1
|
Toma (Sărdărescu) DI, Manaila-Maximean D, Fierascu I, Baroi AM, Matei (Brazdis) RI, Fistos T, Chican IE, Fierascu RC. Applications of Natural Polymers in the Grapevine Industry: Plant Protection and Value-Added Utilization of Waste. Polymers (Basel) 2024; 17:18. [PMID: 39795420 PMCID: PMC11722739 DOI: 10.3390/polym17010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/20/2024] [Accepted: 12/20/2024] [Indexed: 01/13/2025] Open
Abstract
The grapevine industry is confronted with challenges such as plant stress from environmental factors and microbial infections, alongside the need for sustainable waste management practices. Natural polymers offer promising solutions to these issues due to their biocompatibility, biodegradability, and functional versatility. This review explores the dual role of natural polymers in enhancing the grapevine industry: as protective agents against various stressors and as carriers for the delivery of valuable compounds recovered from grapevine wastes. We examine the use of natural polymers such as chitosan, alginate, and cellulose in formulating bio-based protective coatings and treatments that bolster plant resistance to abiotic stress, pathogens, and pests. Additionally, the review delves into the innovative utilization of grapevine residues, including skins, seeds, and stems, as sources of polyphenols and other bioactive compounds. These compounds can be efficiently encapsulated in natural polymer matrices for applications in agriculture, food, and pharmaceuticals. Key topics include the mechanisms of action, benefits, and limitations of natural polymer-based interventions, as well as case studies demonstrating their practical implementation in vineyards. The review also addresses future research directions, emphasizing the need for integrated approaches that enhance sustainability and economic viability in the grapevine industry.
Collapse
Affiliation(s)
- Daniela-Ionela Toma (Sărdărescu)
- National Research and Development Institute for Biotechnology in Horticulture–INCDBH, 37 Bucuresti-Pitesti Str., 117715 Ștefănești, Romania;
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
| | - Doina Manaila-Maximean
- Faculty of Applied Sciences, National University of Science and Technology Politehnica Bucharest, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 3 Ilfov, 050044 Bucharest, Romania
| | - Irina Fierascu
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
- Faculty of Horticulture, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., 011464 Bucharest, Romania
| | - Anda Maria Baroi
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Roxana Ioana Matei (Brazdis)
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Toma Fistos
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Irina Elena Chican
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| | - Radu Claudiu Fierascu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 1-7 Gheorghe Polizu St., 011061 Bucharest, Romania
- National Institute for Research & Development in Chemistry and Petrochemistry—ICECHIM Bucharest, 202 Spl. Independentei, 060021 Bucharest, Romania; (I.F.); (A.M.B.); (T.F.); (I.E.C.)
| |
Collapse
|
2
|
Weżgowiec J, Łapińska Z, Lamch Ł, Szewczyk A, Saczko J, Kulbacka J, Więckiewicz M, Wilk KA. Cytotoxic Activity of Curcumin- and Resveratrol-Loaded Core-Shell Systems in Resistant and Sensitive Human Ovarian Cancer Cells. Int J Mol Sci 2024; 26:41. [PMID: 39795900 PMCID: PMC11720041 DOI: 10.3390/ijms26010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/21/2024] [Accepted: 12/13/2024] [Indexed: 01/13/2025] Open
Abstract
Due to the high mortality rate of ovarian cancer, there is a need to find novel strategies to improve current treatment modalities. Natural compounds offer great potential in this field but also require the careful design of systems for their delivery to cancer cells. Our study explored the anticancer effects of novel resveratrol (RSV)- and curcumin (CUR)-loaded core-shell nanoparticles in human ovarian cancer cells. We evaluated the in vitro cytotoxicity of various nanocarriers (CUR 1-3, RSV I-III) delivered to MDAH-2774 and SKOV-3 cells in comparison to free RVS and CUR after 24 h and 72 h treatment. A two-way ANOVA was applied to compare the results of the MTT assay. Confocal laser scanning microscopy was employed to visualize cellular uptake and mitochondrial localization. Our findings revealed that the cytotoxicity of the core-shell nanoparticles with RSV was not significant, but the systems loaded with CUR effectively decreased the viability of cells. The MDAH-2774 cell line was more sensitive to the treatment than SKOV-3. The enhanced cellular uptake of CUR delivered by core-shell systems and its colocalization with mitochondria were demonstrated. Further research focused on the detailed biological effects of the most effective systems (CUR 2 and CUR 3) should be conducted to provide detailed insights. These findings highlight the promising role of CUR-loaded nanoparticles in ovarian cancer treatment.
Collapse
Affiliation(s)
- Joanna Weżgowiec
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Zofia Łapińska
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Z.Ł.); (A.S.); (J.S.); (J.K.)
| | - Łukasz Lamch
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (K.A.W.)
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Z.Ł.); (A.S.); (J.S.); (J.K.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406 Vilnius, Lithuania
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Z.Ł.); (A.S.); (J.S.); (J.K.)
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Wroclaw Medical University, 50-556 Wroclaw, Poland; (Z.Ł.); (A.S.); (J.S.); (J.K.)
- Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių g. 5, LT-08406 Vilnius, Lithuania
| | - Mieszko Więckiewicz
- Department of Experimental Dentistry, Wroclaw Medical University, 50-425 Wroclaw, Poland;
| | - Kazimiera A. Wilk
- Department of Engineering and Technology of Chemical Processes, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland; (Ł.L.); (K.A.W.)
| |
Collapse
|
3
|
Morkovin E, Litvinov R, Koushner A, Babkov D. Resveratrol and Extra Virgin Olive Oil: Protective Agents Against Age-Related Disease. Nutrients 2024; 16:4258. [PMID: 39770880 PMCID: PMC11677889 DOI: 10.3390/nu16244258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Resveratrol and extra virgin olive oil are both recognized for their potential protective effects against age-related diseases. This overview highlights their mechanisms of action, health benefits, and the scientific evidence supporting their roles in promoting longevity and cognitive health. A literature search was conducted. Important findings related to the health benefits, mechanisms of action, and clinical implications of resveratrol and EVOO were summarized. Both resveratrol and EVOO have complementary mechanisms that may enhance their anti-aging effects. Resveratrol and EVOO are promising age-related disease-protective agents. Their antioxidant, anti-inflammatory, and neuroprotective properties contribute to improved health outcomes and longevity. Incorporating these compounds into a balanced diet may offer significant benefits for aging populations, supporting cognitive health and reducing the risk of chronic diseases. Continued research is essential to fully understand their mechanisms and optimize their use in clinical settings. Future research should focus on investigating the synergistic effects of resveratrol and EVOO when consumed together, as they may enhance each other's bioavailability and efficacy in promoting health; conducting extensive clinical trials to confirm the long-term benefits of these compounds in various populations, particularly in aging individuals; further exploring the molecular pathways through which resveratrol and EVOO exert their effects, including their interactions with gut microbiota and metabolic pathways.
Collapse
Affiliation(s)
- Evgeny Morkovin
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya 39, 400087 Volgograd, Russia; (R.L.)
| | - Roman Litvinov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya 39, 400087 Volgograd, Russia; (R.L.)
- LLC «InnoVVita», Office 401, Room 2, 6 Komsomolskaya St., 400066 Volgograd, Russia
| | - Alexey Koushner
- Research Laboratory of Medical Imaging, Institute for Advanced Training of Medical Personnel, St. F. Engelsa, 58A, 394036 Voronezh, Russia
| | - Denis Babkov
- Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya 39, 400087 Volgograd, Russia; (R.L.)
- LLC «InnoVVita», Office 401, Room 2, 6 Komsomolskaya St., 400066 Volgograd, Russia
| |
Collapse
|
4
|
Utpal BK, Mokhfi FZ, Zehravi M, Sweilam SH, Gupta JK, Kareemulla S, C RD, Rao AA, Kumar VV, Krosuri P, Prasad D, Khan SL, Roy SC, Rab SO, Alshehri MA, Emran TB. Resveratrol: A Natural Compound Targeting the PI3K/Akt/mTOR Pathway in Neurological Diseases. Mol Neurobiol 2024:10.1007/s12035-024-04608-4. [PMID: 39578340 DOI: 10.1007/s12035-024-04608-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/01/2024] [Indexed: 11/24/2024]
Abstract
Neurological diseases (NDs), including neurodegenerative disorders and acute injuries, are a significant global health concern. The PI3K/Akt/mTOR pathway, a crucial signaling cascade, is responsible for the survival of cells, proliferation, and metabolism. Dysregulation of this pathway has been linked to neurological conditions, indicating its potential as a vital target for therapeutic approaches. Resveratrol (RSV), a natural compound found in berries, peanuts, and red grapes, has antioxidant, anti-cancer, and anti-inflammatory effects. Its ability to modulate the PI3K/Akt/mTOR pathway has been interesting in NDs. Studies have shown that RSV can activate the PI3K/Akt pathway, promoting cell survival and inhibiting apoptosis of neuronal cells. Its impact on mTOR, a downstream effector of Akt, further contributes to its neuroprotective effects. RSV's ability to restore autophagic flux presents a promising avenue for therapeutic intervention. Its anti-inflammatory properties suppress inflammatory responses by inhibiting key signaling molecules within the pathway. Additionally, RSV's role in enhancing mitochondrial function contributes to its neuroprotective profile. This study highlights RSV's potential as a multifaceted therapeutic agent in NDs, specifically by PI3K/Akt/mTOR pathway modulation. Additional investigation is required to optimize its therapeutic capacity in diverse neurological conditions.
Collapse
Affiliation(s)
- Biswajit Kumar Utpal
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
| | - Fatima Zohra Mokhfi
- Laboratory of AgroBiotechnology and Nutrition in Semi Arid Zones, Faculty of Nature and Life Sciences, University of Ibn Khaldoun, Tiaret, Algeria
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy, College of Dentistry & Pharmacy, Buraydah Private Colleges, Buraydah, 51418, Saudi Arabia.
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City, Cairo, 11829, Egypt
| | - Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University Mathura, Chaumuha, Mathura, Uttar Pradesh, 281406, India
| | - Shaik Kareemulla
- Department of Pharmacy Practice, Malla Reddy College of Pharmacy (MRCP), Kompally, Secunderabad, Telangana, 500100, India
| | - Ronald Darwin C
- Department of Pharmacology, School of Pharmaceutical Sciences, Technology and Advanced Studies (VISTAS), Vels Institute of Science, Pallavaram, Chennai, 600117, India
| | - A Anka Rao
- KL College of Pharmacy, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, 522502, India
| | - Voleti Vijaya Kumar
- Department of Pharmaceutics, School of Pharmacy, Satyabhama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Pavankumar Krosuri
- Department of Pharmaceutics, Santhiram College of Pharmacy, NH40, Nandyal, Andhra Pradesh, 518112, India
| | - Dharani Prasad
- Depertment of Pharmacology Mohan Babu University MB School of Pharmaceutical Sciences, Erstwhile Sree Vidyaniketan College of Pharmacy, Tirupati, Andhra Pradesh, 517102, India
| | - Sharukh L Khan
- Department of Pharmaceutical Chemistry, N.B.S. Institute of Pharmacy, Ausa, 413520, Maharashtra, India
| | - Sajib Chandra Roy
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammed Ali Alshehri
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Talha Bin Emran
- Department of Pharmacy, Faculty of Health and Life Sciences, Daffodil International University, Dhaka, 1207, Bangladesh.
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, 4381, Bangladesh.
| |
Collapse
|
5
|
Ben Dassi R, Ibidhi S, Jemai H, Cherif A, Driouich Chaouachi R. Resveratrol: Challenges and prospects in extraction and hybridization with nanoparticles, polymers, and bio-ceramics. Phytother Res 2024; 38:5309-5322. [PMID: 39228146 DOI: 10.1002/ptr.8319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024]
Abstract
Resveratrol (RSV), a bioactive natural phenolic compound found in plants, fruits, and vegetables, has garnered significant attention in pharmaceutical, food, and cosmetic industries due to its remarkable biological and pharmacological activities. Despite its potential in treating various diseases, its poor pharmacokinetic properties, such as low solubility, stability, bioavailability, and susceptibility to rapid oxidation, limit its biomedical applications. Recent advancements focus on incorporating resveratrol into innovative materials like nanoparticles, polymers, and bio-ceramics to enhance its properties and bioavailability. In this review, an exhaustive literature search was conducted from PubMed, Google Scholar, Science Direct, Scopus, and Web of Science databases to explore these advancements, to compares conventional and innovative extraction methods, and to highlights resveratrol's therapeutic potential, including its anti-inflammatory, anti-oxidative, anti-cancerogenic, antidiabetic, neuroprotective, and cardio-protective properties. Additionally, we discuss the challenges and prospects of hybrid materials combining resveratrol with nanoparticles, polymers, and bio-ceramics for therapeutic applications. Rigorous studies are still needed to confirm their clinical efficacy.
