1
|
Huijben TA, Mahajan S, Fahim M, Zijlstra P, Marie R, Mortensen KI. Point-Spread Function Deformations Unlock 3D Localization Microscopy on Spherical Nanoparticles. ACS NANO 2024; 18:29832-29845. [PMID: 39411831 PMCID: PMC11526427 DOI: 10.1021/acsnano.4c09719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/03/2024] [Accepted: 10/08/2024] [Indexed: 10/30/2024]
Abstract
Nanoparticles (NPs) have proven their applicability in biosensing, drug delivery, and photothermal therapy, but their performance depends critically on the distribution and number of functional groups on their surface. When studying surface functionalization using super-resolution microscopy, the NP modifies the fluorophore's point-spread function (PSF). This leads to systematic mislocalizations in conventional analyses employing Gaussian PSFs. Here, we address this shortcoming by deriving the analytical PSF model for a fluorophore near a spherical NP. Its calculation is four orders of magnitude faster than numerical approaches and thus feasible for direct use in localization algorithms. We fit this model to individual 2D images from DNA-PAINT experiments on DNA-coated gold NPs and demonstrate extraction of the 3D positions of functional groups with <5 nm precision, revealing inhomogeneous surface coverage. Our method is exact, fast, accessible, and poised to become the standard in super-resolution imaging of NPs for biosensing and drug delivery applications.
Collapse
Affiliation(s)
- Teun A.P.M. Huijben
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Sarojini Mahajan
- Department
of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven 5600 MB, The Netherlands
| | - Masih Fahim
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Peter Zijlstra
- Department
of Applied Physics and Science Education, Eindhoven University of Technology (TU/e), Eindhoven 5600 MB, The Netherlands
| | - Rodolphe Marie
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| | - Kim I. Mortensen
- Department
of Health Technology, Technical University
of Denmark (DTU), Kongens
Lyngby 2800, Denmark
| |
Collapse
|
2
|
Akgönüllü S, Denizli A. Plasmonic nanosensors for pharmaceutical and biomedical analysis. J Pharm Biomed Anal 2023; 236:115671. [PMID: 37659267 DOI: 10.1016/j.jpba.2023.115671] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 09/04/2023]
Abstract
The detection and identification of clinical biomarkers with related sensitivity have become a source of considerable concern for biomedical analysis. There have been increasing efforts toward the development of single-molecule analytical platforms to overcome this concern. The latest developments in plasmonic nanomaterials include fascinating advances in energy, catalyst chemistry, optics, biotechnology, and medicine. Nanomaterials can be successfully applied to biomolecule and drug detection in plasmonic nanosensors for pharmaceutical and biomedical analysis. Plasmonic-based sensing technology exhibits high sensitivity and selectivity depending on surface plasmon resonance (SPR) or localized surface plasmon resonance (LSPR) phenomena. In this critical paper, we offer an overview of the methodology of the SPR, LSPR, surface-enhanced Raman scattering (SERS), surface-enhanced infrared absorption (SEIRA), surface-enhanced fluorescence (SEF), and plasmonic nanoplatforms advanced for pharmaceutical and biomedical applications. First of all, we present here a brief discussion of the above trends. We have devoted the last section to the explanation of SPR, LSPR, SERS, SEIRA, and SEF platforms, which have found a wide range of applications, and reviewed recent advances for biomedical and pharmaceutical analysis.
Collapse
Affiliation(s)
- Semra Akgönüllü
- Hacettepe University, Department of Chemistry, Ankara, Turkey
| | - Adil Denizli
- Hacettepe University, Department of Chemistry, Ankara, Turkey.
| |
Collapse
|
3
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
4
|
Miao Y, Boutelle RC, Blake A, Chandrasekaran V, Sheehan CJ, Hollingsworth J, Neuhauser D, Weiss S. Super-resolution Imaging of Plasmonic Near-Fields: Overcoming Emitter Mislocalizations. J Phys Chem Lett 2022; 13:4520-4529. [PMID: 35576273 PMCID: PMC9150090 DOI: 10.1021/acs.jpclett.1c04123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 04/21/2022] [Indexed: 06/15/2023]
Abstract
Plasmonic nano-objects have shown great potential in enhancing applications like biological/chemical sensing, light harvesting and energy transfer, and optical/quantum computing. Therefore, an extensive effort has been vested in optimizing plasmonic systems and exploiting their field enhancement properties. Super-resolution imaging with quantum dots (QDs) is a promising method to probe plasmonic near-fields but is hindered by the distortion of the QD radiation pattern. Here, we investigate the interaction between QDs and "L-shaped" gold nanoantennas and demonstrate both theoretically and experimentally that this strong interaction can induce polarization-dependent modifications to the apparent QD emission intensity, polarization, and localization. Based on FDTD simulations and polarization-modulated single-molecule microscopy, we show that the displacement of the emitter's localization is due to the position-dependent interference between the emitter and the induced dipole, and can be up to 100 nm. Our results help pave a pathway for higher precision plasmonic near-field mapping and its underlying applications.
Collapse
Affiliation(s)
- Yuting Miao
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Robert C. Boutelle
- National
Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Anastasia Blake
- Los
Alamos National Laboratory, Casa Grande Drive, Los Alamos, New Mexico 87544, United States
| | | | - Chris J. Sheehan
- Los
Alamos National Laboratory, Casa Grande Drive, Los Alamos, New Mexico 87544, United States
| | - Jennifer Hollingsworth
- Los
Alamos National Laboratory, Casa Grande Drive, Los Alamos, New Mexico 87544, United States
| | - Daniel Neuhauser
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
| | - Shimon Weiss
- Department
of Chemistry and Biochemistry, University
of California, Los Angeles, California 90095, United States
- Department
of Physiology, University of California, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California, Los Angeles, California 90095, United States
- Department
of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
5
|
Dhiman S, Andrian T, Gonzalez BS, Tholen MME, Wang Y, Albertazzi L. Can super-resolution microscopy become a standard characterization technique for materials chemistry? Chem Sci 2022; 13:2152-2166. [PMID: 35310478 PMCID: PMC8864713 DOI: 10.1039/d1sc05506b] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
The characterization of newly synthesized materials is a cornerstone of all chemistry and nanotechnology laboratories. For this purpose, a wide array of analytical techniques have been standardized and are used routinely by laboratories across the globe. With these methods we can understand the structure, dynamics and function of novel molecular architectures and their relations with the desired performance, guiding the development of the next generation of materials. Moreover, one of the challenges in materials chemistry is the lack of reproducibility due to improper publishing of the sample preparation protocol. In this context, the recent adoption of the reporting standard MIRIBEL (Minimum Information Reporting in Bio-Nano Experimental Literature) for material characterization and details of experimental protocols aims to provide complete, reproducible and reliable sample preparation for the scientific community. Thus, MIRIBEL should be immediately adopted in publications by scientific journals to overcome this challenge. Besides current standard spectroscopy and microscopy techniques, there is a constant development of novel technologies that aim to help chemists unveil the structure of complex materials. Among them super-resolution microscopy (SRM), an optical technique that bypasses the diffraction limit of light, has facilitated the study of synthetic materials with multicolor ability and minimal invasiveness at nanometric resolution. Although still in its infancy, the potential of SRM to unveil the structure, dynamics and function of complex synthetic architectures has been highlighted in pioneering reports during the last few years. Currently, SRM is a sophisticated technique with many challenges in sample preparation, data analysis, environmental control and automation, and moreover the instrumentation is still expensive. Therefore, SRM is currently limited to expert users and is not implemented in characterization routines. This perspective discusses the potential of SRM to transition from a niche technique to a standard routine method for material characterization. We propose a roadmap for the necessary developments required for this purpose based on a collaborative effort from scientists and engineers across disciplines.
