1
|
Xia W, Tan Y, Liu Y, Xie N, Zhu H. Prospect of extracellular vesicles in tumor immunotherapy. Front Immunol 2025; 16:1525052. [PMID: 40078996 PMCID: PMC11897508 DOI: 10.3389/fimmu.2025.1525052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/28/2025] [Indexed: 03/14/2025] Open
Abstract
Extracellular vesicles (EVs), as cell-derived small vesicles, facilitate intercellular communication within the tumor microenvironment (TME) by transporting biomolecules. EVs from different sources have varied contents, demonstrating differentiated functions that can either promote or inhibit cancer progression. Thus, regulating the formation, secretion, and intake of EVs becomes a new strategy for cancer intervention. Advancements in EV isolation techniques have spurred interest in EV-based therapies, particularly for tumor immunotherapy. This review explores the multifaceted functions of EVs from various sources in tumor immunotherapy, highlighting their potential in cancer vaccines and adoptive cell therapy. Furthermore, we explore the potential of EVs as nanoparticle delivery systems in tumor immunotherapy. Finally, we discuss the current state of EVs in clinical settings and future directions, aiming to provide crucial information to advance the development and clinical application of EVs for cancer treatment.
Collapse
Affiliation(s)
- Wenbo Xia
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhan Tan
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yongen Liu
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Na Xie
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huili Zhu
- Department of Reproductive Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Xiong S, Zhang S, Yue N, Cao J, Wu C. CAR-T cell therapy in the treatment of relapsed or refractory primary central nervous system lymphoma: recent advances and challenges. Leuk Lymphoma 2025:1-13. [PMID: 39898872 DOI: 10.1080/10428194.2025.2458214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/01/2025] [Accepted: 01/20/2025] [Indexed: 02/04/2025]
Abstract
Primary central nervous system lymphoma (PCNSL) is a rare and aggressive lymphoma that is isolated in the central nervous system (CNS) or vitreoretinal space. High-dose methotrexate (HD-MTX)-based immunochemotherapy is the frontline for its treatment, with a high early response rate. However, relapsed or refractory (R/R) patients present numerous difficulties and challenges in clinical treatment. Chimeric antigen receptor (CAR)-T cells offer a promising option for the treatment of hematologic malignancies, especially in the R/R B-cell lymphoma and multiple myeloma. Despite the exclusion of most PCNSL cases from pivotal CAR-T cell trials due to their specific tumor microenvironment (TME), available preclinical and clinical studies with small cohorts suggest an overall acceptable safety profile and remarkable anti-tumor effects. In this review, we will provide the development process of CAR-T cells and summarize the research progress, limitations, and future perspectives of CAR-T cell therapy in patients with R/R PCNSL.
Collapse
Affiliation(s)
- Shuzhen Xiong
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | | | | | | | | |
Collapse
|
3
|
Coren LV, Trivett MT, Welker JL, Thomas JA, Gorelick RJ, Kose E, Immonen TT, Czarra K, Fennessey CM, Trubey CM, Lifson JD, Swanstrom AE. Modifications to rhesus macaque TCR constant regions improve TCR cell surface expression. PLoS One 2025; 20:e0314751. [PMID: 39787126 PMCID: PMC11717225 DOI: 10.1371/journal.pone.0314751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/17/2024] [Indexed: 01/12/2025] Open
Abstract
T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions. Preclinical animal models are valuable tools to optimize engineering designs and methods, and to evaluate the potential for off-target tissue injury. To further develop rhesus macaque models for TCR based cellular immunotherapy, we tested methods for improving cell surface expression of rhesus macaque TCR in rhesus macaque primary cells by generating five alternative TCRαβ constant region constructs in the context of a SIV Gag-specific TCR: 1. human codon optimized rhesus macaque (RH); 2. RH TCR with an additional disulfide linkage; 3. rhesus macaque constant sequences with minimal murine amino acid substitutions; 4. murinized constant sequences; and 5. murinized constant sequences with a portion of the exposed FG loop in the β constant sequence replaced with rhesus macaque sequence to reduce potential immunogencity. Murinization or mutation of a minimal set of amino acids to the corresponding murine sequence of the constant region resulted in the greatest increase in rhesus macaque TCR surface expression relative to wild type. All novel TCR constructs retained the ability to induce production of cytokines in response to cognate peptide antigen specific stimulation. This work can inform the design of TCRs selected for use in rhesus macaque models of TCR-based cellular immunotherapy.