Collapse
Affiliation(s)
- Roua Ben Dassi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
- Doctoral School in Sciences and Technologies of Computing, Communications, Design and the Environment, University of Manouba, Tunisia
| | - Salah Ibidhi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
- Doctoral School in Sciences and Technologies of Computing, Communications, Design and the Environment, University of Manouba, Tunisia
| | - Hedya Jemai
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| | - Ameur Cherif
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| | - Rim Driouich Chaouachi
- Laboratory BVBGR-LR11ES31, Institute of Biotechnology of Sidi Thabet, University of Manouba, Tunisia
| |
Collapse
|
6
|
Hridayanka KSN, Duttaroy AK, Basak S. Bioactive Compounds and Their Chondroprotective Effects for Osteoarthritis Amelioration: A Focus on Nanotherapeutic Strategies, Epigenetic Modifications, and Gut Microbiota. Nutrients 2024; 16:3587. [PMID: 39519419 PMCID: PMC11547880 DOI: 10.3390/nu16213587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/20/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
In degenerative joint disease like osteoarthritis (OA), bioactive compounds like resveratrol, epigallocatechin gallate, curcumin, and other polyphenols often target various signalling pathways, including NFκB, TGFβ, and Wnt/β-catenin by executing epigenetic-modifying activities. Epigenetic modulation can target genes of disease pathophysiology via histone modification, promoter DNA methylation, and non-coding RNA expression, some of which are directly involved in OA but have been less explored. OA patients often seek options that can improve the quality of their life in addition to existing treatment with nonsteroidal anti-inflammatory drugs (NSAIDs). Although bioactive and natural compounds exhibit therapeutic potential against OA, several disadvantages loom, like insolubility and poor bioavailability. Nanoformulated bioactive compounds promise a better way to alleviate OA since they also control systemic events, including metabolic, immunological, and inflammatory responses, by modulating host gut microbiota that can regulate OA pathogenesis. Recent data suggest gut dysbiosis in OA. However, limited evidence is available on the role of bioactive compounds as epigenetic and gut modulators in ameliorating OA. Moreover, it is not known whether the effects of polyphenolic bioactive compounds on gut microbial response are mediated by epigenetic modulatory activities in OA. This narrative review highlights the nanotherapeutic strategies utilizing bioactive compounds, reporting their effects on chondrocyte growth, metabolism, and epigenetic modifications in osteoarthritis amelioration.
Collapse
Affiliation(s)
- Kota Sri Naga Hridayanka
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| | - Asim K. Duttaroy
- Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, 0317 Oslo, Norway;
| | - Sanjay Basak
- Molecular Biology Division, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad 500007, India;
| |
Collapse
|
7
|
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, Dos Santos MR, Pereira CM, Santos HA. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv Transl Res 2024; 14:2845-2916. [PMID: 39003425 PMCID: PMC11385056 DOI: 10.1007/s13346-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Several efforts have been extensively accomplished for the amelioration of the cancer treatments using different types of new drugs and less invasives therapies in comparison with the traditional therapeutic modalities, which are widely associated with numerous drawbacks, such as drug resistance, non-selectivity and high costs, restraining their clinical response. The application of natural compounds for the prevention and treatment of different cancer cells has attracted significant attention from the pharmaceuticals and scientific communities over the past decades. Although the use of nanotechnology in cancer therapy is still in the preliminary stages, the application of nanotherapeutics has demonstrated to decrease the various limitations related to the use of natural compounds, such as physical/chemical instability, poor aqueous solubility, and low bioavailability. Despite the nanotechnology has emerged as a promise to improve the bioavailability of the natural compounds, there are still limited clinical trials performed for their application with various challenges required for the pre-clinical and clinical trials, such as production at an industrial level, assurance of nanotherapeutics long-term stability, physiological barriers and safety and regulatory issues. This review highlights the most recent advances in the nanocarriers for natural compounds secreted from plants, bacteria, fungi, and marine organisms, as well as their role on cell signaling pathways for anticancer treatments. Additionally, the clinical status and the main challenges regarding the natural compounds loaded in nanocarriers for clinical applications were also discussed.
Collapse
Affiliation(s)
- Tatiana Andreani
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Centre & Inov4Agro, Department of Biology, Faculty of Sciences of University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Khalil Elbadri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Claudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Thacilla Menezes
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mayara R Dos Santos
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
8
|
Muteeb G, Khafaga DS, El-Morsy MT, Farhan M, Aatif M, Hosney M. Targeting tumor-associated macrophages with nanocarrier-based treatment for breast cancer: A step toward developing innovative anti-cancer therapeutics. Heliyon 2024; 10:e37217. [PMID: 39309874 PMCID: PMC11415663 DOI: 10.1016/j.heliyon.2024.e37217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/06/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Tumor-associated macrophages (TAMs) promote tumor advancement in many ways, such as inducing angiogenesis and the formation of new blood vessels that provide tumors with nourishment and oxygen. TAMs also facilitate tumor invasion and metastasis by secreting enzymes that degrade the extracellular matrix and generating pro-inflammatory cytokines that enhance the migration of tumor cells. TAMs also have a role in inhibiting the immune response against malignancies. To accomplish this, they release immunosuppressive cytokines such as IL-10, and TAMs can hinder the function of T cells and natural killer cells, which play crucial roles in the immune system's ability to combat cancer. The role of TAMs in breast cancer advancement is a complex and dynamic field of research. Therefore, TAMs are a highly favorable focus for innovative breast cancer treatments. This review presents an extensive overview of the correlation between TAMs and breast cancer development as well as its role in the tumor microenvironment (TME) shedding light on their impact on tumor advancement and immune evasion mechanisms. Notably, our study provides an innovative approach to employing nanomedicine approaches for targeted TAM therapy in breast cancer, providing an in-depth overview of recent advances in this emerging field.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Doaa S.R. Khafaga
- Health Sector, Faculty of Science, Galala University, New Galala City, 43511, Suez, Egypt
| | - Manar T. El-Morsy
- Biotechnology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| | - Mohd Farhan
- Department of Chemistry, College of Science, King Faisal University, Al Ahsa, 31982, Saudi Arabia
- Department of Basic Sciences, Preparatory Year Deanship, King Faisal University, Al Ahsa, 31982, Saudi Arabia
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Sciences, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
| | - Mohamed Hosney
- Zoology Department, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
9
|
Mukkavilli V, Ramakrishnan G, Gujjula KR, S B, Chamarthy S, Mekala JR. Molecular Understanding and Pharmacological Potency of Plant-Derived Compounds in Colorectal Cancer (CRC): A Critical Analysis and Future Perspectives. Cell Biochem Biophys 2024; 82:1777-1795. [PMID: 38965179 DOI: 10.1007/s12013-024-01370-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2024] [Indexed: 07/06/2024]
Abstract
Colorectal cancer (CRC) is the main driver of fatality and the 3rd most often determined malignancy. Despite advances in detection and therapy, colorectal cancer (CRC) endures as the largest driver of cancer-related morbidity, and mortality. Modern habits and dietary negligence might be one of the reasons that have enhanced cancer prevalence. Thus, changes in Dietary habits will have a better impact, and help in finding a better cure for CRC. Initially, CRC was explored as a genetic event and currently, the research is focused on the epigenetic modifications of chromatin and microRNA (miRNA) in CRC cells. Natural products such as Curcumin, Resveratrol, Flavonoids, and Ellagitannins are been explored as compounds from the perspective of genetic, epigenetic, and miRNA modifications which will have future therapeutic aspects. Also, the extracts of these key players and their analogs will intervene the signaling pathway activation that involves in cancer propagation, apoptosis, cell cycle arrest, and epigenetic and miRNA modifications. Modulations of these miRNAs, and modification globally might have impact on CRC progression, and cancer tumor cell sensitivity.
Collapse
Affiliation(s)
- Vaagdevi Mukkavilli
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Gnanasekaran Ramakrishnan
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India.
| | - Koteswara Reddy Gujjula
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Balachandran S
- Dept of Chemical Engineering, Saveetha Engineering College, Saveetha Nagar Thandalam, 602105, Chennai, Tamil Nadu, India
| | - Sahiti Chamarthy
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India
| | - Janaki Ramaiah Mekala
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation (Deemed to be University), Green Fields, 522502, Vaddeswram, AP, India.
| |
Collapse
|
10
|
Lima IT, Gomes RFC, Paura ENC, Provasi PF, Gester R, Rodrigues da Cunha A. Exploring the molecular solvatochromism, stability, reactivity, and non-linear optical response of resveratrol. J Mol Model 2024; 30:314. [PMID: 39167248 DOI: 10.1007/s00894-024-06108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
CONTEXT This work analyzes the isomerization effects and solvent contributions to the stability, electronic excitations, reactivity, and non-linear optical properties (NLO) of resveratrol molecules within the formalism of the Density Functional Theory. The findings suggest that resveratrol solvatochromism is significantly influenced by solvent polarization. The electronic and free energies (E and G) indicate that trans is the most stable conformer. The system is classified as a strong nucleophile. However, the analysis of the Fukui functions and the Mulliken charges indicate that cis-trans isomerization jointly affects the reactive indices of the carbon and hydrogen atoms. The results also suggest that solvent is relevant to solvatochromism and the NLO response. Both cis and trans conformers present strong π - π ∗ excitations that undergo a visible hypsochromic change when the polarity of the solvent increases. Once the absorption spectra are connected to the first hyperpolarization ( β ) by the Oudar and Chemla relation, the hypsochromism of resveratrol is the reason for the drop in the generation of the second harmonic when the ambient polarity decreases. The CAM-B3LYP DFT results suggest that resveratrol is interesting for NLO applications. Depending on the choice of solvent, values ∼ 50 times those observed for urea ( β = 0.34 × 10 - 34 esu), which is a standard NLO material. METHODS The optimized geometries of cis and trans isomers of resveratrol in vacuum were obtained using Density Functional Theory (DFT) with the hybrid exchange-correlation function (CAM-B3LYP) and Pople basis set functions, specifically 6-311++G(d,p). The solvent effect on the geometries of both isomers was included using the polarizable continuum model (PCM) with the same level of QM calculation. Vibrational analysis was conducted to confirm that all optimized geometries correspond to the minimum energy. Various electronic properties, including dipole moments, molecular orbitals, transition energy, dipole polarizabilities, and global reactivity parameters, were calculated using both continuum and discrete solvation models based on the sequential QM/MM methodology. All QM calculations were performed with the Gaussian 09 program and the MC simulations with the DICE program. All NLO analysis was carried out using the Multiwfn code.
Collapse
Affiliation(s)
- Igo T Lima
- Coordenação do Bacharelado Interdisciplinar em Ciência e Tecnologia, Campus Dom Delgado, Universidade Federal do Maranhão, UFMA, São Luís, MA, Brazil
| | - Ramon F C Gomes
- Coordenação do Bacharelado Interdisciplinar em Ciência e Tecnologia, Campus Dom Delgado, Universidade Federal do Maranhão, UFMA, São Luís, MA, Brazil
| | - Edson N C Paura
- Universidade Federal do Maranhão, UFMA, Campus Balsas, Balsas, MA, Brazil
| | - Patricio F Provasi
- Department of Physics, IMIT, Northeastern University, CONICET, AV. Libertad 5500, W 3404 AAS, Corrientes, Argentina
| | - Rodrigo Gester
- Faculdade de Física, Universidade Federal do Sul e Sudeste do Pará, UNIFESSPA, Marabá, PA, Brazil
- Instituto de Física, Universidade de São Paulo, USP, Rua do Matão 1371, São Paulo, SP, Brazil
| | | |
Collapse
|
11
|
Cristani M, Citarella A, Carnamucio F, Micale N. Nano-Formulations of Natural Antioxidants for the Treatment of Liver Cancer. Biomolecules 2024; 14:1031. [PMID: 39199418 PMCID: PMC11352298 DOI: 10.3390/biom14081031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
Oxidative stress is a key factor in the pathological processes that trigger various chronic liver diseases, and significantly contributes to the development of hepatocarcinogenesis. Natural antioxidants reduce oxidative stress by neutralizing free radicals and play a crucial role in the treatment of free-radical-induced liver diseases. However, their efficacy is often limited by poor bioavailability and metabolic stability. To address these limitations, recent advances have focused on developing nano-drug delivery systems that protect them from degradation and enhance their therapeutic potential. Among the several critical benefits, they showed to be able to improve bioavailability and targeted delivery, thereby reducing off-target effects by specifically directing the antioxidant to the liver tumor site. Moreover, these nanosystems led to sustained release, prolonging the therapeutic effect over time. Some of them also exhibited synergistic effects when combined with other therapeutic agents, allowing for improved overall efficacy. This review aims to discuss recent scientific advances in nano-formulations containing natural antioxidant molecules, highlighting their potential as promising therapeutic approaches for the treatment of liver cancer. The novelty of this review lies in its comprehensive focus on the latest developments in nano-formulations of natural antioxidants for the treatment of liver cancer.
