1
|
Wells AM, García-Cabezas MÁ, Barbas H. Topological atlas of the hypothalamus in adult rhesus monkey. Brain Struct Funct 2020; 225:1777-1803. [PMID: 32556476 PMCID: PMC7321918 DOI: 10.1007/s00429-020-02093-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/22/2020] [Indexed: 12/31/2022]
Abstract
The prosomeric model explains the embryological development of the central nervous system (CNS) shared by all vertebrates as a Bauplan. As a primary event, the early neural plate is patterned by intersecting longitudinal plates and transverse segments, forming a mosaic of progenitor units. The hypothalamus is specified by three prosomeres (hp1, hp2, and the acroterminal domain) of the secondary prosencephalon with corresponding alar and basal plate parts, which develop apart from the diencephalon. Mounting evidence suggests that progenitor units within alar and basal plate parts of hp1 and hp2 give rise to distinct hypothalamic nuclei, which preserve their relative invariant positioning (topology) in the adult brain. Nonetheless, the principles of the prosomeric model have not been applied so far to the hypothalamus of adult primates. We parcellated hypothalamic nuclei in adult rhesus monkeys (Macaca mulatta) using various stains to view architectonic boundaries. We then analyzed the topological relations of hypothalamic nuclei and adjacent hypothalamic landmarks with homology across rodent and primate species to trace the origin of adult hypothalamic nuclei to the alar or basal plate components of hp1 and hp2. We generated a novel atlas of the hypothalamus of the adult rhesus monkey with developmental ontologies for each hypothalamic nucleus. The result is a systematic reinterpretation of the adult hypothalamus whose prosomeric ontology can be used to study relationships between the hypothalamus and other regions of the CNS. Further, our atlas may serve as a tool to predict causal patterns in physiological and pathological pathways involving the hypothalamus.
Collapse
Affiliation(s)
- Anne Marie Wells
- Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, 02215, USA
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA, 02215, USA
| | | | - Helen Barbas
- Department of Health Sciences, Neural Systems Laboratory, Boston University, Boston, MA, 02215, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
2
|
García-Cabezas MÁ, Barbas H, Zikopoulos B. Parallel Development of Chromatin Patterns, Neuron Morphology, and Connections: Potential for Disruption in Autism. Front Neuroanat 2018; 12:70. [PMID: 30174592 PMCID: PMC6107687 DOI: 10.3389/fnana.2018.00070] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/30/2018] [Indexed: 12/27/2022] Open
Abstract
The phenotype of neurons and their connections depend on complex genetic and epigenetic processes that regulate the expression of genes in the nucleus during development and throughout life. Here we examined the distribution of nuclear chromatin patters in relation to the epigenetic landscape, phenotype and connections of neurons with a focus on the primate cerebral cortex. We show that nuclear patterns of chromatin in cortical neurons are related to neuron size and cortical connections. Moreover, we point to evidence that reveals an orderly sequence of events during development, linking chromatin and gene expression patterns, neuron morphology, function, and connections across cortical areas and layers. Based on this synthesis, we posit that systematic studies of changes in chromatin patterns and epigenetic marks across cortical areas will provide novel insights on the development and evolution of cortical networks, and their disruption in connectivity disorders of developmental origin, like autism. Achieving this requires embedding and interpreting genetic, transcriptional, and epigenetic studies within a framework that takes into consideration distinct types of neurons, local circuit interactions, and interareal pathways. These features vary systematically across cortical areas in parallel with laminar structure and are differentially affected in disorders. Finally, based on evidence that autism-associated genetic polymorphisms are especially prominent in excitatory neurons and connectivity disruption affects mostly limbic cortices, we employ this systematic approach to propose novel, targeted studies of projection neurons in limbic areas to elucidate the emergence and time-course of developmental disruptions in autism.
Collapse
Affiliation(s)
- Miguel Á García-Cabezas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States.,Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States.,Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
3
|
López JM, Morona R, González A. Immunohistochemical Localization of DARPP-32 in the Brain of Two Lungfishes: Further Assessment of Its Relationship with the Dopaminergic System. BRAIN, BEHAVIOR AND EVOLUTION 2017; 90:289-310. [PMID: 29161694 DOI: 10.1159/000481929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 10/03/2017] [Indexed: 01/23/2023]
Abstract
The distribution of DARPP-32 (a phosphoprotein related to the dopamine D1 receptor) has been widely used as a means to clarify the brain regions with dopaminoceptive cells, primarily in representative species of tetrapods. The relationship between dopaminergic and dopaminoceptive elements is frequently analyzed using the catecholamine marker tyrosine hydroxylase (TH). In the present study, by means of combined immunohistochemistry, we have analyzed these relationships in lungfishes, the only group of sarcopterygian fishes represented by 6 extant species that are the phylogenetically closest living relatives of tetrapods. We used the Australian lungfish Neoceratodus forsteri and the African lungfish Protopterus dolloi. The DARPP-32 antibody yields a distinct and consistent pattern of neuronal staining in brain areas that, in general, coincide with areas that are densely innervated by TH-immunoreactive fibers. The striatum, thalamus, optic tectum, and torus semicircularis contain intensely DARPP-32-immunoreactive cell bodies and fibers. Cells are also located in the olfactory bulbs, amygdaloid complex, lateral septum, pallidum, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic region, rostral rhombencephalic reticular formation, superior raphe nucleus, octavolateral area, solitary tract nucleus, and spinal cord. Remarkably, DARPP-32-immunoreactive fibers originating in the striatum reach the region of the dopaminergic cells in the mesencephalic tegmentum and represent a well-established striatonigral pathway in lungfishes. Double immunolabeling reveals that DARPP-32 is present in neurons that most likely receive TH input, but it is absent from the catecholaminergic neurons themselves, with the only exception of a few cells in the suprachiasmatic nucleus of Neoceratodus and the solitary tract nucleus of Protopterus. In addition, some species differences exist in the localization of DARPP-32 cells in the pallium, lateral amygdala, thalamus, prethalamus, and octavolateral area. In general, the present study demonstrates that the distribution pattern of DARPP-32, and its relationship with TH, is largely comparable to those reported for tetrapods, highlighting a shared situation among all sarcopterygians.
