 02:00 h, while in striatum and pineal there were peaks at 21:00 h and 23:00, respectively. In conclusion, the higher levels of serotonin were during the phase of darkness, which varies depending on the region in which it is measured.
Collapse
Affiliation(s)
- Soledad Sánchez
- Department of Physiology (Neuroimmunophysiology Research Group), Faculty of Science, University of Extremadura, Avda de Elvas S/N, Badajoz, 06071, Spain.
| | | | | | | | | | | |
Collapse
|
35
|
Aparicio S, Garau C, Esteban S, Nicolau MC, Rivero M, Rial RV. Chrononutrition: use of dissociated day/night infant milk formulas to improve the development of the wake-sleep rhythms. Effects of tryptophan. Nutr Neurosci 2008; 10:137-43. [PMID: 18019395 DOI: 10.1080/10284150701455916] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Three different lactation experiments have been tested in a double blind procedure for 3 weeks, to improve sleep-wake patterns in infants. In a control experiment, standard infant commercial milk (1.5% tryptophan) was administered without changes during the day. In a second control (inverse), enriched milk (3.4% tryptophan) was given during light-time (06.00-18.00h), and standard commercial milk during night-time (18.00-06.00h). During the experimental week, the infants received standard milk during light-time and tryptophan enriched milk during night-time. The infants receiving the enriched formula during dark time showed improvements in the sleep parameters studied, and no statistical differences were found between the two control lactations. The urinary metabolites of serotonin suggest that the observed improvements were due to an increased use of serotonin to melatonin synthesis. In conclusion, the chronobiological changes in the normal components of the diet can improve infantile development of sleep/wake rhythms.
Collapse
Affiliation(s)
- Sara Aparicio
- Institut Universitari de Ciències de la Salut, Universitat de les Illes Balears, Palma, Spain
| | | | | | | | | | | |
Collapse
|
36
|
Szkudlarek H, Raastad M. Electrical properties of morphologically characterized neurons in the intergeniculate leaflet of the rat thalamus. Neuroscience 2007; 150:309-18. [DOI: 10.1016/j.neuroscience.2007.09.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2007] [Revised: 08/21/2007] [Accepted: 09/11/2007] [Indexed: 11/25/2022]
|
37
|
Kaur S, Rusak B. Optic enucleation eliminates circadian rhythm shifts induced by stimulating the intergeniculate leaflet in Syrian hamsters. Neurosci Lett 2007; 427:107-11. [DOI: 10.1016/j.neulet.2007.09.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2007] [Revised: 09/11/2007] [Accepted: 09/13/2007] [Indexed: 11/25/2022]
|
38
|
|
39
|
Gillette MU, Medanic M, McArthur AJ, Liu C, Ding JM, Faiman LE, Weber ET, Tcheng TK, Gallman EA. Intrinsic neuronal rhythms in the suprachiasmatic nuclei and their adjustment. CIBA FOUNDATION SYMPOSIUM 2007; 183:134-44; discussion 144-53. [PMID: 7656683 DOI: 10.1002/9780470514597.ch8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The central role of the suprachiasmatic nuclei in regulating mammalian circadian rhythms is well established. We study the temporal organization of neuronal properties in the suprachiasmatic nucleus (SCN) using a rat hypothalamic brain slice preparation. Electrical properties of single neurons are monitored by extra-cellular and whole-cell patch recording techniques. The ensemble of neurons in the SCN undergoes circadian changes in spontaneous activity, membrane properties and sensitivity to phase adjustment. At any point in this cycle, diversity is observed in individual neurons' electrical properties, including firing rate, firing pattern and response to injected current. Nevertheless, the SCN generate stable, near 24 h oscillations in ensemble neuronal firing rate for at least three days in vitro. The rhythm is sinusoidal, with peak activity, a marker of phase, appearing near midday. In addition to these electrophysiological changes, the SCN undergoes sequential changes in vitro in sensitivities to adjustment. During subjective day, the SCN progresses through periods of sensitivity to cyclic AMP, serotonin, neuropeptide Y, and then to melatonin at dusk. During the subjective night, sensitivities to glutamate, cyclic GMP and then neuropeptide Y are followed by a second period of sensitivity to melatonin at dawn. Because the SCN, when maintained in vitro, is under constant conditions and isolated from afferents, these changes must be generated within the clock in the SCN. The changing sensitivities reflect underlying temporal domains that are characterized by specific sets of biochemical and molecular relationships which occur in an ordered sequence over the circadian cycle.