Collapse
Affiliation(s)
- Mariateresa Cristani
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| | - Andrea Citarella
- Department of Chemistry, University of Milan, Via Golgi 19, I-20133 Milano, Italy;
| | - Federica Carnamucio
- Center of Pharmaceutical Engineering and Sciences, Department of Pharmaceutics, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, I-98166 Messina, Italy;
| |
Collapse
|
12
|
Bozzuto G, Calcabrini A, Colone M, Condello M, Dupuis ML, Pellegrini E, Stringaro A. Phytocompounds and Nanoformulations for Anticancer Therapy: A Review. Molecules 2024; 29:3784. [PMID: 39202863 PMCID: PMC11357218 DOI: 10.3390/molecules29163784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Cancer is a complex disease that affects millions of people and remains a major public health problem worldwide. Conventional cancer treatments, including surgery, chemotherapy, immunotherapy, and radiotherapy, have limited achievements and multiple drawbacks, among which are healthy tissue damage and multidrug-resistant phenotype onset. Increasing evidence shows that many plants' natural products, as well as their bioactive compounds, have promising anticancer activity and exhibit minimal toxicity compared to conventional anticancer drugs. However, their widespread use in cancer therapy is severely restricted by limitations in terms of their water solubility, absorption, lack of stability, bioavailability, and selective targeting. The use of nanoformulations for plants' natural product transportation and delivery could be helpful in overcoming these limitations, thus enhancing their therapeutic efficacy and providing the basis for improved anticancer treatment strategies. The present review is aimed at providing an update on some phytocompounds (curcumin, resveratrol, quercetin, and cannabinoids, among others) and their main nanoformulations showing antitumor activities, both in vitro and in vivo, against such different human cancer types as breast and colorectal cancer, lymphomas, malignant melanoma, glioblastoma multiforme, and osteosarcoma. The intracellular pathways underlying phytocompound anticancer activity and the main advantages of nanoformulation employment are also examined. Finally, this review critically analyzes the research gaps and limitations causing the limited success of phytocompounds' and nanoformulations' clinical translation.
Collapse
Affiliation(s)
- Giuseppina Bozzuto
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Annarica Calcabrini
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Marisa Colone
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Condello
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Maria Luisa Dupuis
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| | - Evelin Pellegrini
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy; (G.B.); (M.C.); (M.C.); (M.L.D.); (A.S.)
| |
Collapse
|
13
|
Murugan R. Innovative polysaccharide-based hydrogels: a promising vehicle for bioactive compounds in oral cancer therapy. Nat Prod Res 2024:1-2. [PMID: 39052846 DOI: 10.1080/14786419.2024.2383269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Affiliation(s)
- Ramadurai Murugan
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| |
Collapse
|
14
|
Mady MS, Sobhy Y, Orabi A, Sharaky M, Mina SA, Abo-Zeid Y. Preparation and characterization of nano-emulsion formulations of Asparagus densiflorus root and aerial parts extracts: evaluation of in-vitro antibacterial and anticancer activities of nano-emulsion versus pure plant extract. Drug Dev Ind Pharm 2024; 50:658-670. [PMID: 39093556 DOI: 10.1080/03639045.2024.2386001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/29/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024]
Abstract
OBJECTIVE Preparation and characterization of nano-emulsion formulations for Asparagus densiflorus aerial and root parts extracts. SIGNIFICANCE Genus Asparagus is known for its antimicrobial and anticancer activities, however, freeze dried powder of aqueous - alcoholic extract prepared in this study, exhibited a limited water solubility, limiting its therapeutic application. Thus, encapsulation of its phytochemicals into nano-emulsion is proposed as a solution to improve water solubility, and facilitate its clinical translation. METHODS the composition of extracts for both aerial and root parts of Asparagus densiflorus was identified by HPLC and LC-MS analysis. Nano-emulsion was prepared via homogenization where a mixture of Castor oil: phosphate buffered saline (10 mM, pH 7.4): Tween 80: PEG 600 in a ratio of 10: 5: 2.5: 2.5, respectively. Nano-emulsion formulations were characterized for particle size, polydispersity index (PDI), zeta potential, TEM, viscosity and pH. Then, the antibacterial and anticancer activities of nano-emulsion formulations versus their pure plant counterparts was assessed. RESULTS The analysis of extracts identified several flavonoids, phenolics, and saponins which were reported to have antimicrobial and anticancer activities. Nano-emulsion formulations were monodispersed with droplet sizes ranging from 80.27 ± 2.05 to 111.16 ± 1.97 nm, and polydispersity index ≤0.3. Nano-emulsion formulations enhanced significantly the antibacterial (multidrug resistant bacteria causing skin and dental soft tissues infections) and anticancer (HuH7, HEPG2, H460 and HCT116) activities compared to their pure plant extract counterparts. CONCLUSION Employing a nano-delivery system as a carrier for phytochemicals might be an effective strategy to enhance their pharmacological activity, overcome their limitations, and ultimately increase their potential for clinical applications.
Collapse
Affiliation(s)
- Mohamed S Mady
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ain Helwan, Cairo, Egypt
| | - Yasmin Sobhy
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ain Helwan, Cairo, Egypt
| | - Ahmed Orabi
- Microbiology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Marwa Sharaky
- Pharmacology Unit - Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ahram Canadian University, Cairo, Egypt
| | - Suzan A Mina
- Department of Pharmacognosy, Faculty of Pharmacy, Helwan University. Ain Helwan, Cairo, Egypt
| | - Yasmin Abo-Zeid
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| |
Collapse
|
15
|
Deljavan Ghodrati A, Comoglu T. An overview on recent approaches for colonic drug delivery systems. Pharm Dev Technol 2024; 29:566-581. [PMID: 38813948 DOI: 10.1080/10837450.2024.2362353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 05/31/2024]
Abstract
Colon-targeted drug delivery systems have garnered significant interest as potential solutions for delivering various medications susceptible to acidic and catalytic degradation in the gastrointestinal (GI) tract or as a means of treating colonic diseases naturally with fewer overall side effects. The increasing demand for patient-friendly drug administration underscores the importance of colonic drug delivery, particularly through noninvasive methods like nanoparticulate drug delivery technologies. Such systems offer improved patient compliance, cost reduction, and therapeutic advantages. This study places particular emphasis on formulations and discusses recent advancements in various methods for designing colon-targeted drug delivery systems and their medicinal applications.
Collapse
Affiliation(s)
- Aylin Deljavan Ghodrati
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
- Graduate School of Health Sciences, Ankara University, Ankara, Turkey
| | - Tansel Comoglu
- Faculty of Pharmacy, Department of Pharmaceutical Technology, Ankara University, Ankara, Turkey
| |
Collapse
|
16
|
Markowska A, Antoszczak M, Markowska J, Huczyński A. Gynotoxic Effects of Chemotherapy and Potential Protective Mechanisms. Cancers (Basel) 2024; 16:2288. [PMID: 38927992 PMCID: PMC11202309 DOI: 10.3390/cancers16122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Chemotherapy is one of the leading cancer treatments. Unfortunately, its use can contribute to several side effects, including gynotoxic effects in women. Ovarian reserve suppression and estrogen deficiency result in reduced quality of life for cancer patients and are frequently the cause of infertility and early menopause. Classic alkylating cytostatics are among the most toxic chemotherapeutics in this regard. They cause DNA damage in ovarian follicles and the cells they contain, and they can also induce oxidative stress or affect numerous signaling pathways. In vitro tests, animal models, and a few studies among women have investigated the effects of various agents on the protection of the ovarian reserve during classic chemotherapy. In this review article, we focused on the possible beneficial effects of selected hormones (anti-Müllerian hormone, ghrelin, luteinizing hormone, melatonin), agents affecting the activity of apoptotic pathways and modulating gene expression (C1P, S1P, microRNA), and several natural (quercetin, rapamycin, resveratrol) and synthetic compounds (bortezomib, dexrazoxane, goserelin, gonadoliberin analogs, imatinib, metformin, tamoxifen) in preventing gynotoxic effects induced by commonly used cytostatics. The presented line of research appears to provide a promising strategy for protecting and/or improving the ovarian reserve in the studied group of cancer patients. However, well-designed clinical trials are needed to unequivocally assess the effects of these agents on improving hormonal function and fertility in women treated with ovotoxic anticancer drugs.
Collapse
Affiliation(s)
- Anna Markowska
- Department of Perinatology and Women’s Health, Poznań University of Medical Sciences, 60-535 Poznań, Poland
| | - Michał Antoszczak
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| | - Janina Markowska
- Gynecological Oncology Center, Poznańska 58A, 60-850 Poznań, Poland;
| | - Adam Huczyński
- Department of Medical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 61-614 Poznań, Poland
| |
Collapse
|
17
|
Kanaujiya S, Arya DK, Pandey P, Singh S, Pandey G, Anjum S, Anjum MM, Ali D, Alarifi S, MR V, Sivakumar S, Srivastava S, Rajinikanth PS. Resveratrol-Ampicillin Dual-Drug Loaded Polyvinylpyrrolidone/Polyvinyl Alcohol Biomimic Electrospun Nanofiber Enriched with Collagen for Efficient Burn Wound Repair. Int J Nanomedicine 2024; 19:5397-5418. [PMID: 38863647 PMCID: PMC11164821 DOI: 10.2147/ijn.s464046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024] Open
Abstract
Background The healing of burn wounds is a complicated physiological process that involves several stages, including haemostasis, inflammation, proliferation, and remodelling to rebuild the skin and subcutaneous tissue integrity. Recent advancements in nanomaterials, especially nanofibers, have opened a new way for efficient healing of wounds due to burning or other injuries. Methods This study aims to develop and characterize collagen-decorated, bilayered electrospun nanofibrous mats composed of PVP and PVA loaded with Resveratrol (RSV) and Ampicillin (AMP) to accelerate burn wound healing and tissue repair. Results Nanofibers with smooth surfaces and web-like structures with diameters ranging from 200 to 400 nm were successfully produced by electrospinning. These fibres exhibited excellent in vitro properties, including the ability to absorb wound exudates and undergo biodegradation over a two-week period. Additionally, these nanofibers demonstrated sustained and controlled release of encapsulated Resveratrol (RSV) and Ampicillin (AMP) through in vitro release studies. The zone of inhibition (ZOI) of PVP-PVA-RSV-AMP nanofibers against Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) was found 31±0.09 mm and 12±0.03, respectively, which was significantly higher as compared to positive control. Similarly, the biofilm study confirmed the significant reduction in the formation of biofilms in nanofiber-treated group against both S. aureus and E. coli. X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR) analysis proved the encapsulation of RSV and AMP successfully into nanofibers and their compatibility. Haemolysis assay (%) showed no significant haemolysis (less than 5%) in nanofiber-treated groups, confirmed their cytocompatibility with red blood cells (RBCs). Cell viability assay and cell adhesion on HaCaT cells showed increased cell proliferation, indicating its biocompatibility as well as non-toxic properties. Results of the in-vivo experiments on a burn wound model demonstrated potential burn wound healing in rats confirmed by H&E-stained images and also improved the collagen synthesis in nanofibers-treated groups evidenced by Masson-trichrome staining. The ELISA assay clearly indicated the efficient downregulation of TNF-alpha and IL-6 inflammatory biomarkers after treatment with nanofibers on day 10. Conclusion The RSV and AMP-loaded nanofiber mats, developed in this study, expedite burn wound healing through their multifaceted approach.
