1
|
O'Reilly C, Iavarone E, Yi J, Hill SL. Rodent somatosensory thalamocortical circuitry: Neurons, synapses, and connectivity. Neurosci Biobehav Rev 2021; 126:213-235. [PMID: 33766672 DOI: 10.1016/j.neubiorev.2021.03.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/15/2021] [Accepted: 03/14/2021] [Indexed: 01/21/2023]
Abstract
As our understanding of the thalamocortical system deepens, the questions we face become more complex. Their investigation requires the adoption of novel experimental approaches complemented with increasingly sophisticated computational modeling. In this review, we take stock of current data and knowledge about the circuitry of the somatosensory thalamocortical loop in rodents, discussing common principles across modalities and species whenever appropriate. We review the different levels of organization, including the cells, synapses, neuroanatomy, and network connectivity. We provide a complete overview of this system that should be accessible for newcomers to this field while nevertheless being comprehensive enough to serve as a reference for seasoned neuroscientists and computational modelers studying the thalamocortical system. We further highlight key gaps in data and knowledge that constitute pressing targets for future experimental work. Filling these gaps would provide invaluable information for systematically unveiling how this system supports behavioral and cognitive processes.
Collapse
Affiliation(s)
- Christian O'Reilly
- Azrieli Centre for Autism Research, Montreal Neurological Institute, McGill University, Montreal, Canada; Ronin Institute, Montclair, NJ, USA; Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Elisabetta Iavarone
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Jane Yi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sean L Hill
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Department of Psychiatry, University of Toronto, Toronto, Canada; Centre for Addiction and Mental Health, Toronto, Canada.
| |
Collapse
|
2
|
Carceller H, Guirado R, Nacher J. Dark exposure affects plasticity‐related molecules and interneurons throughout the visual system during adulthood. J Comp Neurol 2020; 528:1349-1366. [DOI: 10.1002/cne.24832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/16/2019] [Accepted: 11/22/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Hector Carceller
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED)Universitat de Valencia Valencia Spain
| | - Ramon Guirado
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED)Universitat de Valencia Valencia Spain
| | - Juan Nacher
- Neurobiology Unit, Department of Cell Biology, Interdisciplinary Research Structure for Biotechnology and Biomedicine (BIOTECMED)Universitat de Valencia Valencia Spain
- CIBERSAM: Spanish National Network for Research in Mental Health Madrid Spain
- Fundación Investigación Hospital Clínico de Valencia, INCLIVA Valencia Spain
| |
Collapse
|
3
|
Żakowski W. Neurochemistry of the Anterior Thalamic Nuclei. Mol Neurobiol 2016; 54:5248-5263. [DOI: 10.1007/s12035-016-0077-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 08/23/2016] [Indexed: 01/19/2023]
|
4
|
Martin del Campo H, Measor K, Razak KA. Parvalbumin and calbindin expression in parallel thalamocortical pathways in a gleaning bat, Antrozous pallidus. J Comp Neurol 2014; 522:2431-45. [PMID: 24435957 DOI: 10.1002/cne.23541] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 11/05/2022]
Abstract
The pallid bat (Antrozous pallidus) listens to prey-generated noise to localize and hunt terrestrial prey while reserving echolocation to avoid obstacles. The thalamocortical connections in the pallid bat are organized as parallel pathways that may serve echolocation and prey localization behaviors. Thalamic inputs to the cortical echolocation call- and noise-selective regions originate primarily in the suprageniculate nucleus (SG) and ventral division of medial geniculate body (MGBv), respectively. Here we examined the distribution of parvalbumin (PV) and calbindin (CB) expression in cortical regions and thalamic nuclei of these pathways. Electrophysiology was used to identify cortical regions selective for echolocation calls and noise. Immunohistochemistry was used to stain for PV and CB in the auditory cortex and MGB. A higher percentage (relative to Nissl-stained cells) of PV(+) cells compared with CB(+) cells was found in both echolocation call- and noise-selective regions. This was due to differences in cortical layers V-VI, but not layers I-IV. In the MGB, CB(+) cells were present across all divisions of the MGB, with a higher percentage in the MGBv than the SG. Perhaps the most surprising result was the virtual absence of PV staining in the MGBv. PV staining was present only in the SG. Even in the SG, the staining was mostly diffuse in the neuropil. These data support the notion that calcium binding proteins are differentially distributed in different processing streams. Our comparative data, however, do not support a general mammalian pattern of PV/CB staining that distinguishes lemniscal and nonlemniscal pathways.
Collapse
Affiliation(s)
- Heather Martin del Campo
- Department of Psychology and Graduate Neuroscience Program, University of California, Riverside, California, 92521
| | | | | |
Collapse
|
5
|
Sellers K, Zyka V, Lumsden AG, Delogu A. Transcriptional control of GABAergic neuronal subtype identity in the thalamus. Neural Dev 2014; 9:14. [PMID: 24929424 PMCID: PMC4065548 DOI: 10.1186/1749-8104-9-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/02/2014] [Indexed: 12/27/2022] Open
Abstract
Background The thalamus is often defined as the ‘gateway to consciousness’, a feature that is supported by the specific connectivity and electrophysiological properties of its neurons. Inhibitory GABAergic neurons are required for the dynamic gating of information passing through the thalamus. The high degree of heterogeneity among thalamic GABA neurons suggests that, during embryonic development, alternative differentiation programmes exist to guide the acquisition of inhibitory neuron subtype identity. Results Taking advantage of the accessibility of the developing chick embryo, we have used in ovo manipulations of gene expression to test the role of candidate transcription factors in controlling GABAergic neuronal subtype identity in the developing thalamus. Conclusions In this study, we describe two alternative differentiation programmes for GABAergic neurogenesis in the thalamus and identify Helt and Dlx2 as key transcription factors that are sufficient to direct neuronal progenitors along a specific differentiation pathway at the expense of alternative lineage choices. Furthermore, we identify Calb2, a gene encoding for the GABA subtype marker calretinin as a target of the transcription factor Sox14. This work is a step forward in our understanding of how GABA neuron diversity in the thalamus is achieved during development and will help future investigation of the molecular mechanisms that lead up to the acquisition of different synaptic targets and electrophysiological features of mature thalamic inhibitory neurons.