Collapse
Affiliation(s)
- Jesús M López
- Departamento de Biología Celular, Facultad de Biología, Universidad Complutense, Madrid, Spain
| | | | | |
Collapse
|
4
|
Zikopoulos B, John YJ, García-Cabezas MÁ, Bunce JG, Barbas H. The intercalated nuclear complex of the primate amygdala. Neuroscience 2016; 330:267-90. [PMID: 27256508 DOI: 10.1016/j.neuroscience.2016.05.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/09/2016] [Accepted: 05/26/2016] [Indexed: 12/20/2022]
Abstract
The organization of the inhibitory intercalated cell masses (IM) of the primate amygdala is largely unknown despite their key role in emotional processes. We studied the structural, topographic, neurochemical and intrinsic connectional features of IM neurons in the rhesus monkey brain. We found that the intercalated neurons are not confined to discrete cell clusters, but form a neuronal net that is interposed between the basal nuclei and extends to the dorsally located anterior, central, and medial nuclei of the amygdala. Unlike the IM in rodents, which are prominent in the anterior half of the amygdala, the primate inhibitory net stretched throughout the antero-posterior axis of the amygdala, and was most prominent in the central and posterior extent of the amygdala. There were two morphologic types of intercalated neurons: spiny and aspiny. Spiny neurons were the most abundant; their somata were small or medium size, round or elongated, and their dendritic trees were round or bipolar, depending on location. The aspiny neurons were on average slightly larger and had varicose dendrites with no spines. There were three non-overlapping neurochemical populations of IM neurons, in descending order of abundance: (1) Spiny neurons that were positive for the striatal associated dopamine- and cAMP-regulated phosphoprotein (DARPP-32+); (2) Aspiny neurons that expressed the calcium-binding protein calbindin (CB+); and (3) Aspiny neurons that expressed nitric oxide synthase (NOS+). The unique combinations of structural and neurochemical features of the three classes of IM neurons suggest different physiological properties and function. The three types of IM neurons were intermingled and likely interconnected in distinct ways, and were innervated by intrinsic neurons within the amygdala, or by external sources, in pathways that underlie fear conditioning and anxiety.
Collapse
Affiliation(s)
- Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States; Graduate Program for Neuroscience, Boston University and School of Medicine, Boston, MA, United States.
| | - Yohan J John
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | | | - Jamie G Bunce
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Helen Barbas
- Graduate Program for Neuroscience, Boston University and School of Medicine, Boston, MA, United States; Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| |
Collapse
|
5
|
López JM, Morona R, González A. Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system. J Chem Neuroanat 2010; 40:325-38. [DOI: 10.1016/j.jchemneu.2010.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Revised: 09/22/2010] [Accepted: 09/22/2010] [Indexed: 01/10/2023]
|
6
|
Glausier JR, Maddox M, Hemmings HC, Nairn AC, Greengard P, Muly EC. Localization of dopamine- and cAMP-regulated phosphoprotein-32 and inhibitor-1 in area 9 of Macaca mulatta prefrontal cortex. Neuroscience 2010; 167:428-38. [PMID: 20156529 DOI: 10.1016/j.neuroscience.2010.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Revised: 12/21/2009] [Accepted: 02/09/2010] [Indexed: 01/29/2023]
Abstract
The actions of dopamine D1 family receptors (D1R) depend upon a signal transduction cascade that modulates the phosphorylation state of important effector proteins, such as glutamate receptors and ion channels. This is accomplished both through activation of protein kinase A (PKA) and the inhibition of protein phosphatase-1 (PP1). Inhibition of PP1 occurs through PKA-mediated phosphorylation of dopamine- and cAMP-regulated phosphoprotein 32 kDa (DARPP-32) or the related protein inhibitor-1 (I-1), and the availability of DARPP-32 is essential to the functional outcome of D1R activation in the basal ganglia. While D1R activation is critical for prefrontal cortex (PFC) function, especially working memory, the functional role played by DARPP-32 or I-1 is less clear. In order to examine this more thoroughly, we have utilized immunoelectron microscopy to quantitatively determine the localization of DARPP-32 and I-1 in the neuropil of the rhesus monkey PFC. Both were distributed widely in the different components of the neuropil, but were enriched in dendritic shafts. I-1 label was more frequently identified in axon terminals than was DARPP-32, and DARPP-32 label was more frequently identified in glia than was I-1. We also quantified the extent to which these proteins were found in dendritic spines. DARPP-32 and I-1 were present in small subpopulations of dendritic spines, (4.4% and 7.7% and respectively), which were substantially smaller than observed for D1R in our previous studies (20%). Double-label experiments did not find evidence for colocalization of D1R and DARPP-32 or I-1 in spines or terminals. Thus, at the least, not all prefrontal spines which contain D1R also contain I-1 or DARPP-32, suggesting important differences in D1R signaling in the PFC compared to the striatum.