Collapse
Affiliation(s)
- M U Gillette
- Department of Cell & Structural Biology, University of Illinois, Urbana 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Juhl F, Hannibal J, Fahrenkrug J. Photic induction of c-Fos in enkephalin neurons of the rat intergeniculate leaflet innervated by retinal PACAP fibres. Cell Tissue Res 2007; 329:491-502. [PMID: 17503087 DOI: 10.1007/s00441-007-0422-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2007] [Accepted: 04/02/2007] [Indexed: 12/22/2022]
Abstract
The brain's biological clock, located in the suprachiasmatic nucleus (SCN), is synchronised with the cyclic environment by photic and non-photic cues. Photic information to the SCN is mediated by pituitary adenylate-cyclase-activating polypeptide (PACAP)-containing retinal ganglion cells (RGCs), whereas non-photic input originates primarily from neuropeptide Y (NPY) cells in the ipsilateral thalamic intergeniculate leaflet (IGL). RGCs also seem to project to the IGL, indicating a role for this structure in the integration of photic and non-photic inputs related to the resetting of the biological clock. In the present study, we have used anterograde tracing from both eyes, bilateral eye enucleation, double-immunofluorescence histochemistry, high-resolution confocal laser scanning microscopy and three-dimensional computer analysis to show that (1) PACAP-containing RGCs project to the IGL and are the only source for the PACAP-immunoreactive fibres in the IGL; (2) a few NPY-containing neurons in the IGL are innervated by PACAP-containing retinal nerve fibres and the contacts are both axodendritic and axosomatic; (3) most enkephalin-immunoreactive neurons in the IGL are innervated by PACAP-containing retinal afferents and the contacts are mainly axodendritic; (4) light stimulation at various time points activates (as evidenced by c-Fos induction) enkephalin-positive neurons but not NPY-immunoreactive neurons. The findings suggest that PACAP-immunoreactive retinal afferents in the IGL primarily innervate enkephalin-immunoactive neurons and that the enkephalin-containing neurons, which project locally and to the contralateral IGL, are activated by light independent of diurnal time.
Collapse
Affiliation(s)
- Fie Juhl
- Department of Clinical Biochemistry, Bispebjerg University Hospital, DK-2400 Copenhagen NV, Denmark
| | | | | |
Collapse
|
41
|
Gerics B, Szalay F, Hajós F. Glial fibrillary acidic protein immunoreactivity in the rat suprachiasmatic nucleus: circadian changes and their seasonal dependence. J Anat 2007; 209:231-7. [PMID: 16879601 PMCID: PMC2100323 DOI: 10.1111/j.1469-7580.2006.00593.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The pacemaker of the biological clock, the suprachiasmatic nucleus (SCN) of the hypothalamus, was studied in intact male rats to determine its immunoreactivity to glial fibrillary acidic protein (GFAP), a specific marker of astrocytes. Animals were kept under 12-h light-dark cycles in synchrony with day-night periods. Immunohistochemical reactions were carried out at midday and late at night in both winter (January) and summer (July). In winter, GFAP immunoreactivity was found to be low during the day and high at night. The findings were reversed in summer, when GFAP immunoreactivity was high during the day and low at night. Increased GFAP immunoreactivity appeared in the form of an abundance of thick immunopositive fibres rather than of cell bodies. This was interpreted as a hypertrophy of pre-existing astrocytes due to alternating photic stimulation conveyed by retinofugal fibres to the SCN. The observed seasonal reversal in the direction of GFAP oscillations raises the possibility that a circannual timer exists outside the SCN.
