1
|
Stimpson CD, Smaers JB, Raghanti MA, Phillips KA, Jacobs B, Hopkins WD, Hof PR, Sherwood CC. Evolutionary scaling and cognitive correlates of primate frontal cortex microstructure. Brain Struct Funct 2024; 229:1823-1838. [PMID: 37889302 DOI: 10.1007/s00429-023-02719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023]
Abstract
Investigating evolutionary changes in frontal cortex microstructure is crucial to understanding how modifications of neuron and axon distributions contribute to phylogenetic variation in cognition. In the present study, we characterized microstructural components of dorsolateral prefrontal cortex, orbitofrontal cortex, and primary motor cortex from 14 primate species using measurements of neuropil fraction and immunohistochemical markers for fast-spiking inhibitory interneurons, large pyramidal projection neuron subtypes, serotonergic innervation, and dopaminergic innervation. Results revealed that the rate of evolutionary change was similar across these microstructural variables, except for neuropil fraction, which evolves more slowly and displays the strongest correlation with brain size. We also found that neuropil fraction in orbitofrontal cortex layers V-VI was associated with cross-species variation in performance on experimental tasks that measure self-control. These findings provide insight into the evolutionary reorganization of the primate frontal cortex in relation to brain size scaling and its association with cognitive processes.
Collapse
Grants
- AG067419, HG011641, NS092988 NIH HHS
- SMA-1542848, EF-2021785, DRL-2219759 National Science Foundation
- SMA-1542848, EF-2021785, DRL-2219759 National Science Foundation
- AG067419, HG011641, NS092988 NIH HHS
- AG067419, HG011641, NS092988 NIH HHS
- 220020293 James S. McDonnell Foundation
Collapse
Affiliation(s)
- Cheryl D Stimpson
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA
- DoD/USU Brain Tissue Repository and Neuropathology Program, Uniformed Services University (USU), Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Jeroen B Smaers
- Department of Anthropology, Stony Brook University, Stony Brook, NY, USA
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH, USA
| | - Kimberley A Phillips
- Department of Psychology, Trinity University, San Antonio, TX, USA
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Bob Jacobs
- Department of Psychology, Laboratory of Quantitative Neuromorphology, Colorado College, Colorado Springs, CO, USA
| | - William D Hopkins
- Department of Comparative Medicine, Michale E Keeling Center for Comparative Medicine and Research, M D Anderson Cancer Center, Bastrop, TX, USA
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Center for Discovery and Innovation, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Ohm DT, Xie SX, Capp N, Arezoumandan S, Cousins KAQ, Rascovsky K, Wolk DA, Van Deerlin VM, Lee EB, McMillan CT, Irwin DJ. Cytoarchitectonic gradients of laminar degeneration in behavioral variant frontotemporal dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588259. [PMID: 38644997 PMCID: PMC11030243 DOI: 10.1101/2024.04.05.588259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is a clinical syndrome primarily caused by either tau (bvFTD-tau) or TDP-43 (bvFTD-TDP) proteinopathies. We previously found lower cortical layers and dorsolateral regions accumulate greater tau than TDP-43 pathology; however, patterns of laminar neurodegeneration across diverse cytoarchitecture in bvFTD is understudied. We hypothesized that bvFTD-tau and bvFTD-TDP have distinct laminar distributions of pyramidal neurodegeneration along cortical gradients, a topologic order of cytoarchitectonic subregions based on increasing pyramidal density and laminar differentiation. Here, we tested this hypothesis in a frontal cortical gradient consisting of five cytoarchitectonic types (i.e., periallocortex, agranular mesocortex, dysgranular mesocortex, eulaminate-I isocortex, eulaminate-II isocortex) spanning anterior cingulate, paracingulate, orbitofrontal, and mid-frontal gyri in bvFTD-tau (n=27), bvFTD-TDP (n=47), and healthy controls (HC; n=32). We immunostained all tissue for total neurons (NeuN; neuronal-nuclear protein) and pyramidal neurons (SMI32; non-phosphorylated neurofilament) and digitally quantified NeuN-immunoreactivity (ir) and SMI32-ir in supragranular II-III, infragranular V-VI, and all I-VI layers in each cytoarchitectonic type. We used linear mixed-effects models adjusted for demographic and biologic variables to compare SMI32-ir between groups and examine relationships with the cortical gradient, long-range pathways, and clinical symptoms. We found regional and laminar distributions of SMI32-ir expected for HC, validating our measures within the cortical gradient framework. While SMI32-ir loss was not related to the cortical gradient in bvFTD-TDP, SMI32-ir progressively decreased along the cortical gradient of bvFTD-tau and included greater SMI32-ir loss in supragranular eulaminate-II isocortex in bvFTD-tau vs bvFTD-TDP ( p =0.039). In a structural model for long-range laminar connectivity between infragranular mesocortex and supragranular isocortex, we found a larger laminar ratio of mesocortex-to-isocortex SMI32-ir in bvFTD-tau vs bvFTD-TDP ( p =0.019), suggesting select long-projecting pathways may contribute to isocortical-predominant degeneration in bvFTD-tau. In cytoarchitectonic types with the highest NeuN-ir, we found lower SMI32-ir in bvFTD-tau vs bvFTD-TDP ( p =0.047), suggesting pyramidal neurodegeneration may occur earlier in bvFTD-tau. Lastly, we found that reduced SMI32-ir related to behavioral severity and frontal-mediated letter fluency, not temporal-mediated confrontation naming, demonstrating the clinical relevance and specificity of frontal pyramidal neurodegeneration to bvFTD-related symptoms. Our data suggest loss of neurofilament-rich pyramidal neurons is a clinically relevant feature of bvFTD that selectively worsens along a frontal cortical gradient in bvFTD-tau, not bvFTD-TDP. Therefore, tau-mediated degeneration may preferentially involve pyramidal-rich layers that connect more distant cytoarchitectonic types. Moreover, the hierarchical arrangement of cytoarchitecture along cortical gradients may be an important neuroanatomical framework for identifying which types of cells and pathways are differentially involved between proteinopathies.
Collapse
|
3
|
Levy R. The prefrontal cortex: from monkey to man. Brain 2024; 147:794-815. [PMID: 37972282 PMCID: PMC10907097 DOI: 10.1093/brain/awad389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/01/2023] [Accepted: 11/02/2023] [Indexed: 11/19/2023] Open
Abstract
The prefrontal cortex is so important to human beings that, if deprived of it, our behaviour is reduced to action-reactions and automatisms, with no ability to make deliberate decisions. Why does the prefrontal cortex hold such importance in humans? In answer, this review draws on the proximity between humans and other primates, which enables us, through comparative anatomical-functional analysis, to understand the cognitive functions we have in common and specify those that distinguish humans from their closest cousins. First, a focus on the lateral region of the prefrontal cortex illustrates the existence of a continuum between rhesus monkeys (the most studied primates in neuroscience) and humans for most of the major cognitive functions in which this region of the brain plays a central role. This continuum involves the presence of elementary mental operations in the rhesus monkey (e.g. working memory or response inhibition) that are constitutive of 'macro-functions' such as planning, problem-solving and even language production. Second, the human prefrontal cortex has developed dramatically compared to that of other primates. This increase seems to concern the most anterior part (the frontopolar cortex). In humans, the development of the most anterior prefrontal cortex is associated with three major and interrelated cognitive changes: (i) a greater working memory capacity, allowing for greater integration of past experiences and prospective futures; (ii) a greater capacity to link discontinuous or distant data, whether temporal or semantic; and (iii) a greater capacity for abstraction, allowing humans to classify knowledge in different ways, to engage in analogical reasoning or to acquire abstract values that give rise to our beliefs and morals. Together, these new skills enable us, among other things, to develop highly sophisticated social interactions based on language, enabling us to conceive beliefs and moral judgements and to conceptualize, create and extend our vision of our environment beyond what we can physically grasp. Finally, a model of the transition of prefrontal functions between humans and non-human primates concludes this review.
Collapse
Affiliation(s)
- Richard Levy
- AP–HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Neurology, Sorbonne Université, Institute of Memory and Alzheimer’s Disease, 75013 Paris, France
- Sorbonne Université, INSERM U1127, CNRS 7225, Paris Brain Institute- ICM, 75013 Paris, France
| |
Collapse
|
4
|
Vogt BA, Rosene DL. Comparison of monkey and human retrosplenial neurocytology. J Comp Neurol 2023; 531:2044-2061. [PMID: 38062543 DOI: 10.1002/cne.25561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 12/31/2023]
Abstract
Retrosplenial cortex (RSC) has unique problems for human neuroimaging studies as its divisions are small, at the lower end of functional scanner spatial resolution, and it is buried in the callosal sulcus. The present study sought to define the cytoarchitecture of RSC in human and monkey brains along its entire anteroposterior extent. The results show anterior extensions, a newly defined dichotomy of area 30, a new area p30, and an area p29v in monkey that differentiates into three divisions in human. Accordingly, anterior (a), intermediate (i), and posterior (p) divisions of areas 29l, 29m, 30l, and 30m were identified. Posterior area 29 has higher neuron packing in the granular layer than anterior and intermediate divisions of area 29. A newly detected dysgranular area p30 has larger neurons in layers II-IIIab than a30 and i30 and with substantially higher NFP expression in layer IIIab of posterior areas than areas a30 and i30. Medial area 30 has larger pyramids and higher NFP expression in all layers than area 30l. The new area p30 was seen between areas p29m and p30I in both species. Finally, a ventral area p29v is present in monkeys. This latter area appears to differentiate into three divisions in human with the most extensive granular layer adjacent to layer I in p29vm and p29vl. Functional imaging has identified pRSC as part of a cognitive map which is engaged in spatial navigation and localization of personally relevant objects.
Collapse
Affiliation(s)
- Brent A Vogt
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
- Cingulum Neurosciences Institute, Manlius, New York, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University Chobanian and Avedisian School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Gerussi T, Graïc JM, Grandis A, Peruffo A, Cozzi B. The orbitofrontal cortex of the sheep. Topography, organization, neurochemistry, digital tensor imaging and comparison with the chimpanzee and human. Brain Struct Funct 2022; 227:1871-1891. [PMID: 35347401 PMCID: PMC9098624 DOI: 10.1007/s00429-022-02479-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/24/2022] [Indexed: 12/27/2022]
Abstract
Areas dedicated to higher brain functions such as the orbitofrontal cortex (OFC) are thought to be unique to hominidae. The OFC is involved in social behavior, reward and punishment encoding and emotional control. Here, we focused on the putative corresponding area in the sheep to assess its homology to the OFC in humans. We used classical histology in five sheep (Ovis aries) and four chimpanzees (Pan troglodytes) as a six-layered-cortex primate, and Diffusion Tensor Imaging (DTI) in three sheep and five human brains. Nissl’s staining exhibited a certain alteration in cortical lamination since no layer IV was found in the sheep. A reduction of the total cortical thickness was also evident together with a reduction of the prevalence of layer one and an increased layer two on the total thickness. Tractography of the sheep OFC, on the other hand, revealed similarities both with human tracts and those described in the literature, as well as a higher number of cortico-cortical fibers connecting the OFC with the visual areas in the right hemisphere. Our results evidenced the presence of the basic components necessary for complex abstract thought in the sheep and a pronounced laterality, often associated with greater efficiency of a certain function, suggested an evolutionary adaptation of this prey species.