Collapse
Affiliation(s)
- Shikha Dhiman
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
| | - Teodora Andrian
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
| | - Beatriz Santiago Gonzalez
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Marrit M E Tholen
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| | - Yuyang Wang
- Institute for Complex Molecular Systems, Eindhoven University of Technology P. O. Box 513 5600 MB Eindhoven The Netherlands
- Department of Applied Physics, Eindhoven University of Technology Postbus 513 5600 MB Eindhoven The Netherlands
| | - Lorenzo Albertazzi
- Institute of Bioengineering of Catalonia (IBEC), Barcelona Institute of Science and Technology Barcelona Spain
- Department of Biomedical Engineering, Institute of Complex Molecular Systems, Eindhoven University of Technology Eindhoven The Netherlands
| |
Collapse
|
6
|
Bloksma F, Zijlstra P. Imaging and Localization of Single Emitters near Plasmonic Particles of Different Size, Shape, and Material. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:22084-22092. [PMID: 34676018 PMCID: PMC8521989 DOI: 10.1021/acs.jpcc.1c06665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Colloidal plasmonic materials are increasingly used in biosensing and catalysis, which has sparked the use of super-resolution localization microscopy to visualize processes at the interface of the particles. We quantify the effect of particle-emitter coupling on super-resolution localization accuracy by simulating the point spread function (PSF) of single emitters near a plasmonic nanoparticle. Using a computationally inexpensive boundary element method, we investigate a broad range of conditions allowing us to compare the simulated localization accuracy to reported experimental results. We identify regimes where the PSF is not Gaussian anymore, resulting in large mislocalizations due to the appearance of multilobed PSFs. Such exotic PSFs occur when near-field excitation of quadrupole plasmons is efficient but unexpectedly also occur for large particle-emitter spacing where the coherent emission from the particle and emitter results in anisotropic emission patterns. We provide guidelines to enable faithful localization microscopy near colloidal plasmonic materials, which indicate that simply decreasing the coupling between particle and molecule is not sufficient for faithful super-resolution imaging.
Collapse
|
7
|
Localized Surface Plasmon Fields Manipulation on Nanostructures Using Wavelength Shifting. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Metallic nanowires have been utilized as a platform for propagating surface plasmon (SPs) fields. To be exploited for applications such as plasmonic circuits, manipulation of localized field propagating pattern is also important. In this study, we calculated the field distributions of localized surface plasmons (LSPs) on the specifically shaped nanostructures and explored the feasibility of manipulating LSP fields. Specifically, plasmonic fields were calculated at different wavelengths for a nanoscale rod array (I-shaped), an array connected with two nanoscale rods at right angles (T-shaped), and an array with three nanoscale rods at 120° to each other (Y-shaped). Three different types of nanostructures are suggested to manipulate the positions of LSP fields collaborating with adjustment of wavelength, polarization, and incident orientation of light source. The results of this study are important not only for the understanding of the wavelength-dependent surface plasmon field localization mechanism but also for the applicability of swept source-based plasmonic techniques or designing a plasmonic circuit.
Collapse
|
8
|
Garcia Romeu H, Deville S, Salvati A. Time- and Space-Resolved Flow-Cytometry of Cell Organelles to Quantify Nanoparticle Uptake and Intracellular Trafficking by Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100887. [PMID: 34272923 DOI: 10.1002/smll.202100887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/15/2021] [Indexed: 05/20/2023]
Abstract
The design of targeted nanomedicines requires intracellular space- and time-resolved data of nanoparticle distribution following uptake. Current methods to study intracellular trafficking, such as dynamic colocalization by fluorescence microscopy in live cells, are usually low throughput and require extensive analysis of large datasets to quantify colocalization in several individual cells. Here a method based on flow cytometry to easily detect and characterize the organelles in which nanoparticles are internalized and trafficked over time is proposed. Conventional cell fractionation methods are combined with immunostaining and high-sensitivity organelle flow cytometry to get space-resolved data of nanoparticle intracellular distribution. By extracting the organelles at different times, time-resolved data of nanoparticle intracellular trafficking are obtained. The method is validated by determining how nanoparticle size affects the kinetics of arrival to the lysosomes. The results demonstrate that this method allows high-throughput analysis of nanoparticle uptake and intracellular trafficking by cells, therefore it can be used to determine how nanoparticle design affects their intracellular behavior.
Collapse
Affiliation(s)
- Hector Garcia Romeu
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| | - Sarah Deville
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
- Health Unit, Flemish Institute for Technological Research, Boeretang 200, Mol, 2400, Belgium
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, A. Deusinglaan 1, Groningen, 9713AV, The Netherlands
| |
Collapse
|
9
|
Chattopadhyay S, Biteen JS. Super-Resolution Characterization of Heterogeneous Light-Matter Interactions between Single Dye Molecules and Plasmonic Nanoparticles. Anal Chem 2021; 93:430-444. [PMID: 33100005 DOI: 10.1021/acs.analchem.0c04280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Saaj Chattopadhyay
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
10
|
Sulowska K, Wiwatowski K, Ćwierzona M, Niedziółka-Jönsson J, Maćkowski S. Real-time fluorescence sensing of single photoactive proteins using silver nanowires. Methods Appl Fluoresc 2020; 8:045004. [PMID: 33021212 DOI: 10.1088/2050-6120/aba7cb] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
We demonstrate that single functionalized silver nanowires form a geometric platform suitable for efficient real-time detection of single photoactive proteins. By collecting series of images using wide-field fluorescence microscopy, events of single protein attachment can be distinguished with the signal to noise ratio further improved by fluorescence enhancement due to plasmon excitations in the nanowires. The enhancement is evidenced by strong shortening of the fluorescence decay of single photoactive proteins conjugated to the silver nanowires.
Collapse
Affiliation(s)
- Karolina Sulowska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Kamil Wiwatowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Maciej Ćwierzona
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland
| | - Joanna Niedziółka-Jönsson
- Institute of Physical Chemistry Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Sebastian Maćkowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland.,Baltic Institute of Technology, Al. Zwycięstwa 96/98, 81-451 Gdynia, Poland
| |
Collapse
|
11
|
Hinckley JA, Chapman DV, Hedderick KR, Oleske KW, Estroff LA, Wiesner UB. Quantitative Comparison of Dye and Ultrasmall Fluorescent Silica Core-Shell Nanoparticle Probes for Optical Super-Resolution Imaging of Model Block Copolymer Thin Film Surfaces. ACS Macro Lett 2019; 8:1378-1382. [PMID: 35651152 DOI: 10.1021/acsmacrolett.9b00675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, high-resolution optical imaging in the far field has provided opportunities for alternative approaches to nanocharacterization traditionally dominated by electron and scanning probe microscopies. Here, we report the optical super-resolution imaging of model block copolymer (BCP) thin film surface nanostructures through stochastic optical reconstruction microscopy (STORM). We compare a set of surface-functionalized fluorescent core-shell silica nanoparticles encapsulating two different organic dyes, Cy3 and Cy5, with the corresponding free dyes in STORM. Using various click-type chemistries, these probes are covalently attached to the surface of specific blocks of BCP thin films, enabling selective block labeling and optical visualization. We demonstrate that the enhanced brightness of these particle probes offers distinct advantages over conventional dye labeling, outperforming one of the best STORM dyes available (Cy5).