Collapse
Affiliation(s)
| | | | | | - Alessio Delogu
- MRC Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
6
|
The cocaine- and amphetamine-regulated transcript, calbindin, calretinin and parvalbumin immunoreactivity in the medial geniculate body of the guinea pig. J Chem Neuroanat 2014; 59-60:17-28. [PMID: 24816166 DOI: 10.1016/j.jchemneu.2014.04.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 04/26/2014] [Accepted: 04/26/2014] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to describe the distribution and colocalization of cocaine- and amphetamine-regulated transcript (CART) and three calcium-binding proteins (calbindin, calretinin and parvalbumin) in each main division of the medial geniculate body (MGB) in the guinea pig. From low to moderate CART immunoreactivity was observed in all divisions of the MGB, although in most of its length only fibers and neuropil were labeled. A small number of CART immunoreactive somata were observed in the caudal segment of the MGB. The central parts of all divisions contained a distinctly smaller number of CART immunoreactive fibers relative to their outer borders, where CART fibers formed patchy clusters. As a whole, the intense CART immunoreactive borders formed a shell around the weakly CART labeled core. Double-labeling immunofluorescence showed that CART did not colocalize with either calbindin, calretinin or parvalbumin, whose immunoreactivity was predominantly restricted to perikarya. The distribution pattern of calretinin was more similar to that of calbindin than to that of parvalbumin. Calretinin and calbindin exhibited higher immunoreactivity in the medial and dorsal divisions of the MGB, where parvalbumin staining was low. In general, although parvalbumin exhibited the weakest immunoreactivity of all studied Ca(2+) binding proteins, it was most highly expressed in the ventral division of the MGB. Our results indicate that CART could be involved in hearing, although its immunoreactivity in the medial geniculate complex was not as intense as in other sensory brain regions. In the guinea pig the heterogeneous and complementary pattern of calbindin, calretinin and parvalbumin is evident, however, the overlap in staining appears to be more extensive than that seen in other rodents.
Collapse
|
7
|
Giráldez-Pérez RM, Avila MN, Feijóo-Cuaresma M, Heredia R, De Diego-Otero Y, Real MÁ, Guirado S. Males but not females show differences in calbindin immunoreactivity in the dorsal thalamus of the mouse model of fragile X syndrome. J Comp Neurol 2013; 521:894-911. [PMID: 22886886 DOI: 10.1002/cne.23209] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 06/04/2012] [Accepted: 08/03/2012] [Indexed: 12/18/2022]
Abstract
Fragile X syndrome (FXS), the most common form of inherited mental retardation, is caused by the loss of the Fmr1 gene product, fragile X mental retardation protein. Here we analyze the immunohistochemical expression of calcium-binding proteins in the dorsal thalamus of Fmr1 knockout mice of both sexes and compare it with that of wildtype littermates. The spatial distribution pattern of calbindin-immunoreactive cells in the dorsal thalamus was similar in wildtype and knockout mice but there was a notable reduction in calbindin-immunoreactive cells in midline/intralaminar/posterior dorsal thalamic nuclei of male Fmr1 knockout mice. We counted the number of calbindin-immunoreactive cells in 18 distinct nuclei of the dorsal thalamus. Knockout male mice showed a significant reduction in calbindin-immunoreactive cells (range: 36-67% lower), whereas female knockout mice did not show significant differences (in any dorsal thalamic nucleus) when compared with their wildtype littermates. No variation in the calretinin expression pattern was observed throughout the dorsal thalamus. The number of calretinin-immunoreactive cells was similar for all experimental groups as well. Parvalbumin immunoreactivity was restricted to fibers and neuropil in the analyzed dorsal thalamic nuclei, and presented no differences between genotypes. Midline/intralaminar/posterior dorsal thalamic nuclei are involved in forebrain circuits related to memory, nociception, social fear, and auditory sensory integration; therefore, we suggest that downregulation of calbindin protein expression in the dorsal thalamus of male knockout mice should be taken into account when analyzing behavioral studies in the mouse model of FXS.