Collapse
|
6
|
Preuss TM, Wise SP. Evolution of prefrontal cortex. Neuropsychopharmacology 2022; 47:3-19. [PMID: 34363014 PMCID: PMC8617185 DOI: 10.1038/s41386-021-01076-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 02/07/2023]
Abstract
Subdivisions of the prefrontal cortex (PFC) evolved at different times. Agranular parts of the PFC emerged in early mammals, and rodents, primates, and other modern mammals share them by inheritance. These are limbic areas and include the agranular orbital cortex and agranular medial frontal cortex (areas 24, 32, and 25). Rodent research provides valuable insights into the structure, functions, and development of these shared areas, but it contributes less to parts of the PFC that are specific to primates, namely, the granular, isocortical PFC that dominates the frontal lobe in humans. The first granular PFC areas evolved either in early primates or in the last common ancestor of primates and tree shrews. Additional granular PFC areas emerged in the primate stem lineage, as represented by modern strepsirrhines. Other granular PFC areas evolved in simians, the group that includes apes, humans, and monkeys. In general, PFC accreted new areas along a roughly posterior to anterior trajectory during primate evolution. A major expansion of the granular PFC occurred in humans in concert with other association areas, with modifications of corticocortical connectivity and gene expression, although current evidence does not support the addition of a large number of new, human-specific PFC areas.
Collapse
Affiliation(s)
- Todd M Preuss
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA.
| | - Steven P Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Bethesda, MD, 20814, USA
| |
Collapse
|
7
|
García-Cabezas MÁ, Hacker JL, Zikopoulos B. A Protocol for Cortical Type Analysis of the Human Neocortex Applied on Histological Samples, the Atlas of Von Economo and Koskinas, and Magnetic Resonance Imaging. Front Neuroanat 2020; 14:576015. [PMID: 33364924 PMCID: PMC7750391 DOI: 10.3389/fnana.2020.576015] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
The human cerebral cortex is parcellated in hundreds of areas using neuroanatomy and imaging methods. Alternatively, cortical areas can be classified into few cortical types according to their degree of laminar differentiation. Cortical type analysis is based on the gradual and systematic variation of laminar features observed across the entire cerebral cortex in Nissl stained sections and has profound implications for understanding fundamental aspects of evolution, development, connections, function, and pathology of the cerebral cortex. In this protocol paper, we explain the general principles of cortical type analysis and provide tables with the fundamental features of laminar structure that are studied for this analysis. We apply cortical type analysis to the micrographs of the Atlas of the human cerebral cortex of von Economo and Koskinas and provide tables and maps with the areas of this Atlas and their corresponding cortical type. Finally, we correlate the cortical type maps with the T1w/T2w ratio from widely used reference magnetic resonance imaging scans. The analysis, tables and maps of the human cerebral cortex shown in this protocol paper can be used to predict patterns of connections between areas according to the principles of the Structural Model and determine their level in cortical hierarchies. Cortical types can also predict the spreading of abnormal proteins in neurodegenerative diseases to the level of cortical layers. In summary, cortical type analysis provides a theoretical and practical framework for directed studies of connectivity, synaptic plasticity, and selective vulnerability to neurologic and psychiatric diseases in the human neocortex.
Collapse
Affiliation(s)
- Miguel Ángel García-Cabezas
- Department of Anatomy, Histology and Neuroscience, School of Medicine, Universidad Autónoma de Madrid, Madrid, Spain
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Julia Liao Hacker
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
- Graduate Program in Neuroscience, Boston University, Boston, MA, United States
| |
Collapse
|
8
|
Liu X, Bautista J, Liu E, Zikopoulos B. Imbalance of laminar-specific excitatory and inhibitory circuits of the orbitofrontal cortex in autism. Mol Autism 2020; 11:83. [PMID: 33081829 PMCID: PMC7574354 DOI: 10.1186/s13229-020-00390-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The human orbitofrontal cortex (OFC) is involved in assessing the emotional significance of events and stimuli, emotion-based learning, allocation of attentional resources, and social cognition. Little is known about the structure, connectivity and excitatory/inhibitory circuit interactions underlying these diverse functions in human OFC, as well as how the circuit is disrupted in individuals with autism spectrum disorder (ASD). METHODS We used post-mortem brain tissue from neurotypical adults and individuals with ASD. We examined the morphology and distribution of myelinated axons across cortical layers in OFC, at the single axon level, as a proxy of excitatory pathways. In the same regions, we also examined the laminar distribution of all neurons and neurochemically- and functionally-distinct inhibitory neurons that express the calcium-binding proteins parvalbumin (PV), calbindin (CB), and calretinin (CR). RESULTS We found that the density of myelinated axons increased consistently towards layer 6, while the average axon diameter did not change significantly across layers in both groups. However, both the density and diameter of myelinated axons were significantly lower in the ASD group compared with the Control group. The distribution pattern and density of the three major types of inhibitory neurons was comparable between groups, but there was a significant reduction in the density of excitatory neurons across OFC layers in ASD. LIMITATIONS This study is limited by the availability of human post-mortem tissue optimally processed for high-resolution microscopy and immunolabeling, especially from individuals with ASD. CONCLUSIONS The balance between excitation and inhibition in OFC is at the core of its function, assessing and integrating emotional and social cues with internal states and external inputs. Our preliminary results provide evidence for laminar-specific changes in the ratio of excitation/inhibition in OFC of adults with ASD, with an overall weakening and likely disorganization of excitatory signals and a relative strengthening of local inhibition. These changes likely underlie pathology of major OFC communications with limbic or other cortices and the amygdala in individuals with ASD, and may provide the anatomic basis for disrupted transmission of signals for social interactions and emotions in autism.
Collapse
Affiliation(s)
- Xuefeng Liu
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Julied Bautista
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Edward Liu
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA
| | - Basilis Zikopoulos
- Human Systems Neuroscience Laboratory, Department of Health Sciences, Boston University, 635 Commonwealth Ave., Room 401D, Boston, MA, 02215, USA. .,Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA. .,Graduate Program in Neuroscience, Boston University, Boston, MA, USA.
| |
Collapse
|
9
|
Sa de Almeida J, Meskaldji DE, Loukas S, Lordier L, Gui L, Lazeyras F, Hüppi PS. Preterm birth leads to impaired rich-club organization and fronto-paralimbic/limbic structural connectivity in newborns. Neuroimage 2020; 225:117440. [PMID: 33039621 DOI: 10.1016/j.neuroimage.2020.117440] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Prematurity disrupts brain development during a critical period of brain growth and organization and is known to be associated with an increased risk of neurodevelopmental impairments. Investigating whole-brain structural connectivity alterations accompanying preterm birth may provide a better comprehension of the neurobiological mechanisms related to the later neurocognitive deficits observed in this population. Using a connectome approach, we aimed to study the impact of prematurity on neonatal whole-brain structural network organization at term-equivalent age. In this cohort study, twenty-four very preterm infants at term-equivalent age (VPT-TEA) and fourteen full-term (FT) newborns underwent a brain MRI exam at term age, comprising T2-weighted imaging and diffusion MRI, used to reconstruct brain connectomes by applying probabilistic constrained spherical deconvolution whole-brain tractography. The topological properties of brain networks were quantified through a graph-theoretical approach. Furthermore, edge-wise connectivity strength was compared between groups. Overall, VPT-TEA infants' brain networks evidenced increased segregation and decreased integration capacity, revealed by an increased clustering coefficient, increased modularity, increased characteristic path length, decreased global efficiency and diminished rich-club coefficient. Furthermore, in comparison to FT, VPT-TEA infants had decreased connectivity strength in various cortico-cortical, cortico-subcortical and intra-subcortical networks, the majority of them being intra-hemispheric fronto-paralimbic and fronto-limbic. Inter-hemispheric connectivity was also decreased in VPT-TEA infants, namely through connections linking to the left precuneus or left dorsal cingulate gyrus - two regions that were found to be hubs in FT but not in VPT-TEA infants. Moreover, posterior regions from Default-Mode-Network (DMN), namely precuneus and posterior cingulate gyrus, had decreased structural connectivity in VPT-TEA group. Our finding that VPT-TEA infants' brain networks displayed increased modularity, weakened rich-club connectivity and diminished global efficiency compared to FT infants suggests a delayed transition from a local architecture, focused on short-range connections, to a more distributed architecture with efficient long-range connections in those infants. The disruption of connectivity in fronto-paralimbic/limbic and posterior DMN regions might underlie the behavioral and social cognition difficulties previously reported in the preterm population.
Collapse
Affiliation(s)
- Joana Sa de Almeida
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Djalel-Eddine Meskaldji
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland; Institute of Mathematics, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Serafeim Loukas
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland; Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Lara Lordier
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland
| | - Laura Gui
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - François Lazeyras
- Department of Radiology and Medical Informatics, Center of BioMedical Imaging (CIBM), University of Geneva, Geneva, Switzerland
| | - Petra S Hüppi
- Division of Development and Growth, Department of Woman, Child and Adolescent, University Hospitals of Geneva, Geneva, Switzerland.
| |
Collapse
|
10
|
Heather Hsu CC, Rolls ET, Huang CC, Chong ST, Zac Lo CY, Feng J, Lin CP. Connections of the Human Orbitofrontal Cortex and Inferior Frontal Gyrus. Cereb Cortex 2020; 30:5830-5843. [PMID: 32548630 DOI: 10.1093/cercor/bhaa160] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/27/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
The direct connections of the orbitofrontal cortex (OFC) were traced with diffusion tractography imaging and statistical analysis in 50 humans, to help understand better its roles in emotion and its disorders. The medial OFC and ventromedial prefrontal cortex have direct connections with the pregenual and subgenual parts of the anterior cingulate cortex; all of which are reward-related areas. The lateral OFC (OFClat) and its closely connected right inferior frontal gyrus (rIFG) have direct connections with the supracallosal anterior cingulate cortex; all of which are punishment or nonreward-related areas. The OFClat and rIFG also have direct connections with the right supramarginal gyrus and inferior parietal cortex, and with some premotor cortical areas, which may provide outputs for the OFClat and rIFG. Another key finding is that the ventromedial prefrontal cortex shares with the medial OFC especially strong outputs to the nucleus accumbens and olfactory tubercle, which comprise the ventral striatum, whereas the other regions have more widespread outputs to the striatum. Direct connections of the OFC and IFG were with especially the temporal pole part of the temporal lobe. The left IFG, which includes Broca's area, has direct connections with the left angular and supramarginal gyri.