Collapse
|
12
|
Pujals S, Feiner-Gracia N, Delcanale P, Voets I, Albertazzi L. Super-resolution microscopy as a powerful tool to study complex synthetic materials. Nat Rev Chem 2019. [DOI: 10.1038/s41570-018-0070-2] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Taylor A, Verhoef R, Beuwer M, Wang Y, Zijlstra P. All-Optical Imaging of Gold Nanoparticle Geometry Using Super-Resolution Microscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:2336-2342. [PMID: 29422979 PMCID: PMC5797984 DOI: 10.1021/acs.jpcc.7b12473] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Indexed: 05/29/2023]
Abstract
We demonstrate the all-optical reconstruction of gold nanoparticle geometry using super-resolution microscopy. We employ DNA-PAINT to get exquisite control over the (un)binding kinetics by the number of complementary bases and salt concentration, leading to localization accuracies of ∼5 nm. We employ a dye with an emission spectrum strongly blue-shifted from the plasmon resonance to minimize mislocalization due to plasmon-fluorophore coupling. We correlate the all-optical reconstructions with atomic force microscopy images and find that reconstructed dimensions deviate by no more than ∼10%. Numerical modeling shows that this deviation is determined by the number of events per particle, and the signal-to-background ratio in our measurement. We further find good agreement between the reconstructed orientation and aspect ratio of the particles and single-particle scattering spectroscopy. This method may provide an approach to all-optically image the geometry of single particles in confined spaces such as microfluidic circuits and biological cells, where access with electron beams or tip-based probes is prohibited.
Collapse
|
14
|
Fu B, Isaacoff BP, Biteen JS. Super-Resolving the Actual Position of Single Fluorescent Molecules Coupled to a Plasmonic Nanoantenna. ACS NANO 2017; 11:8978-8987. [PMID: 28806873 DOI: 10.1021/acsnano.7b03420] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Plasmonic nanoparticles (NPs) enhance the radiative decay rate of adjacent dyes and can significantly increase fluorescence intensity for improved spectroscopy. However, the NP nanoantenna complicates super-resolution imaging by introducing a mislocalization between the emitter position and its super-resolved emission position. The mislocalization magnitude depends strongly on the dye/NP coupling geometry. It is therefore crucial to quantify mislocalization to recover the actual emitter position in a coupled system. Here, we super-resolve in two and three dimensions the distance-dependent emission mislocalization of single fluorescent molecules coupled to gold NPs with precise distance tuning via double-stranded DNA. We develop an analytical framework to uncover detailed spatial information when direct 3D imaging is not accessible. Overall, we demonstrate that by taking measurements on a single, well-defined, and symmetric dye/NP assembly and by accounting explicitly for artifacts from super-resolution imaging, we can measure the true nanophotonic mislocalization. We measure up to 50 nm mislocalizations and show that smaller separation distances lead to larger mislocalizations, also verified by electromagnetic calculations. Overall, by quantifying the distance-dependent mislocalization shift in this gold NP/dye coupled system, we show that the actual physical position of a coupled single emitter can be recovered.
Collapse
Affiliation(s)
- Bing Fu
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Benjamin P Isaacoff
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
15
|
Heaps CW, Schatz GC. Modeling super-resolution SERS using a T-matrix method to elucidate molecule-nanoparticle coupling and the origins of localization errors. J Chem Phys 2017; 146:224201. [PMID: 29166054 PMCID: PMC5466450 DOI: 10.1063/1.4984120] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/12/2017] [Indexed: 01/04/2023] Open
Abstract
A computational method to model diffraction-limited images from super-resolution surface-enhanced Raman scattering microscopy is introduced. Despite significant experimental progress in plasmon-based super-resolution imaging, theoretical predictions of the diffraction limited images remain a challenge. The method is used to calculate localization errors and image intensities for a single spherical gold nanoparticle-molecule system. The light scattering is calculated using a modification of generalized Mie (T-matrix) theory with a point dipole source and diffraction limited images are calculated using vectorial diffraction theory. The calculation produces the multipole expansion for each emitter and the coherent superposition of all fields. Imaging the constituent fields in addition to the total field provides new insight into the strong coupling between the molecule and the nanoparticle. Regardless of whether the molecular dipole moment is oriented parallel or perpendicular to the nanoparticle surface, the anisotropic excitation distorts the center of the nanoparticle as measured by the point spread function by approximately fifty percent of the particle radius toward to the molecule. Inspection of the nanoparticle multipoles reveals that distortion arises from a weak quadrupole resonance interfering with the dipole field in the nanoparticle. When the nanoparticle-molecule fields are in-phase, the distorted nanoparticle field dominates the observed image. When out-of-phase, the nanoparticle and molecule are of comparable intensity and interference between the two emitters dominates the observed image. The method is also applied to different wavelengths and particle radii. At off-resonant wavelengths, the method predicts images closer to the molecule not because of relative intensities but because of greater distortion in the nanoparticle. The method is a promising approach to improving the understanding of plasmon-enhanced super-resolution experiments.
Collapse
Affiliation(s)
- Charles W Heaps
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | - George C Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| |
Collapse
|
16
|
Chen C, Zhang L, Yang M, Tao C, Han Z, Chen B, Zeng H. Size and distance dependent fluorescence enhancement of nanoporous gold. OPTICS EXPRESS 2017; 25:9901-9910. [PMID: 28468368 DOI: 10.1364/oe.25.009901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanoporous gold (NPG) has been reported to provide remarkable fluorescence enhancement of adjacent fluorophores due to the metal-enhanced fluorescence phenomenon (MEF), and the enhancement is related with the characteristic length of nanoporosity. To fully understand the effect of NPG on nearby fluorophores, it is desirable to study systems with well-defined metal-fluorophore distances. In this study we investigated the distance effect by using silica as the spacing layer between fluorophores and NPG. Originating from competition between plasmonic amplifying and metallic quenching, the dye molecule rhodamine 6G was best enhanced by 20-nm SiO2 coated nanoporous gold with the pore size of 36 nm, while the protein phycoerythrin was best enhanced by 15-nm SiO2 coated nanoporous gold with the pore size of 42 nm and the quantum dots were best enhanced by 20-nm SiO2 coated nanoporous gold with the pore size of 42 nm.
Collapse
|
17
|
Chen T, Dong B, Chen K, Zhao F, Cheng X, Ma C, Lee S, Zhang P, Kang SH, Ha JW, Xu W, Fang N. Optical Super-Resolution Imaging of Surface Reactions. Chem Rev 2017; 117:7510-7537. [DOI: 10.1021/acs.chemrev.6b00673] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Tao Chen
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
- University of Chinese Academy of Science, Beijing, 100049, P. R. China
| | - Bin Dong
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Kuangcai Chen
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Fei Zhao
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Xiaodong Cheng
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| | - Changbei Ma
- State Key Laboratory of Medical Genetics & School of Life Sciences, Central South University, Changsha 410013, China
| | - Seungah Lee
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Peng Zhang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Seong Ho Kang
- Department
of Applied Chemistry and Institute of Natural Sciences, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, Republic of Korea
| | - Ji Won Ha
- Department
of Chemistry, University of Ulsan, 93 Dahak-Ro, Nam-Gu, Ulsan 44610, Republic of Korea
| | - Weilin Xu
- State
Key Laboratory of Electroanalytical Chemistry and Jilin Province Key
Laboratory of Low Carbon Chemical Power, Changchun Institute of Applied Chemistry, Chinese Academy of Science, 5625 Renmin Street, Changchun 130022, P.R. China
| | - Ning Fang
- Department
of Chemistry, Georgia State University, Atlanta, Georgia 30303, United States
| |
Collapse
|
18
|
Abstract
This review describes the growing partnership between super-resolution imaging and plasmonics, by describing the various ways in which the two topics mutually benefit one another to enhance our understanding of the nanoscale world. First, localization-based super-resolution imaging strategies, where molecules are modulated between emissive and nonemissive states and their emission localized, are applied to plasmonic nanoparticle substrates, revealing the hidden shape of the nanoparticles while also mapping local electromagnetic field enhancements and reactivity patterns on their surface. However, these results must be interpreted carefully due to localization errors induced by the interaction between metallic substrates and single fluorophores. Second, plasmonic nanoparticles are explored as image contrast agents for both superlocalization and super-resolution imaging, offering benefits such as high photostability, large signal-to-noise, and distance-dependent spectral features but presenting challenges for localizing individual nanoparticles within a diffraction-limited spot. Finally, the use of plasmon-tailored excitation fields to achieve subdiffraction-limited spatial resolution is discussed, using localized surface plasmons and surface plasmon polaritons to create confined excitation volumes or image magnification to enhance spatial resolution.
