1
|
Taiji S, Nishino T, Jin H, Hashida M, Isono S. The activity of suprahyoid muscles during sevoflurane-induced gasping in mice. Respir Physiol Neurobiol 2024; 331:104355. [PMID: 39369927 DOI: 10.1016/j.resp.2024.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/08/2024] [Accepted: 09/20/2024] [Indexed: 10/08/2024]
Abstract
Sevoflurane-induced gasping in mice involves an enormous increase in inspiratory effort, mandibular movement, and a marked decrease in respiratory frequency (fR). We examined differences in breathing patterns and electromyogram activity (EMGSH) of the suprahyoid muscles (SHMs) during eupnea under 3.2 % (1 MAC: minimum alveolar concentration) sevoflurane inhalation and sevoflurane-induced gasping under 6.5 % (2 MAC) sevoflurane inhalation in eight spontaneously breathing, tracheally intubated, adult mice. We found that the phasic EMGSH is obtained only during inspiration in eupnea and gasping and that integrated EMGSH increases more, as a percent of baseline (% baseline) than tidal volume (VT) during gasping (median [interquartile range]; integrated EMGSH: 720 [425-1965] vs. VT: 300 [238-373], P < 0.05). We also found that the onset of EMGSH precedes the start of airflow while maintaining a bell-shaped EMGSH contour, which characterizes the EMG of upper airway dilator (UAD) muscles during eupnea and gasping. Vigorous respiratory-related mandibular movements were never observed during eupnea but were observed in seven of 8 mice during sevoflurane-induced gasping. Our observations indicate that SHMs act as a preferentially activating UAD muscle, contributing to the development of mandibular respiratory movements.
Collapse
Affiliation(s)
- Saki Taiji
- Department of Anesthesiology, Graduate School of Medicine, Chiba University, Japan
| | - Takashi Nishino
- Department of Anesthesiology, Graduate School of Medicine, Chiba University, Japan.
| | - Hisayo Jin
- Department of Anesthesiology, Graduate School of Medicine, Chiba University, Japan
| | - Mayumi Hashida
- Department of Anesthesiology, Graduate School of Medicine, Chiba University, Japan
| | - Shiroh Isono
- Department of Anesthesiology, Graduate School of Medicine, Chiba University, Japan
| |
Collapse
|
2
|
Herlihy R, Frasson Dos Reis L, Gvritishvili A, Kvizhinadze M, Dybas E, Malhotra A, Fenik VB, Rukhadze I. Chronic intermittent hypoxia attenuates noradrenergic innervation of hypoglossal motor nucleus. Respir Physiol Neurobiol 2024; 321:104206. [PMID: 38142024 PMCID: PMC10872249 DOI: 10.1016/j.resp.2023.104206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/11/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
The state-dependent noradrenergic activation of hypoglossal motoneurons plays an important role in the maintenance of upper airway patency and pathophysiology of obstructive sleep apnea (OSA). Chronic intermittent hypoxia (CIH), a major pathogenic factor of OSA, contributes to the risk for developing neurodegenerative disorders in OSA patients. Using anterograde tracer, channelrhodopsin-2, we mapped axonal projections from noradrenergic A7 and SubCoeruleus neurons to hypoglossal nucleus in DBH-cre mice and assessed the effect of CIH on these projections. We found that CIH significantly reduced the number of axonal projections from SubCoeruleus neurons to both dorsal (by 68%) and to ventral (by73%) subregions of the hypoglossal motor nucleus compared to sham-treated animals. The animals' body weight was also negatively affected by CIH. Both effects, the decrease in axonal projections and body weight, were more pronounced in male than female mice, which was likely caused by less sensitivity of female mice to CIH as compared to males. The A7 neurons appeared to have limited projections to the hypoglossal nucleus. Our findings suggest that CIH-induced reduction of noradrenergic innervation of hypoglossal motoneurons may exacerbate progression of OSA, especially in men.
Collapse
Affiliation(s)
- Rachael Herlihy
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Leonardo Frasson Dos Reis
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Anzor Gvritishvili
- VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA
| | - Maya Kvizhinadze
- VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA
| | - Elizabeth Dybas
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA
| | - Atul Malhotra
- University of California San Diego, San Diego, CA 92093, USA
| | - Victor B Fenik
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA; VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA.
| | - Irma Rukhadze
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY 12208, USA; VA West Los Angeles Medical Center, VAGLAHS, West Los Angeles, CA 90073, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA.
| |
Collapse
|
3
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
4
|
Whole-Brain Monosynaptic Inputs to Hypoglossal Motor Neurons in Mice. Neurosci Bull 2020; 36:585-597. [PMID: 32096114 PMCID: PMC7270309 DOI: 10.1007/s12264-020-00468-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Hypoglossal motor neurons (HMNs) innervate tongue muscles and play key roles in a variety of physiological functions, including swallowing, mastication, suckling, vocalization, and respiration. Dysfunction of HMNs is associated with several diseases, such as obstructive sleep apnea (OSA) and sudden infant death syndrome. OSA is a serious breathing disorder associated with the activity of HMNs during different sleep–wake states. Identifying the neural mechanisms by which the state-dependent activities of HMNs are controlled may be helpful in providing a theoretical basis for effective therapy for OSA. However, the presynaptic partners governing the activity of HMNs remain to be elucidated. In the present study, we used a cell-type-specific retrograde tracing system based on a modified rabies virus along with a Cre/loxP gene-expression strategy to map the whole-brain monosynaptic inputs to HMNs in mice. We identified 53 nuclei targeting HMNs from six brain regions: the amygdala, hypothalamus, midbrain, pons, medulla, and cerebellum. We discovered that GABAergic neurons in the central amygdaloid nucleus, as well as calretinin neurons in the parasubthalamic nucleus, sent monosynaptic projections to HMNs. In addition, HMNs received direct inputs from several regions associated with respiration, such as the pre-Botzinger complex, parabrachial nucleus, nucleus of the solitary tract, and hypothalamus. Some regions engaged in sleep–wake regulation (the parafacial zone, parabrachial nucleus, ventral medulla, sublaterodorsal tegmental nucleus, dorsal raphe nucleus, periaqueductal gray, and hypothalamus) also provided primary inputs to HMNs. These results contribute to further elucidating the neural circuits underlying disorders caused by the dysfunction of HMNs.
Collapse
|
5
|
Rukhadze I, Fenik VB. Neuroanatomical Basis of State-Dependent Activity of Upper Airway Muscles. Front Neurol 2018; 9:752. [PMID: 30250449 PMCID: PMC6139331 DOI: 10.3389/fneur.2018.00752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/20/2018] [Indexed: 12/16/2022] Open
Abstract
Obstructive Sleep Apnea (OSA) is a common sleep-related respiratory disorder that is associated with cognitive, cardiovascular, and metabolic morbidities. The major cause of OSA is the sleep-related reduction of upper airway muscle tone that leads to airway obstructions in individuals with anatomically narrow upper airway. This reduction is mainly due to the suppressant effect of sleep on hypoglossal motoneurons that innervate upper airway muscles. The hypoglossal motoneurons have state-dependent activity, which is decreased during the transition from wakefulness to non-rapid eye movement sleep and is further suppressed during rapid eye movement sleep. Multiple neurotransmitters and their receptors have been implicated in the control of hypoglossal motoneuron activity across the sleep-wake states. However, to date, the results of the rigorous testing show that withdrawal of noradrenergic excitation and cholinergic inhibition essentially contribute to the depression of hypoglossal motoneuron activity during sleep. The present review will focus on origins of noradrenergic and cholinergic innervation of hypoglossal motoneurons and the functional role of these neurons in the state-dependent activity of hypoglossal motoneurons.
Collapse
Affiliation(s)
- Irma Rukhadze
- VA West Los Angeles Medical Center, West Los Angeles, CA, United States.,David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Victor B Fenik
- VA West Los Angeles Medical Center, West Los Angeles, CA, United States.,Websciences International, Los Angeles, CA, United States
| |
Collapse
|
6
|
Baum DM, Saussereau M, Jeton F, Planes C, Voituron N, Cardot P, Fiamma MN, Bodineau L. Effect of Gender on Chronic Intermittent Hypoxic Fosb Expression in Cardiorespiratory-Related Brain Structures in Mice. Front Physiol 2018; 9:788. [PMID: 29988603 PMCID: PMC6026892 DOI: 10.3389/fphys.2018.00788] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/06/2018] [Indexed: 12/19/2022] Open
Abstract
We aimed to delineate sex-based differences in neuroplasticity that may be associated with previously reported sex-based differences in physiological alterations caused by repetitive succession of hypoxemia-reoxygenation encountered during obstructive sleep apnea (OSA). We examined long-term changes in the activity of brainstem and diencephalic cardiorespiratory neuronal populations induced by chronic intermittent hypoxia (CIH) in male and female mice by analyzing Fosb expression. Whereas the overall baseline and CIH-induced Fosb expression in females was higher than in males, possibly reflecting different neuroplastic dynamics, in contrast, structures responded to CIH by Fosb upregulation in males only. There was a sex-based difference at the level of the rostral ventrolateral reticular nucleus of the medulla, with an increase in the number of FOSB/ΔFOSB-positive cells induced by CIH in males but not females. This structure contains neurons that generate the sympathetic tone and which are involved in CIH-induced sustained hypertension during waking hours. We suggest that the sex-based difference in neuroplasticity of this structure contributes to the reported sex-based difference in CIH-induced hypertension. Moreover, we highlighted a sex-based dimorphic phenomenon in serotoninergic systems induced by CIH, with increased serotoninergic immunoreactivity in the hypoglossal nucleus and a decreased number of serotoninergic cells in the dorsal raphe nucleus in male but not female mice. We suggest that this dimorphism in the neuroplasticity of serotoninergic systems predisposes males to a greater alteration of neuronal control of the upper respiratory tract associated with the greater collapsibility of upper airways described in male OSA subjects.