Collapse
Affiliation(s)
- Chih-Chin Heather Hsu
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 11221, Taiwan
| | - Edmund T Rolls
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China.,Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Oxford Centre for Computational Neuroscience, Oxford, UK
| | - Chu-Chung Huang
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Shin Tai Chong
- Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan
| | - Chun-Yi Zac Lo
- Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Jianfeng Feng
- Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK.,Oxford Centre for Computational Neuroscience, Oxford, UK.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, 200433, China
| | - Ching-Po Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei 11221, Taiwan.,Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200433, China.,Institute of Neuroscience, National Yang-Ming University, Taipei 11221, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei 11221, Taiwan
| |
Collapse
|
11
|
Krymchantowski AV, Jevoux CC, Krymchantowski AG, Vivas RS, Silva-Néto R. Medication overuse headache: an overview of clinical aspects, mechanisms, and treatments. Expert Rev Neurother 2020; 20:591-600. [PMID: 32463304 DOI: 10.1080/14737175.2020.1770084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Medication-overuse headache (MOH) is a common debilitating neurological disorder, with a prevalence of 1% to 7% in general population. It affects more than 60 million people worldwide and provokes substantial burden. Despite that, most practitioners don't know MOH. This review aims at presenting MOH clinical features, pathophysiology insights, and recent knowledge and guidance regarding treatments. AREAS COVERED A literature search in the major medical databases including the terms 'medication overuse headache,' 'chronic daily headache,' 'chronic migraine,' 'symptomatic medication overuse' and others, published between 1990 and 2020, was carried out. EXPERT COMMENTARY Primary headache sufferers such as migraineurs and tension-type headache patients may increase the headache frequency and induce the transition from episodic to chronic forms, as well as develop MOH, in the presence of medication overuse. There is evidence of structural and functional changes in some areas of the brain, which may identify those likely to respond or not to treatments. Despite the geographical differences and lack of consensus regarding approaches, to educate the patients about reducing medication intake, to withdraw overused medications and to start prophylaxis in some sufferers are crucial steps. Emerging treatments as monoclonal antibodies to migraine may result in better adherence and tolerability profiles as well as outcomes.
Collapse
Affiliation(s)
| | | | | | | | - Raimundo Silva-Néto
- Department of Neurology, Universidade Federal do Delta do Parnaíba , Piauí, Brazil
| |
Collapse
|
12
|
Wojtasik M, Bludau S, Eickhoff SB, Mohlberg H, Gerboga F, Caspers S, Amunts K. Cytoarchitectonic Characterization and Functional Decoding of Four New Areas in the Human Lateral Orbitofrontal Cortex. Front Neuroanat 2020; 14:2. [PMID: 32116573 PMCID: PMC7014920 DOI: 10.3389/fnana.2020.00002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/17/2020] [Indexed: 11/20/2022] Open
Abstract
A comprehensive concept of the biological basis of reward, social and emotional behavior, and language requires a deeper understanding of the microstructure and connectivity of the underlying brain regions. Such understanding could provide deeper insights into their role in functional networks, and form the anatomical basis of the functional segregation of this region as shown in recent in vivo imaging studies. Here, we investigated the cytoarchitecture of the lateral orbitofrontal cortex (lateral OFC) in serial histological sections of 10 human postmortem brains by image analysis and a statistically reproducible approach to detect borders between cortical areas. Profiles of the volume fraction of cell bodies were therefore extracted from digitized histological images, describing laminar changes from the layer I/layer II boundary to the white matter. As a result, four new areas, Fo4–7, were identified. Area Fo4 was mainly found in the anterior orbital gyrus (AOG), Fo5 anteriorly in the inferior frontal gyrus (IFG), Fo6 in the lateral orbital gyrus (LOG), and Fo7 in the lateral orbital sulcus. Areas differed in cortical thickness, abundance and size of pyramidal cells in layer III and degree of granularity in layer IV. A hierarchical cluster analysis was used to quantify cytoarchitectonic differences between them. The 3D-reconstructed areas were transformed into the single-subject template of the Montreal Neurological Institute (MNI), where probabilistic maps and a maximum probability map (MPM) were calculated as part of the JuBrain Cytoarchitectonic Atlas. These maps served as reference data to study the functional properties of the areas using the BrainMap database. The type of behavioral tasks that activated them was analyzed to get first insights of co-activation patterns of the lateral OFC and its contribution to cognitive networks. Meta-analytic connectivity modeling (MACM) showed that functional decoding revealed activation in gustatory perception in Fo4; reward and somesthetic perception in Fo5; semantic processing and pain perception in Fo6; and emotional processing and covert reading in Fo7. Together with existing maps of the JuBrain Cytoarchitectonic Atlas, the new maps can now be used as an open-source reference for neuroimaging studies, allowing to further decode brain function.
Collapse
Affiliation(s)
- Magdalena Wojtasik
- Cécile and Oskar Vogt-Institute for Brain Research, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Bludau
- Institute of Neuroscience and Medicine 1 (INM-1), Research Center Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine 7 (INM-7), Research Center Jülich, Jülich, Germany.,Institut für Systemische Neurowissenschaften, Medizinische Fakultät, Heinrich-Heine Universität Düsseldorf, Düsseldorf, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine 1 (INM-1), Research Center Jülich, Jülich, Germany
| | - Fatma Gerboga
- Cécile and Oskar Vogt-Institute for Brain Research, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine 1 (INM-1), Research Center Jülich, Jülich, Germany.,Institute for Anatomy I, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Katrin Amunts
- Cécile and Oskar Vogt-Institute for Brain Research, Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.,Institute of Neuroscience and Medicine 1 (INM-1), Research Center Jülich, Jülich, Germany
| |
Collapse
|
13
|
Hrvoj-Mihic B, Semendeferi K. Neurodevelopmental disorders of the prefrontal cortex in an evolutionary context. PROGRESS IN BRAIN RESEARCH 2019; 250:109-127. [PMID: 31703898 DOI: 10.1016/bs.pbr.2019.05.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The prefrontal cortex consists of several cytoarchitectonically defined areas that are involved in higher-order cognitive and emotional processing. The areas are highly variable in terms of organization of cortical layers and distribution of specific neuronal classes, and are affected in neurodevelopmental and psychiatric disorders. Here the focus is on microstructural anatomical characteristics of human prefrontal cortex in an evolutionary context with special emphasis on Williams syndrome. We include a pilot analysis of distribution of neurons labeled with an antibody to non-phosphorylated neurofilament protein (SMI-32) in the frontal pole of Williams syndrome to further examine microstructural characteristics of the prefrontal cortex in Williams syndrome and implications of the distribution of SMI-32 immunoreactive neurons for connectivity between the frontal pole and other cortical areas in the disorder.
Collapse
Affiliation(s)
- Branka Hrvoj-Mihic
- University of California San Diego, Department of Anthropology, La Jolla, CA, United States
| | - Katerina Semendeferi
- University of California San Diego, Department of Anthropology, La Jolla, CA, United States; University of California San Diego, Kavli Institute for Brain and Mind, La Jolla, CA, United States.
| |
Collapse
|
14
|
The Structural Model: a theory linking connections, plasticity, pathology, development and evolution of the cerebral cortex. Brain Struct Funct 2019; 224:985-1008. [PMID: 30739157 PMCID: PMC6500485 DOI: 10.1007/s00429-019-01841-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/29/2019] [Indexed: 12/21/2022]
Abstract
The classical theory of cortical systematic variation has been independently described in reptiles, monotremes, marsupials and placental mammals, including primates, suggesting a common bauplan in the evolution of the cortex. The Structural Model is based on the systematic variation of the cortex and is a platform for advancing testable hypotheses about cortical organization and function across species, including humans. The Structural Model captures the overall laminar structure of areas by dividing the cortical architectonic continuum into discrete categories (cortical types), which can be used to test hypotheses about cortical organization. By type, the phylogenetically ancient limbic cortices-which form a ring at the base of the cerebral hemisphere-are agranular if they lack layer IV, or dysgranular if they have an incipient granular layer IV. Beyond the dysgranular areas, eulaminate type cortices have six layers. The number and laminar elaboration of eulaminate areas differ depending on species or cortical system within a species. The construct of cortical type retains the topology of the systematic variation of the cortex and forms the basis for a predictive Structural Model, which has successfully linked cortical variation to the laminar pattern and strength of cortical connections, the continuum of plasticity and stability of areas, the regularities in the distribution of classical and novel markers, and the preferential vulnerability of limbic areas to neurodegenerative and psychiatric diseases. The origin of cortical types has been recently traced to cortical development, and helps explain the variability of diseases with an onset in ontogeny.
Collapse
|
15
|
|
16
|
Han L, Savalia NK, Chan MY, Agres PF, Nair AS, Wig GS. Functional Parcellation of the Cerebral Cortex Across the Human Adult Lifespan. Cereb Cortex 2018; 28:4403-4423. [PMID: 30307480 PMCID: PMC6215466 DOI: 10.1093/cercor/bhy218] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/03/2018] [Indexed: 12/26/2022] Open
Abstract
Adult aging is associated with differences in structure, function, and connectivity of brain areas. Age-based brain comparisons have typically rested on the assumption that brain areas exhibit a similar spatial organization across age; we evaluate this hypothesis directly. Area parcellation methods that identify locations where resting-state functional correlations (RSFC) exhibit abrupt transitions (boundary-mapping) are used to define cortical areas in cohorts of individuals sampled across a large range of the human adult lifespan (20-93 years). Most of the strongest areal boundaries are spatially consistent across age. Differences in parcellation boundaries are largely explained by differences in cortical thickness and anatomical alignment in older relative to younger adults. Despite the parcellation similarities, age-specific parcellations exhibit better internal validity relative to a young-adult parcellation applied to older adults' data, and age-specific parcels are better able to capture variability in task-evoked functional activity. Incorporating age-specific parcels as nodes in RSFC network analysis reveals that the spatial topography of the brain's large-scale system organization is comparable throughout aging, but confirms that the segregation of systems declines with increasing age. These observations demonstrate that many features of areal organization are consistent across adulthood, and reveal sources of age-related brain variation that contribute to the differences.
Collapse
Affiliation(s)
- Liang Han
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Neil K Savalia
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Yale University School of Medicine, New Haven, CT, USA
| | - Micaela Y Chan
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Phillip F Agres
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Anupama S Nair
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Gagan S Wig
- Center for Vital Longevity and School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
17
|
Layer-specific reduced neuronal density in the orbitofrontal cortex of older adults with obsessive–compulsive disorder. Brain Struct Funct 2018; 224:191-203. [DOI: 10.1007/s00429-018-1752-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 09/09/2018] [Indexed: 12/22/2022]
|
18
|
Mehnert J, Hebestreit J, May A. Cortical and Subcortical Alterations in Medication Overuse Headache. Front Neurol 2018; 9:499. [PMID: 29988531 PMCID: PMC6026656 DOI: 10.3389/fneur.2018.00499] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 06/07/2018] [Indexed: 01/05/2023] Open
Abstract
Medication-overuse headache is an increasing problem in headache clinics and therapy includes drug withdrawal. Although it has been shown that the orbitofrontal cortex is hypo-metabolic and exhibits less gray matter in these patients the functional role of this finding is still unclear as virtually no functional imaging studies exploring withdrawal of medication have been published. We compared structural and functional magnetic resonance images of 18 patients before and after drug withdrawal with age and gender matched controls using a well-established trigeminal, nociceptive fMRI paradigm. We reproduced structural changes in the orbitofrontal cortex of the patients which highly correlated with the clinical outcome of medication withdrawal. The neuronal activity before drug withdrawal in pain related regions (operculum, insula, spinal trigeminal nucleus) was reduced compared to after drug withdrawal and the orbitofrontal cortex showed a reduced functional connectivity to the nociceptive input region (spinal trigeminal nucleus) and the cerebellum which regained after withdrawal. These data suggest the seminal role of the orbitofrontal cortex as a mediator between bottom-up and top-down stream in headache processing.