Collapse
Affiliation(s)
- J R Glausier
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | |
Collapse
|
7
|
Nguyen C, Nishi A, Kansy JW, Fernandez J, Hayashi K, Gillardon F, Hemmings HC, Nairn AC, Bibb JA. Regulation of protein phosphatase inhibitor-1 by cyclin-dependent kinase 5. J Biol Chem 2007; 282:16511-20. [PMID: 17400554 PMCID: PMC4296900 DOI: 10.1074/jbc.m701046200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inhibitor-1, the first identified endogenous inhibitor of protein phosphatase 1 (PP-1), was previously reported to be a substrate for cyclin-dependent kinase 5 (Cdk5) at Ser67. Further investigation has revealed the presence of an additional Cdk5 site identified by mass spectrometry and confirmed by site-directed mutagenesis as Ser6. Basal levels of phospho-Ser6 inhibitor-1, as detected by a phosphorylation state-specific antibody against the site, existed in specific regions of the brain and varied with age. In the striatum, basal in vivo phosphorylation and dephosphorylation of Ser6 were mediated by Cdk5, PP-2A, and PP-1, respectively. Additionally, calcineurin contributed to dephosphorylation under conditions of high Ca2+. In biochemical assays the function of Cdk5-dependent phosphorylation of inhibitor-1 at Ser6 and Ser67 was demonstrated to be an intramolecular impairment of the ability of inhibitor-1 to be dephosphorylated at Thr35; this effect was recapitulated in two systems in vivo. Dephosphorylation of inhibitor-1 at Thr35 is equivalent to inactivation of the protein, as inhibitor-1 only serves as an inhibitor of PP-1 when phosphorylated by cAMP-dependent kinase (PKA) at Thr35. Thus, inhibitor-1 serves as a critical junction between kinase- and phosphatase-signaling pathways, linking PP-1 to not only PKA and calcineurin but also Cdk5.
Collapse
Affiliation(s)
- Chan Nguyen
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Akinori Nishi
- Department of Pharmacology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Janice W. Kansy
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Joseph Fernandez
- Protein/DNA Technology Center, Rockefeller University, New York, New York 10021
| | - Kanehiro Hayashi
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
| | - Frank Gillardon
- Central Nervous System Research, Boehringer Ingelheim Pharma KG, 88397 Biberach an der Riss, Germany
| | - Hugh C. Hemmings
- Departments of Anesthesiology and Pharmacology, Weill Medical College of Cornell University, New York, New York 10021
| | - Angus C. Nairn
- Laboratory of Cellular and Molecular Neuroscience, Rockefeller University, New York, New York 10021
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06508
| | - James A. Bibb
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas 75390
- To whom correspondence should be addressed: Dept. of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9070. Tel.: 214-648-4168; Fax: 214-648-1293;
| |
Collapse
|
8
|
Gong JP, Liu QR, Zhang PW, Wang Y, Uhl GR. Mouse brain localization of the protein kinase C-enhanced phosphatase 1 inhibitor KEPI (Kinase C-Enhanced PP1 Inhibitor). Neuroscience 2005; 132:713-27. [PMID: 15837133 DOI: 10.1016/j.neuroscience.2004.11.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2004] [Indexed: 10/25/2022]
Abstract
We recently identified the protein kinase C-enhanced protein phosphatase 1 (PP1) inhibitor KEPI based on its morphine-induced upregulation in striatum. Regulation of protein serine/threonine dephosphorylation by PP1 can modulate important brain signaling pathways. To improve understanding of KEPI's role in the brain, we have developed anti-KEPI sera in rabbits immunized with a hemocyanin conjugate of KEPI residues 66-80, characterized the specificity that this serum provides, mapped the distribution of immunoreactive KEPI (iKEPI) in mouse brain, rat dorsal root ganglia and striatal cultures and documented KEPI binding to PP1 in vitro. Staining is found in apparently neuronal processes and, often less intensely, in neuronal perikarya in primary cultures and in neurons and neuronal elements from a number of brain regions. iKEPI fiber/terminal patterns are relatively densely distributed in striatum, nucleus accumbens, septum, bed nucleus of the stria terminalis, hippocampus, paraventricular thalamus, ventromedial hypothalamus, interpeduncular nucleus, raphe nuclei, nucleus caudalis of the spinal tract of the trigeminal and dorsal horn of the spinal cord. iKEPI-positive cell bodies lie in the nucleus accumbens, striatum, lateral septal nucleus, granular layer of dentate gyrus, interpeduncular nucleus, dorsal root ganglia and cerebellar vermis. These expression patterns point to possible roles for KEPI in regulating protein dephosphorylation by inhibiting PP1 activities in a number of brain pathways likely to use several different neurotransmitters and to participate in a number of brain functions. Dense KEPI immunoreactivity in nucleus accumbens perikarya, combined with evidence for its regulation by opiates, supports possible roles for KEPI in molecular signal transduction pathways important for drug reward and addiction.