Collapse
Affiliation(s)
- Shubham Kanaujiya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Dilip Kumar Arya
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Prashant Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sneha Singh
- Department of Chemical Engineering, IIT Kanpur, Kanpur, India
| | - Giriraj Pandey
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shabnam Anjum
- Department of Tissue Engineering, School of Intelligent Medicine, China Medical University, Shenyang, Liaoning, 110122, People’s Republic of China
| | - Md Meraj Anjum
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Daoud Ali
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vijayakumar MR
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sri Sivakumar
- Department of Chemical Engineering, IIT Kanpur, Kanpur, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - P S Rajinikanth
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
18
|
Diab RF, Abdelghany TM, Gad S, Elbakry AM. Novel resveratrol smart lipids; design, formulation, and biological evaluation of anticancer activity. J Pharm Pharmacol 2024; 76:631-645. [PMID: 38507715 DOI: 10.1093/jpp/rgae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/04/2024] [Indexed: 03/22/2024]
Abstract
PURPOSE Although resveratrol (RES) is an efficacious molecule, its therapeutic activity is impeded by significant limitations, such as rapid oral absorption, poor oral bioavailability, and low water solubility. Therefore, the preparation of RES in different pharmaceutical carriers represents an important tool to enhance its therapeutic applications. This study aims to potentiate the anti-cancer activity of RES by formulating it into a novel nanocarrier called Smart Lipid. METHODS RES-loaded Smart Lipids were prepared by high-shear hot homogenization method utilizing a 21 × 32 factorial design with three factors at different levels: the total lipid concentration, the concentration of surfactant, and the type of surfactant. The responses were evaluated based on entrapment efficiency percentages and particle size. RESULTS Our novel optimized RES-loaded Smart Lipid formula showed small particle size (288.63 ± 5.55 nm), good zeta potential (-16.44 ± 0.99 mV), and an entrapment efficiency of 86.346 ± 3.61% with spherical, clearly distinct, and no signs of fusion by transmission electron microscopy. Further characterization was done using differential scanning calorimetry, which showed no interaction between the drug and other components as the optimum lyophilized formula showed a peak at 54.75°C, which represents the lipid mixture, with an undetectable characteristic peak of the drug, which indicates entrapment of the drug, and the structure of the compounds was confirmed by Fourier transform-infrared spectroscopy, in which the majority of the drug's characteristic peaks disappeared when loaded into Smart Lipid, which may indicate Smart Lipid's ability to reduce the stretching and bending between bonds in RES. In addition, the optimized formula showed a sustained release pattern compared to RES suspension. Finally, the cytotoxic activity of the optimized RES-loaded Smart Lipid on different cell lines (human breast adenocarcinoma (MCF7), human hepatocellular carcinoma (HepG2), and human colon cancer cells (HT29)) was assessed through MTT assay (7-fold reduction in the IC50, from 3.7 ± 0.5 μM for free RES to 0.5 ± 0.033 μM for Smart Lipid loaded formula against MCF7, 3-fold reduction in the IC50 against HepG2 cells, from 10.01 ± 0.35 to 3.16 ± 0.21 μMm, and a more than 10-fold reduction in the IC50 from more than 100 to 10 ± 0.57 μM against HT-29 cells) and its effect on cell cycle progression and apoptosis induction were assessed using flow cytometry and annexin V kit, respectively. Our results showed that RES-loaded Smart Lipid significantly reduced cell viability, induced cell cycle arrest at G0/G1 phase, and apoptosis compared to free formula and free RES suspension. CONCLUSION Loading RES into this novel kind of nanocarrier enhanced RES absorption, cellular accumulation, and improved its anticancer properties.
Collapse
Affiliation(s)
- Reem Fekry Diab
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11757, Egypt
| | - Tamer M Abdelghany
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11884, Egypt
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Heliopolis University for sustainable development, Cairo 11757, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Asmaa M Elbakry
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Heliopolis University, Cairo 11757, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo 11884, Egypt
| |
Collapse
|
19
|
Unnikrishnan Meenakshi D, Narde GK, Ahuja A, Al Balushi K, Francis AP, Khan SA. Therapeutic Applications of Nanoformulated Resveratrol and Quercetin Phytochemicals in Colorectal Cancer-An Updated Review. Pharmaceutics 2024; 16:761. [PMID: 38931884 PMCID: PMC11206904 DOI: 10.3390/pharmaceutics16060761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/07/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Natural compounds such as polyphenols play several positive roles in maintaining the oxidative and inflammatory capacity of cells, which leads to their potential use as anticancer therapeutics. There is promising evidence for the in vitro and in vivo anticancer activity of many polyphenols, including resveratrol and quercetin, specifically in the treatment of colorectal cancer (CRC). There is a clear association between resveratrol and quercetin in interfering with the mechanistic pathways involved in CRC, such as Wnt, P13K/AKT, caspase-3, MAPK, NF-κB, etc. These molecular pathways establish the role of resveratrol and quercetin in controlling cancer cell growth, inducing apoptosis, and inhibiting metastasis. The major bottleneck in the progression of the use of resveratrol and quercetin as anticancer therapeutics is their reduced bioavailability in vivo because of their rapid metabolism in humans. Recent advancements in various nanotechnological formulations are promising for overcoming these bioavailability issues. Various nanoformulations of resveratrol and quercetin have shown an optimistic impact on reducing the solubility and improving the stability of resveratrol and quercetin in vivo. A combinatorial approach using nanoformulations of resveratrol with quercetin could potentially increase the impact of resveratrol in controlling CRC cell proliferation. This review discusses the mechanism of resveratrol and quercetin, the two bioactive polyphenolics, in colon cancer, with an emphasis on various types of nanoformulations of the two molecules targeting colon cancer. It also explores the synergistic effect of combining resveratrol and quercetin in various nanoformulations, targeting colon cancer. This research delves into the enhanced pharmacokinetics and potential chemotherapeutic benefits of these bioactive polyphenolics when used together in innovative ways.
Collapse
Affiliation(s)
| | - Gurpreet Kaur Narde
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| | - Alka Ahuja
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| | - Khalid Al Balushi
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| | - Arul Prakash Francis
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospitals, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India;
| | - Shah Alam Khan
- College of Pharmacy, National University of Science and Technology, Muscat PC 130, Oman; (G.K.N.); (K.A.B.); (S.A.K.)
| |
Collapse
|
20
|
Liu H, Zhang L, Hao L, Fan D. Resveratrol Inhibits Colorectal Cancer Cell Tumor Property by Activating the miR-769-5p/MSI1 Pathway. Mol Biotechnol 2024:10.1007/s12033-024-01167-w. [PMID: 38771419 DOI: 10.1007/s12033-024-01167-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/02/2024] [Indexed: 05/22/2024]
Abstract
Resveratrol exhibits inhibitory effects on the progression of various cancers including colorectal cancer (CRC), however, the underlying mechanism in regulating CRC development remains elusive. The present study aims to uncover the role and molecular mechanism of resveratrol in modulating CRC cell tumor properties. NCM460 cells, LoVo cells, SW480 cells, and BALB/c nude mice were utilized in this study. RNA levels of miR-769-5p and musashi RNA-binding protein 1 (MSI1) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was assessed by western blotting or immunohistochemistry assay. Cell viability was analyzed by CCK-8 assay, while cell proliferation and apoptosis were evaluated by 5-Ethynyl-2'-deoxyuridine assay and flow cytometry analysis. Cell migration was investigated by transwell and wound-healing assays. The association between miR-769-5p and MSI1 was identified by a dual-luciferase reporter assay. Tumor formation was analyzed using a xenograft mouse model assay. Compared to control groups, miR-769-5p expression was downregulated, while MSI1 expression was upregulated in CRC tissues and cells. Resveratrol treatment led to increased miR-769-5p expression and decreased MSI1 expression in CRC cells. Resveratrol treatment or miR-769-5p upregulation inhibited CRC cell proliferation and migration, and induced apoptosis. These effects were enhanced after combined treatment with resveratrol and miR-769-5p mimics. MSI1 was identified as a target of miR-769-5p, and its overexpression attenuated the effects of miR-769-5p mimics on cell proliferation, migration, and apoptosis. Moreover, miR-769-5p overexpression enhanced the inhibitory effects of resveratrol on tumor growth in vivo. Resveratrol inhibited colorectal cancer cell tumor properties by activating the miR-769-5p/MSI1 pathway.
Collapse
Affiliation(s)
- Hongchang Liu
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Liangliang Zhang
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Liangliang Hao
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China
| | - Dingwen Fan
- Department of Colorectal Diseases, Hospital of Chengdu University of Traditional Chinese Medicine, No.41 Twelve Bridges Road, Jinniu, Chengdu, 610000, Sichuan, China.
| |
Collapse
|
21
|
Gao X, Zhu Y, Lv T, Luo M, Jiang Y, Sun L, Zheng S, Jiang D, Ruan S. Resveratrol restrains colorectal cancer metastasis by regulating miR-125b-5p/TRAF6 signaling axis. Am J Cancer Res 2024; 14:2390-2407. [PMID: 38859844 PMCID: PMC11162648 DOI: 10.62347/zbvg9125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/27/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer is one of the most common malignancies with a high incidence, metastatic tendency and low 5-year survival rate. Resveratrol, a polyphenolic compound has been shown to inhibit colorectal cancer metastasis in recent studies. Its underlying molecular mechanism remains to be elucidated. Our findings demonstrated that miR-125b-5p, acting as a tumor suppressor, was conspicuously down-regulated in both colorectal cancer tissues and cell lines. The expression of miR-125b-5p negatively correlated with the expression of its direct target TNF receptor associated factor 6 (TRAF6). Both miR-125b-5p overexpression and TRAF6 knockdown inhibited metastasis of colorectal cancer cells. In addition, we uncovered that resveratrol up-regulated miR-125b-5p by increasing its stability and suppressed TRAF6-induced signal pathway in a dose/time-dependent manner. Resveratrol could significantly curtail the migration and invasion of colorectal cancer cells, which was counteracted by miR-125b-5p knockdown or TRAF6 overexpression. These results indicated that resveratrol could restrain colorectal cancer metastasis by promoting miR-125b-5p/TRAF6 signaling axis. Furthermore, lung metastasis models of colorectal cancer were constructed by tail vein injection. Down-regulation of miR-125b-5p could facilitate colorectal cancer metastasis in vivo, which could be impeded by resveratrol. In conclusion, our findings delineated the miR-125b-5p/TRAF6 signaling axis as a novel molecular mechanism underlying the metastatic process in colorectal cancer, as well as a prospective therapeutic target. Resveratrol disrupts colorectal cancer metastasis by activating miR-125b-5p/TRAF6 signal pathway and might improve the clinical outcome of colorectal cancer patients with low expression of miR-125b-5p.
Collapse
Affiliation(s)
- Xin Gao
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310003, Zhejiang, China
| | - Ying Zhu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Tongdan Lv
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Mingpeng Luo
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Yu Jiang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| | - Leitao Sun
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
- Academy of Chinese Medical Science, Zhejiang Chinese Medical UniversityHangzhou 310053, Zhejiang, China
| | - Shusen Zheng
- NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310003, Zhejiang, China
- Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019)Hangzhou 310003, Zhejiang, China
| | - Donghai Jiang
- NHC Key Laboratory of Combined Multi-Organ TransplantationHangzhou 310003, Zhejiang, China
- Research Unit of Collaborative Diagnosis and Treatment for Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019)Hangzhou 310003, Zhejiang, China
| | - Shanming Ruan
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)Hangzhou 310006, Zhejiang, China
| |
Collapse
|
22
|
Jia Y, Shi J, Ding B, Zhao L, Xu K, Hu C, Xu W, Zhu A, Yang H, Wang X, Yao F. Photoactive Poly-L-Lysine gel with resveratrol-magnesium metal polyphenol network: A promising strategy for preventing tracheal anastomotic complications following surgery. Mater Today Bio 2024; 24:100938. [PMID: 38260033 PMCID: PMC10801330 DOI: 10.1016/j.mtbio.2023.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Postoperative complications at the anastomosis site following tracheal resection are a prevalent and substantial concern. However, most existing solutions primarily focus on managing symptoms, with limited attention given to proactively preventing the underlying pathological processes. To address this challenge, we conducted a drug screening focusing on clinically-relevant polyphenolic compounds, given the growing interest in polyphenolic compounds for their potential role in tissue repair during wound healing. This screening led to the identification of resveratrol as the most promising candidate for mitigating tracheal complications, as it exhibited the most significant efficacy in enhancing the expression of vascular endothelial growth factor (VEGF) while concurrently suppressing the pivotal fibrosis factor: transforming growth factor-beta 1 (TGF-β1), showcasing its robust potential in addressing these issues. Building upon this discovery, we further developed an innovative photosensitive poly-L-lysine gel integrated with a resveratrol-magnesium metal polyphenol network (MPN), named Res-Mg/PL-MA. This design allows for the enables sustained release of resveratrol and synergistically enhances the expression of VEGF and also promotes resistance to tensile forces, aided by magnesium ions, in an anastomotic tracheal fistula animal models. Moreover, the combination of resveratrol and poly-L-lysine hydrogel effectively inhibits bacteria, reduces local expression of key inflammatory factors, and induces polarization of macrophages toward an anti-inflammatory phenotype, as well as inhibits TGF-β1, consequently decreasing collagen production levels in an animal model of post-tracheal resection. In summary, our novel Res-Mg/PL-MA hydrogel, through antibacterial, anti-inflammatory, and pro-vascularization mechanisms, effectively prevents complications at tracheal anastomosis, offering significant promise for translational applications in patients undergoing tracheal surgeries.