Collapse
Affiliation(s)
- Balázs Gerics
- Department of Anatomy and Histology, Szent István University, Faculty of Veterinary Science, Budapest, Hungary
| | | | | |
Collapse
|
42
|
Cantwell EL, Cassone VM. Chicken suprachiasmatic nuclei: II. Autoradiographic and immunohistochemical analysis. J Comp Neurol 2006; 499:442-57. [PMID: 16998905 DOI: 10.1002/cne.21124] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The vertebrate circadian system is composed of multiple inputs, oscillators, pacemakers, and outputs. In birds, the pineal gland and retinae have been defined as pacemakers within this system. Evidence for a third, hypothalamic pacemaker is abundant. It has been presumed that this pacemaker is homologous to the mammalian suprachiasmatic nucleus (SCN). Two candidate structures have been referred to as the avian SCN--the medial SCN (mSCN) and the visual SCN (vSCN). Previously, we suggested that both structures are involved in a "suprachiasmatic complex." To further explore evidence for an avian SCN, the present study employed several classical techniques to assess intrinsic characteristics of the mSCN and vSCN in the chicken. First, analysis of mSCN and vSCN cytoarchitecture indicated that the mSCN is similar in location and cell population to the mammalian SCN, while the vSCN is more similar in terms of its shape. Second, intravitreal injections of tritiated proline were used to identify hypothalamic retinal terminals. The findings support previous studies identifying the vSCN as the primary retinorecipient hypothalamic structure in birds. Third, analysis of mSCN and vSCN chemoarchitecture suggests that both the mSCN and vSCN display similarity to the mammalian SCN, which displays significant interspecies variation. Finally, a unique astrocytic bridge between the mSCN and vSCN is demonstrated, suggesting that astrocytes play a role within the suprachiasmatic nuclei of birds, similar to the situation in mammals. Our previously presented working model of the avian suprachiasmatic complex is updated to include these data.
Collapse
Affiliation(s)
- Elizabeth L Cantwell
- Department of Biology and Center for Research on Biological Clocks, Texas A&M University, College Station, Texas 77843, USA
| | | |
Collapse
|
43
|
Vidal L, Lugo N. Changes in neuropeptide Y immunoreactivity and transcript levels in circadian system structures of the diurnal rodent, the thirteen-lined ground squirrel. Brain Res 2006; 1125:77-84. [PMID: 17109825 PMCID: PMC1783931 DOI: 10.1016/j.brainres.2006.10.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2006] [Revised: 07/25/2006] [Accepted: 10/03/2006] [Indexed: 10/23/2022]
Abstract
The intergeniculate leaflet (IGL) and its neuropeptide Y (NPY) projection to the main circadian clock, the suprachiasmatic nucleus (SCN), have been the focus of extensive research conducted, for the most part, on nocturnal rodent species. However, a variety of anatomical and physiological differences between the circadian system of diurnal and nocturnal species have been reported. These differences led us to question whether the role of NPY in the circadian system of the diurnal ground squirrel differs from that in nocturnal rodents. We used semi-quantitative immunohistochemistry to analyze NPY content in SCN terminals of squirrels sacrificed at specific times of the day and compared the data to previous published results from the rat. Additionally, IGL NPY mRNA was quantified using real-time PCR to determine if varying NPY immunoreactivity (-ir) levels could be the result of changes in peptide transcription. Our results demonstrate that NPY-ir levels in the ground squirrel SCN peak during the middle of the night unlike what is observed in the rat. Cell counts of NPY-ir neurons in the IGL revealed a pattern of variation 6 h out of phase compared to what was observed in the SCN. NPY mRNA levels showed only one sharp increase in the middle of the night, coinciding with increases in NPY-ir levels observed in the SCN. Differences in the pattern of fluctuation of NPY in the SCN between the rat and squirrel suggest that this peptide may serve distinct roles in the circadian system of diurnal and nocturnal species. Our data provide the first evidence of the relationship between transcript and peptide levels in the circadian system of a diurnal species.