Collapse
Affiliation(s)
- J-P Gong
- Molecular Neurobiology, NIDA-IRP, NIH, DHHS, 333 Cassell Drive, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
9
|
Abstract
We have mapped the macaque amygdala for the distribution of synaptic zinc (Zn), a co-factor of glutamate implicated in plasticity, as well as in several excitotoxic and other pathophysiological conditions. In brief, we found that the amygdala is Zn enriched in all nuclear groups (i.e., basolateral and cortical groups, as well as central and medial nuclei) but with marked differences in density. By comparing parallel tissue series histologically reacted for Zn and parvalbumin (PV), we further found that regions high in Zn are typically low in PV neuropil. In the basolateral group, there is a particularly distinct dorsoventral gradation such that Zn levels are most dense ventrally, i.e., in the paralaminar nucleus, the ventral division of the lateral nucleus, and the parvicellular divisions of both the basal nucleus and the accessory basal nucleus. PV levels are least dense in these same regions. For the central and medial nuclei, there is a slight mediolateral gradient, with Zn levels being higher medially. PV is low overall in these nuclei. Electron microscopic results confirmed that Zn is contained in synaptic boutons. These form asymmetrical, presumably excitatory, synapses, and the postsynaptic targets are mainly spines of projection neurons. The inhomogeneous distribution of Zn in the monkey amygdala may be related to different types or degrees of plasticity among the amygdaloid subnuclei. The complementary distribution with PV parallels that of several other substances and is interesting in the context of subnuclear vulnerability for human neuronal disease, such as seizure and Alzheimer's disease.
Collapse
Affiliation(s)
- Noritaka Ichinohe
- Laboratory for Cortical Organization and Systematics, Brain Science Institute, RIKEN, Saitama 351-0198, Japan.
| | | |
Collapse
|
10
|
Liu QR, Gong JP, Uhl GR. Families of Protein Phosphatase 1 Modulators Activated by Protein Kinases A and C: Focus on Brain. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:371-404. [PMID: 16096033 DOI: 10.1016/s0079-6603(04)79008-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Qing-Rong Liu
- Molecular Neurobiology Branch, NIDA-IRP, National Institute of Health, Baltimore, Maryland 21224, USA
| | | | | |
Collapse
|
11
|
Wang WW, Cao R, Rao ZR, Chen LW. Differential expression of NMDA and AMPA receptor subunits in DARPP-32-containing neurons of the cerebral cortex, hippocampus and neostriatum of rats. Brain Res 2004; 998:174-83. [PMID: 14751588 DOI: 10.1016/j.brainres.2003.11.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Dopamine and cyclic adenosine 3',5'-monophosphate-regulated phosphoprotein, 32 kDa (DARPP-32) is a key element of dopamine/D1/DARPP-32/protein phosphatase-1 (PP-1) signaling cascades of mammalian brain. We are interested in the expression patterns of N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptors in DARPP-32-containing neurons, which may constitute morphological basis for interaction between dopamine and ionotropic glutamate receptors in dopaminoceptive cells. Double immunofluorescence was performed to visualize neurons showing coexpression of DARPP-32 with NMDA or AMPA receptor subunits (i.e., NR1, NR2a/b, glutamate receptor subunit 1 [GluR1], GluR2/3, and GluR4) in the forebrains of rats. Distribution of DARPP-32-positive neurons completely or partially overlapped with that of NMDA receptor- or AMPA receptor-immunoreactive ones in the frontal and parietal cortex, hippocampus and neostriatum, and neurons double-labeled with DARPP-32/NR1, DARPP-32/NR2a/b, DARPP-32/GluR1, DARPP-32/GluR2/3, or DARPP-32/GluR4 immunoreactivity were numerously observed. Semiquantification analysis indicated that most of DARPP-32-containing neurons (86-98%) expressed NR1, NR2a/b and GluR2/3, while less of them (14-90%) expressed GluR1 and GluR4. Although high rates (90-98%) of DARPP-32-positive cells expressed NMDA receptors in all regions above, variant percentages of them expressing AMPA receptor subunits were observed among the cortex (54-90%), hippocampus (59-97%) and neostriatum (14-97%). The study presents differential expression patterns of NMDA and AMPA receptors in DARPP-32-postive neurons in these forebrain regions. Taken together with previous reports, the present data suggest that interaction between dopamine and glutamate receptors may occur in the dopaminoceptive neurons with distinct receptor compositions and may be involved in modulating neuronal properties and excitotoxicity in mammalian forebrain.