Collapse
Affiliation(s)
- Katherine A Willets
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Andrew J Wilson
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Vignesh Sundaresan
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Padmanabh B Joshi
- Department of Chemistry, Temple University , Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
19
|
Shifting molecular localization by plasmonic coupling in a single-molecule mirage. Nat Commun 2017; 8:13966. [PMID: 28074833 PMCID: PMC5512867 DOI: 10.1038/ncomms13966] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 11/17/2016] [Indexed: 02/04/2023] Open
Abstract
Over the last decade, two fields have dominated the attention of sub-diffraction photonics research: plasmonics and fluorescence nanoscopy. Nanoscopy based on single-molecule localization offers a practical way to explore plasmonic interactions with nanometre resolution. However, this seemingly straightforward technique may retrieve false positional information. Here, we make use of the DNA origami technique to both control a nanometric separation between emitters and a gold nanoparticle, and as a platform for super-resolution imaging based on single-molecule localization. This enables a quantitative comparison between the position retrieved from single-molecule localization, the true position of the emitter and full-field simulations. We demonstrate that plasmonic coupling leads to shifted molecular localizations of up to 30 nm: a single-molecule mirage. The near-field interaction of single emitters and plasmonic structures can alter the perceived physical location of the emitter. Here, Raab et al. use DNA origami and far-field super-resolution microscopy to quantitatively evaluate this localization offset for gold nanoparticles.
Collapse
|
20
|
De Silva Indrasekara AS, Shuang B, Hollenhorst F, Hoener BS, Hoggard A, Chen S, Villarreal E, Cai YY, Kisley L, Derry PJ, Chang WS, Zubarev ER, Ringe E, Link S, Landes CF. Optimization of Spectral and Spatial Conditions to Improve Super-Resolution Imaging of Plasmonic Nanoparticles. J Phys Chem Lett 2017; 8:299-306. [PMID: 27982600 DOI: 10.1021/acs.jpclett.6b02569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Interactions between fluorophores and plasmonic nanoparticles modify the fluorescence intensity, shape, and position of the observed emission pattern, thus inhibiting efforts to optically super-resolve plasmonic nanoparticles. Herein, we investigate the accuracy of localizing dye fluorescence as a function of the spectral and spatial separations between fluorophores (Alexa 647) and gold nanorods (NRs). The distance at which Alexa 647 interacts with NRs is varied by layer-by-layer polyelectrolyte deposition while the spectral separation is tuned by using NRs with varying localized surface plasmon resonance (LSPR) maxima. For resonantly coupled Alexa 647 and NRs, emission to the far field through the NR plasmon is highly prominent, resulting in underestimation of NR sizes. However, we demonstrate that it is possible to improve the accuracy of the emission localization when both the spectral and spatial separations between Alexa 647 and the LSPR are optimized.
Collapse
Affiliation(s)
| | - Bo Shuang
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
| | - Franziska Hollenhorst
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
| | - Benjamin S Hoener
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
| | - Anneli Hoggard
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
| | - Sishan Chen
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
| | - Eduardo Villarreal
- Department of Materials Science and Nanoengineering, Rice University , 6100 Main Street, MS-325, Houston, Texas 77005, United States
| | - Yi-Yu Cai
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
| | - Lydia Kisley
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
| | - Paul J Derry
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
| | - Wei-Shun Chang
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
| | - Eugene R Zubarev
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University , 6100 Main Street, MS-325, Houston, Texas 77005, United States
| | - Emilie Ringe
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
- Department of Materials Science and Nanoengineering, Rice University , 6100 Main Street, MS-325, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University , 6100 Main Street, MS-366, Houston, Texas 77005, United States
| | - Christy F Landes
- Department of Chemistry, Rice University , 6100 Main Street, MS-60, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Rice University , 6100 Main Street, MS-366, Houston, Texas 77005, United States
| |
Collapse
|
21
|
Super-resolution imaging of light-matter interactions near single semiconductor nanowires. Nat Commun 2016; 7:13950. [PMID: 27996010 PMCID: PMC5187462 DOI: 10.1038/ncomms13950] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/16/2016] [Indexed: 01/31/2023] Open
Abstract
Nanophotonics is becoming invaluable for an expanding range of applications, from controlling the spontaneous emission rate and the directionality of quantum emitters, to reducing material requirements of solar cells by an order of magnitude. These effects are highly dependent on the near field of the nanostructure, which constitutes the evanescent fields from propagating and resonant localized modes. Although the interactions between quantum emitters and nanophotonic structures are increasingly well understood theoretically, directly imaging these interactions experimentally remains challenging. Here we demonstrate a photoactivated localization microscopy-based technique to image emitter-nanostructure interactions. For a 75 nm diameter silicon nanowire, we directly observe a confluence of emission rate enhancement, directivity modification and guided mode excitation, with strong interaction at scales up to 13 times the nanowire diameter. Furthermore, through analytical modelling we distinguish the relative contribution of these effects, as well as their dependence on emitter orientation.
Collapse
|
22
|
Lim K, Ropp C, Barik S, Fourkas J, Shapiro B, Waks E. Nanostructure-Induced Distortion in Single-Emitter Microscopy. NANO LETTERS 2016; 16:5415-5419. [PMID: 27552289 DOI: 10.1021/acs.nanolett.6b01708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Single-emitter microscopy has emerged as a promising method of imaging nanostructures with nanoscale resolution. This technique uses the centroid position of an emitter's far-field radiation pattern to infer its position to a precision that is far below the diffraction limit. However, nanostructures composed of high-dielectric materials such as noble metals can distort the far-field radiation pattern. Previous work has shown that these distortions can significantly degrade the imaging of the local density of states in metallic nanowires using polarization-resolved imaging. But unlike nanowires, nanoparticles do not have a well-defined axis of symmetry, which makes polarization-resolved imaging difficult to apply. Nanoparticles also exhibit a more complex range of distortions, because in addition to introducing a high dielectric surface, they also act as efficient scatterers. Thus, the distortion effects of nanoparticles in single-emitter microscopy remains poorly understood. Here we demonstrate that metallic nanoparticles can significantly distort the accuracy of single-emitter imaging at distances exceeding 300 nm. We use a single quantum dot to probe both the magnitude and the direction of the metallic nanoparticle-induced imaging distortion and show that the diffraction spot of the quantum dot can shift by more than 35 nm. The centroid position of the emitter generally shifts away from the nanoparticle position, which is in contradiction to the conventional wisdom that the nanoparticle is a scattering object that will pull in the diffraction spot of the emitter toward its center. These results suggest that dielectric distortion of the emission pattern dominates over scattering. We also show that by monitoring the distortion of the quantum dot diffraction spot we can obtain high-resolution spatial images of the nanoparticle, providing a new method for performing highly precise, subdiffraction spatial imaging. These results provide a better understanding of the complex near-field coupling between emitters and nanostructures and open up new opportunities to perform super-resolution microscopy with higher accuracy.