Collapse
Affiliation(s)
| | - Nidza Lugo
- Corresponding Author: Nidza Lugo, Ph.D, Institute of Neurobiology,
201 Blvd. Del Valle, San Juan, PR 00901; Tel. 787-721-4527; e-mail =
| |
Collapse
|
44
|
Gamble KL, Paul KN, Karom MC, Tosini G, Albers HE. Paradoxical effects of NPY in the suprachiasmatic nucleus. Eur J Neurosci 2006; 23:2488-94. [PMID: 16706855 DOI: 10.1111/j.1460-9568.2006.04784.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The circadian clock in the suprachiasmatic nucleus (SCN) is synchronized by the 24 h, light : dark cycle, and is reset by photic and non-photic cues. The acute effects of light in the SCN include the increase of mRNA levels of the circadian clock gene Per1 and a dramatic reduction of pineal melatonin. Neuropeptide Y (NPY), which appears to mediate the phase-resetting effects of non-photic stimuli, prevents the ability of light, and stimuli that mimic light, to phase shift the circadian clock when injected into the SCN. The purpose of the present study was to determine if NPY inhibits the ability of light to suppress pineal melatonin. Surprisingly, NPY injected into the SCN of hamsters mimicked the effects of light by suppressing pineal melatonin levels. To confirm that NPY inhibited the effects of light on the induction of Per1 mRNA levels, Per1 mRNA levels in the SCN were measured in these same animals. NPY significantly reduced Per1 mRNA levels induced by the light pulse. The suppression of melatonin by NPY appears to be mediated by the same subtype of NPY receptors in the SCN that mediate the modulation of phase shifts. Injection of Y5 receptor agonists mimicked the effects of NPY on pineal melatonin, while injection of a Y2 agonist did not. Thus, these data are the first to demonstrate the paradoxical effects of NPY within the SCN. NPY mimics the effects of light on pineal melatonin and inhibits the effects of light on the induction of Per1 mRNA.
Collapse
Affiliation(s)
- Karen L Gamble
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | | | | | | | | |
Collapse
|
45
|
Morin LP, Allen CN. The circadian visual system, 2005. ACTA ACUST UNITED AC 2006; 51:1-60. [PMID: 16337005 DOI: 10.1016/j.brainresrev.2005.08.003] [Citation(s) in RCA: 306] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2005] [Revised: 07/19/2005] [Accepted: 08/09/2005] [Indexed: 11/17/2022]
Abstract
The primary mammalian circadian clock resides in the suprachiasmatic nucleus (SCN), a recipient of dense retinohypothalamic innervation. In its most basic form, the circadian rhythm system is part of the greater visual system. A secondary component of the circadian visual system is the retinorecipient intergeniculate leaflet (IGL) which has connections to many parts of the brain, including efferents converging on targets of the SCN. The IGL also provides a major input to the SCN, with a third major SCN afferent projection arriving from the median raphe nucleus. The last decade has seen a blossoming of research into the anatomy and function of the visual, geniculohypothalamic and midbrain serotonergic systems modulating circadian rhythmicity in a variety of species. There has also been a substantial and simultaneous elaboration of knowledge about the intrinsic structure of the SCN. Many of the developments have been driven by molecular biological investigation of the circadian clock and the molecular tools are enabling novel understanding of regional function within the SCN. The present discussion is an extension of the material covered by the 1994 review, "The Circadian Visual System."
Collapse
Affiliation(s)
- L P Morin
- Department of Psychiatry and Graduate Program in Neuroscience, Stony Brook University, Stony Brook, NY 11794, USA.
| | | |
Collapse
|
46
|
Cantwell EL, Cassone VM. Chicken suprachiasmatic nuclei: I. Efferent and afferent connections. J Comp Neurol 2006; 496:97-120. [PMID: 16528725 PMCID: PMC2590781 DOI: 10.1002/cne.20935] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The avian circadian system is composed of multiple inputs, oscillators, and outputs. Among its oscillators are the pineal gland, retinae, and a hypothalamic structure assumed to be homologous to the mammalian suprachiasmatic nucleus (SCN). Two structures have been suggested as this homolog -- the medial SCN (mSCN) and the visual SCN (vSCN). The present study employed biotin dextran amine (BDA) and cholera toxin B subunit (CTB) as anterograde and retrograde tracers to investigate the connectivity of the mSCN and vSCN in order to address this issue. Intravitreal injections of CTB were used to determine whether one or both of these structures receives afferent input from retinal ganglion cells. Both the vSCN and mSCN receive terminal retinal input, with the strongest input terminating in the vSCN. Precise iontophoretic injections of BDA and CTB in the mSCN and vSCN were used to identify efferents and afferents. The avian mSCN and vSCN collectively express more efferents and afferents than does the mammalian SCN. A subset of these connections matches the connections that have been established in rodent species. Individually, both the mSCN and vSCN are similar to the mammalian SCN in terms of their connections. Based on these data and other studies, we present a working model of the avian SCN that includes both the mSCN and vSCN as hypothalamic oscillators. We contend that both structures are involved in a suprachiasmatic complex that, as a functional group, may be homologous to the mammalian SCN.