Collapse
Affiliation(s)
- Rosa M Giráldez-Pérez
- University of Málaga, Department of Cell Biology, Genetics, and Physiology, Málaga, Spain
| | | | | | | | | | | | | |
Collapse
|
8
|
Hinova-Palova DV, Edelstein L, Landzhov BV, Braak E, Malinova LG, Minkov M, Paloff A, Ovtscharoff W. Parvalbumin-immunoreactive neurons in the human claustrum. Brain Struct Funct 2013; 219:1813-30. [DOI: 10.1007/s00429-013-0603-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/20/2013] [Indexed: 12/24/2022]
|
9
|
Morona R, González A. Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. J Comp Neurol 2013; 521:79-108. [PMID: 22678695 DOI: 10.1002/cne.23163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/07/2012] [Accepted: 06/01/2012] [Indexed: 11/09/2022]
Abstract
The present study represents a detailed spatiotemporal analysis of the localization of calbindin-D28k (CB) and calretinin (CR) immunoreactive structures in the brain of Xenopus laevis throughout development, conducted with the aim to correlate the onset of the immunoreactivity with the development of compartmentalization of distinct subdivisions recently identified in the brain of adult amphibians and primarily highlighted when analyzed within a segmental paradigm. CR and CB are expressed early in the brain and showed a progressively increasing expression throughout development, although transient expression in some neuronal subpopulations was also noted. Common and distinct characteristics in Xenopus, as compared with reported features during development in the brain of mammals, were observed. The development of specific regions in the forebrain such as the olfactory bulbs, the components of the basal ganglia and the amygdaloid complex, the alar and basal hypothalamic regions, and the distinct diencephalic neuromeres could be analyzed on the basis of the distinct expression of CB and CR in subregions. Similarly, the compartments of the mesencephalon and the main rhombencephalic regions, including the cerebellum, were differently highlighted by their specific content in CB and CR throughout development. Our results show the usefulness of the analysis of the distribution of these proteins as a tool in neuroanatomy to interpret developmental aspects of many brain regions.
Collapse
Affiliation(s)
- Ruth Morona
- Department of Cell Biology, University Complutense, 28040 Madrid, Spain
| | | |
Collapse
|
10
|
Morona R, López JM, González A. Localization of Calbindin-D28k and Calretinin in the Brain of Dermophis Mexicanus (Amphibia: Gymnophiona) and Its Bearing on the Interpretation of Newly Recognized Neuroanatomical Regions. BRAIN, BEHAVIOR AND EVOLUTION 2011; 77:231-69. [DOI: 10.1159/000329521] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022]
|
11
|
Immunohistochemical localization of calbindin D28k and calretinin in the retina of two lungfishes, Protopterus dolloi and Neoceratodus forsteri: Colocalization with choline acetyltransferase and tyrosine hydroxylase. Brain Res 2011; 1368:28-43. [DOI: 10.1016/j.brainres.2010.10.098] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Revised: 10/26/2010] [Accepted: 10/26/2010] [Indexed: 01/25/2023]
|
12
|
Solbu TT, Bjørkmo M, Berghuis P, Harkany T, Chaudhry FA. SAT1, A Glutamine Transporter, is Preferentially Expressed in GABAergic Neurons. Front Neuroanat 2010; 4:1. [PMID: 20161990 PMCID: PMC2820376 DOI: 10.3389/neuro.05.001.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Accepted: 12/30/2009] [Indexed: 11/13/2022] Open
Abstract
Subsets of GABAergic neurons are able to maintain high frequency discharge patterns, which requires efficient replenishment of the releasable pool of GABA. Although glutamine is considered a preferred precursor of GABA, the identity of transporters involved in glutamine uptake by GABAergic neurons remains elusive. Molecular analyses revealed that SAT1 (Slc38a1) features system A characteristics with a preferential affinity for glutamine, and that SAT1 mRNA expression is associated with GABAergic neurons. By generating specific antibodies against SAT1 we show that this glutamine carrier is particularly enriched in GABAergic neurons. Cellular SAT1 distribution resembles that of GAD67, an essential GABA synthesis enzyme, suggesting that SAT1 can be involved in translocating glutamine into GABAergic neurons to facilitate inhibitory neurotransmitter generation.
Collapse
Affiliation(s)
- Tom Tallak Solbu
- The Biotechnology Centre of Oslo, University of Oslo Oslo, Norway
| | | | | | | | | |
Collapse
|
13
|
Morona R, González A. Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. J Comp Neurol 2009; 515:503-37. [DOI: 10.1002/cne.22060] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Morona R, González A. Calbindin-D28k and calretinin expression in the forebrain of anuran and urodele amphibians: Further support for newly identified subdivisions. J Comp Neurol 2008; 511:187-220. [DOI: 10.1002/cne.21832] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Hinova-Palova DV, Edelstein LR, Paloff AM, Hristov S, Papantchev VG, Ovtscharoff WA. Parvalbumin in the cat claustrum: ultrastructure, distribution and functional implications. Acta Histochem 2007; 109:61-77. [PMID: 17126385 DOI: 10.1016/j.acthis.2006.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Revised: 09/16/2006] [Accepted: 09/17/2006] [Indexed: 01/01/2023]
Abstract
The presence of the calcium-binding protein (CaBP) parvalbumin (PV) in the neuronal elements of the cat's dorsal claustrum was studied by immunohistochemistry at the light- and electron-microscopic level. PV-immunoreactive neurons and fibers were detected in all parts of the claustrum. The PV-immunoreactive neurons were divided into several subtypes according to their size and shape. Approximately 7% of all PV-immunoreactive neurons were classified as large, while approximately half of the labeled neurons were medium-sized. The small PV-immunoreactive neurons were 45% of the total PV-immunoreactive neuronal population. Ultrastructurally, many spiny and aspiny dendrites were heavily immunolabeled, and the reaction product was present in dendritic spines as well. Several types of synaptic boutons containing reaction product were also found. These boutons terminated on both labeled and unlabeled postsynaptic targets (soma, dendrites, etc.), forming asymmetric or symmetric synapses. Approximately 70% of all PV-immunoreactive terminals contained round synaptic vesicles and formed asymmetric synapses. The majority of these boutons were of the ''large round'' type. A lesser percentage were of the ''small round'' type. This paper represents the first study demonstrating the existence of PV, a CaBP, in the cat claustrum, and its distribution at the light and electron microscope level. Beyond the relevance of this research from the standpoint of adding to the paucity of literature on PV immunoreactivity in the claustrum of various other mammals (e.g. monkey, rabbit, rat, mouse), it is of particular significance that the cat claustrum is more similar to the rabbit claustrum than to any other mammalian species studied thus far, noted by the existence of four distinct morphologic subtypes. We also demonstrate a lack of intrinsic, and possibly functional, heterogeneity as evidenced by the uniform distribution of PV throughout the cat claustrum, across the four cell subtypes (i.e. inhibitory interneurons as well as projection neurons). Indeed, the association with, and influence of, the cat claustrum on diverse multisensory mechanisms may have more to do with its afferent than efferent relationships, which speaks strongly for its importance in the sensory hierarchy. Exactly what role PV plays in the claustrum is subject to discussion, but it can be postulated that, since CaBP is associated with GABAergic interneurons, synaptogenesis and neuronal maturation, it may also serve as a neuroprotectant, particularly with regard to pathologies associated with the aging process, such as in Alzheimer's disease.