Collapse
Affiliation(s)
- David M Baum
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Maud Saussereau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Florine Jeton
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Carole Planes
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Nicolas Voituron
- Sorbonne Paris Cité, Université Paris 13, EA2363 Hypoxie et Poumon, Bobigny, France
| | - Philippe Cardot
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Marie-Noëlle Fiamma
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| | - Laurence Bodineau
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, UMR-S1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
7
|
Razlan ANB, Ullah M, Kapitonova MY, Liaqat Ali Khan NB, Fuad SBSA. Localization of the motor neuron somata of geniohyoid muscle in rat: A horseradish peroxidase study. Anat Histol Embryol 2018; 47:410-416. [DOI: 10.1111/ahe.12372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 04/05/2018] [Accepted: 05/16/2018] [Indexed: 11/29/2022]
Affiliation(s)
| | - Muzammil Ullah
- Faculty of Dentistry; Universiti Teknologi (UiTM) MARA; Selangor Malaysia
| | | | | | | |
Collapse
|
8
|
Thakre PP, Bellingham MC. Capsaicin Enhances Glutamatergic Synaptic Transmission to Neonatal Rat Hypoglossal Motor Neurons via a TRPV1-Independent Mechanism. Front Cell Neurosci 2017; 11:383. [PMID: 29259542 PMCID: PMC5723349 DOI: 10.3389/fncel.2017.00383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 11/17/2017] [Indexed: 01/02/2023] Open
Abstract
We investigated whether capsaicin modulated synaptic transmission to hypoglossal motor neurons (HMNs) by acting on transient receptor potential vanilloid type 1 (TRPV1) receptors. Using whole-cell patch clamp recording from neonatal rat HMNs, we found that capsaicin increased spontaneous excitatory post-synaptic current (sEPSC) frequency and amplitude. Interestingly, the only effect of capsaicin on spontaneous inhibitory post-synaptic currents (sIPSCs) was a significant decrease in sIPSC amplitude without altering frequency, indicating a post-synaptic mechanism of action. The frequency of miniature excitatory post-synaptic currents (mEPSCs), recorded in the presence of tetrodotoxin (TTX), was also increased by capsaicin, but capsaicin did not alter mEPSC amplitude, consistent with a pre-synaptic mechanism of action. A negative shift in membrane current (Iholding) was elicited by capsaicin under both recording conditions. The effect of capsaicin on excitatory synaptic transmission remained unchanged in the presence of the TRPV1 antagonists, capsazepine or SB366791, suggesting that capsaicin acts to modulate EPSCs via a mechanism which does not require TRPV1 activation. Capsaicin, however, did not alter evoked excitatory post-synaptic currents (eEPSCs) or the paired-pulse ratio (PPR) of eEPSCs. Repetitive action potential (AP) firing in HMNs was also unaltered by capsaicin, indicating that capsaicin does not change HMN intrinsic excitability. We have demonstrated that capsaicin modulates glutamatergic excitatory, as well as glycinergic inhibitory, synaptic transmission in HMNs by differing pre- and post-synaptic mechanisms. These results expand our understanding regarding the extent to which capsaicin can modulate synaptic transmission to central neurons.
Collapse
Affiliation(s)
- Prajwal P Thakre
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Mark C Bellingham
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Rukhadze I, Carballo NJ, Bandaru SS, Malhotra A, Fuller PM, Fenik VB. Catecholaminergic A1/C1 neurons contribute to the maintenance of upper airway muscle tone but may not participate in NREM sleep-related depression of these muscles. Respir Physiol Neurobiol 2017; 244:41-50. [PMID: 28711601 DOI: 10.1016/j.resp.2017.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 06/30/2017] [Accepted: 07/02/2017] [Indexed: 12/12/2022]
Abstract
Neural mechanisms of obstructive sleep apnea, a common sleep-related breathing disorder, are incompletely understood. Hypoglossal motoneurons, which provide tonic and inspiratory activation of genioglossus (GG) muscle (a major upper airway dilator), receive catecholaminergic input from medullary A1/C1 neurons. We aimed to determine the contribution of A1/C1 neurons in control of GG muscle during sleep and wakefulness. To do so, we placed injections of a viral vector into DBH-cre mice to selectively express the hMD4i inhibitory chemoreceptors in A1/C1 neurons. Administration of the hM4Di ligand, clozapine-N-oxide (CNO), in these mice decreased GG muscle activity during NREM sleep (F1,1,3=17.1, p<0.05); a similar non-significant decrease was observed during wakefulness. CNO administration had no effect on neck muscle activity, respiratory parameters or state durations. In addition, CNO-induced inhibition of A1/C1 neurons did not alter the magnitude of the naturally occurring depression of GG activity during transitions from wakefulness to NREM sleep. These findings suggest that A1/C1 neurons have a net excitatory effect on GG activity that is most likely mediated by hypoglossal motoneurons. However, the activity of A1/C1 neurons does not appear to contribute to NREM sleep-related inhibition of GG muscle activity, suggesting that A1/C1 neurons regulate upper airway patency in a state-independent manner.
Collapse
Affiliation(s)
- Irma Rukhadze
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA, USA; Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA.
| | - Nancy J Carballo
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Sathyajit S Bandaru
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Atul Malhotra
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, CA, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, MA, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Victor B Fenik
- Department of Veterans Affairs, Greater Los Angeles Healthcare System, Los Angeles, CA, USA; WebSience International, Los Angeles, CA, USA
| |
Collapse
|
10
|
Wang JW, Stifani S. Roles of Runx Genes in Nervous System Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:103-116. [PMID: 28299654 DOI: 10.1007/978-981-10-3233-2_8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Runt-related (Runx) transcription factors play essential roles during development and adult tissue homeostasis and are responsible for several human diseases. They regulate a variety of biological mechanisms in numerous cell lineages. Recent years have seen significant progress in our understanding of the functions performed by Runx proteins in the developing and postnatal mammalian nervous system. In both central and peripheral nervous systems, Runx1 and Runx3 display remarkably specific expression in mostly non-overlapping groups of postmitotic neurons. In the central nervous system, Runx1 is involved in the development of selected motor neurons controlling neural circuits mediating vital functions such as chewing, swallowing, breathing, and locomotion. In the peripheral nervous system, Runx1 and Runx3 play essential roles during the development of sensory neurons involved in circuits mediating pain, itch, thermal sensation and sense of relative position. Runx1 and Runx3 orchestrate complex gene expression programs controlling neuronal subtype specification and axonal connectivity. Runx1 is also important in the olfactory system, where it regulates the progenitor-to-neuron transition in undifferentiated neural progenitor cells in the olfactory epithelium as well as the proliferation and developmental maturation of specific glial cells termed olfactory ensheathing cells. Moreover, upregulated Runx expression is associated with brain injury and disease. Increasing knowledge of the functions of Runx proteins in the developing and postnatal nervous system is therefore expected to improve our understanding of nervous system development, homeostasis and disease.
Collapse
Affiliation(s)
- Jae Woong Wang
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A2B4, Canada
| | - Stefano Stifani
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H3A2B4, Canada.
| |
Collapse
|
11
|
Kubin L. Neural Control of the Upper Airway: Respiratory and State-Dependent Mechanisms. Compr Physiol 2016; 6:1801-1850. [PMID: 27783860 DOI: 10.1002/cphy.c160002] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Upper airway muscles subserve many essential for survival orofacial behaviors, including their important role as accessory respiratory muscles. In the face of certain predisposition of craniofacial anatomy, both tonic and phasic inspiratory activation of upper airway muscles is necessary to protect the upper airway against collapse. This protective action is adequate during wakefulness, but fails during sleep which results in recurrent episodes of hypopneas and apneas, a condition known as the obstructive sleep apnea syndrome (OSA). Although OSA is almost exclusively a human disorder, animal models help unveil the basic principles governing the impact of sleep on breathing and upper airway muscle activity. This article discusses the neuroanatomy, neurochemistry, and neurophysiology of the different neuronal systems whose activity changes with sleep-wake states, such as the noradrenergic, serotonergic, cholinergic, orexinergic, histaminergic, GABAergic and glycinergic, and their impact on central respiratory neurons and upper airway motoneurons. Observations of the interactions between sleep-wake states and upper airway muscles in healthy humans and OSA patients are related to findings from animal models with normal upper airway, and various animal models of OSA, including the chronic-intermittent hypoxia model. Using a framework of upper airway motoneurons being under concurrent influence of central respiratory, reflex and state-dependent inputs, different neurotransmitters, and neuropeptides are considered as either causing a sleep-dependent withdrawal of excitation from motoneurons or mediating an active, sleep-related inhibition of motoneurons. Information about the neurochemistry of state-dependent control of upper airway muscles accumulated to date reveals fundamental principles and may help understand and treat OSA. © 2016 American Physiological Society. Compr Physiol 6:1801-1850, 2016.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Kanjhan R, Fogarty MJ, Noakes PG, Bellingham MC. Developmental changes in the morphology of mouse hypoglossal motor neurons. Brain Struct Funct 2016; 221:3755-86. [PMID: 26476929 PMCID: PMC5009180 DOI: 10.1007/s00429-015-1130-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/03/2015] [Indexed: 12/19/2022]
Abstract
Hypoglossal motor neurons (XII MNs) innervate tongue muscles important in breathing, suckling and vocalization. Morphological properties of 103 XII MNs were studied using Neurobiotin™ filling in transverse brainstem slices from C57/Bl6 mice (n = 34) from embryonic day (E) 17 to postnatal day (P) 28. XII MNs from areas thought to innervate different tongue muscles showed similar morphology in most, but not all, features. Morphological properties of XII MNs were established prior to birth, not differing between E17-18 and P0. MN somatic volume gradually increased for the first 2 weeks post-birth. The complexity of dendritic branching and dendrite length of XII MNs increased throughout development (E17-P28). MNs in the ventromedial XII motor nucleus, likely to innervate the genioglossus, frequently (42 %) had dendrites crossing to the contralateral side at all ages, but their number declined with postnatal development. Unexpectedly, putative dendritic spines were found in all XII MNs at all ages, and were primarily localized to XII MN somata and primary dendrites at E18-P4, increased in distal dendrites by P5-P8, and were later predominantly found in distal dendrites. Dye-coupling between XII MNs was common from E18 to P7, but declined strongly with maturation after P7. Axon collaterals were found in 20 % (6 of 28) of XII MNs with filled axons; collaterals terminated widely outside and, in one case, within the XII motor nucleus. These results reveal new morphological features of mouse XII MNs, and suggest that dendritic projection patterns, spine density and distribution, and dye-coupling patterns show specific developmental changes in mice.