Collapse
Affiliation(s)
- Yunxuan Jia
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jingfeng Shi
- Department of Respiratory and Critical Care Medicine, No.2 People's Hospital of Fuyang City, Fuyang Infectious Disease Clinical College of Anhui Medical University, Fuyang, 236015, China
| | - Bowen Ding
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Liang Zhao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ke Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Chuang Hu
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weijiao Xu
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Anshun Zhu
- Wenzhou Medical University, Wenzhou, 325015, China
| | - Haitang Yang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiansong Wang
- Department of Thoracic Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Feng Yao
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- Wenzhou Medical University, Wenzhou, 325015, China
| |
Collapse
|
23
|
Qiu CW, Chen B, Zhu HF, Liang YL, Mao LS. Gastrodin alleviates cisplatin nephrotoxicity by inhibiting ferroptosis via the SIRT1/FOXO3A/GPX4 signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117282. [PMID: 37802374 DOI: 10.1016/j.jep.2023.117282] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/16/2023] [Accepted: 10/03/2023] [Indexed: 10/09/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cisplatin (CP) results in acute kidney injury (AKI) and negatively affects patients' therapy and survival. The dried rhizome of Gastrodia elata Blume has been used to treat clinical kidney diseases. Gastrodin (GAS) is an active ingredient of the G. elata tuber. It is unknown whether GAS can alleviate CP-induced AKI. AIM OF THE STUDY This study aimed to investigate whether GAS, an active ingredient of G. elata Blume, can alleviate CP-induced AKI and to explore its underlying mechanisms. MATERIALS AND METHODS Experiments were conducted with a CP-induced AKI mouse model and an immortalized human renal tubular epithelial cell line (HK-2). Serum creatinine, Periodic acid-Schiff staining, tissue iron, glutathione, malondialdehyde, and 4-Hydroxynonenal were detected in serum and kidney samples to observe whether GAS inhibits CP-induced tubule ferroptosis. The drug target was verified by detecting the effects of GAS on sirtuin-1 (SIRT1) activity in vitro. Transcriptional regulation of glutathione peroxidase 4 (GPX4) by forkhead box O3A (FOXO3A) was verified by siRNA knockdown, overexpression, and chromatin immunoprecipitation. The effects of FOXO3A, SIRT1, and GAS on CP-induced ferroptosis were measured with propidium iodide, dihydroethidium, monobromobimane, and dipyrromethene boron difluoride staining in HK-2 cells. The relationship between GAS and the SIRT1/FOXO3A/GPX4 pathway was studied using Western blotting. RESULTS GAS treatment inhibited CP-induced reactive oxygen species, lipid peroxidation, and tubule death in the cell and animal models. GAS activated SIRT1 in vitro. The SIRT1 inhibitor blocked the protective role of GAS in reducing lipid peroxidation in HK-2 cells. FOXO3A transcriptionally regulated GPX4 expression and inhibited CP-induced cell ferroptosis. Compared to CP-damaged mouse kidneys, GAS-treated mice demonstrated significantly increased SIRT1 and GPX4 expression levels, decreased CP-induced acetylation of FOXO3A, and inhibited lipid peroxidation and cell death. CONCLUSIONS GAS alleviated CP-induced AKI by inhibiting ferroptosis via the SIRT1/FOXO3A/GPX4 signaling pathway. The results offer new insights into the development of new anti-AKI drugs from traditional Chinese medicine.
Collapse
Affiliation(s)
- Cai-Wei Qiu
- Research Center of Combine Traditional Chinese and Western Medicine, Prophylaxis and Treatment of Organ Fibrosis by Integrated Medicine of Luzhou Key Laboratory, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Bo Chen
- Department of Human Anatomy, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Hui-Feng Zhu
- College of Pharmaceutical Science & College of Chinese Medicine, Southwest University, Chongqing, 400715, China.
| | - Ying-Lan Liang
- Department of Nephrology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Lin-Shen Mao
- National Traditional Chinese Medicine Clinical Research Base of the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
24
|
Li H, Huang H, Tan H, Jia Q, Song W, Zhang Q, Zhou B, Bai J. Key processes in tumor metastasis and therapeutic strategies with nanocarriers: a review. Mol Biol Rep 2024; 51:197. [PMID: 38270746 DOI: 10.1007/s11033-023-08910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/14/2023] [Indexed: 01/26/2024]
Abstract
Cancer metastasis is the leading cause of cancer-related death. Metastasis occurs at all stages of tumor development, with unexplored changes occurring at the primary site and distant colonization sites. The growing understanding of the metastatic process of tumor cells has contributed to the emergence of better treatment options and strategies. This review summarizes a range of features related to tumor cell metastasis and nanobased drug delivery systems for inhibiting tumor metastasis. The mechanisms of tumor metastasis in the ideal order of metastatic progression were summarized. We focus on the prominent role of nanocarriers in the treatment of tumor metastasis, summarizing the latest applications of nanocarriers in combination with drugs to target important components and processes of tumor metastasis and providing ideas for more effective nanodrug delivery systems.
Collapse
Affiliation(s)
- Hongjie Li
- School of Clinical Medicine, Weifang Medical University, 261053, Weifang, China
| | - Haiqin Huang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, 250012, Jinan, China
| | - Qitao Jia
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China
| | - Weina Song
- Department of Pediatric Respiratory and Critical Care, Qilu Hospital of Shandong University Dezhou Hospital, 253000, Dezhou, China
| | - Qingdong Zhang
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| | - Baolong Zhou
- School of Pharmacy, Weifang Medical University, 261053, Weifang, China.
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, 261053, Weifang, China.
| |
Collapse
|
25
|
Ali M, Benfante V, Di Raimondo D, Salvaggio G, Tuttolomondo A, Comelli A. Recent Developments in Nanoparticle Formulations for Resveratrol Encapsulation as an Anticancer Agent. Pharmaceuticals (Basel) 2024; 17:126. [PMID: 38256959 PMCID: PMC10818631 DOI: 10.3390/ph17010126] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/13/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Resveratrol is a polyphenolic compound that has gained considerable attention in the past decade due to its multifaceted therapeutic potential, including anti-inflammatory and anticancer properties. However, its anticancer efficacy is impeded by low water solubility, dose-limiting toxicity, low bioavailability, and rapid hepatic metabolism. To overcome these hurdles, various nanoparticles such as organic and inorganic nanoparticles, liposomes, polymeric nanoparticles, dendrimers, solid lipid nanoparticles, gold nanoparticles, zinc oxide nanoparticles, zeolitic imidazolate frameworks, carbon nanotubes, bioactive glass nanoparticles, and mesoporous nanoparticles were employed to deliver resveratrol, enhancing its water solubility, bioavailability, and efficacy against various types of cancer. Resveratrol-loaded nanoparticle or resveratrol-conjugated nanoparticle administration exhibits excellent anticancer potency compared to free resveratrol. This review highlights the latest developments in nanoparticle-based delivery systems for resveratrol, focusing on the potential to overcome limitations associated with the compound's bioavailability and therapeutic effectiveness.
Collapse
Affiliation(s)
- Muhammad Ali
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Viviana Benfante
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Domenico Di Raimondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Giuseppe Salvaggio
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90127 Palermo, Italy;
| | - Antonino Tuttolomondo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, Molecular and Clinical Medicine, University of Palermo, 90127 Palermo, Italy; (D.D.R.); (A.T.)
| | - Albert Comelli
- Ri.MED Foundation, Via Bandiera 11, 90133 Palermo, Italy;
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
26
|
Guo S, Xing N, Du Q, Luo B, Wang S. Deciphering hepatocellular carcinoma pathogenesis and therapeutics: a study on anoikis, ceRNA regulatory network and traditional Chinese medicine. Front Pharmacol 2024; 14:1325992. [PMID: 38283837 PMCID: PMC10811069 DOI: 10.3389/fphar.2023.1325992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/31/2023] [Indexed: 01/30/2024] Open
Abstract
Introduction: Hepatocellular carcinoma (HCC) is responsible for approximately 90% of liver malignancies and is the third most common cause of cancer-related mortality worldwide. However, the role of anoikis, a programmed cell death mechanism crucial for maintaining tissue equilibrium, is not yet fully understood in the context of HCC. Methods: Our study aimed to investigate the expression of 10 anoikis-related genes (ARGs) in HCC, including BIRC5, SFN, UBE2C, SPP1, E2F1, etc., and their significance in the disease. Results: Through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses, we discovered that these ARGs are involved in important processes such as tissue homeostasis, ion transport, cell cycle regulation, and viral infection pathways. Furthermore, we found a significant correlation between the prognostic value of five ARGs and immune cell infiltrates. Analysis of clinical datasets revealed a strong association between BIRC5 expression and HCC pathological progression, including pathological stage, T stage, overall survival (OS), and race. By constructing a competing endogenous RNA (ceRNA) network and using molecular docking, we identified ten bioactive compounds from traditional Chinese medicine (TCM) that could potentially modulate BIRC5. Subsequent in vitro experiments confirmed the influence of platycodin D, one of the identified compounds, on key elements within the ceRNA network. Discussion: In conclusion, our study presents a novel framework for an anoikis-centered prognostic model and an immune-involved ceRNA network in HCC, revealing potential regulatory targets. These insights contribute to our understanding of HCC pathology and may lead to improved therapeutic interventions.
Collapse
Affiliation(s)
- Sa Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Xing
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qinyun Du
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Bin Luo
- Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shaohui Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, China
| |
Collapse
|
27
|
Rezakhani L, Salmani S, Eliyasi Dashtaki M, Ghasemi S. Resveratrol: Targeting Cancer Stem Cells and ncRNAs to Overcome Cancer Drug Resistance. Curr Mol Med 2024; 24:951-961. [PMID: 37592772 DOI: 10.2174/1566524023666230817102114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 08/19/2023]
Abstract
A major challenge in treating cancer is the development of drug resistance, which can result in treatment failure and tumor recurrence. Targeting cancer stem cells (CSCs) and non-coding RNAs (ncRNAs) with a polyphenolic substance called resveratrol has the ability to combat this problem by lowering cancer resistance to drugs and opening up new therapeutic options. Resveratrol alters the expression of genes related to self-renewal, modulating important signaling pathways involved in cancer initiation and CSC control. Additionally, resveratrol affects non-coding RNAs (ncRNAs), including Micro-RNAs (miRNAs) and long non-coding RNAs (lncRNAs which are essential for stemness, drug resistance, and other cancer-related activities. Numerous studies have shown that resveratrol has the potential to be an effective anticancer drug when used in combination therapy, but issues with absorption and pharmacokinetics still need to be resolved before it can be used in clinical applications. Reducing chemotherapy resistance by better understanding the intricate mechanisms by which resveratrol affects cancer cells and CSCs, as well as its impact on ncRNA expression, could eventually contribute to more effective cancer treatments. To completely understand these pathways and optimize the utilization of resveratrol in combination treatments, additional study is necessary.
Collapse
Affiliation(s)
- Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sima Salmani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Masoumeh Eliyasi Dashtaki
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sorayya Ghasemi
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
28
|
Anwar MJ, Altaf A, Imran M, Amir M, Alsagaby SA, Abdulmonem WA, Mujtaba A, El-Ghorab AH, Ghoneim MM, Hussain M, Jbawi EA, Shaker ME, Abdelgawad MA. Anti-cancer perspectives of resveratrol: a comprehensive review. FOOD AGR IMMUNOL 2023; 34. [DOI: 10.1080/09540105.2023.2265686] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 11/28/2024] Open
Affiliation(s)
- Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Areeba Altaf
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | - Muhammad Amir
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering and Technology, Hamdard University Islamabad. Islamabad Campus, Islamabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni suef, Egypt
| |
Collapse
|
29
|
Anwar MJ, Altaf A, Imran M, Amir M, Alsagaby SA, Abdulmonem WA, Mujtaba A, El-Ghorab AH, Ghoneim MM, Hussain M, Jbawi EA, Shaker ME, Abdelgawad MA. Anti-cancer perspectives of resveratrol: a comprehensive review. FOOD AGR IMMUNOL 2023; 34. [DOI: https:/doi.org/10.1080/09540105.2023.2265686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/27/2023] [Indexed: 05/18/2024] Open
Affiliation(s)
- Muhammad Junaid Anwar
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Areeba Altaf
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Imran
- Department of Food Science and Technology, University of Narowal, Narowal, Pakistan
| | - Muhammad Amir
- Faculty of Food Science and Nutrition, Bahauddin Zakariya University, Multan, Pakistan
| | - Suliman A. Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Ahmed Mujtaba
- Department of Food Science and Technology, Faculty of Engineering and Technology, Hamdard University Islamabad. Islamabad Campus, Islamabad, Pakistan
| | - Ahmed H. El-Ghorab
- Department of Chemistry, College of Science, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M. Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Muzzamal Hussain
- Department of Food Sciences, Government College University Faisalabad, Pakistan
| | | | - Mohamed E. Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Mohamed A. Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni suef, Egypt
| |
Collapse
|
30
|
Yu W, Wang Z, Dai P, Sun J, Li J, Han W, Li K. The activation of SIRT1 by resveratrol reduces breast cancer metastasis to lung through inhibiting neutrophil extracellular traps. J Drug Target 2023; 31:962-975. [PMID: 37772906 DOI: 10.1080/1061186x.2023.2265585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/20/2023] [Indexed: 09/30/2023]
Abstract
Neutrophil extracellular traps (NETs) play a crucial role in breast cancer metastasis. However, the therapeutic target of NETs in breast cancer metastasis is still unknown. Using a natural metabolite library and single-cell sequencing data analysis, we identified resveratrol (RES), a polyphenolic natural phytoalexin, and agonist of silent information regulator-1 (SIRT1) that suppressed NETs formation after cathepsin C (CTSC) treatment. In vivo, RES significantly hindered breast cancer metastasis in a murine orthotopic 4T1 breast cancer model. Serum levels of myeloperoxidase-DNA and neutrophil elastase-DNA in mouse breast cancer model were significantly lower after RES treatment. Correspondingly, the tumour infiltrated CD8+T cells in the lungs increased after the treatment. Mechanistically, RES targets SIRT1 in neutrophils and significantly inhibits the citrullination of histones H3, which is essential for chromatin decondensation and NETs formation. Furthermore, we identified that the NETs were suppressed by RES in bone marrow neutrophils after CTSC treatment, while specific deficiency of SIRT1 in neutrophils promoted NETs formation and breast cancer to lung metastasis. Thus, our results revealed that RES could be potentially identified as a viable therapeutic drug to prevent neutrophil cell death and breast cancer metastasis.