Collapse
|
16
|
Anderson LA, Wallace MN, Palmer AR. Identification of subdivisions in the medial geniculate body of the guinea pig. Hear Res 2007; 228:156-67. [PMID: 17399924 DOI: 10.1016/j.heares.2007.02.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Revised: 02/07/2007] [Accepted: 02/09/2007] [Indexed: 11/17/2022]
Abstract
The accurate and reliable identification of subdivisions within the auditory thalamus is important for future studies of this nucleus. However, in the guinea pig, there has been no agreement on the number or nomenclature of subdivisions within the main nucleus of the auditory thalamus, the medial geniculate body (MGB). Thus, we assessed three staining methods in the guinea pig MGB and concluded that cytochrome oxidase (CYO) histochemistry provides a clear and reliable method for defining MGB subdivisions. By combining CYO with acetylcholinesterase staining and extensive physiological mapping we defined five separate divisions, all of which respond to auditory stimuli. Coronal sections stained for CYO revealed a moderate to darkly-stained oval core. This area (the ventral MGB) contained a high proportion (61%) of V-shaped tuning curves and a tonotopic organisation of characteristic frequencies. It was surrounded by four smaller areas that contained darkly stained somata but had a paler neuropil. These areas, the dorsolateral and suprageniculate (which together form the dorsal MGB), the medial MGB and the shell MGB, did not have any discernable tonotopic frequency gradient and contained a smaller proportion of V-shaped tuning curves. This suggests that CYO permits the identification of core and belt areas within the guinea pig MGB.
Collapse
Affiliation(s)
- L A Anderson
- MRC Institute of Hearing Research, University Park, Nottingham NG7 2RD, UK.
| | | | | |
Collapse
|
17
|
Nagaeva DV, Akhmadeev AV. Structural organization, neurochemical characteristics, and connections of the reticular nucleus of the thalamus. ACTA ACUST UNITED AC 2006; 36:987-95. [PMID: 17024337 DOI: 10.1007/s11055-006-0134-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2004] [Accepted: 09/14/2005] [Indexed: 12/23/2022]
Abstract
This review analyzes current concepts of the structural organization and ultrastructure of the reticular nucleus of the thalamus (RNT) and the neurochemical characteristics of its neurons. The topography, cytoarchitectonics, and neuronal organization of this nucleus are considered in detail, as are questions of its neurogenesis. Neurochemical data clarifying the representation of neurotransmitter systems in the RNT and data on neuropeptides synthesized in its neurons are systematized. The complex ultrastructural organization of the RNT is characterized in terms of recent data from state-of-the-art immunocytochemical methods allowing localization of glutamatergic and GABAergic receptors on synaptic elements. Data on the afferent and efferent connections of the RNT demonstrate its influences on various parts of the brain and the specific features of its interactions with cortical formations.
Collapse
Affiliation(s)
- D V Nagaeva
- Department of Human and Animal Morphology and Physiology, Bashkir State University, Ufa
| | | |
Collapse
|
18
|
Kenigfest N, Belekhova M, Repérant J, Rio JP, Ward R, Vesselkin N. The turtle thalamic anterior entopeduncular nucleus shares connectional and neurochemical characteristics with the mammalian thalamic reticular nucleus. J Chem Neuroanat 2006; 30:129-43. [PMID: 16140498 DOI: 10.1016/j.jchemneu.2005.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 07/04/2005] [Accepted: 07/07/2005] [Indexed: 10/25/2022]
Abstract
Neurochemical and key connectional characteristics of the anterior entopeduncular nucleus (Enta) of the turtle (Testudo horsfieldi) were studied by axonal tracing techniques and immunohistochemistry of parvalbumin, gamma-aminobutyric acid (GABA) and glutamic acid decarboxylase (GAD). We showed that the Enta, which is located within the dorsal peduncle of the lateral forebrain bundle (Pedd), has roughly topographically organized reciprocal connections with the dorsal thalamic visual nuclei, the nucleus rotundus (Rot) and dorsal lateral geniculate nucleus (GLd). The Enta receives projections from visual telencephalic areas, the anterior dorsal ventricular ridge and dorsolateral cortex/pallial thickening. Most Enta neurons contained GABA and parvalbumin, and some of them were retrogradely labeled when the tracer was injected into the visual dorsal thalamic nuclei. Further experiments using double immunofluorescence revealed colocalization of GAD and parvalbumin in the vast majority of Enta neurons, and many of these cells showed retrograde labeling with Fluoro-gold injected into the Rot and/or GLd. According to these data, the Enta may be considered as a structural substrate for recurrent inhibition of the visual thalamic nuclei. Based on morphological and neurochemical similarity of the turtle Enta, caiman Pedd nucleus, the superior reticular nucleus in birds, and the thalamic reticular nucleus in mammals, we suggest that these structures represent a characteristic component which is common to the thalamic organization in amniotes.