Collapse
Affiliation(s)
- Refik Kanjhan
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Matthew J Fogarty
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peter G Noakes
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Mark C Bellingham
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
13
|
Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease. Neural Plast 2015; 2016:3423267. [PMID: 26843990 PMCID: PMC4710938 DOI: 10.1155/2016/3423267] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 09/10/2015] [Accepted: 09/21/2015] [Indexed: 01/16/2023] Open
Abstract
Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions.
Collapse
|
14
|
Transcriptional regulation of mouse hypoglossal motor neuron somatotopic map formation. Brain Struct Funct 2015; 221:4187-4202. [DOI: 10.1007/s00429-015-1160-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/24/2015] [Indexed: 11/25/2022]
|
15
|
Kubin L, Jordan AS, Nicholas CL, Cori JM, Semmler JG, Trinder J. Crossed motor innervation of the base of human tongue. J Neurophysiol 2015; 113:3499-510. [PMID: 25855691 DOI: 10.1152/jn.00051.2015] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/06/2015] [Indexed: 12/15/2022] Open
Abstract
Muscle fibers of the genioglossus (GG) form the bulk of the muscle mass at the base of the tongue. The motor control of the tongue is critical for vocalization, feeding, and breathing. Our goal was to assess the patterns of motor innervation of GG single motor units (SMUs) in humans. Simultaneous monopolar recordings were obtained from four sites in the base of the tongue bilaterally at two antero-posterior levels from 16 resting, awake, healthy adult males, who wore a face mask with airway pressure and airflow sensors. We analyzed 69 data segments in which at least one lead contained large action potentials generated by an SMU. Such potentials served as triggers for spike-triggered averaging (STA) of signals recorded from the other three sites. Spontaneous activity of the SMUs was classified as inspiratory modulated, expiratory modulated, or tonic. Consistent with the antero-posterior orientation of GG fibers, 44 STAs (77%) recorded ipsilateral to the trigger yielded sharp action potentials with a median amplitude of 52 μV [interquartile range (IQR): 25-190] that were time shifted relative to the trigger by about 1 ms. Notably, 48% of recordings on the side opposite to the trigger also yielded sharp action potentials. Of those, 17 (29%) had a median amplitude of 63 μV (IQR: 39-96), and most were generated by tonic SMUs. Thus a considerable proportion of GG muscle fibers receive a crossed motor innervation. Crossed innervation may help ensure symmetry and stability of tongue position and movements under normal conditions and following injury or degenerative changes affecting the tongue.
Collapse
Affiliation(s)
- Leszek Kubin
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia;
| | - Amy S Jordan
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | | | - Jennifer M Cori
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| | - John G Semmler
- School of Medical Sciences, University of Adelaide, Adelaide, Australia
| | - John Trinder
- School of Psychological Sciences, University of Melbourne, Melbourne, Australia
| |
Collapse
|
16
|
Meadows PM, Whitehead MC, Zaidi FN. Effects of targeted activation of tongue muscles on oropharyngeal patency in the rat. J Neurol Sci 2014; 346:178-93. [PMID: 25190291 DOI: 10.1016/j.jns.2014.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 06/24/2014] [Accepted: 08/16/2014] [Indexed: 02/01/2023]
Abstract
Laboratory rats were acutely implanted with an electrode array composed of eight independently controllable contacts applied to ventral and dorsal aspects of the left and right hypoglossal nerves (HGNs) and their branches. Bipolar intramuscular electromyographic (EMG) electrodes were implanted into the left and right genioglossus, hyoglossus and styloglossus muscles to identify which muscles were activated during stimulation via the contacts. Elicited movements, including changes in the position of the tongue and in the size and the shape of the airway, were documented video-graphically through a surgery microscope and an endoscope. Constant current electrical stimulation activated various combinations of electrode contacts and the stimulation patterns were correlated with corresponding oral movements, airway sizes, and EMG activities. Results demonstrate that graded responses and differential activation of the various tongue muscles are achievable by stimulation of specific contacts in the electrode array. These effects are interpreted to result from the targeted activation of regions of the nerve lying under and between the electrodes. Further testing established that the muscle responses elicited by unilateral electrical stimulation with the present approach can be smoothly graded, that the muscle responses resulted in opening of the airway and could be reliably maintained for long durations.
Collapse
|
17
|
Kubin L. Sleep-wake control of the upper airway by noradrenergic neurons, with and without intermittent hypoxia. PROGRESS IN BRAIN RESEARCH 2014; 209:255-74. [PMID: 24746052 PMCID: PMC4498577 DOI: 10.1016/b978-0-444-63274-6.00013-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hypoglossal (XII) motoneurons innervate muscles of the tongue whose tonic and inspiratory modulated activity protects the upper airway from collapse in patients affected by the obstructive sleep apnea (OSA) syndrome. Both norepinephrine and serotonin provide wakefulness-related excitatory drives that maintain activity in XII motoneurons, with the noradrenergic system playing a particularly prominent role in rats. When noradrenergic and serotonergic drives are antagonized, no further decline of XII nerve activity occurs during pharmacologically induced rapid eye movement (REM) sleep-like state. This is the best evidence to date that, at least in this model, the entire REM sleep-related decline of upper airway muscle tone results from withdrawal of these two excitatory inputs. A major component of noradrenergic input to XII motoneurons originates from pontine noradrenergic neurons that have state-dependent patterns of activity, maximal during wakefulness, and minimal, or absent during REM sleep. Our data suggest that not all ventrolateral medullary catecholaminergic neurons follow this pattern, with adrenergic C1 neurons probably increasing their activity during REM sleep. When rats are subjected to chronic-intermittent hypoxia, noradrenergic drive to XII motoneurons is increased by mechanisms that include sprouting of noradrenergic terminals in the XII nucleus, and increased expression of α1-adrenoceptors; an outcome that may underlie the elevated baseline activity of upper airway muscles during wakefulness in OSA patients.
Collapse
Affiliation(s)
- Leszek Kubin
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
18
|
Stettner GM, Kubin L, Volgin DV. Loss of motoneurons in the ventral compartment of the rat hypoglossal nucleus following early postnatal exposure to alcohol. J Chem Neuroanat 2013; 52:87-94. [PMID: 23932955 DOI: 10.1016/j.jchemneu.2013.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 12/17/2022]
Abstract
Perinatal alcohol exposure (AE) has multiple detrimental effects on cognitive and various behavioral outcomes, but little is known about its impact on the autonomic functions. In a rat model of fetal alcohol spectrum disorders (FASD), we investigated neurochemical and neuroanatomical alterations in two brainstem nuclei, the hypoglossal nucleus (XIIn) and the dorsal nucleus of the vagus nerve (Xdn). One group of male Sprague-Dawley rats (n=6) received 2.625 g/kg ethanol intragastrically twice daily on postnatal days (PD) 4-9, a period equivalent to the third trimester of human pregnancy, and another group (n=6) was sham-intubated. On PD 18-19, the rats were perfused and medullary sections were immunohistochemically processed for choline acetyltransferase (ChAT) or two aminergic receptors that mediate excitatory drive to motoneurons, α₁-adrenergic (α₁-R) and serotonin 2A (5-HT(2A)-R), and c-Fos. Based on ChAT labeling, AE rats had reduced numbers of motoneurons in the ventral XIIn (XIIn-v; 35.4±1.3 motoneurons per side and section vs. 40.0±1.2, p=0.022), but not in the dorsal XIIn or Xdn. Consistent with ChAT data, both the numbers of α₁-R-labeled motoneurons in the XIIn-v and the area of the XIIn-v measured using 5-HT(2A)-R staining were significantly smaller in AE rats (19.7±1.5 vs. 25.0±1.4, p=0.031 and 0.063 mm² ±0.002 vs. 0.074±0.002, p=0.002, respectively). Concurrently, both 5-HT(2A)-R and c-Fos staining tended to be higher in AE rats, suggesting an increased activation. Thus, postnatal AE causes motoneuronal loss in the XIIn-v. This may compromise upper airway control and contribute to increased risk of upper airway obstructions and sudden infant death in FASD victims.
Collapse
Affiliation(s)
- Georg M Stettner
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | |
Collapse
|
19
|
Effects of medullary lesions on conditional pacemaker activity of neonatal rat hypoglossal motoneurons in vitro. Neurosci Res 2013; 76:42-51. [PMID: 23542043 DOI: 10.1016/j.neures.2013.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/28/2013] [Accepted: 03/17/2013] [Indexed: 11/21/2022]
Abstract
N-methyl-D-aspartate (NMDA) has been demonstrated to induce rhythmic activity in various neurons, including hypoglossal motoneurons (XIIms) and converts them to conditional pacemakers. Using whole-cell patch clamp recording in a slice preparation from neonatal rats, we confirmed that some XIIms act as conditional pacemakers, with TTX-insensitivity and a burst period that is voltage-dependent during NMDA application. Other XIIms in this study only fired tonically with NMDA application. Effects of medullary structures on conditional pacemaker XIIms were assessed using lesioned preparations. As a result, NMDA-induced rhythm (NIR) in the XIIm was observed with ventral lesions (excluding inspiratory neurons) and with dorsal lesions (excluding the swallowing center located in the nucleus of the solitary tract). The NIR was also observed with lateral lesions, but with a significantly decreased burst period. These data suggest that NMDA receptor activation selects a subset of XIIms and changes them to pacemakers whose properties can be altered by their excitability. The data also demonstrate that structures fundamental to the NIR are located within the area near the XII nucleus, indicating that the NIR is distinct from inspiratory and swallowing activities. The lateral medulla is considered to be a source of modulation of the excitability of XIIms.
Collapse
|
20
|
Fenik VB, Fung SJ, Lim V, Chase MH. Quantitative analysis of the excitability of hypoglossal motoneurons during natural sleep in the rat. J Neurosci Methods 2012; 212:56-63. [PMID: 23017982 DOI: 10.1016/j.jneumeth.2012.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 07/12/2012] [Accepted: 09/06/2012] [Indexed: 11/30/2022]
Abstract
We describe a novel approach to assess the excitability of hypoglossal motoneurons in rats during naturally occurring states of sleep and wakefulness. Adult rats were surgically prepared with permanently placed electrodes to record the EEG, EOG and neck EMG. A stimulating/recording miniature tripolar cuff electrode was implanted around the intact hypoglossal nerve and a head-restraining device was bonded to the calvarium. After a period of adaptation to head-restraint, the animals did not exhibit any sign of discomfort and readily transitioned between the states of wakefulness, NREM and REM sleep. There was no spontaneous respiratory or tonic activity present in the hypoglossal nerve during sleep or wakefulness. Hypoglossal motoneurons were activated by electrical stimulation of the hypoglossal nerve (antidromically) or by microstimulation directly applied to the hypoglossal nucleus. Microstimulation of hypoglossal motoneurons evoked compound action potentials in the ipsilateral hypoglossal nerve. The magnitude of their integrals tended to be higher during wakefulness (112.6% ± 15; standard deviation) and were strongly depressed during REM sleep (24.7% ± 3.4), compared to the integral magnitude during NREM sleep. Lidocaine, which was delivered using pressure microinjection to the microstimulation site, verified that the responses evoked in hypoglossal nerve can be affected pharmacologically. We conclude that this animal model can be utilized to study the neurotransmitter mechanisms that control the excitability of hypoglossal motoneurons during naturally occurring states of sleep and wakefulness.