Collapse
Affiliation(s)
- Wenyan Yu
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuning Wang
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping Dai
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jing Sun
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jian Li
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wei Han
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kaichun Li
- Department of Oncology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Wang W, Li S, Li H, Guo P, Lyu C, Ye P, Yang W, Wang J, Yu D, Lu G, Tan H. Neuroprotective Effects of Microglial Membrane-Derived Biomimetic Particles for Spinal Cord Injury. Adv Healthc Mater 2023; 12:e2301592. [PMID: 37681300 DOI: 10.1002/adhm.202301592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Inhibition of oxidative stress and inflammatory responses caused by secondary injury following traumatic spinal cord injury (SCI) is an attractive strategy in treating traumatic SCI. However, the efficacy of drugs is severely limited owing to the poor penetration of the blood spinal cord barrier (BSCB). Here, inspired by cell chemotaxis and related chemokines production at the lesion sites of SCI, the microglial membrane is selected to construct a drug delivery system with the ability to cross the BSCB and target the lesions. PR@MM is prepared based on the assembly of polylactic-co-glycolic acid (PLGA) and resveratrol (RSV) followed by microglial membrane (MM) coating. Compared to that of the uncoated nanoparticles, the enrichment of PR@MM at the lesion sites of SCI increases, which is beneficial to achieve lesion targeting of RSV and exert therapeutic functions. Both in vitro and in vivo experiments demonstrate that PR@MM has the ability to scavenge reactive oxygen species and anti-inflammatory effects, which ultimately promotes the recovery of locomotory function after SCI. Therefore, this microglial membrane-based drug delivery system provides a promising biomimetic nanomedicine for targeted therapy for SCI.
Collapse
Affiliation(s)
- Wenjing Wang
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518038, China
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shang Li
- Department of Orthopedic, the Fourth Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Haiyan Li
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Peilin Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chengliang Lyu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Peng Ye
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Weiqiang Yang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinghui Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dingle Yu
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Guihong Lu
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518038, China
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Hui Tan
- Center for Child Care and Mental Health (CCCMH), Shenzhen Children's Hospital, Shenzhen, 518038, China
| |
Collapse
|
32
|
Kursvietiene L, Kopustinskiene DM, Staneviciene I, Mongirdiene A, Kubová K, Masteikova R, Bernatoniene J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants (Basel) 2023; 12:2056. [PMID: 38136176 PMCID: PMC10740678 DOI: 10.3390/antiox12122056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the most serious public health issues worldwide, demanding ongoing efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological applications of phytochemicals, particularly polyphenols, resveratrol-a naturally occurring polyphenolic stilbene derivative-has emerged as a candidate of interest. This review analyzes the pleiotropic anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation, inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer development, are also discussed. Future research directions are identified, including the elucidation of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lolita Kursvietiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Inga Staneviciene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Ausra Mongirdiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Kateřina Kubová
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Ruta Masteikova
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
33
|
Qiu C, Zhang JZ, Wu B, Xu CC, Pang HH, Tu QC, Lu YQ, Guo QY, Xia F, Wang JG. Advanced application of nanotechnology in active constituents of Traditional Chinese Medicines. J Nanobiotechnology 2023; 21:456. [PMID: 38017573 PMCID: PMC10685519 DOI: 10.1186/s12951-023-02165-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/16/2023] [Indexed: 11/30/2023] Open
Abstract
Traditional Chinese Medicines (TCMs) have been used for centuries for the treatment and management of various diseases. However, their effective delivery to targeted sites may be a major challenge due to their poor water solubility, low bioavailability, and potential toxicity. Nanocarriers, such as liposomes, polymeric nanoparticles, inorganic nanoparticles and organic/inorganic nanohybrids based on active constituents from TCMs have been extensively studied as a promising strategy to improve the delivery of active constituents from TCMs to achieve a higher therapeutic effect with fewer side effects compared to conventional formulations. This review summarizes the recent advances in nanocarrier-based delivery systems for various types of active constituents of TCMs, including terpenoids, polyphenols, alkaloids, flavonoids, and quinones, from different natural sources. This review covers the design and preparation of nanocarriers, their characterization, and in vitro/vivo evaluations. Additionally, this review highlights the challenges and opportunities in the field and suggests future directions for research. Nanocarrier-based delivery systems have shown great potential in improving the therapeutic efficacy of TCMs, and this review may serve as a comprehensive resource to researchers in this field.
Collapse
Affiliation(s)
- Chong Qiu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jun Zhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Wu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing, 100037, China
| | - Cheng Chao Xu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Huan Huan Pang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qing Chao Tu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Qian Lu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qiu Yan Guo
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Fei Xia
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Ji Gang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| |
Collapse
|
34
|
Fernandes R, Costa C, Fernandes R, Barros AN. Inflammation in Prostate Cancer: Exploring the Promising Role of Phenolic Compounds as an Innovative Therapeutic Approach. Biomedicines 2023; 11:3140. [PMID: 38137361 PMCID: PMC10740737 DOI: 10.3390/biomedicines11123140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Prostate cancer (PCa) remains a significant global health concern, being a major cause of cancer morbidity and mortality worldwide. Furthermore, profound understanding of the disease is needed. Prostate inflammation caused by external or genetic factors is a central player in prostate carcinogenesis. However, the mechanisms underlying inflammation-driven PCa remain poorly understood. This review dissects the diagnosis methods for PCa and the pathophysiological mechanisms underlying the disease, clarifying the dynamic interplay between inflammation and leukocytes in promoting tumour development and spread. It provides updates on recent advances in elucidating and treating prostate carcinogenesis, and opens new insights for the use of bioactive compounds in PCa. Polyphenols, with their noteworthy antioxidant and anti-inflammatory properties, along with their synergistic potential when combined with conventional treatments, offer promising prospects for innovative therapeutic strategies. Evidence from the use of polyphenols and polyphenol-based nanoparticles in PCa revealed their positive effects in controlling tumour growth, proliferation, and metastasis. By consolidating the diverse features of PCa research, this review aims to contribute to increased understanding of the disease and stimulate further research into the role of polyphenols and polyphenol-based nanoparticles in its management.
Collapse
Affiliation(s)
- Raquel Fernandes
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Cátia Costa
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| | - Rúben Fernandes
- FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento, FP-BHS, Biomedical and Health Sciences, Universidade Fernando Pessoa, 4249-004 Porto, Portugal;
- CECLIN, Centro de Estudos Clínicos, Hospital Fernando Pessoa, 4420-096 Gondomar, Portugal
- I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana Novo Barros
- Centre for Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, 5000-801 Vila Real, Portugal;
| |
Collapse
|
35
|
Shuvalov O, Kirdeeva Y, Daks A, Fedorova O, Parfenyev S, Simon HU, Barlev NA. Phytochemicals Target Multiple Metabolic Pathways in Cancer. Antioxidants (Basel) 2023; 12:2012. [PMID: 38001865 PMCID: PMC10669507 DOI: 10.3390/antiox12112012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Cancer metabolic reprogramming is a complex process that provides malignant cells with selective advantages to grow and propagate in the hostile environment created by the immune surveillance of the human organism. This process underpins cancer proliferation, invasion, antioxidant defense, and resistance to anticancer immunity and therapeutics. Perhaps not surprisingly, metabolic rewiring is considered to be one of the "Hallmarks of cancer". Notably, this process often comprises various complementary and overlapping pathways. Today, it is well known that highly selective inhibition of only one of the pathways in a tumor cell often leads to a limited response and, subsequently, to the emergence of resistance. Therefore, to increase the overall effectiveness of antitumor drugs, it is advisable to use multitarget agents that can simultaneously suppress several key processes in the tumor cell. This review is focused on a group of plant-derived natural compounds that simultaneously target different pathways of cancer-associated metabolism, including aerobic glycolysis, respiration, glutaminolysis, one-carbon metabolism, de novo lipogenesis, and β-oxidation of fatty acids. We discuss only those compounds that display inhibitory activity against several metabolic pathways as well as a number of important signaling pathways in cancer. Information about their pharmacokinetics in animals and humans is also presented. Taken together, a number of known plant-derived compounds may target multiple metabolic and signaling pathways in various malignancies, something that bears great potential for the further improvement of antineoplastic therapy.
Collapse
Affiliation(s)
- Oleg Shuvalov
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Yulia Kirdeeva
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Alexandra Daks
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Olga Fedorova
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Sergey Parfenyev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
| | - Hans-Uwe Simon
- Institute of Pharmacology, University of Bern, 3010 Bern, Switzerland;
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
| | - Nickolai A. Barlev
- Institute of Cytology of the Russian Academy of Sciences, St. Petersburg 194064, Russia; (Y.K.); (A.D.); (O.F.)
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan 420008, Russia
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Astana 20000, Kazakhstan
| |
Collapse
|
36
|
Joy R, Siddiqua H, Sharma S, Raveendran M, John F, Hassan P, Gawali SL, Raghavan SC, George J. Block Copolymer Encapsulation of Disarib, an Inhibitor of BCL2 for Improved Chemotherapeutic Potential. ACS OMEGA 2023; 8:40729-40740. [PMID: 37929147 PMCID: PMC10621013 DOI: 10.1021/acsomega.3c05802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/07/2023]
Abstract
A chemical inhibitor of antiapoptotic protein, BCL2, known as Disarib, suffers poor solubility in aqueous environments; thereby limiting its potential as a chemotherapeutic agent. To overcome this limitation and enhance the therapeutic efficacy of Disarib, we have employed the encapsulation of this small molecule inhibitor within P123 copolymer matrix. Micelles were synthesized using a thin-film hydration technique, and a comprehensive analysis was undertaken to evaluate the resulting micelle properties, including morphology, particle size, intermolecular interactions, encapsulation efficiency, and in vitro release characteristics. This assessment utilized various physicochemical techniques including UV spectroscopy, FTIR spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). Disarib-loaded P123 micelle formulation denoted as P123D exhibited a well-defined particle size of approximately 29.2 nm spherical core-shell morphology. Our investigations revealed a notable encapsulation efficiency of 75%, and we observed a biphasic release pattern for the encapsulated Disarib. Furthermore, our cytotoxicity assessment of P123D micelles against mouse breast adenocarcinoma, mouse lymphoma, and human leukemic cell lines showed 40-45% increase in cytotoxicity compared with the administration of Disarib alone in the breast adenocarcinoma cell line. Enhancement in the cytotoxicity of P123D was found to be higher or limited; however, it is important to observe that the encapsulation method significantly enhanced the aqueous solubility of Disarib as it has the best solubility in dimethyl sulfoxide (DMSO) in the unencapsulated state.