Collapse
Affiliation(s)
- Jan Mehnert
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| | - Julia Hebestreit
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| | - Arne May
- Department of Systems Neuroscience, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
19
|
García-Cabezas MÁ, Barbas H. Anterior Cingulate Pathways May Affect Emotions Through Orbitofrontal Cortex. Cereb Cortex 2017; 27:4891-4910. [PMID: 27655930 PMCID: PMC6075591 DOI: 10.1093/cercor/bhw284] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 08/04/2016] [Accepted: 08/19/2016] [Indexed: 12/17/2022] Open
Abstract
The anterior cingulate cortex (ACC) and posterior orbitofrontal cortex (pOFC) are associated with emotional regulation. These regions are old in phylogeny and have widespread connections with eulaminate neocortices, intricately linking areas associated with emotion and cognition. The ACC and pOFC have distinct cortical and subcortical connections and are also interlinked, but the pattern of their connections-which may be used to infer the flow of information between them-is not well understood. Here we found that pathways from ACC area 32 innervated all pOFC areas with a significant proportion of large and efficient terminals, seen at the level of the system and the synapse. The pathway from area 32 targeted overwhelmingly elements of excitatory neurons in pOFC, with few postsynaptic sites found on presumed inhibitory neurons. Moreover, pathways from area 32 originated mostly in the upper layers and innervated preferentially the middle-deep layers of the least differentiated pOFC areas, in a pattern reminiscent of feedforward communication. Pathway terminations from area 32 overlapped in the deep layers of pOFC with output pathways that project to the thalamus and the amygdala, and may have cascading downstream effects on emotional and cognitive processes and their disruption in psychiatric disorders.
Collapse
Affiliation(s)
- Miguel Á. García-Cabezas
- Department of Health Sciences, Boston University, Neural Systems Lab, 635 Commonwealth Ave., Boston, MA02215, USA
| | - Helen Barbas
- Department of Health Sciences, Boston University, Neural Systems Lab, 635 Commonwealth Ave., Boston, MA02215, USA
| |
Collapse
|
20
|
Ding SL, Royall JJ, Sunkin SM, Ng L, Facer BAC, Lesnar P, Guillozet-Bongaarts A, McMurray B, Szafer A, Dolbeare TA, Stevens A, Tirrell L, Benner T, Caldejon S, Dalley RA, Dee N, Lau C, Nyhus J, Reding M, Riley ZL, Sandman D, Shen E, van der Kouwe A, Varjabedian A, Wright M, Zöllei L, Dang C, Knowles JA, Koch C, Phillips JW, Sestan N, Wohnoutka P, Zielke HR, Hohmann JG, Jones AR, Bernard A, Hawrylycz MJ, Hof PR, Fischl B, Lein ES. Comprehensive cellular-resolution atlas of the adult human brain. J Comp Neurol 2017; 524:3127-481. [PMID: 27418273 PMCID: PMC5054943 DOI: 10.1002/cne.24080] [Citation(s) in RCA: 222] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/11/2016] [Accepted: 07/13/2016] [Indexed: 12/12/2022]
Abstract
Detailed anatomical understanding of the human brain is essential for unraveling its functional architecture, yet current reference atlases have major limitations such as lack of whole‐brain coverage, relatively low image resolution, and sparse structural annotation. We present the first digital human brain atlas to incorporate neuroimaging, high‐resolution histology, and chemoarchitecture across a complete adult female brain, consisting of magnetic resonance imaging (MRI), diffusion‐weighted imaging (DWI), and 1,356 large‐format cellular resolution (1 µm/pixel) Nissl and immunohistochemistry anatomical plates. The atlas is comprehensively annotated for 862 structures, including 117 white matter tracts and several novel cyto‐ and chemoarchitecturally defined structures, and these annotations were transferred onto the matching MRI dataset. Neocortical delineations were done for sulci, gyri, and modified Brodmann areas to link macroscopic anatomical and microscopic cytoarchitectural parcellations. Correlated neuroimaging and histological structural delineation allowed fine feature identification in MRI data and subsequent structural identification in MRI data from other brains. This interactive online digital atlas is integrated with existing Allen Institute for Brain Science gene expression atlases and is publicly accessible as a resource for the neuroscience community. J. Comp. Neurol. 524:3127–3481, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, Washington, 98109.
| | - Joshua J Royall
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Susan M Sunkin
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | | | - Phil Lesnar
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | | | - Bergen McMurray
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Aaron Szafer
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Tim A Dolbeare
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Allison Stevens
- Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, 02129
| | - Lee Tirrell
- Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, 02129
| | - Thomas Benner
- Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, 02129
| | | | - Rachel A Dalley
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Christopher Lau
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Melissa Reding
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Zackery L Riley
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - David Sandman
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Elaine Shen
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Andre van der Kouwe
- Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, 02129
| | - Ani Varjabedian
- Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, 02129
| | - Michelle Wright
- Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, 02129
| | - Lilla Zöllei
- Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, 02129
| | - Chinh Dang
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - James A Knowles
- Zilkha Neurogenetic Institute, and Department of Psychiatry, University of Southern California, Los Angeles, California, 90033
| | - Christof Koch
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - John W Phillips
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Nenad Sestan
- Department of Neurobiology and Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, Connecticut, 06510
| | - Paul Wohnoutka
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - H Ronald Zielke
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, 21201
| | - John G Hohmann
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Allan R Jones
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | - Amy Bernard
- Allen Institute for Brain Science, Seattle, Washington, 98109
| | | | - Patrick R Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, 11029
| | - Bruce Fischl
- Department of Radiology, Harvard Medical School, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, 02129
| | - Ed S Lein
- Allen Institute for Brain Science, Seattle, Washington, 98109.
| |
Collapse
|
21
|
Mladinov M, Sedmak G, Fuller HR, Babić Leko M, Mayer D, Kirincich J, Štajduhar A, Borovečki F, Hof PR, Šimić G. Gene expression profiling of the dorsolateral and medial orbitofrontal cortex in schizophrenia. Transl Neurosci 2016; 7:139-150. [PMID: 28123834 PMCID: PMC5234522 DOI: 10.1515/tnsci-2016-0021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 11/05/2016] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a complex polygenic disorder of unknown etiology. Over 3,000 candidate genes associated with schizophrenia have been reported, most of which being mentioned only once. Alterations in cognitive processing - working memory, metacognition and mentalization - represent a core feature of schizophrenia, which indicates the involvement of the prefrontal cortex in the pathophysiology of this disorder. Hence we compared the gene expression in postmortem tissue from the left and right dorsolateral prefrontal cortex (DLPFC, Brodmann's area 46), and the medial part of the orbitofrontal cortex (MOFC, Brodmann's area 11/12), in six patients with schizophrenia and six control brains. Although in the past decade several studies performed transcriptome profiling in schizophrenia, this is the first study to investigate both hemispheres, providing new knowledge about possible brain asymmetry at the level of gene expression and its relation to schizophrenia. We found that in the left hemisphere, twelve genes from the DLPFC and eight genes from the MOFC were differentially expressed in patients with schizophrenia compared to controls. In the right hemisphere there was only one gene differentially expressed in the MOFC. We reproduce the involvement of previously reported genes TARDBP and HNRNPC in the pathogenesis of schizophrenia, and report seven novel genes: SART1, KAT7, C1D, NPM1, EVI2A, XGY2, and TTTY15. As the differentially expressed genes only partially overlap with previous studies that analyzed other brain regions, our findings indicate the importance of considering prefrontal cortical regions, especially those in the left hemisphere, for obtaining disease-relevant insights.
Collapse
Affiliation(s)
- Mihovil Mladinov
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia; Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Goran Sedmak
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Heidi R Fuller
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK and Institute for Science and Technology in Medicine, Keele University, Staffordshire, ST5 5BG, United Kingdom of Great Britain and Northern Ireland
| | - Mirjana Babić Leko
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Davor Mayer
- Department of Forensic Medicine, University of Zagreb Medical School, Zagreb, Croatia
| | - Jason Kirincich
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Andrija Štajduhar
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| | - Fran Borovečki
- Department of Neurology, University Clinical Hospital Zagreb, Zagreb, Croatia
| | - Patrick R Hof
- Fishberg Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb Medical School, Zagreb, Croatia
| |
Collapse
|
22
|
Lew CH, Brown C, Bellugi U, Semendeferi K. Neuron density is decreased in the prefrontal cortex in Williams syndrome. Autism Res 2016; 10:99-112. [PMID: 27520580 DOI: 10.1002/aur.1677] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 07/01/2016] [Accepted: 07/05/2016] [Indexed: 12/28/2022]
Abstract
Williams Syndrome (WS) is a rare neurodevelopmental disorder associated with a hemideletion in chromosome 7, which manifests a distinct behavioral phenotype characterized by a hyperaffiliative social drive, in striking contrast to the social avoidance behaviors that are common in Autism Spectrum Disorder (ASD). MRI studies have observed structural and functional abnormalities in WS cortex, including the prefrontal cortex (PFC), a region implicated in social cognition. This study utilizes the Bellugi Williams Syndrome Brain Collection, a unique resource that comprises the largest WS postmortem brain collection in existence, and is the first to quantitatively examine WS PFC cytoarchitecture. We measured neuron density in layers II/III and V/VI of five cortical areas: PFC areas BA 10 and BA 11, primary motor BA 4, primary somatosensory BA 3, and visual area BA 18 in six matched pairs of WS and typically developing (TD) controls. Neuron density in PFC was lower in WS relative to TD, with layers V/VI demonstrating the largest decrease in density, reaching statistical significance in BA 10. In contrast, BA 3 and BA 18 demonstrated a higher density in WS compared to TD, although this difference was not statistically significant. Neuron density in BA 4 was similar in WS and TD. While other cortical areas were altered in WS, prefrontal areas appeared to be most affected. Neuron density is also altered in the PFC of individuals with ASD. Together these findings suggest that the PFC is targeted in neurodevelopmental disorders associated with sociobehavioral alterations. Autism Res 2017, 10: 99-112. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Caroline Horton Lew
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093
| | - Chelsea Brown
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093.,Graduate Program in Neuroscience and Behavior, Building 251, University of California, Santa Barbara, Santa Barbara, CA, 93106
| | - Ursula Bellugi
- Laboratory for Cognitive Neuroscience, Salk Institute for Biological Studies, 10010 N, Torrey Pines Rd, La Jolla, CA, 92037
| | - Katerina Semendeferi
- Department of Anthropology, Social Sciences Building Rm. 210, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093
| |
Collapse
|
23
|
Cytoarchitecture and probability maps of the human medial orbitofrontal cortex. Cortex 2016; 75:87-112. [DOI: 10.1016/j.cortex.2015.11.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 09/11/2015] [Accepted: 11/09/2015] [Indexed: 01/28/2023]
|
24
|
Ding SL, Van Hoesen GW. Organization and Detailed Parcellation of Human Hippocampal Head and Body Regions Based on a Combined Analysis of Cyto- and Chemoarchitecture. J Comp Neurol 2015; 523:2233-53. [PMID: 25872498 DOI: 10.1002/cne.23786] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/31/2015] [Accepted: 04/07/2015] [Indexed: 01/29/2023]
Abstract
The hippocampal formation (HF) is one of the hottest regions in neuroscience because it is critical to learning, memory, and cognition, while being vulnerable to many neurological and mental disorders. With increasing high-resolution imaging techniques, many scientists have started to use distinct landmarks along the anterior-posterior axis of HF to allow segmentation into individual subfields in order to identify specific functions in both normal and diseased conditions. These studies urgently call for more reliable and accurate segmentation of the HF subfields DG, CA3, CA2, CA1, prosubiculum, subiculum, presubiculum, and parasubiculum. Unfortunately, very limited data are available on detailed parcellation of the HF subfields, especially in the complex, curved hippocampal head region. In this study we revealed detailed organization and parcellation of all subfields of the hippocampal head and body regions on the base of a combined analysis of multiple cyto- and chemoarchitectural stains and dense sequential section sampling. We also correlated these subfields to macro-anatomical landmarks, which are visible on magnetic resonance imaging (MRI) scans. Furthermore, we created three versions of the detailed anatomic atlas for the hippocampal head region to account for brains with four, three, or two hippocampal digitations. These results will provide a fundamental basis for understanding the organization, parcellation, and anterior-posterior difference of human HF, facilitating accurate segmentation and measurement of HF subfields in the human brain on MRI scans.