Collapse
Affiliation(s)
- Victor B Fenik
- VA Grater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | | | | | | |
Collapse
|
21
|
Behan M, Moeser AE, Thomas CF, Russell JA, Wang H, Leverson GE, Connor NP. The effect of tongue exercise on serotonergic input to the hypoglossal nucleus in young and old rats. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2012; 55:919-29. [PMID: 22232395 PMCID: PMC3326185 DOI: 10.1044/1092-4388(2011/11-0091)] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
PURPOSE Breathing and swallowing problems affect elderly people and may be related to age-associated tongue dysfunction. Hypoglossal motoneurons that innervate the tongue receive a robust, excitatory serotonergic (5HT) input and may be affected by aging. We used a rat model of aging and progressive resistance tongue exercise to determine whether age-related alterations in 5HT inputs to the hypoglossal nucleus can be modified. We hypothesized that tongue forces would increase with exercise, 5HT input to the tongue would decrease with age, and tongue exercise would augment 5HT input to the hypoglossal nucleus. METHOD Young (9-10 months), middle-aged (24-25 months), and old (32-33 months) male F344/BN rats received tongue exercise for 8 weeks. Immunoreactivity for 5HT was measured in digital images of sections through the hypoglossal nucleus using ImageJ software. RESULTS Tongue exercise resulted in increased maximum tongue forces at all ages. There was a statistically significant increase in 5HT immunoreactivity in the hypoglossal nucleus in exercised, young rats but only in the caudal third of the nucleus and primarily in the ventral half. CONCLUSION Specificity found in serotonergic input following exercise may reflect the topographic organization of motoneurons in the hypoglossal nucleus and the tongue muscles engaged in the exercise paradigm.
Collapse
|
22
|
Numata JM, van Brederode JFM, Berger AJ. Lack of an endogenous GABAA receptor-mediated tonic current in hypoglossal motoneurons. J Physiol 2012; 590:2965-76. [PMID: 22495589 DOI: 10.1113/jphysiol.2012.231944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tonic GABAA receptor-mediated current is an important modulator of neuronal excitability, but it is not known if it is present in mammalian motoneurons. To address this question studies were performed using whole-cell patch-clamp recordings from mouse hypoglossal motoneurons (HMs) in an in vitro slice preparation. In the presence of blockers of glutamatergic and glycinergic receptor-mediated transmission application of SR-95531 or bicuculline, while abolishing GABAA receptor-mediated phasic synaptic currents, did not reveal a tonic GABAA receptor-mediated current. Additionally, blockade of both GAT-1 and GAT-3 GABA transporters did not unmask this tonic current. In contrast, application of exogenous GABA (1 to 15 μm) resulted in a tonic GABAergic current that was observed when both GAT-1 and GAT-3 transporters were simultaneously blocked, and this current was greater than the sum of the current observed when each transporter was blocked individually. We also investigated which GABAA receptor subunits may be responsible for the current. Application of the δ subunit GABAA receptor agonist THIP resulted in a tonic GABAA receptor current. Application of the δ subunit modulator THDOC resulted in an enhanced tonic current. Application of the α5 subunit GABAA receptor inverse agonist L-655,708 did not modulate the current. In conclusion, these data show that HMs have tonic GABAA receptor-mediated current. The level of GABA in the vicinity of GABAA receptors responsible for this current is regulated by GABA transporters. In HMs a tonic current in response to exogenous GABA probably arises from activation of GABAA receptors containing δ subunits.
Collapse
Affiliation(s)
- J M Numata
- University of Washington, School of Medicine, Department of Physiology & Biophysics, Box 357290, Seattle, WA 98195-7290, USA
| | | | | |
Collapse
|
23
|
Berger AJ. Development of synaptic transmission to respiratory motoneurons. Respir Physiol Neurobiol 2011; 179:34-42. [PMID: 21382524 DOI: 10.1016/j.resp.2011.03.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 02/28/2011] [Accepted: 03/01/2011] [Indexed: 11/26/2022]
Abstract
Respiratory motoneurons provide the exclusive drive to respiratory muscles and therefore are a key relay between brainstem neural circuits that generate respiratory rhythm and respiratory muscles that control moment of gases into and out of the airways and lungs. This review is focused on postnatal development of fast ionotropic synaptic transmission to respiratory motoneurons, with a focus on hypoglossal motoneurons (HMs). Glutamatergic synaptic transmission to HMs involves activation of both non-NMDA and NMDA receptors and during the postnatal period co-activation of these receptors located at the same synapse may occur. Further, the relative role of each receptor type in inspiratory-phase motoneuron depolarization is dependent on the type of preparation used (in vitro versus in vivo; neonatal versus adult). Respiratory motoneurons receive both glycinergic and GABAergic inhibitory synaptic inputs. During inspiration phrenic and HMs receive concurrent excitatory and inhibitory synaptic inputs. During postnatal development in HMs GABAergic and glycinergic synaptic inputs have slow kinetics and are depolarizing and with postnatal development they become faster and hyperpolarizing. Additionally shunting inhibition may play an important role in synaptic processing by respiratory motoneurons.
Collapse
Affiliation(s)
- Albert J Berger
- Department of Physiology and Biophysics, School of Medicine, University of Washington, Box 357290, Seattle, WA 98195, USA.
| |
Collapse
|
24
|
Laine CM, Bailey EF. Common synaptic input to the human hypoglossal motor nucleus. J Neurophysiol 2010; 105:380-7. [PMID: 21084684 DOI: 10.1152/jn.00766.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The tongue plays a key role in various volitional and automatic functions such as swallowing, maintenance of airway patency, and speech. Precisely how hypoglossal motor neurons, which control the tongue, receive and process their often concurrent input drives is a subject of ongoing research. We investigated common synaptic input to the hypoglossal motor nucleus by measuring the coordination of spike timing, firing rate, and oscillatory activity across motor units recorded from unilateral (i.e., within a belly) or bilateral (i.e., across both bellies) locations within the genioglossus (GG), the primary protruder muscle of the tongue. Simultaneously recorded pairs of motor units were obtained from 14 healthy adult volunteers using tungsten microelectrodes inserted percutaneously into the GG while the subjects were engaged in volitional tongue protrusion or rest breathing. Bilateral motor unit pairs showed concurrent low frequency alterations in firing rate (common drive) with no significant difference between tasks. Unilateral motor unit pairs showed significantly stronger common drive in the protrusion task compared with rest breathing, as well as higher indices of synchronous spiking (short-term synchrony). Common oscillatory input was assessed using coherence analysis and was observed in all conditions for frequencies up to ∼ 5 Hz. Coherence at frequencies up to ∼ 10 Hz was strongest in motor unit pairs recorded from the same GG belly in tongue protrusion. Taken together, our results suggest that cortical drive increases motor unit coordination within but not across GG bellies, while input drive during rest breathing is distributed uniformly to both bellies of the muscle.
Collapse
Affiliation(s)
- Christopher M Laine
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ 85721-0093, USA
| | | |
Collapse
|
25
|
van Brederode JFM, Yanagawa Y, Berger AJ. GAD67-GFP+ neurons in the Nucleus of Roller: a possible source of inhibitory input to hypoglossal motoneurons. I. Morphology and firing properties. J Neurophysiol 2010; 105:235-48. [PMID: 21047932 DOI: 10.1152/jn.00493.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study we examined the electrophysiological and morphological properties of inhibitory neurons located just ventrolateral to the hypoglossal motor (XII) nucleus in the Nucleus of Roller (NR). In vitro experiments were performed on medullary slices derived from postnatal day 5 (P5) to P15 GAD67-GFP knock-in mouse pups. on cell recordings from GFP+ cells in NR in rhythmic slices revealed that these neurons are spontaneously active, although their spiking activity does not exhibit inspiratory phase modulation. Morphologically, GFP+ cells were bi- or multipolar cells with small- to medium-sized cell bodies and small dendritic trees that were often oriented parallel to the border of the XII nucleus. GFP+ cells were classified as either tonic or phasic based on their firing responses to depolarizing step current stimulation in whole cell current clamp. Tonic GFP+ cells fired a regular train of action potentials (APs) throughout the duration of the pulse and often showed rebound spikes after a hyperpolarizing step. In contrast, phasic GFP+ neurons did not fire throughout the depolarizing current step but instead fired fewer than four APs at the onset of the pulse or fired multiple APs, but only after a marked delay. Phasic cells had a significantly smaller input resistance and shorter membrane time constant than tonic GFP+ cells. In addition, phasic GFP+ cells differed from tonic cells in the shape and time course of their spike afterpotentials, the minimum firing frequency at threshold current amplitude, and the slope of their current-frequency relationship. These results suggest that GABAergic neurons in the NR are morphologically and electrophysiologically heterogeneous cells that could provide tonic inhibitory synaptic input to HMs.