Collapse
Affiliation(s)
- Reshma Joy
- Bio-organic
Laboratory, Department of Chemistry, Sacred
Heart College, Kochi 682013, India
| | - Humaira Siddiqua
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shivangi Sharma
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Manthra Raveendran
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Franklin John
- Bio-organic
Laboratory, Department of Chemistry, Sacred
Heart College, Kochi 682013, India
| | | | - Santosh L Gawali
- Chemistry
Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Sathees C. Raghavan
- Department
of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jinu George
- Bio-organic
Laboratory, Department of Chemistry, Sacred
Heart College, Kochi 682013, India
| |
Collapse
|
37
|
Adedokun KA, Imodoye SO, Yahaya ZS, Oyeyemi IT, Bello IO, Adeyemo‐Imodoye MT, Sanusi MA, Kamorudeen RT. Nanodelivery of Polyphenols as Nutraceuticals in Anticancer Interventions. POLYPHENOLS 2023:188-224. [DOI: 10.1002/9781394188864.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Sarfraz M, Arafat M, Zaidi SHH, Eltaib L, Siddique MI, Kamal M, Ali A, Asdaq SMB, Khan A, Aaghaz S, Alshammari MS, Imran M. Resveratrol-Laden Nano-Systems in the Cancer Environment: Views and Reviews. Cancers (Basel) 2023; 15:4499. [PMID: 37760469 PMCID: PMC10526844 DOI: 10.3390/cancers15184499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
The genesis of cancer is a precisely organized process in which normal cells undergo genetic alterations that cause the cells to multiply abnormally, colonize, and metastasize to other organs such as the liver, lungs, colon, and brain. Potential drugs that could modify these carcinogenic pathways are the ones that will be used in clinical trials as anti-cancer drugs. Resveratrol (RES) is a polyphenolic natural antitoxin that has been utilized for the treatment of several diseases, owing to its ability to scavenge free radicals, control the expression and activity of antioxidant enzymes, and have effects on inflammation, cancer, aging, diabetes, and cardioprotection. Although RES has a variety of pharmacological uses and shows promising applications in natural medicine, its unpredictable pharmacokinetics compromise its therapeutic efficacy and prevent its use in clinical settings. RES has been encapsulated into various nanocarriers, such as liposomes, polymeric nanoparticles, lipidic nanocarriers, and inorganic nanoparticles, to address these issues. These nanocarriers can modulate drug release, increase bioavailability, and reach therapeutically relevant plasma concentrations. Studies on resveratrol-rich nano-formulations in various cancer types are compiled in the current article. Studies relating to enhanced drug stability, increased therapeutic potential in terms of pharmacokinetics and pharmacodynamics, and reduced toxicity to cells and tissues are the main topics of this research. To keep the readers informed about the current state of resveratrol nano-formulations from an industrial perspective, some recent and significant patent literature has also been provided. Here, the prospects for nano-formulations are briefly discussed, along with machine learning and pharmacometrics methods for resolving resveratrol's pharmacokinetic concerns.
Collapse
Affiliation(s)
- Muhammad Sarfraz
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain P.O. Box 64141, United Arab Emirates
| | - Mosab Arafat
- College of Pharmacy, Al Ain University, Al Ain Campus, Al Ain P.O. Box 64141, United Arab Emirates
| | - Syeda Huma H. Zaidi
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 91431, Saudi Arabia
| | - Lina Eltaib
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Muhammad Irfan Siddique
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abuzer Ali
- Department of Pharmacognosy, College of Pharmacy, Taif University, Taif 21944, Saudi Arabia
| | | | - Abida Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia (M.I.)
| | - Shams Aaghaz
- Department of Pharmacy, School of Medical & Allied Sciences, Galgotias University, Greater Noida 203201, India
| | - Mohammed Sanad Alshammari
- Department of Computer Science, Faculty of Computing and Information Technology, Northern Border University, Rafha 91911, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia (M.I.)
| |
Collapse
|
39
|
Wang Z, Zhou D, Liu D, Zhu B. Ethanol-mediated synthesis of γ-cyclodextrin-based metal-organic framework as edible microcarrier: performance and mechanism. Food Chem 2023; 418:136000. [PMID: 36989653 DOI: 10.1016/j.foodchem.2023.136000] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 02/28/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023]
Abstract
Here, an ethanol-mediated method was introduced to fabricate γ-cyclodextrin-based metal-organic frameworks (γ-CD-MOFs) as microcarriers for epigallocatechin-3-gallate (EGCG). Through adjusting ethanol gas diffusion temperature and ethanol liquid feed speed, we achieved control of crystallization efficiency and crystals size without extra surfactants. Under the sequential regulatory by ethanol in two phases, the obtained γ-CD-MOFs with cubic shape exhibited excellent crystallinity, high surface area, and uniform size distribution. Through the interplay of hydrogen bonding, hydrophobic interactions and π stacking, EGCG molecules could be stored efficiently within cavities and tunnels of the γ-CD-MOFs with high load capability of 334 mg g-1. More importantly, the incorporation of EGCG within frameworks wouldn't disintegrate the unique body-centered cubic structure of γ-CD-MOFs, in turn, would improve the thermostability and antioxidative activity of EGCG. Significantly, all food-grade materials ensured the γ-CD-MOFs high acceptance and applicability for food and biomedical applications.
Collapse
Affiliation(s)
- Zonghan Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; National Engineering Research Center of Seafood, Dalian 116034, China
| | - Dayong Zhou
- National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; Fuli Institute of Food Science, Ningbo Research Institute, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Hangzhou 310058, China.
| | - Beiwei Zhu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang R & D Center for Food Technology and Equipment, Zhejiang University, Hangzhou 310058, China; National Engineering Research Center of Seafood, Dalian 116034, China; College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
40
|
Yu L, Gai Y. Elucidating the Mechanism of Agrimonolide in Treating Colon Cancer Based on Network Pharmacology. Drug Des Devel Ther 2023; 17:2209-2222. [PMID: 37533972 PMCID: PMC10390720 DOI: 10.2147/dddt.s409530] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/16/2023] [Indexed: 08/04/2023] Open
Abstract
Purpose This study reported the efficacy and underlying mechanism of agrimonolide (AM) in treating colon cancer. Methods Colon cancer-AM-related targets were screened from online database. AM targets for colon cancer were identified by Venn diagram. Main molecular function, biological process, cellular component and pathways associated with AM targets for colon cancer were analyzed by GO and KEGG enrichment analysis. Relationship of the 10 core targets of AM for colon cancer with the top 15 BP and KEGG pathways was analyzed by Cytoscape software. A "component-target-pathway" network was constructed to select the hub genes of AM for colon cancer. AM effects on colon cancer cell viability, proliferation, invasion, migration and apoptosis were researched by CCK-8, colony formation, Transwell invasion, wound healing and flow cytometry assays. Tumor-bearing nude mice models were constructed and given AM treatment. Hub gene expression in cells/tissues was detected by Western blot. Results A total of 107 targets were selected as AM targets for colon cancer. The 10 core targets were related to the top 15 biological process terms and KEGG pathways. PI3K, AKT and mTOR were selected as the hub genes of AM for colon cancer. AM weakened colon cell proliferation, invasion, migration and apoptosis inhibition, and suppressed colon cell in vivo growth. AM up-regulated Caspase-3 and BAX proteins, down-regulated C-Myc, Cyclin D1 and BCL-2 proteins, and inactivated the PI3K/AKT/mTOR pathway both in vitro and in vivo. Conclusion AM suppressed colon cancer progression through inactivating the PI3K/AKT/mTOR pathway. It may be useful for colon cancer treatment.
Collapse
Affiliation(s)
- Lei Yu
- Department of Oncology I, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai City, People’s Republic of China
| | - Yun Gai
- Department of Oncology I, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai City, People’s Republic of China
| |
Collapse
|
41
|
Zhor C, Wafaa L, Ghzaiel I, Kessas K, Zarrouk A, Ksila M, Ghrairi T, Latruffe N, Masmoudi-Kouki O, El Midaoui A, Vervandier-Fasseur D, Hammami M, Lizard G, Vejux A, Kharoubi O. Effects of polyphenols and their metabolites on age-related diseases. Biochem Pharmacol 2023:115674. [PMID: 37414102 DOI: 10.1016/j.bcp.2023.115674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/08/2023]
Abstract
Aging contributes to the progressive loss of cellular biological functions and increases the risk of age-related diseases. Cardiovascular diseases, some neurological disorders and cancers are generally classified as age-related diseases that affect the lifespan of individuals. These diseases result from the accumulation of cellular damage and reduced activity of protective stress response pathways, which can lead to inflammation and oxidative stress, which play a key role in the aging process. There is now increasing interest in the therapeutic effects of edible plants for the prevention of various diseases, including those associated with aging. It has become clear that the beneficial effects of these foods are due, at least in part, to the high concentration of bioactive phenolic compounds with low side effects. Antioxidants are the most abundant, and their high consumption in the Mediterranean diet has been associated with slower ageing in humans. Extensive human dietary intervention studies strongly suggest that polyphenol supplementation protects against the development of degenerative diseases, especially in the elderly. In this review, we present data on the biological effects of plant polyphenols in the context of their relevance to human health, ageing and the prevention of age-related diseases.
Collapse
Affiliation(s)
- Chouari Zhor
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Lounis Wafaa
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Imen Ghzaiel
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France; University of Monastir: Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University Tunis-El Manar, Faculty of Sciences of Tunis, 2092 Tunis, Tunisia.
| | - Khadidja Kessas
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| | - Amira Zarrouk
- University of Monastir: Faculty of Medicine, LR12ES05, Lab-NAFS 'Nutrition - Functional Food & Vascular Health', 5000 Monastir, Tunisia; University of Sousse: Faculty of Medicine, Sousse, Tunisia.
| | - Mohamed Ksila
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France; University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Taoufik Ghrairi
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Norbert Latruffe
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Olfa Masmoudi-Kouki
- University Tunis-El Manar, Loboratory of Neurophysiology, Cellular Physiopathology and Valorisation of BioMolecules, LR18ES03, Department of Biology, Faculty of Sciences, 2092 Tunis, Tunisia.
| | - Adil El Midaoui
- Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Canada.
| | - Dominique Vervandier-Fasseur
- Institut de Chimie Moléculaire de l'Université de Bourgogne, ICMUB-UMR CNRS 6302, University Bourgogne Franche-Comté, 9, avenue A. Savary, 21078 Dijon Cedex, France.
| | - Mohamed Hammami
- Lab-NAFS 'Nutrition-Functional Food & Vascular Health', Faculty of Medicine, University of Monastir, LR12ES05, 5000 Monastir, Tunisia.
| | - Gérard Lizard
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Anne Vejux
- University Bourgogne Franche-Comté, Team 'Biochemistry of the Peroxisome, Inflammation and Lipid Metabolism' EA7270/Inserm, 21000 Dijon, France.
| | - Omar Kharoubi
- University Oran 1 ABB: laboratory of Experimental Biotoxicology, Biodepollution and Phytoremediation, Faculty of Life and Natural Sciences. Oran Algeria.
| |
Collapse
|
42
|
Khan MS, Altwaijry N, Jabir NR, Alamri AM, Tarique M, Khan AU. Potential of green-synthesized ZnO NPs against human ovarian teratocarcinoma: an in vitro study. Mol Biol Rep 2023; 50:4447-4457. [PMID: 37014566 DOI: 10.1007/s11033-023-08367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/01/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND Ovarian cancer leads to devastating outcomes, and its treatment is highly challenging. At present, there is a lack of clinical symptoms, well-known sensitivity biomarkers, and patients are diagnosed at an advanced stage. Currently, available therapeutics against ovarian cancer are inefficient, costly, and associated with severe side effects. The present study evaluated the anticancer potential of zinc oxide nanoparticles (ZnO NPs) that were successfully biosynthesized in an ecofriendly mode using pumpkin seed extracts. METHODS AND RESULTS The anticancer potential of the biosynthesized ZnO NPs was assessed using an in vitro human ovarian teratocarcinoma cell line (PA-1) by well-known assays such as MTT assay, morphological alterations, induction of apoptosis, measurement of reactive oxygen species (ROS) production, and inhibition of cell adhesion/migration. The biogenic ZnO NPs exerted a high level of cytotoxicity against PA-1 cells. Furthermore, the ZnO NPs inhibited cellular adhesion and migration but induced ROS production and cell death through programmed cell death. CONCLUSION The aforementioned anticancer properties highlight the therapeutic utility of ZnO NPs in ovarian cancer treatment. However, further research is recommended to envisage their mechanism of action in different cancer models and validation in a suitable in vivo system.