Collapse
Affiliation(s)
- Song-Lin Ding
- Allen Institute for Brain Science, Seattle, Washington
| | - Gary W Van Hoesen
- Department of Anatomy and Cell Biology, University of Iowa College of Medicine, Iowa City, Iowa
| |
Collapse
|
25
|
Llado-Saz S, Atienza M, Cantero JL. Increased levels of plasma amyloid-beta are related to cortical thinning and cognitive decline in cognitively normal elderly subjects. Neurobiol Aging 2015; 36:2791-7. [PMID: 26182906 DOI: 10.1016/j.neurobiolaging.2015.06.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 06/14/2015] [Accepted: 06/17/2015] [Indexed: 12/30/2022]
Abstract
Plasma levels of circulating amyloid-beta (Aβ) peptides are of particular interest in Alzheimer' disease, but little is known about cognitive and cortical correlates of peripheral Aβ levels in normal aging. Here, we compared cognitive functioning, vascular risk factors, and patterns of cortical thickness between cognitively intact elderly subjects with low (N = 60) and high (N = 60) plasma Aβ levels (cutoffs: 225 pg/mL and 23 pg/mL for Aβ1-40 and Aβ1-42, respectively). Overall, subjects with high Aβ levels showed lower cognitive performance and thinner cortex than those with low Aβ levels. More specifically, subjects with high Aβ1-40 showed bilateral thinning of the prefrontal cortex, poorer objective memory, slower processing speed, and lower nonverbal reasoning skills, whereas subjects with high Aβ1-42 had thinner temporal lobe, poorer everyday memory, and increased levels of homocysteine. Overall, these results suggest that high plasma Aβ levels in normal elderly subjects are associated with subclinical markers of vulnerable aging, which may be helpful at predicting different trajectories of aging in cognitively intact older adults.
Collapse
Affiliation(s)
- Sandra Llado-Saz
- Laboratory of Functional Neuroscience, Spanish Network of Excellence for Research on Neurodegenerative Diseases (CIBERNED), Pablo de Olavide University, Seville, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Spanish Network of Excellence for Research on Neurodegenerative Diseases (CIBERNED), Pablo de Olavide University, Seville, Spain
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Spanish Network of Excellence for Research on Neurodegenerative Diseases (CIBERNED), Pablo de Olavide University, Seville, Spain.
| |
Collapse
|
26
|
Koelsch S, Jacobs AM, Menninghaus W, Liebal K, Klann-Delius G, von Scheve C, Gebauer G. The quartet theory of human emotions: An integrative and neurofunctional model. Phys Life Rev 2015; 13:1-27. [DOI: 10.1016/j.plrev.2015.03.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 03/15/2015] [Accepted: 03/16/2015] [Indexed: 02/07/2023]
|
27
|
Mackey S, Petrides M. Architecture and morphology of the human ventromedial prefrontal cortex. Eur J Neurosci 2014; 40:2777-96. [PMID: 25123211 DOI: 10.1111/ejn.12654] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 04/26/2014] [Accepted: 05/09/2014] [Indexed: 11/30/2022]
Abstract
A previous report identified the location of comparable architectonic areas in the ventral frontal cortex of the human and macaque brains [S. Mackey & M. Petrides (2010) Eur. J. Neurosci., 32, 1940-1950]. The present article provides greater detail with regard to the definition of architectonic areas within the ventromedial part of the human ventral frontal cortex and describes their location: (i) in Montreal Neurological Institute proportional stereotactic space; and (ii) in relation to sulcal landmarks. Structural magnetic resonance scans of four brains were obtained before the preparation of the histological specimens, so that the architectonic parcellation could be reconstructed in its original three-dimensional volume. The areal density of individual cortical layers was sampled quantitatively in the ventromedial prefrontal cortex of eight brains (16 hemispheres). The agranular cortex along the ventral edge of the corpus callosum and posterior margin of the ventromedial surface is replaced by a graded series of increasingly granular and more complexly laminated areas that succeed one another in a posterior-to-anterior direction. In parallel, the width of the supragranular layers (i.e. layers II and III) increases as compared with the infragranular layers (i.e. layers V and VI) from posterior to anterior. A measure of how rapidly cortical features change at areal boundaries also showed that the rate of change in the granule and pyramidal cell densities of layers IV and V, respectively, was greater at the borders between posterior areas than between anterior areas. This article will facilitate the anatomical identification and comparison of experimental data involving the human vmPFC.
Collapse
Affiliation(s)
- Scott Mackey
- Cognitive Neuroscience Unit, Montreal Neurological Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, University of California San Diego, 8939 Villa La Jolla Drive, La Jolla, CA, 92037, USA
| | | |
Collapse
|
28
|
Bludau S, Eickhoff SB, Mohlberg H, Caspers S, Laird AR, Fox PT, Schleicher A, Zilles K, Amunts K. Cytoarchitecture, probability maps and functions of the human frontal pole. Neuroimage 2014; 93 Pt 2:260-75. [PMID: 23702412 PMCID: PMC5325035 DOI: 10.1016/j.neuroimage.2013.05.052] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 04/26/2013] [Accepted: 05/08/2013] [Indexed: 12/20/2022] Open
Abstract
The frontal pole has more expanded than any other part in the human brain as compared to our ancestors. It plays an important role for specifically human behavior and cognitive abilities, e.g. action selection (Kovach et al., 2012). Evidence about divergent functions of its medial and lateral part has been provided, both in the healthy brain and in psychiatric disorders. The anatomical correlates of such functional segregation, however, are still unknown due to a lack of stereotaxic, microstructural maps obtained in a representative sample of brains. Here we show that the human frontopolar cortex consists of two cytoarchitectonically and functionally distinct areas: lateral frontopolar area 1 (Fp1) and medial frontopolar area 2 (Fp2). Based on observer-independent mapping in serial, cell-body stained sections of 10 brains, three-dimensional, probabilistic maps of areas Fp1 and Fp2 were created. They show, for each position of the reference space, the probability with which each area was found in a particular voxel. Applying these maps as seed regions for a meta-analysis revealed that Fp1 and Fp2 differentially contribute to functional networks: Fp1 was involved in cognition, working memory and perception, whereas Fp2 was part of brain networks underlying affective processing and social cognition. The present study thus disclosed cortical correlates of a functional segregation of the human frontopolar cortex. The probabilistic maps provide a sound anatomical basis for interpreting neuroimaging data in the living human brain, and open new perspectives for analyzing structure-function relationships in the prefrontal cortex. The new data will also serve as a starting point for further comparative studies between human and non-human primate brains. This allows finding similarities and differences in the organizational principles of the frontal lobe during evolution as neurobiological basis for our behavior and cognitive abilities.
Collapse
Affiliation(s)
- S Bludau
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany.
| | - S B Eickhoff
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany; Institute for Clinical Neuroscience and Medical Psychology, Heinrich-Heine-University Düsseldorf, 40001 Düsseldorf, Germany
| | - H Mohlberg
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany
| | - S Caspers
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany
| | - A R Laird
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA; Department of Physics, Florida International University, Miami, FL, USA
| | - P T Fox
- Research Imaging Institute, University of Texas Health Science Center, San Antonio, TX, USA; Department of Radiology, University of Texas Health Science Center, San Antonio, TX, USA; South Texas Veterans Health Care System, San Antonio, TX, USA
| | - A Schleicher
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany
| | - K Zilles
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany; Dept. of Psychiatry, Psychotherapy and Psychosomatics, RWTH University Aachen, 52074 Aachen, Germany; JARA, Juelich-Aachen Research Alliance, Translational Brain Medicine, Jülich, Germany
| | - K Amunts
- Research Centre Jülich, Institute of Neuroscience and Medicine (INM-1), 52425 Jülich, Germany; JARA, Juelich-Aachen Research Alliance, Translational Brain Medicine, Jülich, Germany; C. and O. Vogt Institute for Brain Research, Heinrich-Heine-University Düsseldorf, 40001 Düsseldorf, Germany
| |
Collapse
|
29
|
Hoffmann M. The human frontal lobes and frontal network systems: an evolutionary, clinical, and treatment perspective. ISRN NEUROLOGY 2013; 2013:892459. [PMID: 23577266 PMCID: PMC3612492 DOI: 10.1155/2013/892459] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 11/19/2012] [Indexed: 12/27/2022]
Abstract
Frontal lobe syndromes, better termed as frontal network systems, are relatively unique in that they may manifest from almost any brain region, due to their widespread connectivity. The understandings of the manifold expressions seen clinically are helped by considering evolutionary origins, the contribution of the state-dependent ascending monoaminergic neurotransmitter systems, and cerebral connectivity. Hence, the so-called networktopathies may be a better term for the syndromes encountered clinically. An increasing array of metric tests are becoming available that complement that long standing history of qualitative bedside assessments pioneered by Alexander Luria, for example. An understanding of the vast panoply of frontal systems' syndromes has been pivotal in understanding and diagnosing the most common dementia syndrome under the age of 60, for example, frontotemporal lobe degeneration. New treatment options are also progressively becoming available, with recent evidence of dopaminergic augmentation, for example, being helpful in traumatic brain injury. The latter include not only psychopharmacological options but also device-based therapies including mirror visual feedback therapy.