Collapse
Affiliation(s)
- W-W Wang
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an, 710032, PR China
| | | | | | | |
Collapse
|
12
|
Abstract
Long-term memory is believed to depend on long-lasting changes in the strength of synaptic transmission known as synaptic plasticity. Understanding the molecular mechanisms of long-term synaptic plasticity is one of the principle goals of neuroscience. Among the most powerful tools being brought to bear on this question are genetically modified mice with changes in the expression or biological activity of genes thought to contribute to these processes. This article reviews how strains of mice with alterations in the cyclic adenosine monophosphate/protein kinase A/cyclic adenosine monophosphate-response element-binding protein signaling pathway have advanced our understanding of the biological basis of learning and memory.
Collapse
Affiliation(s)
- Michael P Kaplan
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018, USA.
| | | |
Collapse
|
13
|
Alvestad RM, Grosshans DR, Coultrap SJ, Nakazawa T, Yamamoto T, Browning MD. Tyrosine dephosphorylation and ethanol inhibition of N-Methyl-D-aspartate receptor function. J Biol Chem 2003; 278:11020-5. [PMID: 12536146 DOI: 10.1074/jbc.m210167200] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The inhibitory effect of ethanol on N-methyl-d-aspartate receptors (NMDARs) is well documented in several brain regions. However, the molecular mechanisms by which ethanol affects NMDARs are not well understood. In contrast to the inhibitory effect of ethanol, phosphorylation of the NMDAR potentiates channel currents (Lu, W. Y., Xiong, Z. G., Lei, S., Orser, B. A., Dudek, E., Browning, M. D., and MacDonald, J. F. (1999) Nat. Neurosci. 2, 331-338). We have previously shown that protein kinase C activators induce tyrosine phosphorylation and potentiation of the NMDAR (Grosshans, D. R., Clayton, D. R., Coultrap, S. J., and Browning, M. D. (2002) Nat. Neurosci. 5, 27-33). We therefore hypothesized that the ethanol inhibition of NMDARs might be due to changes in tyrosine phosphorylation of NMDAR subunits. In support of this hypothesis, we found that tyrosine phosphorylation of both NR2A and NR2B subunits was significantly reduced following in situ exposure of hippocampal slices to 100 mm ethanol. Specifically, phosphorylation of tyrosine 1472 on NR2B was reduced 23.5%. These data suggest a possible mechanism by which ethanol may inhibit the NMDAR via activation of a tyrosine phosphatase. Electrophysiological studies demonstrated that ethanol inhibited NMDAR field excitatory postsynaptic potential slope and amplitude to a similar degree as previously reported by our laboratory and others (Schummers, J., Bentz, S., and Browning, M. D. (1997) Alcohol Clin. Exp. Res. 21, 404-408). Inclusion of bpV(phen), a potent phosphotyrosine phosphatase inhibitor, in the recording chamber prior to and during ethanol exposure significantly reduced the inhibitory effect of ethanol on NMDAR field excitatory postsynaptic potentials. Taken together, these data suggest that phosphatase-mediated dephosphorylation of NMDAR subunits may play an important role in mediating the inhibitory effects of ethanol on the N-methyl-D-aspartate receptor.
Collapse
Affiliation(s)
- Rachel M Alvestad
- Department of Pharmacology and Program in Neuroscience, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | | | |
Collapse
|
14
|
Salmond CH, de Haan M, Friston KJ, Gadian DG, Vargha-Khadem F. Investigating individual differences in brain abnormalities in autism. Philos Trans R Soc Lond B Biol Sci 2003; 358:405-13. [PMID: 12639337 PMCID: PMC1693120 DOI: 10.1098/rstb.2002.1210] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Autism is a psychiatric syndrome characterized by impairments in three domains: social interaction, communication, and restricted and repetitive behaviours and interests. Recent findings implicate the amygdala in the neurobiology of autism. In this paper, we report the results of a series of novel experimental investigations focusing on the structure and function of the amygdala in a group of children with autism. The first section attempts to determine if abnormality of the amygdala can be identified in an individual using magnetic resonance imaging in vivo. Using single-case voxel-based morphometric analyses, abnormality in the amygdala was detected in half the children with autism. Abnormalities in other regions were also found. In the second section, emotional modulation of the startle response was investigated in the group of autistic children. Surprisingly, there were no significant differences between the patterns of emotional modulation of the startle response in the autistic group compared with the controls.
Collapse
Affiliation(s)
- C H Salmond
- Developmental Cognitive Neuroscience Unit, Institute of Child Health, Mecklenburgh Square, London WC1N 2AP, UK.