Collapse
Affiliation(s)
- Natalia Kenigfest
- Muséum National d'Histoire Naturelle USM-0501, Centre National de la Recherche Scientifique UMR-5166, Bat. d'Anatomie comparée, Paris, France
| | | | | | | | | | | |
Collapse
|
19
|
Ashwell KWS, Paxinos G. Cyto- and chemoarchitecture of the dorsal thalamus of the monotreme Tachyglossus aculeatus, the short beaked echidna. J Chem Neuroanat 2005; 30:161-83. [PMID: 16099140 DOI: 10.1016/j.jchemneu.2005.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022]
Abstract
We have examined the cyto- and chemoarchitecture of the dorsal thalamus of the short beaked echidna (Tachyglossus aculeatus), using Nissl and myelin staining, immunoreactivity for parvalbumin, calbindin, calretinin and non-phosphorylated neurofilament protein (SMI-32 antibody), and histochemistry for acetylcholinesterase and NADPH diaphorase. Immunohistochemical methods revealed many nuclear boundaries, which were difficult to discern with Nissl staining. Parvalbumin immunoreactive somata were concentrated in the ventral posterior, reticular, posterior, lateral and medial geniculate nuclei, while parvalbumin immunoreactivity of the neuropil was present throughout all but the midline nuclei. Large numbers of calbindin immunoreactive somata were also found within the midline thalamic nuclei, and thalamic sensory relay nuclei. Immunoreactivity for calretinin was found in many small somata within the lateral geniculate "a" nucleus, with other labelled somata found in the lateral geniculate "b" nucleus, ventral posterior medial and ventral posterior lateral nuclei. Immunoreactivity with the SMI-32 antibody was largely confined to somata and neuropil within the thalamocortical relay nuclei (ventral posterior medial and lateral nuclei, lateral and medial geniculate nuclei and the posterior thalamic nucleus). In broad terms there were many similarities between the thalamus of this monotreme and that of eutheria (e.g. disposition of somatosensory thalamus, complementarity of parvalbumin and calbindin immunoreactive structures), but there were some unique features of the thalamus of the echidna. These include the relatively small size of the thalamic reticular nucleus and the preponderance of calbindin immunoreactive neurons over parvalbumin immunoreactive neurons in the ventral posterior nucleus.
Collapse
Affiliation(s)
- Ken W S Ashwell
- Department of Anatomy, School of Medical Sciences, The University of New South Wales, NSW 2052, Australia.
| | | |
Collapse
|
20
|
Paloff AM, Usunoff KG, Yotovski P, Hinova-Palova DV, Ovtscharoff WA. Parvalbumin-like immunostaining in the cat inferior colliculus. Light and electron microscopic investigation. Acta Histochem 2004; 106:219-34. [PMID: 15186929 DOI: 10.1016/j.acthis.2003.11.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 11/11/2003] [Accepted: 11/23/2003] [Indexed: 12/25/2022]
Abstract
The presence of the calcium-binding protein parvalbumin (PV) was studied in neuronal elements of the cat's inferior colliculus (IC) by means of light and electron microscopic immunocytochemistry. Immunostaining of PV was detected in all three main parts of the IC. Several subtypes of large neurons that differed in size and shape were immunostained, comprising approx. 15% of the total number of PV-containing neurons. Approx. half of the labeled neurons were medium sized. Two types of small neurons were found to be PV synthesizing, and comprised approx. 35% of the total PV-containing population. Ultrastructurally, many dendrites were heavily immunolabeled, and the reaction product was present in dendritic spines as well. Several types of synaptic boutons contained reaction product, and terminated on both labeled and unlabeled postsynaptic targets forming asymmetric and symmetric synapses. Approx. 70% of all PV-immunolabeled terminals contained round synaptic vesicles and formed asymmetric synapses. The majority of these boutons were of the "large round" type and corresponded to the terminals of cochlear nuclei. A lower number were of the "small round" type, and were probably corticotectal terminals. The remaining 30% of PV-containing terminals contained pleomorphic or elongated vesicles and formed symmetric synapses. These terminals corresponded with "P" and "F1" bouton types. Part of these boutons appeared to arise from nuclei of the lateral lemniscus and the superior olive, and a certain percentage likely represented endings of inhibitory interneurons.