Collapse
Affiliation(s)
- Michael Hoffmann
- Director Stroke and Cognitive Neurology Programs, James A. Haley Veterans' Hospital, 13000 Bruce B. Down's Boulevard, Tampa, FL 33612, USA
- Cognitive Neurologist and Director SciBrain, Roskamp Neurosciences Institute, 2040 Whitfield Avenue, Sarasota, FL 34243, USA
| |
Collapse
|
30
|
A systematic review of brain frontal lobe parcellation techniques in magnetic resonance imaging. Brain Struct Funct 2013; 219:1-22. [DOI: 10.1007/s00429-013-0527-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/14/2013] [Indexed: 01/06/2023]
|
31
|
Bemis DK, Pylkkänen L. Combination Across Domains: An MEG Investigation into the Relationship between Mathematical, Pictorial, and Linguistic Processing. Front Psychol 2013; 3:583. [PMID: 23293621 PMCID: PMC3535734 DOI: 10.3389/fpsyg.2012.00583] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 12/11/2012] [Indexed: 11/21/2022] Open
Abstract
Debates surrounding the evolution of language often hinge upon its relationship to cognition more generally and many investigations have attempted to demark the boundary between the two. Though results from these studies suggest that language may recruit domain-general mechanisms during certain types of complex processing, the domain-generality of basic combinatorial mechanisms that lie at the core of linguistic processing is still unknown. Our previous work (Bemis and Pylkkänen, 2011, 2012) used magnetoencephalography to isolate neural activity associated with the simple composition of an adjective and a noun (“red boat”) and found increased activity during this processing localized to the left anterior temporal lobe (lATL), ventro-medial prefrontal cortex (vmPFC), and left angular gyrus (lAG). The present study explores the domain-generality of these effects and their associated combinatorial mechanisms through two parallel non-linguistic combinatorial tasks designed to be as minimal and natural as the linguistic paradigm. In the first task, we used pictures of colored shapes to elicit combinatorial conceptual processing similar to that evoked by the linguistic expressions and find increased activity again localized to the vmPFC during combinatorial processing. This result suggests that a domain-general semantic combinatorial mechanism operates during basic linguistic composition, and that activity generated by its processing localizes to the vmPFC. In the second task, we recorded neural activity as subjects performed simple addition between two small numerals. Consistent with a wide array of recent results, we find no effects related to basic addition that coincide with our linguistic effects and instead find increased activity localized to the intraparietal sulcus. This result suggests that the scope of the previously identified linguistic effects is restricted to compositional operations and does not extend generally to all tasks that are merely similar in form.
Collapse
Affiliation(s)
- Douglas K Bemis
- Department of Psychology, NYU-Abu Dhabi Institute, New York University New York, NY, USA
| | | |
Collapse
|
32
|
Zald DH, McHugo M, Ray KL, Glahn DC, Eickhoff SB, Laird AR. Meta-analytic connectivity modeling reveals differential functional connectivity of the medial and lateral orbitofrontal cortex. ACTA ACUST UNITED AC 2012; 24:232-48. [PMID: 23042731 DOI: 10.1093/cercor/bhs308] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
The orbitofrontal cortex (OFC) is implicated in a broad range of behaviors and neuropsychiatric disorders. Anatomical tracing studies in nonhuman primates reveal differences in connectivity across subregions of the OFC, but data on the connectivity of the human OFC remain limited. We applied meta-analytic connectivity modeling in order to examine which brain regions are most frequently coactivated with the medial and lateral portions of the OFC in published functional neuroimaging studies. The analysis revealed a clear divergence in the pattern of connectivity for the medial OFC (mOFC) and lateral OFC (lOFC) regions. The lOFC showed coactivations with a network of prefrontal regions and areas involved in cognitive functions including language and memory. In contrast, the mOFC showed connectivity with default mode, autonomic, and limbic regions. Convergent patterns of coactivations were observed in the amygdala, hippocampus, striatum, and thalamus. A small number of regions showed connectivity specific to the anterior or posterior sectors of the OFC. Task domains involving memory, semantic processing, face processing, and reward were additionally analyzed in order to identify the different patterns of OFC functional connectivity associated with specific cognitive and affective processes. These data provide a framework for understanding the human OFC's position within widespread functional networks.
Collapse
|
33
|
Overk CR, Lu PY, Wang YT, Choi J, Shaw JW, Thatcher GR, Mufson EJ. Effects of aromatase inhibition versus gonadectomy on hippocampal complex amyloid pathology in triple transgenic mice. Neurobiol Dis 2011; 45:479-87. [PMID: 21945538 DOI: 10.1016/j.nbd.2011.08.035] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 08/15/2011] [Accepted: 08/31/2011] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly with women exhibiting a higher risk than men for the disease. Due to these gender differences, there is great interest in the role that estrogens play in cognitive impairment and the onset of the classic amyloid and tau lesions in AD. Human and rodent studies indicate a strong association between low brain aromatase, sex hormone levels, and beta amyloid deposition. Therefore, the effects of depleting both circulating and brain estrogen levels, through gonadectomy and/or treatment with the aromatase inhibitor, anastrozole, upon hippocampal AD-like pathology in male and female 3xTgAD mice were evaluated. Liquid chromatography-mass spectrometry revealed anastrozole serum levels of 10.19 ng/mL and for the first time brain levels were detected at 4.7 pg/mL. Densitometric analysis of the hippocampus revealed that anastrozole significantly increased Aβ- but not APP/Aβ-immunoreactivity in intact 3xTgAD females compared to controls (p<0.001). Moreover, anastrozole significantly increased the number of Aβ- compared to APP/Aβ-positive hippocampal CA1 neurons in intact and gonadectomized female mice. Concurrently, anastrozole significantly reduced the APP/Aβ plaque load in 9 month old female 3xTgAD mice. These data suggest that anastrozole treatment differentially affects select amyloid species which in turn may play a role in the extraneuronal to intraneuronal deposition of this peptide.
Collapse
Affiliation(s)
- Cassia R Overk
- Department of Neurological Sciences, Rush University Medical Center Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Miguel-Hidalgo JJ, Overholser JC, Jurjus GJ, Meltzer HY, Dieter L, Konick L, Stockmeier CA, Rajkowska G. Vascular and extravascular immunoreactivity for intercellular adhesion molecule 1 in the orbitofrontal cortex of subjects with major depression: age-dependent changes. J Affect Disord 2011; 132:422-31. [PMID: 21536333 PMCID: PMC3137705 DOI: 10.1016/j.jad.2011.03.052] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND Vascular and immune alterations in the prefrontal cortex may contribute to major depression in elderly subjects. Intercellular adhesion molecule-1 (ICAM-1), major inflammatory mediator in vessels and astrocytes, could be altered in geriatric depression, but little is known about its age-dependent expression in subjects with depression and its relationship to astrocytes identified by the marker glial fibrillary acidic protein (GFAP), found to be reduced in depression. METHODS We measured the percentage of gray matter area fraction covered by ICAM-1 immunoreactivity in blood vessels and in extravascular accumulations of ICAM-1 immunoreactivity in 19 non-psychiatric comparison subjects and 18 subjects with major depression, all characterized by postmortem psychological diagnosis. Association of extravascular ICAM-1 to GFAP-positive astrocytes was investigated by double-labeling immunofluorescence. RESULTS Vascular and extravascular fractions of ICAM-1 immunoreactivity were lower in subjects with MDD than in non-psychiatric comparison subjects. Non-psychiatric comparison subjects older than 60 experienced dramatic increase in extravascular ICAM-1 immunoreactivity, but this increase was attenuated in elderly subjects with MDD, particularly in those dying by suicide. Most extracellular ICAM-1 immunoreactivity was coextensive with GFAP-immunoreactive astrocytes in both groups. LIMITATIONS Heterogeneity in type and dosage of antidepressant medication. Difficulty in determining the exact onset of depression in subjects older than 60 at the time of death. Routine cerebrovascular pathological screening may miss subtle subcellular and molecular changes. CONCLUSIONS There is significant attenuation of extravascular and vascular ICAM-1 immunoreactivity in elderly subjects with major depression suggesting an astrocyte-associated alteration in immune function in the aging orbitofrontal cortex of subjects with MDD.
Collapse
Affiliation(s)
- Jose Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA.
| | - James C. Overholser
- Department of Psychology, Case Western Reserve University, Cleveland, OH 44106
| | - George J. Jurjus
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106
| | - Herbert Y. Meltzer
- Department of Psychiatry, Psychiatric Hospital at Vanderbilt University, Nashville, TN 37212
| | - Lesa Dieter
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106
| | - Lisa Konick
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106
| | - Craig A. Stockmeier
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA,Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
35
|
Alia-Klein N, Parvaz MA, Woicik PA, Konova AB, Maloney T, Shumay E, Wang R, Telang F, Biegon A, Wang GJ, Fowler JS, Tomasi D, Volkow ND, Goldstein RZ. Gene x disease interaction on orbitofrontal gray matter in cocaine addiction. ACTA ACUST UNITED AC 2011; 68:283-94. [PMID: 21383264 DOI: 10.1001/archgenpsychiatry.2011.10] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CONTEXT Long-term cocaine use has been associated with structural deficits in brain regions having dopamine-receptive neurons. However, the concomitant use of other drugs and common genetic variability in monoamine regulation present additional structural variability. OBJECTIVE To examine variations in gray matter volume (GMV) as a function of lifetime drug use and the genotype of the monoamine oxidase A gene, MAOA, in men with cocaine use disorders (CUD) and healthy male controls. DESIGN Cross-sectional comparison. SETTING Clinical Research Center at Brookhaven National Laboratory. PATIENTS Forty individuals with CUD and 42 controls who underwent magnetic resonance imaging to assess GMV and were genotyped for the MAOA polymorphism (categorized as high- and low-repeat alleles). MAIN OUTCOME MEASURES The impact of cocaine addiction on GMV, tested by (1) comparing the CUD group with controls, (2) testing diagnosis × MAOA interactions, and (3) correlating GMV with lifetime cocaine, alcohol, and cigarette smoking, and testing their unique contribution to GMV beyond other factors. RESULTS (1) Individuals with CUD had reductions in GMV in the orbitofrontal, dorsolateral prefrontal, and temporal cortex and the hippocampus compared with controls. (2) The orbitofrontal cortex reductions were uniquely driven by CUD with low- MAOA genotype and by lifetime cocaine use. (3) The GMV in the dorsolateral prefrontal cortex and hippocampus was driven by lifetime alcohol use beyond the genotype and other pertinent variables. CONCLUSIONS Long-term cocaine users with the low-repeat MAOA allele have enhanced sensitivity to gray matter loss, specifically in the orbitofrontal cortex, indicating that this genotype may exacerbate the deleterious effects of cocaine in the brain. In addition, long-term alcohol use is a major contributor to gray matter loss in the dorsolateral prefrontal cortex and hippocampus, and is likely to further impair executive function and learning in cocaine addiction.