| | | | | | | | | |
Collapse
|
15
|
Smeets WJ, Lopez JM, González A. Immunohistochemical localization of DARPP-32 in the brain of the lizard, Gekko gecko: co-occurrence with tyrosine hydroxylase. J Comp Neurol 2001; 435:194-210. [PMID: 11391641 DOI: 10.1002/cne.1202] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To assess the relationship between dopaminergic neuronal structures and dopaminoceptive structures in a reptile, single and double immunohistochemical procedures with antibodies directed against DARPP-32 (dopamine- and cAMP-regulated phosphoprotein with an apparent molecular mass of 32,000 daltons),a phosphoprotein related to the dopamine D(1)-receptor, and tyrosine hydroxylase (TH) were applied to the brain of the lizard, Gekko gecko. The DARPP-32 antibody yielded a well-differentiated pattern of staining in the brain of Gekko. In general, areas that are densely innervated by TH-immunoreactive, putative dopaminergic fibers, such as the nucleus accumbens, striatum, dorsal ventricular ridge, and amygdaloid complex, display strong immunoreactivity for DARPP-32 in somata and neuropil. Distinct cellular DARPP-32 immunoreactivity was also found in the lateral cortex, ventral hypothalamus, habenula, central nucleus of the torus semicircularis, midbrain tectum, parvicellular isthmic nucleus, raphe nuclei, caudal rhombencephalic tegmentum, and spinal cord. Striatal projections to the midbrain and their target, i.e., the substantia nigra pars reticulata, were found to be strongly immunoreactive. Double immunofluorescence staining revealed that dopaminergic cells generally do not stain for DARPP-32, except for cells in the ventral hypothalamus and at caudal rhombencephalic levels. In conclusion, the distribution of DARPP-32 in the brain of the lizard Gekko gecko largely resembles the pattern observed in birds and mammals, at least as far as basal ganglia structures are concerned. On the other hand, there are several specific features of DARPP-32 distribution in the gekkonid brain that deserve further attention, such as cellular colocalization of DARPP-32 and TH immunoreactivity in hypothalamic and caudal rhombencephalic areas, and cellular DARPP-32 immunoreactivity in the tectum and central nucleus of the torus semicircularis of the midbrain, the superior and inferior raphe nuclei, and the spinal cord.
Collapse
Affiliation(s)
- W J Smeets
- The Graduate School of Neurosciences Amsterdam, Research Institute of Neurosciences and Department of Anatomy, Vrije Universiteit, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
16
|
Ghashghaei HT, Barbas H. Neural interaction between the basal forebrain and functionally distinct prefrontal cortices in the rhesus monkey. Neuroscience 2001; 103:593-614. [PMID: 11274781 DOI: 10.1016/s0306-4522(00)00585-6] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The prefrontal cortex in rhesus monkeys is a heterogeneous region by structure, connections and function. Caudal medial and orbitofrontal cortices receive input from cortical and subcortical structures associated with emotions, autonomic function and long-term memory, while lateral prefrontal cortices are linked with structures associated with working memory. With the aid of neural tracers we investigated whether functionally distinct orbitofrontal, medial and lateral prefrontal cortices have specific or common connections with an ascending modulatory system, the basal forebrain. Ascending projections originated in the diagonal band and the basalis nuclei of the basal forebrain in regions demarcated by choline acetyltransferase. Although the origin of projections from the basal forebrain to lateral, medial and orbitofrontal cortices partially overlapped, projections showed a general topography. The posterior part of the nucleus basalis projected preferentially to lateral prefrontal areas while its rostrally adjacent sectors projected to medial and orbitofrontal cortices. The diagonal band nuclei projected to orbitofrontal and medial prefrontal areas. Cortical and subcortical structures that are interconnected appear to have a similar pattern of connections with the basal forebrain. In comparison to the ascending projections, the descending projections were specific, originating mostly in the posterior (limbic) component of medial and orbitofrontal cortices and terminating in the diagonal band nuclei and in the anterior part of the nucleus basalis. In addition, prefrontal limbic areas projected to two other systems of the basal forebrain, the ventral pallidum and the extended amygdala, delineated with the striatal-related markers dopamine, adenosine 3':5'-monophosphate regulated phosphoprotein of M(r) 32kDa, and the related phosphoprotein Inhibitor-1. These basal forebrain systems project to autonomic nuclei in the hypothalamus and brainstem. We interpret these results to indicate that lateral prefrontal areas, which have a role in working memory, receive input from, but do not issue feedback projections to the basal forebrain. In contrast, orbitofrontal and medial prefrontal areas, which have a role in emotions and long-term memory, have robust bidirectional connections with the basal forebrain. Moreover, orbitofrontal and medial prefrontal cortices target the ventral pallidum and the extended amygdala, through which high-order association areas may activate motor autonomic structures for the expression of emotions.
Collapse
Affiliation(s)
- H T Ghashghaei
- Department of Health Sciences, Boston University, 635 Commonwealth Ave., Boston, MA 02215, USA
| | | |
Collapse
|
17
|
Bibb JA, Nishi A, O'Callaghan JP, Ule J, Lan M, Snyder GL, Horiuchi A, Saito T, Hisanaga S, Czernik AJ, Nairn AC, Greengard P. Phosphorylation of protein phosphatase inhibitor-1 by Cdk5. J Biol Chem 2001; 276:14490-7. [PMID: 11278334 DOI: 10.1074/jbc.m007197200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase inhibitor-1 is a prototypical mediator of cross-talk between protein kinases and protein phosphatases. Activation of cAMP-dependent protein kinase results in phosphorylation of inhibitor-1 at Thr-35, converting it into a potent inhibitor of protein phosphatase-1. Here we report that inhibitor-1 is phosphorylated in vitro at Ser-67 by the proline-directed kinases, Cdk1, Cdk5, and mitogen-activated protein kinase. By using phosphorylation state-specific antibodies and selective protein kinase inhibitors, Cdk5 was found to be the only kinase that phosphorylates inhibitor-1 at Ser-67 in intact striatal brain tissue. In vitro and in vivo studies indicated that phospho-Ser-67 inhibitor-1 was dephosphorylated by protein phosphatases-2A and -2B. The state of phosphorylation of inhibitor-1 at Ser-67 was dynamically regulated in striatal tissue by glutamate-dependent regulation of N-methyl-d-aspartic acid-type channels. Phosphorylation of Ser-67 did not convert inhibitor-1 into an inhibitor of protein phosphatase-1. However, inhibitor-1 phosphorylated at Ser-67 was a less efficient substrate for cAMP-dependent protein kinase. These results demonstrate regulation of a Cdk5-dependent phosphorylation site in inhibitor-1 and suggest a role for this site in modulating the amplitude of signal transduction events that involve cAMP-dependent protein kinase activation.