Collapse
Affiliation(s)
- J F M van Brederode
- Department of Physiology and Biophysics, University of Washington, 1705 NE Pacific St., HSB G424, Box 357290, Seattle, WA 98195-7290, USA.
| | | | | |
Collapse
|
26
|
Rukhadze I, Fenik VB, Benincasa KE, Price A, Kubin L. Chronic intermittent hypoxia alters density of aminergic terminals and receptors in the hypoglossal motor nucleus. Am J Respir Crit Care Med 2010; 182:1321-9. [PMID: 20622040 DOI: 10.1164/rccm.200912-1884oc] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Patients with obstructive sleep apnea (OSA) adapt to the anatomical vulnerability of their upper airway by generating increased activity in upper airway-dilating muscles during wakefulness. Norepinephrine (NE) and serotonin (5-HT) mediate, through α₁-adrenergic and 5-HT₂A receptors, a wake-related excitatory drive to upper airway motoneurons. In patients with OSA, this drive is necessary to maintain their upper airway open. We tested whether chronic intermittent hypoxia (CIH), a major pathogenic factor of OSA, affects aminergic innervation of XII motoneurons that innervate tongue-protruding muscles in a manner that could alter their airway-dilatory action. OBJECTIVES To determine the impact of CIH on neurochemical markers of NE and 5-HT innervation of the XII nucleus. METHODS NE and 5-HT terminal varicosities and α₁-adrenergic and 5-HT₂A receptors were immunohistochemically visualized and quantified in the XII nucleus in adult rats exposed to CIH or room air exchanges for 10 h/d for 34 to 40 days. MEASUREMENTS AND MAIN RESULTS CIH-exposed rats had approximately 40% higher density of NE terminals and approximately 20% higher density of 5-HT terminals in the ventromedial quadrant of the XII nucleus, the region that controls tongue protruder muscles, than sham-treated rats. XII motoneurons expressing α₁-adrenoceptors were also approximately 10% more numerous in CIH rats, whereas 5-HT₂A receptor density tended to be lower in CIH rats. CONCLUSIONS CIH-elicited increase of NE and 5-HT terminal density and increased expression of α₁-adrenoceptors in the XII nucleus may lead to augmentation of endogenous aminergic excitatory drives to XII motoneurons, thereby contributing to the increased upper airway motor tone in patients with OSA.
Collapse
Affiliation(s)
- Irma Rukhadze
- Department of Animal Biology, University of Pennsylvania, Philadelphia, 19104-6046, USA.
| | | | | | | | | |
Collapse
|
27
|
Tarras-Wahlberg S, Rekling J. Hypoglossal motoneurons in newborn mice receive respiratory drive from both sides of the medulla. Neuroscience 2009; 161:259-68. [DOI: 10.1016/j.neuroscience.2009.02.064] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Revised: 02/26/2009] [Accepted: 02/27/2009] [Indexed: 11/27/2022]
|
28
|
Abstract
Abstract
The development of strategies to rehabilitate patients with dysphagia depends on an understanding of both the underlying neuroscientific principles that control normal swallowing and how a damaged central nervous system can respond. Strategies can incorporate the sensory and motor systems, as well as use the plasticity of the cortex and neuromuscular system. Treating dysphagia could involve stimulating the sensory system more often through the two primary nerves involved with swallowing, the glossopharyngeal and superior laryngeal nerves, as well as by enhancing the trigeminal sensory input. Enhancement of the motor system can occur by using muscles in special exercises or by electrically stimulating the target muscles directly. The cortex can be modified by increased sensory input, which will adapt the sensorimotor cortex. In addition, techniques of directly stimulating the cortex hold promise for rehabilitation.
Collapse
Affiliation(s)
- Arthur J. Miller
- Division of Orthodontics, Department of Orofacial Sciences, School of Dentistry, University of California at San FranciscoSan Francisco, CA
| |
Collapse
|
29
|
Nasse J, Terman D, Venugopal S, Hermann G, Rogers R, Travers JB. Local circuit input to the medullary reticular formation from the rostral nucleus of the solitary tract. Am J Physiol Regul Integr Comp Physiol 2008; 295:R1391-408. [PMID: 18716034 DOI: 10.1152/ajpregu.90457.2008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The intermediate reticular formation (IRt) subjacent to the rostral (gustatory) nucleus of the solitary tract (rNST) receives projections from the rNST and appears essential to the expression of taste-elicited ingestion and rejection responses. We used whole cell patch-clamp recording and calcium imaging to characterize responses from an identified population of prehypoglossal neurons in the IRt to electrical stimulation of the rNST in a neonatal rat pup slice preparation. The calcium imaging studies indicated that IRt neurons could be activated by rNST stimulation and that many neurons were under tonic inhibition. Whole cell patch-clamp recording revealed mono- and polysynaptic projections from the rNST to identified prehypoglossal neurons. The projection was primarily excitatory and glutamatergic; however, there were some inhibitory GABAergic projections, and many neurons received excitatory and inhibitory inputs. There was also evidence of disinhibition. Overall, bath application of GABA(A) antagonists increased the amplitude of excitatory currents, and, in several neurons, stimulation of the rNST systematically decreased inhibitory currents. We have hypothesized that the transition from licks to gapes by natural stimuli, such as quinine monohydrochloride, could occur via such disinhibition. We present an updated dynamic model that summarizes the complex synaptic interface between the rNST and the IRt and demonstrates how inhibition could contribute to the transition from ingestion to rejection.
Collapse
Affiliation(s)
- J Nasse
- College of Dentistry, Ohio State Univ., 305 W. 12th Ave., Columbus, OH 43201, USA
| | | | | | | | | | | |
Collapse
|
30
|
Brandes IF, Zuperku EJ, Dean C, Hopp FA, Jakovcevic D, Stuth EAE. Retrograde labeling reveals extensive distribution of genioglossal motoneurons possessing 5-HT2A receptors throughout the hypoglossal nucleus of adult dogs. Brain Res 2006; 1132:110-9. [PMID: 17188659 DOI: 10.1016/j.brainres.2006.10.099] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2006] [Revised: 10/25/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
Inspiratory hypoglossal motoneurons (IHMNs) innervate the muscles of the tongue and play an important role in maintaining upper airway patency. However, this may be reduced during sleep and by sedatives, potent analgesics, and volatile anesthetics. The genioglossal (GG) muscle is the main protruder and depressor muscle of the tongue and contributes to upper airway patency during inspiration. In vitro data suggest that serotonin (5-hydroxytryptamine, 5-HT), via the 5-HT(2A) receptor (5-HT(2A)R) subtype, plays a key role in controlling the excitability of IHMNs. The distribution of GG motoneurons (GGMNs) within the hypoglossal (XII) nucleus has not been studied in the adult dog. Further, it is uncertain whether the 5-HT(2A)R is located on GGMNs in the adult dog. We therefore used the cholera toxin B (CTB) subunit as a retrograde tracer to map the location of GGMNs in combination with immunofluorescent labeling to determine the presence and colocalization of 5-HT(2A)R within the XII nucleus in adult mongrel dogs. Injection of CTB into the GG muscle resulted in retrogradely labeled cells in a compact column throughout the XII nucleus, extending from 0.75 mm caudal to 3.45 mm rostral to the obex. Fluorescence immunohistochemistry revealed extensive 5-HT(2A)R labeling on CTB-labeled GGMNs. Identification of the 5-HT(2A)R on GGMNs in the XII nucleus of the adult dog supports in vitro data and suggests a physiological role for this receptor subtype in controlling the excitability of GGMNs, which contribute to the maintenance of upper airway patency.
Collapse
Affiliation(s)
- Ivo F Brandes
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | | | | | |
Collapse
|
31
|
Rukhadze I, Kubin L. Differential pontomedullary catecholaminergic projections to hypoglossal motor nucleus and viscerosensory nucleus of the solitary tract. J Chem Neuroanat 2006; 33:23-33. [PMID: 17134870 DOI: 10.1016/j.jchemneu.2006.10.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2006] [Revised: 10/21/2006] [Accepted: 10/21/2006] [Indexed: 11/28/2022]
Abstract
In individuals with a narrow or collapsible upper airway, sleep-related hypotonia of upper airway muscles leads to recurrent airway obstructions. Brainstem noradrenergic neurons reduce their activity during slow-wave sleep and become silent during rapid eye movement sleep; this may cause state-dependent changes in the motor output and reflexes. The loss of noradrenergic excitation is a major cause of sleep-related depression of activity in upper airway muscles innervated by the hypoglossal nerve. Our goal was to identify and compare the pontomedullary sources of catecholaminergic (CA) projections to the hypoglossal motor nucleus (Mo12) and the adjacent viscerosensory nucleus of the solitary tract (NTS). In 10 Sprague-Dawley rats, retrograde tracers, Fluoro-Gold or B sub-unit of cholera toxin, were microinjected (5-20nl) into the Mo12, NTS, or both nuclei. Tyrosine hydroxylase (TH) was used as a marker for CA neurons. Following tracer injections into the Mo12, retrogradely labeled and TH-positive neurons were found in the A1/C1 (18.5%), A5 (43.5%), A7 (15.0%), and sub-coeruleus (21.0%) regions, and locus coeruleus (1.7%). In contrast, following injections into the NTS, these proportions were: 48.0, 46.5, 0.2, 0.9, and 4.3%, respectively. The projections to both nuclei were bilateral, with a 3:2 ipsilateral predominance. In four animals with one tracer injected into the Mo12 and the other in NTS, TH-positive cells containing both tracers were found only in the A5 region. Thus, the pontomedullary sources of CA projections to the Mo12 and NTS differ, with only A1/C1 and A5 groups having significant projections to these two functionally distinct targets.
Collapse
Affiliation(s)
- Irma Rukhadze
- Department of Animal Biology, School of Veterinary Medicine, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, 3800 Spruce Street, Philadelphia, PA 19104-6046, USA.
| | | |
Collapse
|
32
|
Bailey EF, Huang YH, Fregosi RF. Anatomic consequences of intrinsic tongue muscle activation. J Appl Physiol (1985) 2006; 101:1377-85. [PMID: 16825524 DOI: 10.1152/japplphysiol.00379.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We recently showed respiratory-related coactivation of both extrinsic and intrinsic tongue muscles in the rat. Here, we test the hypothesis that intrinsic tongue muscles contribute importantly to changes in velopharyngeal airway volume. Spontaneously breathing anesthetized rats were placed in a MRI scanner. A catheter was placed in the hypopharynx and connected to a pressure source. Axial and sagittal images of the velopharyngeal airway were obtained, and the volume of each image was computed at airway pressures ranging from +5.0 to −5.0 cmH2O. We obtained images in the hypoglossal intact animal (i.e., coactivation of intrinsic and extrinsic tongue muscles) and after selective denervation of the intrinsic tongue muscles, with and without electrical stimulation. Denervation of the intrinsic tongue muscles reduced velopharyngeal airway volume at atmospheric and positive airway pressures. Electrical stimulation of the intact hypoglossal nerve increased velopharyngeal airway volume; however, when stimulation was repeated after selective denervation of the intrinsic tongue muscles, the increase in velopharyngeal airway volume was significantly attenuated. These findings support our working hypothesis that intrinsic tongue muscles play a critical role in modulating upper airway patency.