Collapse
Affiliation(s)
- Kangmook Lim
- Joint Quantum Institute, University of Maryland and the National Institute of Standards and Technology , College Park, Maryland 20742, United States
| | | | - Sabyasachi Barik
- Joint Quantum Institute, University of Maryland and the National Institute of Standards and Technology , College Park, Maryland 20742, United States
| | | | | | - Edo Waks
- Joint Quantum Institute, University of Maryland and the National Institute of Standards and Technology , College Park, Maryland 20742, United States
| |
Collapse
|
23
|
Boutelle RC, Neuhauser D, Weiss S. Far-Field Super-resolution Detection of Plasmonic Near-Fields. ACS NANO 2016; 10:7955-7962. [PMID: 27501216 DOI: 10.1021/acsnano.6b03873] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate a far-field single molecule super-resolution method that maps plasmonic near-fields. The method is largely invariant to fluorescence quenching (arising from probe proximity to a metal), has reduced point-spread-function distortion compared to fluorescent dyes (arising from strong coupling to nanoscopic metallic features), and has a large dynamic range (of 2 orders of magnitude) allowing mapping of plasmonic field-enhancements regions. The method takes advantage of the sensitivity of quantum dot (QD) stochastic blinking to plasmonic near-fields. The modulation of the blinking characteristics thus provides an indirect measure of the local field strength. Since QD blinking can be monitored in the far-field, the method can measure localized plasmonic near-fields at high throughput using a simple far-field optical setup. Using this method, propagation lengths and penetration depths were mapped-out for silver nanowires of different diameters and for different dielectric environments, with a spatial accuracy of ∼15 nm. We initially use sparse sampling to ensure single molecule localization for accurate characterization of the plasmonic near-field with plans to increase density of emitters in further studies. The measured propagation lengths and penetration depths values agree well with Maxwell finite-difference time-domain calculations and with published literature values. This method offers advantages such as low cost, high throughput, and superresolved mapping of localized plasmonic fields at high sensitivity and fidelity.
Collapse
Affiliation(s)
| | | | - Shimon Weiss
- Department of Physics, Bar Ilan University , Ramat Gan, 52900, Israel
| |
Collapse
|
24
|
ONeil CE, Jackson JM, Shim SH, Soper SA. Interrogating Surface Functional Group Heterogeneity of Activated Thermoplastics Using Super-Resolution Fluorescence Microscopy. Anal Chem 2016; 88:3686-96. [PMID: 26927303 DOI: 10.1021/acs.analchem.5b04472] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a novel approach for characterizing surfaces utilizing super-resolution fluorescence microscopy with subdiffraction limit spatial resolution. Thermoplastic surfaces were activated by UV/O3 or O2 plasma treatment under various conditions to generate pendant surface-confined carboxylic acids (-COOH). These surface functional groups were then labeled with a photoswitchable dye and interrogated using single-molecule, localization-based, super-resolution fluorescence microscopy to elucidate the surface heterogeneity of these functional groups across the activated surface. Data indicated nonuniform distributions of these functional groups for both COC and PMMA thermoplastics with the degree of heterogeneity being dose dependent. In addition, COC demonstrated relative higher surface density of functional groups compared to PMMA for both UV/O3 and O2 plasma treatment. The spatial distribution of -COOH groups secured from super-resolution imaging were used to simulate nonuniform patterns of electroosmotic flow in thermoplastic nanochannels. Simulations were compared to single-particle tracking of fluorescent nanoparticles within thermoplastic nanoslits to demonstrate the effects of surface functional group heterogeneity on the electrokinetic transport process.
Collapse
Affiliation(s)
| | | | - Sang-Hee Shim
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, South Korea
| | - Steven A Soper
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST) , Ulsan, South Korea
| |
Collapse
|
25
|
Su L, Yuan H, Lu G, Rocha S, Orrit M, Hofkens J, Uji-i H. Super-resolution
Localization and Defocused Fluorescence
Microscopy on Resonantly Coupled Single-Molecule, Single-Nanorod Hybrids. ACS NANO 2016; 10:2455-66. [PMID: 26815168 PMCID: PMC4849802 DOI: 10.1021/acsnano.5b07294] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/27/2016] [Indexed: 05/26/2023]
Abstract
![]()
Optical antennas made of metallic
nanostructures dramatically enhance
single-molecule fluorescence to boost the detection sensitivity. Moreover,
emission properties detected at the optical far field are dictated
by the antenna. Here we study the emission from molecule–antenna
hybrids by means of super-resolution localization and defocused imaging.
Whereas gold nanorods make single-crystal violet molecules in the
tip’s vicinity visible in fluorescence, super-resolution localization
on the enhanced molecular fluorescence reveals geometrical centers
of the nanorod antenna instead. Furthermore, emission angular distributions
of dyes linked to the nanorod surface resemble that of nanorods in
defocused imaging. The experimental observations are consistent with
numerical calculations using the finite-difference time-domain method.
Collapse
Affiliation(s)
- Liang Su
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Haifeng Yuan
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Gang Lu
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Susana Rocha
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Michel Orrit
- LION,
Huygens-Kamerlingh Onnes Laboratory, Leiden
University, Niels Bohrweg
2, 2300RA Leiden, The Netherlands
| | - Johan Hofkens
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Nano-Science
Center, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Hiroshi Uji-i
- Department
of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
- Research
Institute for Electronic Science, Hokkaido
University, N20W10, Kita-Ward, 001-0020 Sapporo, Japan
| |
Collapse
|
26
|
Shen Y, He T, Wang W, Zhan Y, Hu X, Yuan B, Zhou X. Fluorescence enhancement on silver nanoplates at the single- and sub-nanoparticle level. NANOSCALE 2015; 7:20132-41. [PMID: 26567844 DOI: 10.1039/c5nr06146f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The fluorescence intensity of a fluorescent molecule can be strongly enhanced when the molecule is near a metal nanoparticle. Hence, fluorescence enhancement has a lot of applications in the fields of biology and medical science. It is necessary to understand the mechanism for such an attractive effect, if we intend to develop better materials to improve the enhancement. In this paper, we directly image the diverse patterns of fluorescence enhancement on single Ag nanoplates by super-resolution microscopy. The research reveals that the edges or tips of the Ag nanoplate usually show a much higher ability of fluorescence enhancement than the mid part. The spatial distribution of fluorescence enhancement strongly depends on the size of the Ag nanoplate as well as the angle between the Ag nanoplate and the incident light. The experimental results above are essentially consistent with the simulated electric field by the theory of localized surface plasmon resonance (LSPR), but some irregularities still exist. We also find that fluorescence enhancement on small Ag nanoplates is mainly due to in-plane dipole plasmon resonance, while the enhancement on large Ag nanoplates is mainly due to in-plane quadrupole plasmon resonance. Furthermore, in-plane quadrupole resonance of large plates has a higher ability to enhance the fluorescence signal than the in-plane dipole plasmon resonance. This research provides many valuable insights into the fluorescence enhancement at the single- and sub-nanoparticle level, and will be very helpful in developing better relevant materials.