Collapse
Affiliation(s)
- J A Bibb
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, New York 10021-6399, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Protein phosphatase-1 regulation in the induction of long-term potentiation: heterogeneous molecular mechanisms. J Neurosci 2000. [PMID: 10804194 DOI: 10.1523/jneurosci.20-10-03537.2000] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Protein phosphatase inhibitor-1 (I-1) has been proposed as a regulatory element in the signal transduction cascade that couples postsynaptic calcium influx to long-term changes in synaptic strength. We have evaluated this model using mice lacking I-1. Recordings made in slices prepared from mutant animals and also in anesthetized mutant animals indicated that long-term potentiation (LTP) is deficient at perforant path-dentate granule cell synapses. In vitro, this deficit was restricted to synapses of the lateral perforant path. LTP at Schaffer collateral-CA1 pyramidal cell synapses remained normal. Thus, protein phosphatase-1-mediated regulation of NMDA receptor-dependent synaptic plasticity involves heterogeneous molecular mechanisms, in both different dendritic subregions and different neuronal subtypes. Examination of the performance of I-1 mutants in spatial learning tests indicated that intact LTP at lateral perforant path-granule cell synapses is either redundant or is not involved in this form of learning.
Collapse
|
19
|
Kobayashi Y, Amaral DG. Chemical neuroanatomy of the hippocampal formation and the perirhinal and parahippocampal cortices. HANDBOOK OF CHEMICAL NEUROANATOMY 1999. [DOI: 10.1016/s0924-8196(99)80026-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
20
|
Rempel-Clower NL, Barbas H. Topographic organization of connections between the hypothalamus and prefrontal cortex in the rhesus monkey. J Comp Neurol 1998; 398:393-419. [PMID: 9714151 DOI: 10.1002/(sici)1096-9861(19980831)398:3<393::aid-cne7>3.0.co;2-v] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Prefrontal cortices have been implicated in autonomic function, but their role in this activity is not well understood. Orbital and medial prefrontal cortices receive input from cortical and subcortical structures associated with emotions. Thus, the prefrontal cortex may be an essential link for autonomic responses driven by emotions. Classic studies have demonstrated the existence of projections between prefrontal cortex and the hypothalamus, a central autonomic structure, but the topographic organization of these connections in the monkey has not been clearly established. We investigated the organization of bidirectional connections between these areas in the rhesus monkey by using tracer injections in orbital, medial, and lateral prefrontal areas. All prefrontal areas investigated received projections from the hypothalamus, originating mainly in the posterior hypothalamus. Differences in the topography of hypothalamic projection neurons were related to both the location and type of the target cortical area. Injections in lateral eulaminate prefrontal areas primarily labeled neurons in the posterior hypothalamus that were equally distributed in the lateral and medial hypothalamus. In contrast, injections in orbitofrontal and medial limbic cortices labeled neurons in the anterior and tuberal regions of the hypothalamus and in the posterior region. Projection neurons targeting orbital limbic cortices were more prevalent in the lateral part of the hypothalamus, whereas those targeting medial limbic cortices were more prevalent in the medial hypothalamus. In comparison to the ascending projections, descending projections from prefrontal cortex to the hypothalamus were highly specific, originating mostly from orbital and medial prefrontal cortices. The ascending and descending connections overlapped in the hypothalamus in areas that have autonomic functions. These results suggest that specific orbitofrontal and medial prefrontal areas exert a direct influence on the hypothalamus and may be important for the autonomic responses evoked by complex emotional situations.
Collapse
Affiliation(s)
- N L Rempel-Clower
- Department of Health Sciences, Boston University, Massachusetts 02215, USA.