Collapse
Affiliation(s)
- E Fiona Bailey
- Department of Physiology, College of Medicine, The University of Arizona, Tucson, AZ 85721-0093, USA.
| | | | | |
Collapse
|
33
|
Fenik VB, Davies RO, Kubin L. Noradrenergic, serotonergic and GABAergic antagonists injected together into the XII nucleus abolish the REM sleep-like depression of hypoglossal motoneuronal activity. J Sleep Res 2005; 14:419-29. [PMID: 16364143 DOI: 10.1111/j.1365-2869.2005.00461.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, we reported that the suppression of hypoglossal (XII) motoneuronal activity that occurs during the carbachol-induced, rapid eye movement (REM) sleep-like state is abolished by the microinjection into the XII nucleus of a drug mix that antagonizes aminergic excitation and amino acid-mediated inhibition (prazosin, methysergide, bicuculline and strychnine). We now assess the role of glycinergic inhibition in the depression of XII motoneuronal activity and estimate the distribution of the antagonists around the XII nucleus at the time when they are effective. Towards the first goal, REM sleep-like episodes were elicited in urethane-anesthetized rats by 10 nl carbachol microinjections into the dorsomedial pons prior to, and at different times after, combined microinjections into the XII nucleus of only three antagonists (strychnine omitted). As in our previous study, the carbachol-induced depression of XII activity was abolished during tests performed 42-88 min after the antagonists, whereas other characteristic effects of carbachol (appearance of hippocampal theta, cortical activation, decreased respiratory rate) remained intact. The depressant effect of carbachol on XII motoneurons partially recovered after 2.5 h. Towards the second goal, using a drug diffusion model, we determined that the tissue concentrations of the antagonists at the time when they were effective were within the range of their selective actions, and the drugs acted within 0.9-1.4 mm from the injection sites, thus within a space containing XII motoneurons and their dendrites. We conclude that antagonism of alpha-adrenergic, serotonergic, and GABA(A) receptors are sufficient to abolish the REM sleep-like atonia of XII motoneurons.
Collapse
Affiliation(s)
- Victor B Fenik
- Department of Animal Biology, School of Veterinary Medicine and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, Philadelphia, PA 19104-6046, USA.
| | | | | |
Collapse
|
34
|
Fenik VB, Davies RO, Kubin L. REM sleep-like atonia of hypoglossal (XII) motoneurons is caused by loss of noradrenergic and serotonergic inputs. Am J Respir Crit Care Med 2005; 172:1322-30. [PMID: 16100007 PMCID: PMC5222563 DOI: 10.1164/rccm.200412-1750oc] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Studies of hypoglossal (XII) motoneurons that innervate the genioglossus muscle, an upper airway dilator, suggested that the suppression of upper airway motor tone during REM sleep is caused by withdrawal of excitation mediated by norepinephrine and serotonin. OBJECTIVES Our objectives were to determine whether antagonism of aminergic receptors located in the XII nucleus region can abolish the REM sleep-like atonia of XII motoneurons, and whether both serotonergic and noradrenergic antagonists are required to achieve this effect. METHODS REM sleep-like episodes were elicited in anesthetized rats by pontine carbachol injections before and at various times after microinjection of prazosin and methysergide combined, or of only one of the drugs, into the XII nucleus. MEASUREMENTS AND MAIN RESULTS Spontaneous XII nerve activity was significantly reduced, by 35 to 81%, by each antagonist alone and in combination, indicating that XII motoneurons were under both noradrenergic and serotonergic endogenous excitatory drives. During the 32 to 81 min after microinjections of both antagonists, pontine carbachol caused no depression of XII nerve activity, whereas other characteristic effects (activation of the hippocampal and cortical EEG, and slowing of the respiratory rate) remained intact. A partial recovery of the depressant effect of carbachol then occurred parallel to the recovery of spontaneous XII nerve activity from the depressant effect of the antagonists. Microinjections of either antagonist alone did not eliminate the depressant effect of carbachol. CONCLUSIONS The REM sleep-like depression of XII motoneuronal activity induced by pontine carbachol can be fully accounted for by the combined withdrawal of noradrenergic and serotonergic effects on XII motoneurons.
Collapse
Affiliation(s)
- Victor B Fenik
- Department of Animal Biology, 209E/VET, School of Veterinary Medicine, University of Pennsylvania, 3800 Spruce Street, Philadelphia, Pennsylvania 19104-6046, USA
| | | | | |
Collapse
|
35
|
Tseng CY, Wei IH, Chang HM, Lue JH, Wen CY, Shieh JY. Ultrastructural Identification of a Sympathetic Component in the Hypoglossal Nerve of Hamsters Using Experimental Degeneration and Horseradish Peroxidase Methods. Cells Tissues Organs 2005; 180:117-25. [PMID: 16113540 DOI: 10.1159/000086752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2005] [Indexed: 11/19/2022] Open
Abstract
We employed experimental degeneration, tract-tracing with wheatgerm agglutinin conjugated with horseradish peroxidase (WGA-HRP) and electron microscopy to explore the postganglionic sympathetic fibers in the hypoglossal nerve of hamsters. Quantitative results of normal untreated animals at the electron microscopic level showed the existence of unmyelinated fibers, which made up about 20% of the total fibers in the nerve, being more numerous on the left side. The nerve fibers were preferentially distributed at the periphery of the nerve. Following superior cervical ganglionectomy, most of the unmyelinated fibers underwent degenerative changes. Tract-tracing studies showed that some of the unmyelinated fibers were labeled by WGA-HRP injected into the superior cervical ganglion (SCG). It is suggested that the unmyelinated fibers represent the postganglionic sympathetic fibers originated from the SCG.
Collapse
Affiliation(s)
- Chi-Yu Tseng
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | | | | | | | | | | |
Collapse
|
36
|
Gestreau C, Dutschmann M, Obled S, Bianchi AL. Activation of XII motoneurons and premotor neurons during various oropharyngeal behaviors. Respir Physiol Neurobiol 2005; 147:159-76. [PMID: 15919245 DOI: 10.1016/j.resp.2005.03.015] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2004] [Revised: 03/11/2005] [Accepted: 03/13/2005] [Indexed: 12/11/2022]
Abstract
Neural control of tongue muscles plays a crucial role in a broad range of oropharyngeal behaviors. Tongue movements must be rapidly and accurately adjusted in response to the demands of multiple complex motor tasks including licking/mastication, swallowing, vocalization, breathing and protective reflexes such as coughing. Yet, central mechanisms responsible for motor and premotor control of hypoglossal (XII) activity during these behaviors are still largely unknown. The aim of this article is to review the functional organization of the XII motor nucleus with particular emphasis on breathing, coughing and swallowing. Anatomical localization of XII premotor neurons is also considered. We discuss results concerned with multifunctional activity of medullary and pontine populations of XII premotor neurons, representing a single network that can be reconfigured to produce different oromotor response patterns. In this context, we introduce new data on swallowing-related activity of XII (and trigeminal) motoneurons, and finally suggest a prominent role for the pontine Kölliker-Fuse nucleus in the control of inspiratory-related activity of XII motoneurons supplying tongue protrusor and retrusor muscles.
Collapse
Affiliation(s)
- Christian Gestreau
- Laboratoire de Physiologie Neurovégétative, UMR CNRS 6153 INRA 1147, Université Paul Cézanne Aix-Marseille III, Av. Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France.
| | | | | | | |
Collapse
|
37
|
Richardson KA, Gatti PJ. Genioglossal hypoglossal muscle motoneurons are contacted by nerve terminals containing delta opioid receptor but not mu opioid receptor-like immunoreactivity in the cat: a dual labeling electron microscopic study. Brain Res 2005; 1032:23-9. [PMID: 15680937 DOI: 10.1016/j.brainres.2004.10.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2004] [Indexed: 02/07/2023]
Abstract
This study has investigated (1) the distribution of delta opioid receptor (DOR) or mu opioid receptor (MOR) containing elements in the hypoglossal nucleus of the adult cat; and (2) the association of these processes with retrogradely labeled genioglossus muscle motoneurons. Cholera toxin B conjugated to horseradish peroxidase (CTB-HRP) was injected into the genioglossus muscle on the right side of four isoflurane-anesthetized cats. Forty-four to 52 h later, the animals were sacrificed. Motoneurons containing HRP were labeled with a histochemical reaction utilizing tetramethylbenzidine (TMB) as the chromogen. The tissues were then processed for immunocytochemistry, using an antiserum raised against DOR or MOR using diaminobenzidine (DAB) as the chromogen. At the light microscopic level, retrogradely labeled cells were observed primarily ipsilaterally in ventral and ventrolateral subdivisions of the hypoglossal nucleus. The majority of these labeled cells were observed immediately caudal to obex. DOR-like immunoreactive processes were apparent at the light microscopic level in the hypoglossal nucleus, but MOR-like immunoreactive processes were not. Both DOR and MOR-like immunoreactive processes were observed in other brainstem areas such as the spinal trigeminal nucleus. At the electron microscopic level, DOR-like immunoreactive nerve terminals formed synaptic contacts with retrogradely labeled genioglossus muscle motoneuronal dendrites and perikarya in the hypoglossal nucleus. Nineteen (19) percent of the DOR terminals contacted retrogradely labeled genioglossus muscle motoneurons. DOR-immunoreactive terminals also synapsed on unlabeled dendrites and somata. Few MOR-like immunoreactive terminals were found at the EM level in the hypoglossal nucleus, and none of these terminals contacted retrogradely labeled neuronal profiles from the GG muscle. These are the first ultrastructural studies demonstrating synaptic interactions between functionally identified hypoglossal motoneurons and DOR terminals, and that enkephalins most likely act presynaptically to modulate the release of other neurotransmitters that affect GG motoneuron activity. These studies demonstrate that hypoglossal motoneurons which innervate the major protruder muscle of the tongue, the genioglossus muscle, are modulated by terminals containing DOR, and that enkephalins acting on DOR but not MOR in the hypoglossal nucleus may play a role in the control of tongue protrusion.