Collapse
Affiliation(s)
- Yangbin Shen
- Division of Advanced Nanomaterials, Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215125, China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Mirabello V, Calatayud DG, Arrowsmith RL, Ge H, Pascu SI. Metallic nanoparticles as synthetic building blocks for cancer diagnostics: from materials design to molecular imaging applications. J Mater Chem B 2015; 3:5657-5672. [PMID: 32262561 DOI: 10.1039/c5tb00841g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metallic nanoparticles have been a matter of intense exploration within the last decade due to their potential to change the face of the medical world through their role as 'nanotheranostics'. Their envisaged capacity to act as synthetic platforms for a multimodal imaging approach to diagnosis and treatment of degenerative diseases, including cancer, remains a matter of lively debate. Certain synthetic metal-based nanomaterials, e.g. gold and iron oxide nanoparticles, are already in clinical use or under advanced preclinical investigations following in vitro and in vivo preclinical imaging success. We surveyed the recent publications landscape including those reported metallic nanoparticles having established applications in vivo, as well as some of the new metallic nanoparticles which, despite their potential as cancer nanodiagnostics, are currently awaiting in vivo evaluation. The objective of this review is to highlight the current metallic nanoparticles and/or alloys as well as their derivatives with multimodal imaging potential, focusing on their chemistry as a springboard to discussing their role in the future of nanomedicines design. We also highlight here some of the fundamentals of molecular and nano-imaging techniques of relevance to the metal-based colloids, alloys and metallic nanoparticles discerning their future prospects as cancer nanodiagnostics. The current approaches for metallic and alloy surface derivatisation, aiming to achieve functional and biocompatible materials for multimodal bioimaging applications, are discussed in order to bring about some new perspectives on the efficiency of metallic nanoparticles as synthetic scaffolds for imaging probe design and forecast their future use in medical imaging techniques (optical, CT, PET, SPECT and MRI).
Collapse
|
28
|
Steuwe C, Erdelyi M, Szekeres G, Csete M, Baumberg JJ, Mahajan S, Kaminski CF. Visualizing electromagnetic fields at the nanoscale by single molecule localization. NANO LETTERS 2015; 15:3217-3223. [PMID: 25915093 DOI: 10.1021/acs.nanolett.5b00405] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Coupling of light to the free electrons at metallic surfaces allows the confinement of electric fields to subwavelength dimensions, far below the optical diffraction limit. While this is routinely used to manipulate light at the nanoscale, in electro-optic devices and enhanced spectroscopic techniques, no characterization technique for imaging the underlying nanoscopic electromagnetic fields exists, which does not perturb the field or employ complex electron beam imaging. Here, we demonstrate the direct visualization of electromagnetic fields on patterned metallic substrates at nanometer resolution, exploiting a strong "autonomous" fluorescence-blinking behavior of single molecules within the confined fields allowing their localization. Use of DNA-constructs for precise positioning of fluorescence dyes on the surface induces this distance-dependent autonomous blinking thus completely obviating the need for exogenous agents or switching methods. Mapping such electromagnetic field distributions at nanometer resolution aids the rational design of nanometals for diverse photonic applications.
Collapse
Affiliation(s)
- Christian Steuwe
- †Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, U.K
- ‡Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Miklos Erdelyi
- †Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, U.K
| | - G Szekeres
- §Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9, Hungary
| | - M Csete
- §Department of Optics and Quantum Electronics, University of Szeged, H-6720 Szeged, Dóm tér 9, Hungary
| | - Jeremy J Baumberg
- ‡Nanophotonics Centre, Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, U.K
| | - Sumeet Mahajan
- ∥Institute for Life Sciences and Department of Chemistry, University of Southampton, University Road, Southampton SO17 1BJ, U.K
| | - Clemens F Kaminski
- †Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge CB2 3RA, U.K
| |
Collapse
|
29
|
Wertz E, Isaacoff BP, Flynn JD, Biteen JS. Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale. NANO LETTERS 2015; 15:2662-70. [PMID: 25799002 DOI: 10.1021/acs.nanolett.5b00319] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The greatly enhanced fields near metal nanoparticles have demonstrated remarkable optical properties and are promising for applications from solar energy to biosensing. However, direct experimental study of these light-matter interactions at the nanoscale has remained difficult due to the limitations of optical microscopy. Here, we use single-molecule fluorescence imaging to probe how a plasmonic nanoantenna modifies the fluorescence emission from a dipole emitter. We show that the apparent fluorophore emission position is strongly shifted upon coupling to an antenna and that the emission of dyes located up to 90 nm away is affected by this coupling. To predict this long-ranged effect, we present a framework based on a distance-dependent partial coupling of the dye emission to the antenna. Our direct interpretation of these light-matter interactions will enable more predictably optimized, designed, and controlled plasmonic devices and will permit reliable plasmon-enhanced single-molecule nanoscopy.
Collapse
Affiliation(s)
- Esther Wertz
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Benjamin P Isaacoff
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Jessica D Flynn
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Julie S Biteen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
30
|
Nanoscale probing of image-dipole interactions in a metallic nanostructure. Nat Commun 2015; 6:6558. [PMID: 25790228 PMCID: PMC4383001 DOI: 10.1038/ncomms7558] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/06/2015] [Indexed: 11/15/2022] Open
Abstract
An emitter near a surface induces an image dipole that can modify the observed emission intensity and radiation pattern. These image-dipole effects are generally not taken into account in single-emitter tracking and super-resolved imaging applications. Here we show that the interference between an emitter and its image dipole induces a strong polarization anisotropy and a large spatial displacement of the observed emission pattern. We demonstrate these effects by tracking the emission of a single quantum dot along two orthogonal polarizations as it is deterministically positioned near a silver nanowire. The two orthogonally polarized diffraction spots can be displaced by up to 50 nm, which arises from a Young’s interference effect between the quantum dot and its induced image dipole. We show that the observed spatially varying interference fringe provides a useful measure for correcting image-dipole-induced distortions. These results provide a pathway towards probing and correcting image-dipole effects in near-field imaging applications. An emitter near a surface induces an image dipole that alters the emission pattern and creates errors in single-particle imaging applications. Here, Ropp et al. show that an image dipole can distort the polarization and measured position of an emitter, and that these distortions can be corrected.
Collapse
|
31
|
Diffraction-unlimited imaging: from pretty pictures to hard numbers. Cell Tissue Res 2015; 360:151-78. [DOI: 10.1007/s00441-014-2109-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/22/2014] [Indexed: 10/23/2022]
|
32
|
Visualization of molecular fluorescence point spread functions via remote excitation switching fluorescence microscopy. Nat Commun 2015; 6:6287. [PMID: 25687887 PMCID: PMC4339893 DOI: 10.1038/ncomms7287] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 01/14/2015] [Indexed: 01/31/2023] Open
Abstract
The enhancement of molecular absorption, emission and scattering processes by coupling to surface plasmon polaritons on metallic nanoparticles is a key issue in plasmonics for applications in (bio)chemical sensing, light harvesting and photocatalysis. Nevertheless, the point spread functions for single-molecule emission near metallic nanoparticles remain difficult to characterize due to fluorophore photodegradation, background emission and scattering from the plasmonic structure. Here we overcome this problem by exciting fluorophores remotely using plasmons propagating along metallic nanowires. The experiments reveal a complex array of single-molecule fluorescence point spread functions that depend not only on nanowire dimensions but also on the position and orientation of the molecular transition dipole. This work has consequences for both single-molecule regime-sensing and super-resolution imaging involving metallic nanoparticles and opens the possibilities for fast size sorting of metallic nanoparticles, and for predicting molecular orientation and binding position on metallic nanoparticles via far-field optical imaging. Plasmonic nanoparticles can dramatically enhance the optical properties of molecules but background scattering is a limiting factor. Su et al. use remote excitation by plasmons on nanowires to better access single fluorophore point spread functions for improved sensing and super-resolution imaging.