| | | |
Collapse
|
21
|
Lewis D, Sesack S. Chapter VI Dopamine systems in the primate brain. HANDBOOK OF CHEMICAL NEUROANATOMY 1997. [DOI: 10.1016/s0924-8196(97)80008-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Treloar H, Walters E, Margolis F, Key B. Olfactory glomeruli are innervated by more than one distinct subset of primary sensory olfactory neurons in mice. J Comp Neurol 1996; 367:550-62. [PMID: 8731225 DOI: 10.1002/(sici)1096-9861(19960415)367:4<550::aid-cne6>3.0.co;2-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The rodent olfactory epithelium consists of a mosaic of primary sensory olfactory neurons (PONs) which express distinct putative olfactory receptor proteins. Recent evidence suggests that individual subsets of these sensory neurons project to separate glomeruli in the olfactory bulb (Vassar et al., [1994] Cell 79:981-991). In the present study we have identified two distinct subsets of primary sensory olfactory neurons (PONs) in the H-OMP-LacZ-6 transgenic mouse. In these transgenic mice, a LacZ reporter gene under the control of a 294 base pair element from the 5' promoter region of the olfactory marker protein (OMP) gene was expressed in a subset of PONs located in a discrete band of neuroepithelium in the nasal cavity. These LacZ positive neurons were not randomly located within this band but were more concentrated within a locus between endoturbinates IIb and III. The axons of these neurons densely innervated three adjacent and bilaterally symmetrical glomeruli present in the ventromedial olfactory bulb. Labeling of tissue sections with the plant lectin Dolichos biflorus (DBA) revealed an independent subset of PONs in the transgenic mice. These neurons were present in a wide region of the nasal cavity that included the neuroepithelial band containing the LacZ expressing neurons. The DBA labeled axons terminated in glomeruli in the rostromedial and dorsolateral olfactory bulb surfaces. Although the glomeruli innervated by the LacZ and DBA positive axons were predominantly non-overlapping there were glomeruli in the ventral olfactory bulb that were labeled by both DBA and LacZ markers. Eight different types of glomeruli were characterized. Most notably, glomeruli were identified which were innervated partially by both or by either subset alone. In these cases, axon subsets were observed to terminate within discrete subregions of a glomerulus. These results support the hypothesis that phenotypically distinct subsets of PONs converge on to the same glomeruli but also indicate that some glomeruli are innervated by more than one subset of sensory neuron. These findings have implications for understanding how the olfactory projection is formed and how olfactory information is processed.
Collapse
Affiliation(s)
- H Treloar
- Department of Anatomy and Cell Biology, University of Melbourne, Parkville, Vic, Australia
| | | | | | | |
Collapse
|
23
|
Catalano SM, Robertson RT, Killackey HP. Individual axon morphology and thalamocortical topography in developing rat somatosensory cortex. J Comp Neurol 1996; 367:36-53. [PMID: 8867282 DOI: 10.1002/(sici)1096-9861(19960325)367:1<36::aid-cne4>3.0.co;2-k] [Citation(s) in RCA: 124] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The morphology of individual thalamocortical axons in developing rat primary somatosensory cortex was studied using lipophilic tracers. Anterograde labeling with lipophilic dyes demonstrated a topographical organization of thalamocortical projections exiting the thalamus as early as embryonic day (E) 16; retrograde labeling studies demonstrated topography of these projections as they reached the cortex as early as E18. At E17, axons course tangentially within the intermediate zone and turn or branch near the deepest layer of cortex (layer VIb), suggesting the presence of guidance cues in this region. Axons appear to grow and branch progressively within layers VIb and VIa during the following days; axons in the intermediate zone may give rise to radially directed branches. Individual axons appear to grow steadily and progressively into the cortex, with the leading front of axons at the transition zone between the cortical plate (CP) and the differentiating cortical layers. At birth (P0), thalamocortical axons extend radially through layers VIa and V and emit branches within these layers; some axons reach the CP. By P1, layer IV has begun to differentiate and axons begin to form a few simple branches in the vicinity of the layer IV cells. Over the ensuing week, axons generate more branches within layer IV, but the tangential extent of individual axon arbors does not exceed the width of a barrel. By P7, individual axons overlap within barrel clusters, and individual axons span the width of a cluster. These observations indicate that thalamic afferents develop by progressive growth of arbors that remain spatially restricted, rather than by overbranching and retracting arbors.
Collapse
Affiliation(s)
- S M Catalano
- Department of Anatomy and Neurobiology, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
24
|
Barbas H. Anatomic basis of cognitive-emotional interactions in the primate prefrontal cortex. Neurosci Biobehav Rev 1995; 19:499-510. [PMID: 7566750 DOI: 10.1016/0149-7634(94)00053-4] [Citation(s) in RCA: 250] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Recognition that posterior basal and medial parts of the prefrontal cortex belong to the cortical component of the limbic system was important in understanding their anatomic and functional organization. In primates, the limbic system has evolved along with the neocortex and maintains strong connections with association areas. Consequently, damage to limbic structures in primates results in a series of deficits in cognitive, mnemonic and emotional processes. Limbic cortices differ in their structure and connections from the eulaminate areas. Limbic cortices issue widespread projections from their deep layers and reach eulaminate areas by terminating in layer I. By comparison, the eulaminate areas receive projections from a more restricted set of cortices and when they communicate with limbic cortices they issue projections from their upper layers and terminate in a columnar pattern. Several of the connectional and neurochemical characteristics of limbic cortices are observed as a transient feature in all areas during development. Anatomic evidence suggests that limbic areas retain some features observed in ontogeny, which may explain their great plasticity and involvement in learning and memory, but also their preferential vulnerability in several psychiatric and neurologic disorders.
Collapse
Affiliation(s)
- H Barbas
- Department of Health Sciences, Boston University, MA 02215, USA
| |
Collapse
|