Collapse
Affiliation(s)
- Kimberlei A Richardson
- Department Pharmacology, Howard University College of Medicine,520 W St., NW, Washington, DC 20059, USA
| | | |
Collapse
|
38
|
Fuller DD. Episodic hypoxia induces long-term facilitation of neural drive to tongue protrudor and retractor muscles. J Appl Physiol (1985) 2005; 98:1761-7. [PMID: 15640385 DOI: 10.1152/japplphysiol.01142.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxic episodes can evoke a prolonged augmentation of inspiratory motor output called long-term facilitation (LTF). Hypoglossal (XII) LTF has been assumed to represent increased tongue protrudor muscle activation and pharyngeal airway dilation. However, recent studies indicate that tongue protrudor and retractor muscles are coactivated during inspiration, a behavior that promotes upper airway patency by reducing airway compliance. These experiments tested the hypothesis that XII LTF is manifest as increased inspiratory drive to both tongue protrudor and retractor muscles. Neurograms were recorded in the medial XII nerve branch (XIIMED; contains tongue protrudor motor axons), the lateral XII nerve branch (XIILAT; contains tongue retractor motor axons), and the phrenic nerve in anesthetized, vagotomized, paralyzed, ventilated male rats. Strict isocapnia was maintained for 60 min after five 3-min hypoxic episodes (arterial Po2 = 35 ± 2 Torr) or sham treatment. Peak inspiratory burst amplitude showed a persistent increase in XIIMED, XIILAT, and phrenic nerves during the hour after episodic hypoxia ( P < 0.05 vs. sham). This effect was present regardless of the quantification method (e.g., % baseline vs. percent maximum); however, comparisons of the relative magnitude of LTF between neurograms (e.g., XIIMED vs. XIILAT) varied with the normalization procedure. There was no persistent effect of episodic hypoxia on inspiratory burst frequency ( P > 0.05 vs. sham). These data demonstrate that episodic hypoxia induces LTF of inspiratory drive to both tongue protrudor and retractor muscles and underscore the potential contribution of tongue muscle coactivation to regulation of upper airway patency.
Collapse
Affiliation(s)
- D D Fuller
- Department of Physical Therapy, University of Florida, 100 S. Newell Dr., PO Box 100154, Gainesville, FL 32610, USA.
| |
Collapse
|
39
|
Smith JC, Goldberg SJ, Shall MS. Phenotype and contractile properties of mammalian tongue muscles innervated by the hypoglossal nerve. Respir Physiol Neurobiol 2005; 147:253-62. [PMID: 16087149 DOI: 10.1016/j.resp.2005.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Revised: 02/22/2005] [Accepted: 02/23/2005] [Indexed: 10/25/2022]
Abstract
The XIIth cranial nerve plays a role in chewing, respiration, suckling, swallowing, and speech [Lowe, A.A., 1981. The neural regulation of tongue movements. Prog. Neurobiol. 15, 295-344.]. The muscles innervated by this nerve are functionally subdivided into three categories: those causing protrusion, retrusion, and changing the shape of the tongue. Myosin heavy chain (MHC) II isoform makes up the majority of the MHC phenotype with some variability among mammalian species and some evidence suggests between genders. In addition, there are regional differences in fiber type within some of these muscles that suggest functional compartmentalization. The transition from developmental MHC isoforms to their adult phenotype appears to vary not only from muscle to muscle but also from species to species. Motor units within this hypoglossal motor system can be categorized as predominantly fast fatigue resistant. Based on twitch contraction time and fatigue index, it appears that hypoglossal innervated muscles are more similar to fast-twitch muscles innervated by spinal nerves than, for example, extraocular muscles.
Collapse
Affiliation(s)
- J Chadwick Smith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, P.O. Box 980709, Richmond, VA 23298-0709, USA
| | | | | |
Collapse
|
40
|
Abstract
We have developed a single-compartment, electrophysiological, hypoglossal motoneuron (HM) model based primarily on experimental data from neonatal rat HMs. The model is able to reproduce the fine features of the HM action potential: the fast afterhyperpolarization, the afterdepolarization, and the medium-duration afterhyperpolarization (mAHP). The model also reproduces the repetitive firing properties seen in neonatal HMs and replicates the neuron's response to pharmacological experiments. The model was used to study the role of specific ionic currents in HM firing and how variations in the densities of these currents may account for age-dependent changes in excitability seen in HMs. By varying the density of a fast inactivating calcium current, the model alternates between accelerating and adapting firing patterns. Modeling the age-dependent increase in H current density accounts for the decrease in mAHP duration observed experimentally, but does not fully account for the decrease in input resistance. An increase in the density of the voltage-dependent potassium currents and the H current is required to account for the decrease in input resistance. These changes also account for the age-dependent decrease in action potential duration.
Collapse
Affiliation(s)
- Liston K Purvis
- Laboratory for Neuroengineering, Georgia Institute of Technology, Atlanta, Georgia, USA.
| | | |
Collapse
|
41
|
Behan M, Thomas CF. Sex hormone receptors are expressed in identified respiratory motoneurons in male and female rats. Neuroscience 2005; 130:725-34. [PMID: 15590155 DOI: 10.1016/j.neuroscience.2004.09.058] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/17/2004] [Indexed: 11/30/2022]
Abstract
Sex hormones including estrogen, progesterone and testosterone can influence breathing. However, it is not clear whether such hormones exert their effects directly on respiratory motoneurons. We used immunocytochemistry to demonstrate that estrogen receptor alpha, estrogen receptor beta and androgen receptor are localized in respiratory motor neurons. Motoneurons in the hypoglossal (XII) and the phrenic nuclei were retrogradely labeled from the tongue and the diaphragm respectively. Double-label fluorescence immunocytochemistry was used to show that sex hormone receptors are present in respiratory motoneurons of both male and female rats. These data suggest that in male and female rats, sex hormones can modulate the output of respiratory motoneurons directly.
Collapse
Affiliation(s)
- M Behan
- Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Drive, Madison, WI 53706-1102, USA.
| | | |
Collapse
|
42
|
Smith JC, McClung JR, Goldberg SJ. Postnatal development of hypoglossal motoneurons that innervate the hyoglossus and styloglossus muscles in rat. ACTA ACUST UNITED AC 2005; 285:628-33. [PMID: 15912527 DOI: 10.1002/ar.a.20204] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Postnatal development of hyoglossus and styloglossus motoneurons was studied in this investigation of the hypoglossal nucleus. Our findings show separate and distinct locations for hyoglossus and styloglossus motoneurons within the retrusor (dorsal) subdivision of the hypoglossal nucleus for all age groups. Hyoglossus and styloglossus motoneuron cross-sectional area reached their adult size at different times (by weeks 2 and 3, respectively). Cell roundness, as measured by form factor (measure of cell perimeter relative to its area), decreased with advancing postnatal age for both populations of motoneurons. Differences in the direction of the dendritic projection between hyoglossus and styloglossus motoneurons were found. Hyoglossus and styloglossus motoneuron development was compared to genioglossus motoneuron postnatal development.
Collapse
Affiliation(s)
- J Chadwick Smith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | | | |
Collapse
|
43
|
Birinyi A, Szekely G, Csapó K, Matesz C. Quantitative morphological analysis of the motoneurons innervating muscles involved in tongue movements of the frogRana esculenta. J Comp Neurol 2004; 470:409-21. [PMID: 14961566 DOI: 10.1002/cne.20006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We give an account of an effort to make quantitative morphological distinctions between motoneurons of the frog innervating functionally different groups of muscles involved in the movements of the tongue. The protractor, retractor, and inner muscles of the tongue were considered on the basis of their major action during the prey-catching behavior of the frog. Motoneurons were selectively labeled with cobalt lysin through the nerves of the individual muscles, and dendritic trees of successfully labeled neurons were reconstructed. Each motoneuron was characterized by 15 quantitative morphological parameters describing the size of the soma and dendritic tree and 12 orientation variables related to the shape and orientation of the dendritic field. The variables were subjected to multivariate discriminant analysis to find correlations between form and function of these motoneurons. According to the morphological parameters, the motoneurons were classified into three functionally different groups weighted by the shape of the perikaryon, mean diameter of stem dendrites, and mean length of dendritic segments. The most important orientation variables in the separation of three groups were the ellipses describing the shape of dendritic arborization in the horizontal, frontal, and sagittal planes of the brainstem. These findings indicate that characteristic geometry of the dendritic tree may have a preference for one array of fibers over another.
Collapse
Affiliation(s)
- András Birinyi
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Debrecen H-4012, Hungary
| | | | | | | |
Collapse
|
44
|
Bailey EF, Fregosi RF. Coordination of intrinsic and extrinsic tongue muscles during spontaneous breathing in the rat. J Appl Physiol (1985) 2004; 96:440-9. [PMID: 14527967 DOI: 10.1152/japplphysiol.00733.2003] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The muscular-hydrostat model of tongue function proposes a constant interaction of extrinsic (external bony attachment, insertion into base of tongue) and intrinsic (origin and insertion within the tongue) tongue muscles in all tongue movements (Kier WM and Smith KK. Zool J Linn Soc 83: 207-324, 1985). Yet, research that examines the respiratory-related effects of tongue function in mammals continues to focus almost exclusively on the respiratory control and function of the extrinsic tongue protrusor muscle, the genioglossus muscle. The respiratory control and function of the intrinsic tongue muscles are unknown. Our purpose was to determine whether intrinsic tongue muscles have a respiration-related activity pattern and whether intrinsic tongue muscles are coactivated with extrinsic tongue muscles in response to respiratory-related sensory stimuli. Esophageal pressure and electromyographic (EMG) activity of an extrinsic tongue muscle (hyoglossus), an intrinsic tongue muscle (superior longitudinal), and an external intercostal muscle were studied in anesthetized, tracheotomized, spontaneously breathing rats. Mean inspiratory EMG activity was compared at five levels of inspired CO2. Intrinsic tongue muscles were often quiescent during eupnea but active during hypercapnia, whereas extrinsic tongue muscles were active in both eupnea and hypercapnia. During hypercapnia, the activities of the airway muscles were largely coincident, although the onset of extrinsic muscle activity generally preceded the onset of intrinsic muscle activation. Our findings provide evidence, in an in vivo rodent preparation, of respiratory modulation of motoneurons supplying intrinsic tongue muscles. Distinctions noted between intrinsic and extrinsic activities could be due to differences in motoneuron properties or the central, respiration-related control of each motoneuron population.