Collapse
Affiliation(s)
- Elizabeth L Cantwell
- Department of Biology and Center for Research on Biological Clocks, Texas A and M University, College Station, Texas 77843, USA
| | | |
Collapse
|
47
|
Garau C, Aparicio S, Rial RV, Nicolau MC, Esteban S. Age related changes in the activity-rest circadian rhythms and c-fos expression of ring doves with aging. Effects of tryptophan intake. Exp Gerontol 2006; 41:430-8. [PMID: 16564149 DOI: 10.1016/j.exger.2006.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 01/31/2006] [Accepted: 02/07/2006] [Indexed: 11/16/2022]
Abstract
Age related changes in the circadian rhythms and sleep quality has been linked with impairment in the function of the suprachiasmatic nucleus (SCN) and melatonin secretion. The precursor of melatonin, serotonin (5-HT) is a neurotransmitter involved in the synchronisation of the circadian clock located in SCN, which shows decreased levels with age. The present work studied the effects of L-tryptophan, the precursor of 5-HT, on the circadian activity-rest rhythm and c-fos expression in the SCN of young and old ring doves, animals diurnal and monocyclic as humans. Two hours before the onset of dark phase, animals housed in cages equipped for activity recording and maintained under 12/12 L/D conditions, received orally L-tryptophan (100 and 240 mg/kg) and, for comparative purposes, melatonin (2.5 and 5 mg/kg). The administration of both L-tryptophan and melatonin reduced the nocturnal activity of all ring doves although only the highest doses were effective in old ones. A reduced amplitude in the activity-rest rhythm was observed in old animals in comparison to youngest, but it was increased after the treatments. Sleep parameters, calculated from the activity data, indicated a worsened sleep quality in old animals but it was improved with the treatments. In addition, the expression of c-fos in the SCN was reduced after both mentioned treatments. The results point to the SCN as a target for the observed nocturnal effects of L-tryptophan and melatonin, and support the supplemental administration of the essential amino acid L-tryptophan to reverse the disturbances of the circadian activity-rest cycle related with ageing.
Collapse
Affiliation(s)
- Celia Garau
- Laboratori de Neurofisiologia, Departament de Biologia Fonamental i Ciènces de la Salut, Universitat de les Illes Balears, Ctra. Valldemossa Km 7,5, E-07122 Palma de Mallorca, Spain
| | | | | | | | | |
Collapse
|
48
|
González JA, Dyball REJ. Pinealectomy reduces optic nerve but not intergeniculate leaflet input to the suprachiasmatic nucleus at night. J Neuroendocrinol 2006; 18:146-53. [PMID: 16420284 DOI: 10.1111/j.1365-2826.2005.01395.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus regulates circadian rhythms in mammals. It receives, among others, direct inputs from the retina and from the thalamic intergeniculate leaflet (IGL). The former sends photic signals to the SCN, whereas the latter probably integrates photic and nonphotic information. To characterise these inputs in vivo, extracellular single-unit recordings were made from the SCN of rats under urethane anaesthesia during electrical stimulation of the optic nerve (OptN) or the IGL region. Cell responses were evaluated by creating peri-stimulus time histograms. Because humoral signals such as melatonin might modulate the activity of the SCN in addition to neural inputs, recordings were also made using pinealectomised (Px) rats to test for a possible role of this hormone in regulating inputs to the SCN. A significantly greater number of cells responded to IGL (60 of 90, 67%) than to OptN (35 of 75, 47%) stimulation in intact animals (chi(2) = 5.905, P = 0.015). The same was true when Px animals were tested (IGL, 82 of 131, 63%; OptN, 31 of 111, 28%; chi(2) = 27.637, P < 0.001). In intact animals, the proportion of cells responsive to IGL stimulation during the day and during the night was not significantly different from the proportion responsive in Px animals. The same was true for OptN stimulation during the day. However, during the night, the proportion of cells responsive to OptN stimulation in intact animals was significantly greater than the proportion responsive in Px animals (chi(2) = 7.127, P = 0.008). Our findings suggest that a lack of melatonin modulates OptN but not IGL inputs to the SCN.