Collapse
Affiliation(s)
- Adrian M Paloff
- Department of Anatomy and Histology, Faculty of Medicine, Preclinical University Center, Medical University, Sofia, Bulgaria.
| | | | | | | | | |
Collapse
|
21
|
Cruikshank SJ, Killackey HP, Metherate R. Parvalbumin and calbindin are differentially distributed within primary and secondary subregions of the mouse auditory forebrain. Neuroscience 2001; 105:553-69. [PMID: 11516823 DOI: 10.1016/s0306-4522(01)00226-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The calcium binding proteins parvalbumin and calbindin are thought to differentially regulate physiological functions and often show complementary distributions in the CNS. Our goal was to determine parvalbumin and calbindin distributions in the different subdivisions of mouse auditory thalamus and auditory cortex. Following fixation, FVB mouse brains (postnatal days 38-80) were sectioned along coronal and horizontal planes, then processed for parvalbumin and calbindin immunohistochemistry (antibodies: parvalbumin pa-235, calbindin-d-28k cl-300). Strong complementary differences in calcium binding protein distributions were found in mouse auditory thalamus. The ventral division of the medial geniculate, which is the principal relay to primary auditory cortex, exhibited dense parvalbumin but weak calbindin immunoreactivity. In contrast, most of the 'secondary' auditory thalamic regions surrounding the ventral division showed strong calbindin and lighter parvalbumin levels. Thus, the mouse auditory thalamus is composed of a parvalbumin positive 'core' surrounded by a calbindin positive 'shell'. Parvalbumin immunoreactivity was also more prominent in the primary auditory cortex than in the secondary belt auditory cortex. Calbindin immunoreactivity in auditory cortex was less clearly divided along primary/secondary lines, especially in supragranular layers. However, within infragranular layers, there was heavier staining in belt areas than in primary auditory cortex. In auditory thalamus, parvalbumin labeling was largely confined to the neuropil, whereas calbindin labeling involved somata and neuropil. In auditory cortex, somata and neuropil were positive for both proteins.In summary, the calcium binding proteins parvalbumin and calbindin were found to be differentially distributed within the primary and non-primary regions of mouse auditory forebrain. These differences in protein distribution may contribute to the distinct types of physiological responses that occur in the primary vs. non-primary areas.
Collapse
Affiliation(s)
- S J Cruikshank
- Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| | | | | |
Collapse
|
22
|
Abstract
This work is a study of the distribution pattern of calbindin-D28k, calretinin, and parvalbumin in the diencephalic alar plate of a reptile, the lizard Psammodromus algirus, by using the prosomeric model (Puelles [1995] Brain Behav Evol 46:319-337), which divides the alar plate of the diencephalon into the caudorostrally arranged pretectum (p1), dorsal thalamus plus epithalamus (p2), and ventral thalamus (p3). Calbindin and calretinin are more extensively expressed in the dorsal thalamus than in the neighboring alar regions, and therefore these calcium-binding proteins are particularly suitable markers for delimiting the dorsal thalamus/epithalamus complex from the ventral thalamus and the pretectum. Conversely, parvalbumin is more intensely expressed in the pretectum and ventral thalamus than in the dorsal thalamus/epithalamus complex. Within the dorsal thalamus, calcium-binding protein immunoreactivity reveals a three-tiered division. The pretectum displays the most intense expression of parvalbumin within the diencephalon. Virtually all nuclei in the three sectors of the pretectum (commissural, juxtacommissural, and precommissural) present strong to moderate expression of parvalbumin. We compare the distribution of calcium-binding proteins in the diencephalon of Psammodromus with other vertebrates, with mammals in particular, and suggest that the middle and ventral tiers of the reptilian dorsal thalamus may be comparable to nonspecific or plurimodal posterior/intralaminar thalamic nuclei in mammals, on the basis of the calcium-binding protein expression patterns, as well as the hodological and embryological data in the literature.
Collapse
Affiliation(s)
- J C Dávila
- Departamento de Biología Celular, Universidad de Málaga, 29071 Málaga, Spain
| | | | | |
Collapse
|
23
|
Berdel B, Moryś J. Expression of calbindin-D28k and parvalbumin during development of rat's basolateral amygdaloid complex. Int J Dev Neurosci 2000; 18:501-13. [PMID: 10884595 DOI: 10.1016/s0736-5748(00)00024-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Parvalbumin and calbindin-D28k are calcium-binding proteins, which are considered to be markers for certain populations of GABAergic neurons. Their correct development in the basolateral amygdaloid complex is critical for the proper emotional functioning in adult live of human and animals. Therefore, in this paper we describe the pattern of the morphological differentiation and distribution of immunoreactive elements of the parvalbumin and calbindin-D28k in this complex on the basis of immunohistochemically stained material obtained from embryonic (E20) and postnatal (P0-P90) rat brains. Calbindin-D28k appeared early in the development, already in the prenatal life. At this time immunopositive reaction was visible only in cell bodies. However, during development the population of immunopositive neurons was divided into four types: (1) polygonal; (2) piriform-like; (3) bipolar; and (4) pyramidal-like. Two weeks after birth calbindin-D28k immunoreactivity also appeared in neuropil. First, there were visible calbindin-D28k positive fibers and granules that encircled unstained cell bodies and formed basket-like structures. Subsequently, these granules appeared along proximal parts of unstained dendrites forming, so called 'cartridges'. The distribution of calbindin-D28k positive cells during postnatal life was rather homogenous throughout whole basolateral complex. Intensity of calbindin-D28k immunoreactivity reached mature level on the 21st day after birth.The maturation pattern of parvalbumin immunopositive elements followed the same sequence as calbindin-D28k, but it started much later - since the 17th day after birth and reached mature appearance on the 30th day of life. Contrary to calbindin-D28k, parvalbumin was not homogeneously distributed in the basolateral complex. Originally, parvalbumin was restricted to the magnocellular part of basolateral nucleus but it was finally expressed also in the parvicellular part of basolateral nucleus and the dorsolateral part of lateral nucleus. The differences in development of these two calcium-binding proteins indicate that parvalbumin and calbindin-D28k play diverse roles during development and maturation of the basolateral amygdala.