Collapse
Affiliation(s)
- E F Bailey
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona 85721-0093, USA.
| | | |
Collapse
|
45
|
Travers JB, Rinaman L. Identification of lingual motor control circuits using two strains of pseudorabies virus. Neuroscience 2003; 115:1139-51. [PMID: 12453486 DOI: 10.1016/s0306-4522(02)00489-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
First-order interneurons that project to hypoglossal motoneurons are distributed within reticular formation subdivisions in the pons and medulla in areas thought to control licking, swallowing, chewing, and respiration. Movement of the tongue in each of these functions is achieved by the coordinated action of both intrinsic and extrinsic lingual muscles. Interneuron populations that project to these different lingual motoneuronal pools appear to be largely overlapping in the reticular formation. Because of the functional coupling between intrinsic and extrinsic muscles during most tongue movements, one might predict that individual pre-hypoglossal interneurons project to multiple motoneuronal pools. To test this hypothesis, one strain of pseudorabies virus was injected into the styloglossus muscle (an extrinsic lingual muscle) and a second strain of pseudorabies virus was injected into the intrinsic lingual muscles of the anterior tongue in the same preparation. Rats were perfused with fixative 84-96 h later, and dual-labeling immunohistochemistry was performed to reveal populations of single- and double-labeled brainstem neurons. Motoneurons innervating the different lingual muscles were spatially segregated within the hypoglossal motor nucleus, and no double-labeled motoneurons were observed. In contrast, pre-hypoglossal neurons projecting to each lingual motoneuron pool were highly overlapping in the reticular formation, and many were double-labeled. These observations suggest that coactivation of lingual muscles can be achieved, at least in part, through divergent projections of first-order interneurons to anatomically and functionally distinct pools of lingual motoneurons in the hypoglossal nucleus.
Collapse
Affiliation(s)
- J B Travers
- Ohio State University, College of Dentistry, 305 W 12 Avenue, P.O. Box 182357, Columbus, OH 43218-2357, USA.
| | | |
Collapse
|
46
|
Abstract
Food-borne transmission of prions can lead to infection of the gastrointestinal tract and neuroinvasion via the splanchnic and vagus nerves. Here we report that the transmission of transmissible mink encephalopathy (TME) is 100,000-fold more efficient by inoculation of prions into the tongues of hamsters than by oral ingestion. The incubation period following TME agent (hereinafter referred to as TME) inoculation into the lingual muscles was the shortest among the five nonneuronal routes of inoculation, including another intramuscular route. Deposition of the abnormal isoform of the prion protein, PrP(Sc), was first detected in the tongue and submandibular lymph node at 1 to 2 weeks following inoculation of the tongue with TME. PrP(Sc) deposits in the tongue were associated with individual axons, and the initial appearance of TME in the brain stem was found in the hypoglossal nucleus at 2 weeks postinfection. At later time points, PrP(Sc) was localized to brain cell groups that directly project to the hypoglossal nucleus, indicating the transneuronal spread of TME. TME PrP(Sc) entry into the brain stem preceded PrP(Sc) detection in the rostral cervical spinal cord. These results demonstrate that TME can replicate in both the tongue and regional lymph nodes but indicate that the faster route of brain invasion is via retrograde axonal transport within the hypoglossal nerve to the hypoglossal nucleus. Topical application of TME to a superficial wound on the surface of the tongue resulted in a higher incidence of disease and a shorter incubation period than with oral TME ingestion. Therefore, abrasions of the tongue in livestock and humans may predispose a host to oral prion infection of the tongue-associated cranial nerves. In a related study, PrP(Sc) was detected in tongues following the intracerebral inoculation of six hamster-adapted prion strains, which demonstrates that prions can also travel from the brain to the tongue in the anterograde direction along the tongue-associated cranial nerves. These findings suggest that food products containing ruminant or cervid tongue may be a potential source of prion infection for humans.
Collapse
Affiliation(s)
- Jason C Bartz
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, Nebraska 68178, USA
| | | | | |
Collapse
|
47
|
Takahashi S, Ono T, Ishiwata Y, Kuroda T. Breathing modes, body positions, and suprahyoid muscle activity. J Orthod 2002; 29:307-13; discussion 279. [PMID: 12444272 DOI: 10.1093/ortho/29.4.307] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
AIM To determine (1) how electromyographic activities of the genioglossus and geniohyoid muscles can be differentiated, and (2) whether changes in breathing modes and body positions have effects on the genioglossus and geniohyoid muscle activities. METHOD Ten normal subjects participated in the study. Electromyographic activities of both the genioglossus and geniohyoid muscles were recorded during nasal and oral breathing, while the subject was in the upright and supine positions. The electromyographic activities of the genioglossus and geniohyoid muscles were compared during jaw opening, swallowing, mandibular advancement, and tongue protrusion. RESULTS The geniohyoid muscle showed greater electromyographic activity than the genioglossus muscle during maximal jaw opening. In addition, the geniohyoid muscle showed a shorter (P < 0.05) latency compared with the genioglossus muscle. Moreover, the genioglossus muscle activity showed a significant difference among different breathing modes and body positions, while there were no significant differences in the geniohyoid muscle activity. CONCLUSION Electromyographic activities from the genioglossus and geniohyoid muscles are successfully differentiated. In addition, it appears that changes in the breathing mode and body position significantly affect the genioglossus muscle activity, but do not affect the geniohyoid muscle activity.
Collapse
|
48
|
Saito Y, Ezure K, Tanaka I. Difference between hypoglossal and phrenic activities during lung inflation and swallowing in the rat. J Physiol 2002; 544:183-93. [PMID: 12356891 PMCID: PMC2290563 DOI: 10.1113/jphysiol.2002.022566] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
We aimed in this study to elucidate the discharge properties and neuronal mechanisms of the dissociation between hypoglossal and phrenic inspiratory activities in decerebrate rats, which had been subjected to neuromuscular blockade and artificially ventilated. The discharge of the hypoglossal nerve and the intracellular activity of hypoglossal motoneurones were monitored during respiration and fictive-swallowing evoked by electrical stimulation of the superior laryngeal nerve, and were compared with the activity of the phrenic nerve. The hypoglossal nerve activity was characterized by its onset preceding the phrenic nerve activity ('pre-I' activity). By manipulating artificial respiration, we could augment the 'pre-I' activity, and could elicit another type of hypoglossal activity decoupled from the phrenic-associated inspiratory bursts ('decoupled' activity). We further scrutinized the correlatives of 'pre-I' and 'decoupled' activities in individual hypoglossal motoneurones. Hypoglossal motoneurones consisted of inspiratory (n = 42), expiratory (n = 18) and non-respiratory (n = 1) neurones and were classified by their swallowing activity into depolarized, hyperpolarized, hyperpolarized-depolarized and unresponsive groups. All of the inspiratory neurones were depolarized in accordance with the 'pre-I' and 'decoupled' activities, and all of the expiratory neurones were hyperpolarized during these activities. Fictive swallowing, which was characterized by its frequent emergence just after the phrenic inspiratory activity, was also evoked just after the 'decoupled' hypoglossal activity, suggesting that this activity may have similar effects on swallowing as the 'overt' inspiratory activity. Such a coupling between 'decoupled' and swallowing activities was also revealed in each motoneurone. These findings suggest that the 'pre-I' and 'decoupled' activities may reflect some internal inspiratory activity of the respiratory centre and that hypoglossal motoneurones may be driven by a distinct group of premotor neurones that possibly play a role in the coordination of respiration and swallowing.
Collapse
Affiliation(s)
- Yoshiaki Saito
- Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo Women's Medical University, Japan
| | | | | |
Collapse
|
49
|
Fenik V, Marchenko V, Janssen P, Davies RO, Kubin L. A5 cells are silenced when REM sleep-like signs are elicited by pontine carbachol. J Appl Physiol (1985) 2002; 93:1448-56. [PMID: 12235046 DOI: 10.1152/japplphysiol.00225.2002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The A5 noradrenergic neurons are considered important for cardiorespiratory regulation. We hypothesized that A5 cells are silenced during rapid eye movement (REM) sleep, thereby contributing to cardiorespiratory changes and suppression of hypoglossal (XII) motoneuronal activity. We used an anesthetized, paralyzed, and artificially ventilated rat in which pontine microinjections of carbachol trigger signs of REM sleep, including hippocampal theta rhythm, motor suppression, and silencing of locus coeruleus neurons. All 16 putative noradrenergic A5 cells recorded were strongly suppressed when the REM sleep-like episodes were elicited and also after intravenous clonidine. Antidromic mapping showed that none of six neurons tested projected to the XII nucleus, whereas three of five projected to the nucleus of the solitary tract and two of four to the rostral ventrolateral medulla. Bilateral microinjections of clonidine into the A5 regions did not alter XII nerve activity. These data suggest that A5 neurons are silenced during natural REM sleep. This will lead to decreased norepinephrine release and may alter synaptic transmission in the nucleus of the solitary tract and rostral ventrolateral medulla without, however, a detectable impact on XII motoneurons.
Collapse
Affiliation(s)
- Victor Fenik
- Department of Animal Biology, School of Veterinary Medicine, and Center for Sleep and Respiratory Neurobiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6046, USA.
| | | | | | | | | |
Collapse
|
50
|
Jürgens U, Alipour M. A comparative study on the cortico-hypoglossal connections in primates, using biotin dextranamine. Neurosci Lett 2002; 328:245-8. [PMID: 12147317 DOI: 10.1016/s0304-3940(02)00525-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The anterograde projections of the motorcortical tongue area to the hypoglossal nucleus and neighbouring structures were studied in the rhesus monkey, squirrel monkey, saddle-back tamarin and tree shrew. Biotin dextranamine served as tracer. Direct projections into the hypoglossal nucleus were only found in the rhesus monkey and squirrel monkey. All four species, however, showed a direct projection into the dorsal and parvocellular reticular formation which in turn projects into the hypoglossal nucleus. The findings suggest a phylogenetic trend in the projections of the motorcortical tongue area from non-primate mammals via non-human primates to man in the sense that the cortico-motoneuronal connection is strengthened towards man. This might be one reason for the superior role the tongue plays in human vocal behaviour in contrast to non-human vocalization.
Collapse
Affiliation(s)
- U Jürgens
- German Primate Center, Kellnerweg 4, 37077, Göttingen, Germany.
| | | |
Collapse
|