Collapse
|
33
|
Olson J, Dominguez-Medina S, Hoggard A, Wang LY, Chang WS, Link S. Optical characterization of single plasmonic nanoparticles. Chem Soc Rev 2015; 44:40-57. [PMID: 24979351 PMCID: PMC4641313 DOI: 10.1039/c4cs00131a] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This tutorial review surveys the optical properties of plasmonic nanoparticles studied by various single particle spectroscopy techniques. The surface plasmon resonance of metallic nanoparticles depends sensitively on the nanoparticle geometry and its environment, with even relatively minor deviations causing significant changes in the optical spectrum. Because for chemically prepared nanoparticles a distribution of their size and shape is inherent, ensemble spectra of such samples are inhomogeneously broadened, hiding the properties of the individual nanoparticles. The ability to measure one nanoparticle at a time using single particle spectroscopy can overcome this limitation. This review provides an overview of different steady-state single particle spectroscopy techniques that provide detailed insight into the spectral characteristics of plasmonic nanoparticles.
Collapse
Affiliation(s)
- Jana Olson
- Department of Chemistry, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Sergio Dominguez-Medina
- Department of Chemistry, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Anneli Hoggard
- Department of Chemistry, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Lin-Yung Wang
- Department of Chemistry, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Wei-Shun Chang
- Department of Chemistry, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| | - Stephan Link
- Department of Chemistry, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
- Department of Electrical and Computer Engineering, Laboratory for Nanophotonics, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
34
|
Johnson SA. Nanoscopy for nanoscience: how super-resolution microscopy extends imaging for nanotechnology. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 7:266-81. [PMID: 25298332 DOI: 10.1002/wnan.1300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 07/13/2014] [Accepted: 08/07/2014] [Indexed: 12/31/2022]
Abstract
Imaging methods have presented scientists with powerful means of investigation for centuries. The ability to resolve structures using light microscopes is though limited to around 200 nm. Fluorescence-based super-resolution light microscopy techniques of several principles and methods have emerged in recent years and offer great potential to extend the capabilities of microscopy. This resolution improvement is especially promising for nanoscience where the imaging of nanoscale structures is inherently restricted by the resolution limit of standard forms of light microscopy. Resolution can be improved by several distinct approaches including structured illumination microscopy, stimulated emission depletion, and single-molecule positioning methods such as photoactivated localization microscopy and stochastic optical reconstruction microscopy and several derivative variations of each of these. These methods involve substantial differences in the resolutions achievable in the different axes, speed of acquisition, compatibility with different labels, ease of use, hardware complexity, and compatibility with live biological samples. The field of super-resolution imaging and its application to nanotechnology is relatively new and still rapidly developing. An overview of how these methods may be used with nanomaterials is presented with some examples of pioneering uses of these approaches.
Collapse
Affiliation(s)
- Sam A Johnson
- Light Microscopy Core Facility, Duke University and Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
35
|
Habuchi S. Super-resolution molecular and functional imaging of nanoscale architectures in life and materials science. Front Bioeng Biotechnol 2014; 2:20. [PMID: 25152893 PMCID: PMC4126472 DOI: 10.3389/fbioe.2014.00020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/30/2014] [Indexed: 11/13/2022] Open
Abstract
Super-resolution (SR) fluorescence microscopy has been revolutionizing the way in which we investigate the structures, dynamics, and functions of a wide range of nanoscale systems. In this review, I describe the current state of various SR fluorescence microscopy techniques along with the latest developments of fluorophores and labeling for the SR microscopy. I discuss the applications of SR microscopy in the fields of life science and materials science with a special emphasis on quantitative molecular imaging and nanoscale functional imaging. These studies open new opportunities for unraveling the physical, chemical, and optical properties of a wide range of nanoscale architectures together with their nanostructures and will enable the development of new (bio-)nanotechnology.
Collapse
Affiliation(s)
- Satoshi Habuchi
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology , Jeddah , Saudi Arabia
| |
Collapse
|
36
|
Tarpani L, Latterini L. Effect of metal nanoparticles on the photophysical behaviour of dye–silica conjugates. Photochem Photobiol Sci 2014; 13:884-90. [DOI: 10.1039/c3pp50450f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The controlled adsorption of gold colloids on dye-doped silica particles makes it possible to distinguish between a fluorescence enhancing and a quenching regime depending on the position of metal plasmon bands.
Collapse
Affiliation(s)
- Luigi Tarpani
- Dipartimento di Chimica, Biologia e Biotecnologie and Centro Eccellenza Materiali Innovativi Nanostrutturati (CEMIN)
- Universita di Perugia
- 06123 Perugia, Italy
| | - Loredana Latterini
- Dipartimento di Chimica, Biologia e Biotecnologie and Centro Eccellenza Materiali Innovativi Nanostrutturati (CEMIN)
- Universita di Perugia
- 06123 Perugia, Italy
| |
Collapse
|
37
|
Coutino-Gonzalez E, Grandjean D, Roeffaers M, Kvashnina K, Fron E, Dieu B, De Cremer G, Lievens P, Sels B, Hofkens J. X-ray irradiation-induced formation of luminescent silver clusters in nanoporous matrices. Chem Commun (Camb) 2014; 50:1350-2. [DOI: 10.1039/c3cc47969b] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of highly luminescent silver clusters in zeolites using X-ray lithography is reported in this study.
Collapse
Affiliation(s)
| | - Didier Grandjean
- Department of Physics and Astronomy
- Laboratory of Solid State Physics and Magnetism
- KU Leuven
- B-3001 Leuven, Belgium
| | - Maarten Roeffaers
- Department of Microbial and Molecular Systems
- Centre for Surface Chemistry and Catalysis
- KU Leuven
- B-3001 Leuven, Belgium
| | - Kristina Kvashnina
- European Synchrotron Radiation Facility (ESRF)
- 6 Rue Jules Horowitz
- 38043 Grenoble Cedex 9, France
| | - Eduard Fron
- Department of Chemistry
- KU Leuven
- B-3001 Leuven, Belgium
| | - Bjorn Dieu
- Department of Chemistry
- KU Leuven
- B-3001 Leuven, Belgium
| | - Gert De Cremer
- Department of Microbial and Molecular Systems
- Centre for Surface Chemistry and Catalysis
- KU Leuven
- B-3001 Leuven, Belgium
- DSM Ahead
| | - Peter Lievens
- Department of Physics and Astronomy
- Laboratory of Solid State Physics and Magnetism
- KU Leuven
- B-3001 Leuven, Belgium
| | - Bert Sels
- Department of Microbial and Molecular Systems
- Centre for Surface Chemistry and Catalysis
- KU Leuven
- B-3001 Leuven, Belgium
| | - Johan Hofkens
- Department of Chemistry
- KU Leuven
- B-3001 Leuven, Belgium
| |
Collapse
|
38
|
Chacko JV, Zanacchi FC, Diaspro A. Probing cytoskeletal structures by coupling optical superresolution and AFM techniques for a correlative approach. Cytoskeleton (Hoboken) 2013; 70:729-40. [PMID: 24027190 PMCID: PMC4265841 DOI: 10.1002/cm.21139] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/28/2013] [Accepted: 09/01/2013] [Indexed: 01/14/2023]
Abstract
In this article, we describe and show the application of some of the most advanced fluorescence superresolution techniques, STED AFM and STORM AFM microscopy towards imaging of cytoskeletal structures, such as microtubule filaments. Mechanical and structural properties can play a relevant role in the investigation of cytoskeletal structures of interest, such as microtubules, that provide support to the cell structure. In fact, the mechanical properties, such as the local stiffness and the elasticity, can be investigated by AFM force spectroscopy with tens of nanometers resolution. Force curves can be analyzed in order to obtain the local elasticity (and the Young's modulus calculation by fitting the force curves from every pixel of interest), and the combination with STED/STORM microscopy integrates the measurement with high specificity and yields superresolution structural information. This hybrid modality of superresolution-AFM working is a clear example of correlative multimodal microscopy.