Collapse
Affiliation(s)
- B Berdel
- Department of Anatomy and Neurobiology, Medical University of Gdańsk, 1 Debinki Street, 80-211, Gdańsk, Poland
| | | |
Collapse
|
24
|
Münkle MC, Waldvogel HJ, Faull RL. The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. J Chem Neuroanat 2000; 19:155-73. [PMID: 10989260 DOI: 10.1016/s0891-0618(00)00060-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
UNLABELLED Calcium-binding proteins show a heterogeneous distribution in the mammalian central nervous system and are useful markers for identifying neuronal populations. The distribution of the three major calcium-binding proteins - calbindin-D28k (calbindin), calretinin and parvalbumin - has been investigated in eight neurologically normal human thalami using standard immunohistochemical techniques. Most thalamic nuclei show immunoreactive cell bodies for at least two of the three calcium-binding proteins; the only nucleus showing immunoreactivity for one calcium-binding protein is the centre médian nucleus (CM) which is parvalbumin-positive. Overall, the calcium-binding proteins show a complementary staining pattern in the human thalamus. In general terms, the highest density of parvalbumin staining is in the component nuclei of the ventral nuclear group (i.e. in the ventral anterior, ventral lateral and ventral posterior nuclear complexes) and in the medial and lateral geniculate nuclear groups. Moderate densities of parvalbumin staining are also present in regions of the mediodorsal nucleus (MD). By contrast, calbindin and calretinin immunoreactivity both show a similar distribution of dense staining in the thalamus which appears to complement the pattern of intense parvalbumin staining. That is, calbindin and calretinin staining is most dense in the rostral intralaminar nuclear group and in the patchy regions of the MD which show very low levels of parvalbumin staining. However, calbindin and calretinin also show low levels of staining in the ventral nuclear complex and in the medial and lateral geniculate bodies which overlaps with the intense parvalbumin staining in these regions. These results show that the calcium-binding proteins are heterogeneously distributed in a complementary fashion within the nuclei of the human thalamus. They provide further support for the concept recently proposed by Jones (Jones, E.G., 1998. VIEWPOINT the core and matrix of thalamic organization. Neuroscience 85, 331-345) that the primate thalamus comprises of a matrix of calbindin immunoreactive cells and a superimposed core of parvalbumin immunoreactive cells which may have differential patterns of cortical projections.
Collapse
Affiliation(s)
- M C Münkle
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | |
Collapse
|
25
|
Dixon G, Dissanaike S, Harper CG. Parvalbumin-immunoreactive neurons in the human anteroventral thalamic nucleus. Neuroreport 2000; 11:97-101. [PMID: 10683838 DOI: 10.1097/00001756-200001170-00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We immunohistochemically characterised the expression of the calcium-binding protein parvalbumin in the normal human anteroventral thalamic nucleus (AVN). Two morphologically distinct neuronal populations were found to be parvalbumin-immunoreactive (PV-IR): a large population of lightly staining PV-IR neurons and a smaller population of intensely PV-IR neurons. This second type of neuron, which displayed many characteristics normally associated with GABAergic interneurons, has not previously been described in human thalamus. Thus, presumptive thalamic interneurons in the human brain can be further subtyped on the basis of immunoreactivity to parvalbumin. This may have implications for the understanding of thalamocortical function in the normal state and in dysfunctional conditions such as Wernicke-Korsakoff syndrome and schizophrenia.
Collapse
Affiliation(s)
- G Dixon
- Neuroscience Institute of Schizophrenia and Allied Disorders, Darlinghurst, NSW, Australia
| | | | | |
Collapse
|
26
|
Münkle MC, Waldvogel HJ, Faull RL. Calcium-binding protein immunoreactivity delineates the intralaminar nuclei of the thalamus in the human brain. Neuroscience 1999; 90:485-91. [PMID: 10215153 DOI: 10.1016/s0306-4522(98)00444-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Immunohistochemical studies have shown that the three calcium-binding proteins (calbindin-D28k, calretinin and parvalbumin) are heterogeneously distributed in the mammalian brain and are useful for delineating nuclear boundaries. We have investigated the distribution of the three calcium-binding proteins in the human thalamus in order to assist in the delineation of the equivocal nuclear boundaries of the intralaminar nuclei of the thalamus. The results show that each of the "functional" nuclear complexes in the human thalamus demonstrates a characteristic pattern of calcium-binding protein immunoreactivity. In particular, the intralaminar nuclei are characterized by a unique combination of calcium-binding protein staining which clearly delineates the component nuclei in this complex from the other nuclei of the human thalamus. The anterior group of intralaminar nuclei (central lateral nucleus, paracentral nucleus and central medial nucleus) showed intense staining for both calbindin-D28k and calretinin. By contrast, the posterior group of intralaminar nuclei (centre median nucleus and parafascicular nucleus) showed a complementary pattern of staining; the centre median nucleus showed immunoreactivity only for one calcium-binding protein, parvalbumin, while the parafascicular nucleus showed immunoreactivity for both calbindin-D28k and calretinin. No other nucleus in the human thalamus showed these particular combinations of calcium-binding protein staining. Since the intralaminar nuclei also have unique topographically organized connectional affiliations with both the cerebral cortex and the basal ganglia, these results suggest that the calcium-binding proteins may play an important role in the influence of the intralaminar nuclei on interactions between the cerebral cortex and the basal ganglia.