Collapse
Affiliation(s)
- Nelly Alia-Klein
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Cruz-Rizzolo RJ, De Lima MAX, Ervolino E, de Oliveira JA, Casatti CA. Cyto-, myelo- and chemoarchitecture of the prefrontal cortex of the Cebus monkey. BMC Neurosci 2011; 12:6. [PMID: 21232115 PMCID: PMC3030535 DOI: 10.1186/1471-2202-12-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 01/13/2011] [Indexed: 11/10/2022] Open
Abstract
Background According to several lines of evidence, the great expansion observed in the primate prefrontal cortex (PfC) was accompanied by the emergence of new cortical areas during phylogenetic development. As a consequence, the structural heterogeneity noted in this region of the primate frontal lobe has been associated with diverse behavioral and cognitive functions described in human and non-human primates. A substantial part of this evidence was obtained using Old World monkeys as experimental model; while the PfC of New World monkeys has been poorly studied. In this study, the architecture of the PfC in five capuchin monkeys (Cebus apella) was analyzed based on four different architectonic tools, Nissl and myelin staining, histochemistry using the lectin Wisteria floribunda agglutinin and immunohistochemistry using SMI-32 antibody. Results Twenty-two architectonic areas in the Cebus PfC were distinguished: areas 8v, 8d, 9d, 12l, 45, 46v, 46d, 46vr and 46dr in the lateral PfC; areas 11l, 11m, 12o, 13l, 13m, 13i, 14r and 14c in the orbitofrontal cortex, with areas 14r and 14c occupying the ventromedial corner; areas 32r, 32c, 25 and 9m in the medial PfC, and area 10 in the frontal pole. This number is significantly higher than the four cytoarchitectonic areas previously recognized in the same species. However, the number and distribution of these areas in Cebus were to a large extent similar to those described in Old World monkeys PfC in more recent studies. Conclusions The present parcellation of the Cebus PfC considerably modifies the scheme initially proposed for this species but is in line with previous studies on Old World monkeys. Thus, it was observed that the remarkable anatomical similarity between the brains of genera Macaca and Cebus may extend to architectonic aspects. Since monkeys of both genera evolved independently over a long period of time facing different environmental pressures, the similarities in the architectonic maps of PfC in both genera are issues of interest. However, additional data about the connectivity and function of the Cebus PfC are necessary to evaluate the possibility of potential homologies or parallelisms.
Collapse
Affiliation(s)
- Roelf J Cruz-Rizzolo
- Campus de Araçatuba, UNESP - Univ Estadual Paulista, Departamento de Ciências Básicas, São Paulo, Brazil.
| | | | | | | | | |
Collapse
|
37
|
Mackey S, Petrides M. Quantitative demonstration of comparable architectonic areas within the ventromedial and lateral orbital frontal cortex in the human and the macaque monkey brains. Eur J Neurosci 2010; 32:1940-50. [PMID: 21050280 DOI: 10.1111/j.1460-9568.2010.07465.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The orbital and ventromedial frontal cortical regions of the human and the macaque monkey brains include several spatially discrete areas which are defined histologically by their distinctive laminar architecture. Although considerable information has been collected on the function and anatomical connections of specific architectonic areas within the orbital and ventromedial frontal cortex of the macaque monkey, the location of comparable areas in the human brain remains controversial. We re-examined the comparability of orbital and ventromedial frontal areas across these two species and provide the first quantitative demonstration of architectonically comparable cortical areas in the human and the macaque brains. Images of Nissl-stained sections of the cortex were obtained at low magnification. Differences in the typical size of neurons in alternating pyramidal and granule cell layers were exploited to segregate the cortical layers before sampling. Profiles of areal neuronal density were sampled across the width of the cortex. The location of individual cortical layers was identified on each profile by sampling a set of equally sized images on which the cortical layers had been manually traced. The rank order of sampled architectonic features in comparable architectonic areas in the two species was significantly correlated. The differences in measured features between gyral and sulcal parts of the same architectonic area are at a minimum 3-4 times smaller than the differences between architectonic areas for the areas examined. Furthermore, the quantified architectonic features arrange areas within the orbital and ventromedial frontal cortex along two dimensions: an anterior-to-posterior and a medial-to-lateral dimension. On the basis of these findings, and in light of known anatomical connections in the macaque, this region of the human cortex appears to comprise at least two hierarchically structured networks of areas.
Collapse
Affiliation(s)
- Scott Mackey
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | | |
Collapse
|
38
|
Uylings HBM, Sanz-Arigita EJ, de Vos K, Pool CW, Evers P, Rajkowska G. 3-D cytoarchitectonic parcellation of human orbitofrontal cortex correlation with postmortem MRI. Psychiatry Res 2010; 183:1-20. [PMID: 20538437 PMCID: PMC2902628 DOI: 10.1016/j.pscychresns.2010.04.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 03/15/2010] [Accepted: 04/21/2010] [Indexed: 01/17/2023]
Abstract
The orbitofrontal cortex (OFC) is located on the basal surface of the frontal lobe and is distinguished by its unique anatomical and functional features. Clinical and postmortem studies suggest the involvement of the orbitofrontal cortex in psychiatric disorders. However, the exact parcellation of this cortical region is still a matter of debate. Therefore, the goal of this study is to provide a detailed description of the extent of borders of individual orbitofrontal cortical areas using cytoarchitectonic criteria in a large sample of human brains, which could be applied by independent neuroanatomists. To make this microscopic parcellation useful to neuroimaging studies, magnetic resonance images of postmortem brains in the coronal plane were collected prior to the preparation of coronal histological sections from the same brains. A complete series of coronal sections from 6 normal human brains and partial sections from the frontal cortex of 21 normal human brains were stained with general histological and immunohistochemical methods specific for different cell-types. These sections were examined microscopically by two independent neuroanatomists (HBMU and GR) to achieve reproducible delineations. After the borders were determined, the tissue sections were superimposed on the corresponding magnetic resonance images. Based on our cytoarchitectonical criteria, Brodmann's areas 47 and 11 were included in the human orbitofrontal cortex. Area 47 was further subdivided into three medial (located on the medial, anterior and posterior orbital gyri) and two lateral (located on the lateral orbital gyrus) subareas. In addition, we observed an anterior-posterior gradient in the cytoarchitecture of areas 11 and 47. The transverse orbital sulcus corresponds roughly to the transition between the subregions of the anterior and posterior OFC. Finally, the present delineation is contrasted with an overview of the different published nomenclatures for the OFC parcellation.
Collapse
Affiliation(s)
- Harry B M Uylings
- Department of Anatomy & Neuroscience, VU University Medical Center, Graduate School Neurosciences Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
39
|
WANG XS, FU Y, MA MX, ZHANG JJ, MA YY. Lesions to the Orbitofrontal Cortex Produce the Novelty-Seeking Behavior Deficits in Rats. Zool Res 2010. [DOI: 10.3724/sp.j.1141.2009.05527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Mellott JG, Van der Gucht E, Lee CC, Carrasco A, Winer JA, Lomber SG. Areas of cat auditory cortex as defined by neurofilament proteins expressing SMI-32. Hear Res 2010; 267:119-36. [PMID: 20430082 DOI: 10.1016/j.heares.2010.04.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 02/22/2010] [Accepted: 04/05/2010] [Indexed: 10/19/2022]
Abstract
The monoclonal antibody SMI-32 was used to characterize and distinguish individual areas of cat auditory cortex. SMI-32 labels non-phosphorylated epitopes on the high- and medium-molecular weight subunits of neurofilament proteins in cortical pyramidal cells and dendritic trees with the most robust immunoreactivity in layers III and V. Auditory areas with unique patterns of immunoreactivity included: primary auditory cortex (AI), second auditory cortex (AII), dorsal zone (DZ), posterior auditory field (PAF), ventral posterior auditory field (VPAF), ventral auditory field (VAF), temporal cortex (T), insular cortex (IN), anterior auditory field (AAF), and the auditory field of the anterior ectosylvian sulcus (fAES). Unique patterns of labeling intensity, soma shape, soma size, layers of immunoreactivity, laminar distribution of dendritic arbors, and labeled cell density were identified. Features that were consistent in all areas included: layers I and IV neurons are immunonegative; nearly all immunoreactive cells are pyramidal; and immunoreactive neurons are always present in layer V. To quantify the results, the numbers of labeled cells and dendrites, as well as cell diameter, were collected and used as tools for identifying and differentiating areas. Quantification of the labeling patterns also established profiles for ten auditory areas/layers and their degree of immunoreactivity. Areal borders delineated by SMI-32 were highly correlated with tonotopically-defined areal boundaries. Overall, SMI-32 immunoreactivity can delineate ten areas of cat auditory cortex and demarcate topographic borders. The ability to distinguish auditory areas with SMI-32 is valuable for the identification of auditory cerebral areas in electrophysiological, anatomical, and/or behavioral investigations.
Collapse
Affiliation(s)
- Jeffrey G Mellott
- Centre for Brain and Mind, Department of Physiology & Pharmacology, Schulich School of Medicine and Dentistry, The University of Western Ontario, Medical Sciences Building, Room 216, 1151 Richmond Street North, London, Ontario N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
41
|
Olry R, Haines DE. NEUROwords Korbinian Brodmann: The Victor Hugo of cytoarchitectonic brain maps. JOURNAL OF THE HISTORY OF THE NEUROSCIENCES 2010; 19:195-198. [PMID: 20446163 DOI: 10.1080/09647040903188254] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Affiliation(s)
- Régis Olry
- Département de Chimie-Biologie, Université du Québec à Trois-Rivières, Québec, Canada.
| | | |
Collapse
|
42
|
Abstract
AbstractIn a biological sense an individual’s life is all about survival and reproduction. Beside the selection of a mate, the mutual commitment of a parent to sustain an infant through a period of dependency is amongst the most important aspects of natural selection. Here we review how the highly conserved circuitry of key midbrain and hypothalamic structures, and limbic and frontal cortical regions support these processes, and at the same time are involved in shaping the offspring’s emotional development and behavior. Many recent studies provided new findings on how attachment behavior and parental bonding is promoted and maintained through genetic and epigenetic influences on synaptic plasticity of mirror neurons and various neuropeptide systems, particularly oxytocinergic, and how these systems serve to link social cues to the brain reward system. Most of this evidence suggests that stress, early parental deprivation and lack of care during the postnatal period leads to profound and lasting changes in the attachment pattern and motivational development with consequent increased vulnerability of the mesocortical and mesolimbic dopamine-associated reward reinforcement pathways to psychosocial stressors, abuse of stimulants and psychopathology later in life.
Collapse
|
43
|
Structure-function relationships in the processing of regret in the orbitofrontal cortex. Brain Struct Funct 2009; 213:535-51. [PMID: 19760243 DOI: 10.1007/s00429-009-0222-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 09/03/2009] [Indexed: 10/20/2022]
Abstract
The influence of counterfactual thinking and regret on choice behavior has been widely acknowledged in economic science (Bell in Oper Res 30:961-981, 1982; Kahneman and Tversky in Judgment under uncertainty: heuristics and biases. Cambridge University Press, Cambridge, pp 201-210, 1982; Loomes and Sugden in Econ J 92:805-824, 1982). Neuroimaging studies have only recently begun to explore the neural correlates of this psychological factor and orbitofrontal cortex (OFC) activity was observed in several of them depending of the exact characteristics of the employed paradigm. This selective OFC involvement and, moreover, a consistently found dissociation of medial and lateral OFC activity clusters allow inferences to the function of this structure in counterfactual thinking and regret. Vice versa, the differential contribution of OFC subregions to these processes also adds evidence to the current debate on the function of this cortical structure in decision-making that attracted increasing attention in recent years.