Collapse
Affiliation(s)
- Jenu Varghese Chacko
- Nanophysics, Istituto Italiano di Tecnologia, Genova, Italy; Dipartimento di Fisica, Università degli Studi di Genova, Genova, Italy
| | | | | |
Collapse
|
39
|
Titus EJ, Willets KA. Superlocalization surface-enhanced Raman scattering microscopy: comparing point spread function models in the ensemble and single-molecule limits. ACS NANO 2013; 7:8284-8294. [PMID: 23985039 DOI: 10.1021/nn403891t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this report, we compare the effectiveness of various dipole and Gaussian point spread function (PSF) models for fitting diffraction-limited surface-enhanced Raman scattering (SERS) emission images from rhodamine 6G-labeled nanoparticle dimers at both the high-concentration and single-molecule limit. Of all models tested, a 3-axis dipole PSF gives the best approximation to the experimental PSF, although none of the models utilized in the study were without systematic error when fitting the experimental data. In the high-concentration regime, all models localize the SERS emission to a stationary centroid position, with the dipole models providing additional orientation parameters that closely match the geometry of the dimer, indicating that the molecules are coupled to all resonant plasmon modes of the nanostructure. In the single-molecule case, the different models show a mobile SERS centroid, consistent with single-molecule motion on the surface, but the behavior of the centroid is model-dependent. Despite the centroid mobility in the single-molecule regime, the dipole PSF models still give accurate orientation information on the underlying dimer structure, although with less precision than the ensemble-averaged samples.
Collapse
Affiliation(s)
- Eric J Titus
- Department of Chemistry, The University of Texas at Austin , 105 E. 24th Street STOP A5300, Austin, Texas 78712, United States
| | | |
Collapse
|
40
|
Abstract
Surface enhanced spectroscopy encompasses a broad field of linear and nonlinear optical techniques that arose with the discovery of the surface-enhanced Raman scattering (SERS) effect. SERS enabled ultrasensitive and single molecule detection with molecular fingerprint specificity, opening the door for a large variety of chemical sensing applications. Basically, from the beginning it was realized that the necessary condition for SERS to be observed was the presence of a metallic nanostructure, and with this condition, the optical enhancement found a home in the field of plasmonics. Although plasmonic practitioners claim that SERS is "the most spectacular application of plasmonics", perhaps it is more appropriate to say that the spectacular development of plasmonics is due to SERS. Here is a brief recollection from surface enhanced spectroscopy to plasmon enhanced spectroscopy.
Collapse
Affiliation(s)
- Ricardo F Aroca
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario, Canada.
| |
Collapse
|
41
|
Titus EJ, Willets KA. Accuracy of superlocalization imaging using Gaussian and dipole emission point-spread functions for modeling gold nanorod luminescence. ACS NANO 2013; 7:6258-6267. [PMID: 23725587 DOI: 10.1021/nn4022845] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present a study comparing the accuracy of superlocalization imaging of plasmon-mediated emission from gold nanorods (AuNRs) using both Gaussian and dipole emission point-spread function (PSF) models. By fitting the emission PSF of single AuNR luminescence, we have shown that a 3-axis dipole PSF gives improved localization accuracy over the Gaussian PSF, especially for nonplanar AuNRs, while also allowing the AuNR three-dimensional orientation and emission wavelength to be determined. On the other hand, when a single-axis dipole PSF model is applied to the AuNR emission, the fit estimates converge to values that are inconsistent with their experimentally measured values, affecting both the localization accuracy and precision of the fitted centroid position. These results indicate that when applying superlocalization techniques to plasmonic nanostructures, care must be taken to understand the nature of the emission before a correct dipole PSF can be applied.
Collapse
Affiliation(s)
- Eric J Titus
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street STOP A5300, Austin, Texas 78712, USA
| | | |
Collapse
|
42
|
Andoy NM, Zhou X, Choudhary E, Shen H, Liu G, Chen P. Single-Molecule Catalysis Mapping Quantifies Site-Specific Activity and Uncovers Radial Activity Gradient on Single 2D Nanocrystals. J Am Chem Soc 2013; 135:1845-52. [DOI: 10.1021/ja309948y] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Nesha May Andoy
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| | - Xiaochun Zhou
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| | - Eric Choudhary
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| | - Hao Shen
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| | - Guokun Liu
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| | - Peng Chen
- Department
of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United
States
| |
Collapse
|
43
|
Blythe KL, Mayer KM, Weber ML, Willets KA. Ground state depletion microscopy for imaging interactions between gold nanowires and fluorophore-labeled ligands. Phys Chem Chem Phys 2013; 15:4136-45. [DOI: 10.1039/c2cp43152a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
44
|
Willets KA. Super-resolution imaging of interactions between molecules and plasmonic nanostructures. Phys Chem Chem Phys 2013; 15:5345-54. [DOI: 10.1039/c3cp43882a] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
45
|
Acuna GP, Moller FM, Holzmeister P, Beater S, Lalkens B, Tinnefeld P. Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas. Science 2012; 338:506-10. [DOI: 10.1126/science.1228638] [Citation(s) in RCA: 523] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Paul A, Kenens B, Hofkens J, Uji-i H. Excitation polarization sensitivity of plasmon-mediated silver nanotriangle growth on a surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8920-8925. [PMID: 22444030 DOI: 10.1021/la300533h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this contribution, we report an effective and relatively simple route to grow triangular flat-top silver nanoparticles (NPs) directly on a solid substrate from smaller NPs through a wet photochemical synthesis. The method consists of fixing small, preformed nanotriangles (NTs) on a substrate and subsequently irradiating them with light in a silver seed solution. Furthermore, the use of linearly polarized light allows for exerting control on the growth direction of the silver nanotriangles on the substrate. Evidence for the role of surface plasmon resonances in governing the growth of the NTs is obtained by employing linear polarized light. Thus, this study demonstrates that light-induced, directional synthesis of nanoparticles on solid substrates is in reach, which is of utmost importance for plasmonic applications.
Collapse
Affiliation(s)
- Aniruddha Paul
- Department of Chemistry, Katholieke Universiteit Leuven, Celestijnenlaan 200F 3001 Heverlee, Belgium
| | | | | | | |
Collapse
|
47
|
Tachikawa T, Majima T. Single-molecule, single-particle approaches for exploring the structure and kinetics of nanocatalysts. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8933-8943. [PMID: 22324887 DOI: 10.1021/la300177h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this Article, we focus on the in situ observation of photochemical reactions on individual nanoobjects of solid catalysts using single-molecule, single-particle fluorescence spectroscopy. The use of high-resolution imaging techniques with suitable fluorogenic probes enables us to determine the location of the catalytically active sites that are related to the structural heterogeneities on the surface of the solid catalyst and the temporal fluctuation of photochemical reactivity. Furthermore, we present the real-time observation of metastable gold nanoclusters in polymer matrices at the single-cluster level. This Article encourages readers to explore the nanoworld in terms of practical applications in many fields such as fundamental physics and chemistry.
Collapse
Affiliation(s)
- Takashi Tachikawa
- The Institute of Scientific and Industrial Research (SANKEN), Osaka University, Mihogaoka 8-1, Ibaraki, Osaka 567-0047, Japan
| | | |
Collapse
|