Collapse
Affiliation(s)
- M C Münkle
- Department of Anatomy with Radiology, Faculty of Medicine and Health Science, University of Auckland, New Zealand
| | | | | |
Collapse
|
27
|
|
28
|
Are the interlaminar zones of the ferret dorsal lateral geniculate nucleus actually part of the perigeniculate nucleus? J Neurosci 1996. [PMID: 8815875 DOI: 10.1523/jneurosci.16-19-05923.1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The ferret dorsal lateral geniculate nucleus (LGNd) contains interneurons within the interlaminar zones situated between the laminae corresponding to the ipsi- and contralateral eyes. We found that a subset of these neurons exhibits electrophysiological properties similar to those previously reported for perigeniculate (PGN) neurons, including the generation of rhythmic sequences of rebound low-threshold Ca2+ spikes at a frequency of 1-4 Hz after the intracellular injection of a hyperpolarizing current pulse. These "PGN-like" interlaminar interneurons innervated restricted regions of the A-laminae, inhibited thalamocortical cells through GABAA, and perhaps GABAB, receptors, and were excited by axon collaterals from thalamocortical cells. This reciprocal relationship is identical to that formed by PGN cells and allowed the PGN-like interlaminar neurons to participate in the generation of spindle waves and other network oscillations. Pharmacologically, PGN-like interlaminar interneurons were also similar to PGN neurons: both generated a prolonged depolarization in response to the local application of serotonin, 1S,3R-ACPD, and CCK8S, and a rapid depolarization followed by a more prolonged hyperpolarization in response to acetylcholine. Examination of parvalbumin and calbindin staining in the ferret LGNd revealed that both PGN and a subset of interlaminar neurons were parvalbumin-positive. In contrast, calbindin-positive cells were relatively absent in the PGN and sparsely present in the interlaminar zones, but were numerous in the A and C laminae. Our results indicate that the interlaminar zone in between laminae A and A1 and A1 and C in the ferret LGNd possesses a cell type that is electrophysiologically, pharmacologically, anatomically, immunocytochemically, and functionally similar to neurons in the PGN.
Collapse
|
29
|
Finkelstein DI, Reeves AK, Horne MK. An electron microscopic tracer study of the projections from entopeduncular nucleus to the ventrolateral nucleus of the rat. Neurosci Lett 1996; 211:33-6. [PMID: 8809841 DOI: 10.1016/0304-3940(96)12713-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The entopeduncular (EP) nucleus is considered to be the major outflow nucleus of the basal ganglia (BG). The anterograde tracer dextran biotin was injected into EP to investigate its connections with the thalamus. Terminals from EP were found in the ipsilateral ventroanterior-ventrolateral (VAL) and ventromedial thalamic nuclei (VM), lateral habenular and centromedian-parafascicular complex. Electron microscopy of the terminals in VAL/VM revealed densely labelled small synapses that had prominent post-synaptic densities and round vesicles. Synapses were observed onto dendrites and dendritic spines but not onto other synapses or somas. No symmetrical synapses with pleomorphic vesicles were labelled. It is concluded that the synaptic contacts between EP and thalamus are Gray type 1. These findings have implications regarding current theories of BG pathophysiology.
Collapse
Affiliation(s)
- D I Finkelstein
- Department of Anatomy, Monash University, Victoria, Australia.
| | | | | |
Collapse
|
30
|
Abstract
The gamma-aminobutyric acid (GABA)-containing neurons of the thalamic reticular nucleus (nRt) are a major source of inhibitory innervation in dorsal thalamic nuclei. Individual nRt neurons were intracellularly recorded and labelled in an in vitro rat thalamic slice preparation to investigate their projection into ventrobasal thalamic nuclei (VB). Camera lucida reconstructions of 37 neurons indicated that nRt innervation ranges from a compact, focal projection to a widespread, diffuse projection encompassing large areas of VB. The main axons of 65% of the cells gave rise to intra-nRt collaterals prior to leaving the nucleus and, once within VB, ramified into one of three branching patterns: cluster, intermediate, and diffuse. The cluster arborization encompassed a focal region averaging approximately 25,000 mu m2 and contained a high density of axonal swellings, indicative of a topographic projection. The intermediate structure extended across an area approximately fourfold greater and also contained numerous axonal swellings. The diffuse arborization of nRt neurons covered a large region of VB and contained a relatively low density of axonal swellings. Analysis of somatic size and shape revealed that diffuse arborizations arose from significantly smaller, fusiform-shaped somata. Cytochrome oxidase reactivity or parvalbumin immunoreactivity was used to delineate a discontinuous staining pattern representing thalamic barreloids. The size of a cluster arborization closely approximated that of an individual barreloid. The heterogeneous arborizations from nRt neurons may reflect a dynamic range of inhibitory influences of nRt on dorsal thalamic activity.
Collapse
Affiliation(s)
- C L Cox
- Department of Neurology, Stanford University Medical Center, CA 94305, USA
| | | | | |
Collapse
|