Collapse
Affiliation(s)
- J A González
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge, UK
| | | |
Collapse
|
49
|
Yi CX, van der Vliet J, Dai J, Yin G, Ru L, Buijs RM. Ventromedial arcuate nucleus communicates peripheral metabolic information to the suprachiasmatic nucleus. Endocrinology 2006; 147:283-94. [PMID: 16195398 DOI: 10.1210/en.2005-1051] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The arcuate nucleus (ARC) is crucial for the maintenance of energy homeostasis as an integrator of long- and short-term hunger and satiety signals. The expression of receptors for metabolic hormones, such as insulin, leptin, and ghrelin, allows ARC to sense information from the periphery and signal it to the central nervous system. The ventromedial ARC (vmARC) mainly comprises orexigenic neuropeptide agouti-related peptide and neuropeptide Y neurons, which are sensitive to circulating signals. To investigate neural connections of vmARC within the central nervous system, we injected the neuronal tracer cholera toxin B into vmARC. Due to variation of injection sites, tracer was also injected into the subependymal layer of the median eminence (seME), which showed similar projection patterns as the vmARC. We propose that the vmARC forms a complex with the seME, their reciprocal connections with viscerosensory areas in brain stem, and other circumventricular organs, suggesting the exchange of metabolic and circulating information. For the first time, the vmARC-seME was shown to have reciprocal interaction with the suprachiasmatic nucleus (SCN). Activation of vmARC neurons by systemic administration of the ghrelin mimetic GH-releasing peptide-6 combined with SCN tracing showed vmARC neurons to transmit feeding related signals to the SCN. The functionality of this pathway was demonstrated by systemic injection of GH-releasing peptide-6, which induced Fos in the vmARC and resulted in a reduction of about 40% of early daytime Fos immunoreactivity in the SCN. This observation suggests an anatomical and functional pathway for peripheral hormonal feedback to the hypothalamus, which may serve to modulate the activity of the SCN.
Collapse
Affiliation(s)
- Chun-Xia Yi
- Netherlands Institute for Brain Research, Meibergdreef 33, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
50
|
Thankachan S, Rusak B. Juxtacellular recording/labeling analysis of physiological and anatomical characteristics of rat intergeniculate leaflet neurons. J Neurosci 2005; 25:9195-204. [PMID: 16207879 PMCID: PMC6725760 DOI: 10.1523/jneurosci.2672-05.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The thalamic intergeniculate leaflet (IGL) is involved in mediating effects of both photic and nonphotic stimuli on mammalian circadian rhythms. IGL neurons containing neuropeptide Y (NPY) have been implicated in mediating nonphotic effects, but little is known about those involved in photic entrainment. We used juxtacellular recording/labeling in rats to characterize both photic responses and neurochemical phenotypes of neurons in the lateral geniculate area, focusing on the IGL and ventral lateral geniculate (VLG). Single neurons were recorded to characterize photic responsiveness and were labeled with Neurobiotin (Nb); tissue was stained for Nb, NPY, and in some cases for orexin A. Three classes of neurons were identified in the IGL/VLG. Type I neurons lacked NPY and showed sustained activations during retinal illumination and moderate firing rates in darkness. Type II neurons contained large amounts of NPY throughout the soma and showed varied responses to illumination: suppression, complex responses, or no response. Type III neurons had patches of NPY both on the external soma surface and within the soma, apparently representing internalization of NPY. Type III neurons resembled type I cells in their sustained activation by illumination but were virtually silent during the intervening dark period. These neurons appear to receive NPY input, presumably from other IGL cells, which may suppress their activity during darkness. These results demonstrate the presence of several classes of neurons in the IGL defined by their functional and anatomical features and reinforce the role of the IGL/VLG complex in integrating photic and nonphotic inputs to the circadian system.
Collapse
Affiliation(s)
- Stephen Thankachan
- Department of Psychology, Dalhousie University, Halifax, Nova Scotia, B3H 4J1, Canada
| | | |
Collapse
|