Collapse
|
44
|
Mackey S, Petrides M. Architectonic mapping of the medial region of the human orbitofrontal cortex by density profiles. Neuroscience 2009; 159:1089-107. [PMID: 19356690 DOI: 10.1016/j.neuroscience.2009.01.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Revised: 01/12/2009] [Accepted: 01/16/2009] [Indexed: 10/21/2022]
Abstract
The study of architectonic differentiation in the cortex is advanced by the articulation of objective definitions based on clear features of the cortical architecture. We adopted areal density profiles as a means of sampling the cortex. On the profiles, we isolated and quantified the density of individual cortical layers. These features may serve as criteria in objective definitions in a way that builds on qualitative observations found in the classical literature. A preprocessing procedure was introduced to overcome artefacts in the density profiles caused by the partial overlap of neighboring neuronal layers and cortical folding. We applied this method to the medial half of the orbital frontal cortex in specimens drawn from 10 human postmortem brain hemispheres. The measurements successfully confirmed the existence of several qualitatively observed areas (architectonic areas 14c, 14r, 11m, 11 and 13). The selection of specific sampling parameters was justified on the basis of simultaneous measurements of the cortical morphology which demonstrate its influence on the appearance of the cortical layers. We also examined the robustness of the measuring procedure by analyzing the outcome of varying systematically the sampling parameters. We describe here a novel method of sampling the cortex for architectonic analysis and demonstrate its application on histological sections obtained from the medial half of the human orbitofrontal cortex.
Collapse
Affiliation(s)
- S Mackey
- Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec, Canada
| | | |
Collapse
|
45
|
Deformation field morphometry reveals age-related structural differences between the brains of adults up to 51 years. J Neurosci 2008; 28:828-42. [PMID: 18216191 DOI: 10.1523/jneurosci.3732-07.2008] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Age-related differences in the anatomical structure of the brains from 51 healthy male subjects (age: 18-51 years) were analyzed by deformation field morphometry in a cross-sectional study. The magnetic resonance images of the brains were nonlinearly registered onto the image of a reference brain: the registration algorithm simulated an elastic deformation of each brain (source brain) so that the voxelwise intensity differences with the reference brain were minimized. A three-dimensional deformation field was calculated for each source brain that encoded the anatomical differences between the source brain and the reference brain. Maps of voxelwise volume differences between each subject's brain and the reference brain were analyzed. They showed age-related differences in anatomically defined regions of interest. Major volume decreases were found in the white matter and nuclei of the cerebellum, as well as in the ventral thalamic nuclei and the somatosensory and motor cortices, including the underlying white matter. These findings suggest that aging between the second and sixth decade predominantly affects subcortical nuclei and cortical areas of the sensorimotor system, forming the cortico-rubro-cerebello-thalamo-cortical pathway. Additionally, a pronounced age-related decline in volume was observed in the rostral anterior cingulate, orbitofrontal, and lateral prefrontal cortices. Almost no differences were observed in the occipital and temporal lobes. The ventricles showed a pronounced widening. Remarkably, these volume differences occur at a relatively early period of the human life span. It may be speculated that these structural differences accompany or precede differences in sensorimotor functions and behavior.
Collapse
|
46
|
Abstract
The neocortex is an ultracomplex, six-layered structure that develops from the dorsal palliai sector of the telencephalic hemispheres (Figs. 2.24, 2.25, 11.1). All mammals, including monotremes and marsupials, possess a neocortex, but in reptiles, i.e. the ancestors of mammals, only a three-layered neocortical primordium is present [509, 511]. The term neocortex refers to its late phylogenetic appearance, in comparison to the “palaeocortical” olfactory cortex and the “archicortical” hippocampal cortex, both of which are present in all amniotes [509].
Collapse
|
47
|
A proposal for MRI-based parcellation of the frontal pole. Brain Struct Funct 2007; 212:245-53. [PMID: 17929054 DOI: 10.1007/s00429-007-0157-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Accepted: 08/24/2007] [Indexed: 10/22/2022]
Abstract
The frontal pole (FP), which largely overlaps with Brodmann's area (BA) 10, is the rostral-most part of the hominid cerebral cortex, and plays a critical role in complex aspects of human cognition. The existing conventions suggested for MRI-based parcellation of this important frontal subdivision have limited cytoarchitectonic meaning with regard to the demarcation of the FP from adjacent prefrontal subdivisions. In this paper, we propose the coronal section containing the anterior termination of the olfactory sulcus (ATOS) as an easy-to-identify landmark for FP parcellation that largely overlaps with the cytoarchitectonic distinction between BA 10 and the more posterior cytoarchitectonic subdivisions of the PFC. Manual segmentation-based parcellation of the FP using the proposed landmark in 20 healthy volunteers yielded highly reliable (standardized item alpha = 0.92) volumetric estimates [right FP volume = 8.421 cm3 (SE = 0.773, range 3.107-15.741); left FP volume = 8.039 cm3 (SE = 0.708, range 2.234-12.956)]. The volumetric measurements of right FP generated in the present study were comparable to those reported in a prior study of BA 10 using histological sections and stereological techniques (Semendeferi et al. In: Am J Phys Anthropol 114:224-241, 2001). Therefore, in the absence of a naturally occurring sulcal boundary, the proposed method for parcellation of the FP can provide unbiased volume estimations for studies of healthy and disordered populations of subjects.
Collapse
|
48
|
Petanjek Z, Judas M, Kostović I, Uylings HBM. Lifespan Alterations of Basal Dendritic Trees of Pyramidal Neurons in the Human Prefrontal Cortex: A Layer-Specific Pattern. Cereb Cortex 2007; 18:915-29. [PMID: 17652464 DOI: 10.1093/cercor/bhm124] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The postnatal development and lifespan alterations in basal dendrites of large layer IIIC and layer V pyramidal neurons were quantitatively studied. Both classes of neurons were characterized by rapid dendritic growth during the first postnatal months. At birth, layer V pyramidal neurons had larger and more complex dendritic trees than those of layer IIIC; however, at 1 postnatal month both classes of neurons displayed a similar extent of dendritic outgrowth. In addition, after a more than year-long "dormant" period of only fine dendritic rearrangement, layer IIIC pyramidal neurons displayed a second period of dendritic growth, starting at the end of the second year and continuing in the third year. During that period, the dendritic tree of layer IIIC pyramidal neurons became more extensive than that of layer V pyramidal neurons. Thus, layer IIIC pyramidal neurons appear to show a biphasic pattern of postnatal dendritic development. Furthermore, the childhood period was characterized by transient increase in size of pyramidal cell somata, which was more pronounced for neurons in layer IIIC. These structural changes occurred during both the period of rapid cognitive development in preschool children and the period of protracted cognitive maturation during the childhood, puberty, and adolescence.
Collapse
Affiliation(s)
- Zdravko Petanjek
- Department of Neuroscience, Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Salata 12, 10000 Zagreb, Croatia.
| | | | | | | |
Collapse
|
49
|
Akram A, Christoffel D, Rocher AB, Bouras C, Kövari E, Perl DP, Morrison JH, Herrmann FR, Haroutunian V, Giannakopoulos P, Hof PR. Stereologic estimates of total spinophilin-immunoreactive spine number in area 9 and the CA1 field: relationship with the progression of Alzheimer's disease. Neurobiol Aging 2007; 29:1296-307. [PMID: 17420070 PMCID: PMC2569870 DOI: 10.1016/j.neurobiolaging.2007.03.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Revised: 02/27/2007] [Accepted: 03/01/2007] [Indexed: 11/29/2022]
Abstract
The loss of presynaptic markers is thought to represent a strong pathologic correlate of cognitive decline in Alzheimer's disease (AD). Spinophilin is a postsynaptic marker mainly located to the heads of dendritic spines. We assessed total numbers of spinophilin-immunoreactive puncta in the CA1 and CA3 fields of hippocampus and area 9 in 18 elderly individuals with various degrees of cognitive decline. The decrease in spinophilin-immunoreactivity was significantly related to both Braak neurofibrillary tangle (NFT) staging and clinical severity but not A beta deposition staging. The total number of spinophilin-immunoreactive puncta in CA1 field and area 9 were significantly related to MMSE scores and predicted 23.5 and 61.9% of its variability. The relationship between total number of spinophilin-immunoreactive puncta in CA1 field and MMSE scores did not persist when adjusting for Braak NFT staging. In contrast, the total number of spinophilin-immunoreactive puncta in area 9 was still significantly related to the cognitive outcome explaining an extra 9.6% of MMSE and 25.6% of the Clinical Dementia Rating scores variability. Our data suggest that neocortical dendritic spine loss is an independent parameter to consider in AD clinicopathologic correlations.
Collapse
Affiliation(s)
- Afia Akram
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029
| | - Daniel Christoffel
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Anne B. Rocher
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Constantin Bouras
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
- Department of Psychiatry, University of Geneva, School of Medicine, Geneva, Switzerland
| | - Enikö Kövari
- Department of Psychiatry, University of Geneva, School of Medicine, Geneva, Switzerland
| | - Daniel P. Perl
- Department of Pathology (Neuropathology), Mount Sinai School of Medicine, New York, NY 10029
| | - John H. Morrison
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
- Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, NY 10029
| | - François R. Herrmann
- Department of Rehabilitation and Geriatrics, University of Geneva, School of Medicine, Geneva, Switzerland
| | - Vahram Haroutunian
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029
| | | | - Patrick R. Hof
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
- Department of Geriatrics and Adult Development, Mount Sinai School of Medicine, New York, NY 10029
- Correspondence to: Patrick R. Hof, Department of Neuroscience, Box 1065, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA, Phone: +1-212-659-5904; Fax: +1-212-849-2510; E-mail:
| |
Collapse
|
50
|
Hof PR, Van der Gucht E. Structure of the cerebral cortex of the humpback whale,Megaptera novaeangliae (Cetacea, Mysticeti, Balaenopteridae). Anat Rec (Hoboken) 2007; 290:1-31. [PMID: 17441195 DOI: 10.1002/ar.20407] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Cetaceans diverged from terrestrial mammals between 50 and 60 million years ago and acquired, during their adaptation to a fully aquatic milieu, many derived features, including echolocation (in odontocetes), remarkable auditory and communicative abilities, as well as a complex social organization. Whereas brain structure has been documented in detail in some odontocetes, few reports exist on its organization in mysticetes. We studied the cerebral cortex of the humpback whale (Megaptera novaeangliae) in comparison to another balaenopterid, the fin whale, and representative odontocetes. We observed several differences between Megaptera and odontocetes, such as a highly clustered organization of layer II over the occipital and inferotemporal neocortex, whereas such pattern is restricted to the ventral insula in odontocetes. A striking observation in Megaptera was the presence in layer V of the anterior cingulate, anterior insular, and frontopolar cortices of large spindle cells, similar in morphology and distribution to those described in hominids, suggesting a case of parallel evolution. They were also observed in the fin whale and the largest odontocetes, but not in species with smaller brains or body size. The hippocampal formation, unremarkable in odontocetes, is further diminutive in Megaptera, contrasting with terrestrial mammals. As in odontocetes, clear cytoarchitectural patterns exist in the neocortex of Megaptera, making it possible to define many cortical domains. These observations demonstrate that Megaptera differs from Odontoceti in certain aspects of cortical cytoarchitecture and may provide a neuromorphologic basis for functional and behavioral differences between the suborders as well as a reflection of their divergent evolution.
Collapse
Affiliation(s)
- Patrick R Hof
- Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|