Collapse
Affiliation(s)
- Mohd Shahnawaz Khan
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Nojood Altwaijry
- Department of Biochemistry, College of Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Nasimudeen R Jabir
- Department of Biochemistry and Biotechnology, Centre for Research and Development, PRIST University, Vallam, Thanjavur, TN, 613403, India
| | | | - Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO, USA
| | - Azhar U Khan
- Department of Chemistry, School of Life and Basic Sciences, SIILAS CAMPUS, Jaipur National University, Jaipur, India
| |
Collapse
|
43
|
Gupta DS, Kaur G, Bhushan S, Sak K, Garg VK, Aggarwal D, Joshi H, Kumar P, Yerer MB, Tuli HS. Phyto nanomedicine for cancer therapy. NANOTECHNOLOGY IN HERBAL MEDICINE 2023:313-347. [DOI: 10.1016/b978-0-323-99527-6.00007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
44
|
Harwansh RK, Yadav P, Deshmukh R. Current Insight into Novel Delivery Approaches of Resveratrol for Improving Therapeutic Efficacy and Bioavailability with its Clinical Updates. Curr Pharm Des 2023; 29:2921-2939. [PMID: 38053352 DOI: 10.2174/0113816128282713231129094715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/22/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Resveratrol (RSV) is a polyphenolic phytoalexin, and belongs to the stilbene family. RSV has several therapeutic activities such as cardioprotective, anticancer, and antioxidant. Apart from its therapeutic benefits, its pharmacological uses are limited due to low solubility, poor bioavailability, and short biological halflife. A researcher continuously focuses on overcoming the limitations of RSV through nanotechnology platforms to get the optimum health benefits. In this context, nanocarriers are pioneering to overcome these drawbacks. Nanocarriers possess high drug loading capacity, thermal stability, low production cost, longer shelflife, etc. Fortunately, scientists were proficient in delivering resveratrol-based nanocarriers in the present scenario. Nanocarriers can deliver drugs to the target sites without compromising the bioavailability. Thus, this review highlights how the latest nanocarrier systems overcome the shortcomings of RSV, which will be good for improving therapeutic efficacy and bioavailability. Moreover, recent updates on resveratrol-based novel formulations and their clinical trials have been addressed to manage several health-related problems.
Collapse
Affiliation(s)
- Ranjit K Harwansh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Paras Yadav
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| | - Rohitas Deshmukh
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, India
| |
Collapse
|
45
|
Nano-Nutraceuticals for Health: Principles and Applications. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2023; 33:73-88. [PMID: 36466145 PMCID: PMC9684775 DOI: 10.1007/s43450-022-00338-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/08/2022] [Indexed: 11/24/2022]
Abstract
The use of nanotechnological products is increasing steadily. In this scenario, the application of nanotechnology in food science and as a technological platform is a reality. Among the several applications, the main use of this technology is for the development of foods and nutraceuticals with higher bioavailability, lower toxicity, and better sustainability. In the health field, nano-nutraceuticals are being used as supplementary products to treat an increasing number of diseases. This review summarizes the main concepts and applications of nano-nutraceuticals for health, with special focus on treating cancer and inflammation. Graphical abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-022-00338-7.
Collapse
|
46
|
Dana P, Thumrongsiri N, Tanyapanyachon P, Chonniyom W, Punnakitikashem P, Saengkrit N. Resveratrol Loaded Liposomes Disrupt Cancer Associated Fibroblast Communications within the Tumor Microenvironment to Inhibit Colorectal Cancer Aggressiveness. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:107. [PMID: 36616017 PMCID: PMC9824711 DOI: 10.3390/nano13010107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Colorectal cancer (CRC) is a cancer-associated fibroblast, CAF-rich tumor. CAF promotes cancer cell proliferation, metastasis, drug resistance via secretes soluble factors, and extracellular matrices which leads to dense stroma, a major barrier for drug delivery. Resveratrol (RES) is a polyphenolic compound, has several pharmacologic functions including anti-inflammation and anticancer effects. Considering tumor microenvironment of CRC, resveratrol-loaded liposome (L-RES) was synthesized and employed to inhibit CAF functions. The L-RES was synthesized by thin-film hydration method. The cytotoxicity of L-RES was evaluated using MTT assay. Effect of L-RES treated CAF on tumor spheroid growth was performed. Cell invasion was determined using spheroid invasion assay. The effect of L-RES on 5-fluorouracil (5-FU) sensitivity of CRC cells was determined in co-cultured tumor spheroids. Subtoxic dose of L-RES was selected to study possible inhibiting CAF functions. Decreased CAF markers, α-SMA and IL-6 levels, were observed in L-RES treated activated fibroblast. Interestingly, the activated fibroblast promoted invasive ability and drug resistance of CRC cells in co-culture condition of both 2D and 3D cultures and was attenuated by L-RES treatment in the activated fibroblast. Therefore, L-RES provides a promising drug delivery strategy for CRC treatment by disrupting the crosstalk between CRC cells and CAF.
Collapse
Affiliation(s)
- Paweena Dana
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Nutthanit Thumrongsiri
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Prattana Tanyapanyachon
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Walailuk Chonniyom
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Primana Punnakitikashem
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
- Research Network NANOTEC-Mahidol University in Theranostic Nanomedicine, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Road, Bangkoknoi, Bangkok 10700, Thailand
| | - Nattika Saengkrit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
47
|
Ahmed S, Alam W, Aschner M, Alsharif KF, Albrakati A, Saso L, Khan H. Natural products targeting the ATR-CHK1 signaling pathway in cancer therapy. Biomed Pharmacother 2022; 155:113797. [PMID: 36271573 PMCID: PMC9590097 DOI: 10.1016/j.biopha.2022.113797] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/19/2022] Open
Abstract
Cancer is one of the most severe medical conditions in the world, causing millions of deaths each year. Chemotherapy and radiotherapy are critical for treatment approaches, but both have numerous adverse health effects. Furthermore, the resistance of cancerous cells to anticancer medication leads to treatment failure. The rising burden of cancer requires novel efficacious treatment modalities. Natural remedies offer feasible alternative options against malignancy in contrast to available synthetic medication. Selective killing of cancer cells is privileged mainstream in cancer treatment, and targeted therapy represents the new tool with the potential to pursue this aim. The discovery of innovative therapies targeting essential components of DNA damage signaling and repair pathways such as ataxia telangiectasia mutated and Rad3 related Checkpoint kinase 1 (ATR-CHK1)has offered a possibility of significant therapeutic improvement in oncology. The activation and inhibition of this pathway account for chemopreventive and chemotherapeutic activity, respectively. Targeting this pathway can also aid to overcome the resistance of conventional chemo- or radiotherapy. This review enlightens the anticancer role of natural products by ATR-CHK1 activation and inhibition. Additionally, these compounds have been shown to have chemotherapeutic synergistic potential when used in combination with other anticancer drugs. Ideally, this review will trigger interest in natural products targeting ATR-CHK1 and their potential efficacy and safety as cancer lessening agents.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Waqas Alam
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Forchheimer 209, 1300 Morris Park Avenue Bronx, NY 10461, USA
| | - Khalaf F Alsharif
- Department of Clinical Laboratory, College of Applied Medical Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer"Sapienza University, Rome 00185, Italy
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| |
Collapse
|
48
|
Fan S, Hu Y, You Y, Xue W, Chai R, Zhang X, Shou X, Shi J. Role of resveratrol in inhibiting pathological cardiac remodeling. Front Pharmacol 2022; 13:924473. [PMID: 36120366 PMCID: PMC9475218 DOI: 10.3389/fphar.2022.924473] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/04/2022] [Indexed: 12/05/2022] Open
Abstract
Cardiovascular disease is a group of diseases with high mortality in clinic, including hypertension, coronary heart disease, cardiomyopathy, heart valve disease, heart failure, to name a few. In the development of cardiovascular diseases, pathological cardiac remodeling is the most common cardiac pathological change, which often becomes a domino to accelerate the deterioration of the disease. Therefore, inhibiting pathological cardiac remodeling may delay the occurrence and development of cardiovascular diseases and provide patients with greater long-term benefits. Resveratrol is a non-flavonoid polyphenol compound. It mainly exists in grapes, berries, peanuts and red wine, and has cardiovascular protective effects, such as anti-oxidation, inhibiting inflammatory reaction, antithrombotic, dilating blood vessels, inhibiting apoptosis and delaying atherosclerosis. At present, the research of resveratrol has made rich progress. This review aims to summarize the possible mechanism of resveratrol against pathological cardiac remodeling, in order to provide some help for the in-depth exploration of the mechanism of inhibiting pathological cardiac remodeling and the development and research of drug targets.
Collapse
Affiliation(s)
- Shaowei Fan
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Yuanhui Hu
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
- *Correspondence: Yuanhui Hu,
| | - Yaping You
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Wenjing Xue
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Ruoning Chai
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xuesong Zhang
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| | - Xintian Shou
- Graduate School of Beijing University of Chinese Medicine, Beijing, China
| | - Jingjing Shi
- Department of cardiological medicine, China Academy of Chinese Medical Sciences Guang’anmen Hospital, Beijing, China
| |
Collapse
|
49
|
Karthika C, Najda A, Klepacka J, Zehravi M, Akter R, Akhtar MF, Saleem A, Al-Shaeri M, Mondal B, Ashraf GM, Tagde P, Ramproshad S, Ahmad Z, Khan FS, Rahman MH. Involvement of Resveratrol against Brain Cancer: A Combination Strategy with a Pharmaceutical Approach. Molecules 2022; 27:4663. [PMID: 35889532 PMCID: PMC9320031 DOI: 10.3390/molecules27144663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/25/2022] Open
Abstract
A brain tumor (BT) is a condition in which there is growth or uncontrolled development of the brain cells, which usually goes unrecognized or is diagnosed at the later stages. Since the mechanism behind BT is not clear, and the various physiological conditions are difficult to diagnose, the success rate of BT is not very high. This is the central issue faced during drug development and clinical trials with almost all types of neurodegenerative disorders. In the first part of this review, we focus on the concept of brain tumors, their barriers, and the types of delivery possible to target the brain cells. Although various treatment methods are available, they all have side effects or toxic effects. Hence, in the second part, a correlation was made between the use of resveratrol, a potent antioxidant, and its advantages for brain diseases. The relationship between brain disease and the blood-brain barrier, multi-drug resistance, and the use of nanomedicine for treating brain disorders is also mentioned. In short, a hypothetical concept is given with a background investigation into the use of combination therapy with resveratrol as an active ingredient, the possible drug delivery, and its formulation-based approach.
Collapse
Affiliation(s)
- Chenmala Karthika
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty 643001, India;
| | - Agnieszka Najda
- Department of Vegetable and Herbal Crops, University of Life Science in Lublin, Doświadczalna Street 51A, 20280 Lublin, Poland
| | - Joanna Klepacka
- Department of Commodity Science and Food Analysis, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Oczapowskiego 2, 10719 Olsztyn, Poland;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rokeya Akter
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Lahore Campus, Riphah International University, Lahore 54950, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Majed Al-Shaeri
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Banani Mondal
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Ghulam Md. Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Priti Tagde
- Amity Institute of Pharmacy, Amity University, Noida 201301, India;
| | - Sarker Ramproshad
- Department of Pharmacy, Ranada Prasad Shaha University, Narayanganj 1400, Bangladesh; (B.M.); (S.R.)
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Wonju 26426, Korea;
| |
Collapse
|
50
|
Pathak N, Singh P, Singh PK, Sharma S, Singh RP, Gupta A, Mishra R, Mishra VK, Tripathi M. Biopolymeric nanoparticles based effective delivery of bioactive compounds toward the sustainable development of anticancerous therapeutics. Front Nutr 2022; 9:963413. [PMID: 35911098 PMCID: PMC9334696 DOI: 10.3389/fnut.2022.963413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Nowadays, effective cancer therapy is a global concern, and recent advances in nanomedicine are crucial. Cancer is one of the major fatal diseases and a leading cause of death globally. Nanotechnology provides rapidly evolving delivery systems in science for treating diseases in a site-specific manner using natural bioactive compounds, which are gaining widespread attention. Nanotechnology combined with bioactives is a very appealing and relatively new area in cancer treatment. Natural bioactive compounds have the potential to be employed as a chemotherapeutic agent in the treatment of cancer, in addition to their nutritional benefits. Alginate, pullulan, cellulose, polylactic acid, chitosan, and other biopolymers have been effectively used in the delivery of therapeutics to a specific site. Because of their biodegradability, biopolymeric nanoparticles (BNPs) have received a lot of attention in the development of new anticancer drug delivery systems. Biopolymer-based nanoparticle systems can be made in a variety of ways. These systems have developed as a cost-effective and environmentally friendly solution to boost treatment efficacy. Effective drug delivery systems with improved availability, increased selectivity, and lower toxicity are needed. Recent research findings and current knowledge on the use of BNPs in the administration of bioactive chemicals in cancer therapy are summarized in this review.
Collapse
Affiliation(s)
- Neelam Pathak
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Pankaj Singh
- Biotechnology Programme, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Pradeep Kumar Singh
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Swati Sharma
- Department of Biosciences, Integral University, Lucknow, India
| | - Rajat Pratap Singh
- Department of Biotechnology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Anmol Gupta
- Department of Biosciences, Integral University, Lucknow, India
| | - Richa Mishra
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
| | - Vivek Kumar Mishra
- Department of Microbiology, King George Medical University, Lucknow, India
| | - Manikant Tripathi
- Biotechnology Programme, Dr. Rammanohar Lohia Avadh University, Ayodhya, India
- *Correspondence: Manikant Tripathi
| |
Collapse
|