Collapse
MESH Headings
- Animals
- Macaca mulatta
- Humans
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Mice
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
Collapse
Affiliation(s)
- Lori V. Coren
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Matthew T. Trivett
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jorden L. Welker
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - James A. Thomas
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Robert J. Gorelick
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Emek Kose
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Taina T. Immonen
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Kelli Czarra
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Christine M. Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Charles M. Trubey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - Adrienne E. Swanstrom
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| |
Collapse
|
4
|
Chen Y, Zhao R, Fan Q, Liu M, Huang Y, Shi G. Enhancing the activation of T cells through anti-CD3/CD28 magnetic beads by adjusting the antibody ratio. IUBMB Life 2024; 76:1175-1185. [PMID: 39046102 DOI: 10.1002/iub.2898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/17/2024] [Indexed: 07/25/2024]
Abstract
The utilization of anti-CD3/CD28 magnetic beads for T cell expansion in vitro has been investigated for adoptive cell transfer therapy. However, the impact of the CD3/CD28 antibody ratio on T cell differentiation and function remains incompletely elucidated. This study seeks to address this knowledge gap. To begin with, CD3 antibodies with a relatively low avidity for Jurkat cells (Kd = 13.55 nM) and CD28 antibodies with a relatively high avidity (Kd = 5.79 nM) were prepared. Afterwards, anti-CD3/CD28 antibodies with different mass ratios were attached to magnetic beads to examine the impacts of different antibody ratios on T cell capture, and proliferation. The research demonstrated that the most significant expansion of T cells was stimulated by the anti-CD3/CD28 magnetic beads with a mass ratio of 2:1 for CD3 antibodies and CD28 antibodies. Moreover, CD25 and PD1 expression of expanded T cells increased and then decreased, with lower CD25 and PD1 expression in the later stages of expansion indicating that T cells were not depleted. These T cells, which are massively expanded in vitro and have excellent expansion potential, can be infused back into the patient to treat tumor patients. This study shows that altering the ratio of anti-CD3/CD28 antibodies can control the strength of T cell stimulation, thereby leading to the improvement of T cell activation. This discovery can be utilized as a guide for the creation of other T cell stimulation approaches, which is beneficial for the further development of tumor immunotherapy technology.
Collapse
Affiliation(s)
- Yinuo Chen
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Rui Zhao
- Beijing Scipromed Biotech Co., Ltd., Beijing, China
| | - Qi Fan
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Mengmeng Liu
- Beijing Scipromed Biotech Co., Ltd., Beijing, China
| | | | - Guoqing Shi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| |
Collapse
|
5
|
Xu T, Tian T, Wang C, Chen X, Zuo X, Zhou H, Bai J, Zhao C, Fu S, Sun C, Wang T, Zhu L, Zhang J, Wang E, Sun M, Shu Y. Efficacy and safety of novel multiple-chain DAP-CAR-T cells targeting mesothelin in ovarian cancer and mesothelioma: a single-arm, open-label and first-in-human study. Genome Med 2024; 16:133. [PMID: 39548510 PMCID: PMC11568615 DOI: 10.1186/s13073-024-01405-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Despite remarkable achievements in applying chimeric antigen receptor (CAR)-T cells to treat hematological malignancies, they remain much less effective against solid tumors, facing several challenges affecting their clinical use. We previously showed that multichain DNAX-activating protein (DAP) CAR structures could enhance the safety and efficacy of CAR-T cells when used against solid tumors. In particular, mesothelin (MSLN)-targeted CAR-T cell therapy has therapeutic potential in MSLN-positive solid tumors, including ovarian cancer and mesothelioma. METHODS In vitro cell killing assays and xenograft model were utilized to determine the anti-tumor efficacy of MSLN targeting DAP-CAR-T cells and other CAR-T cells. ELISA and flow cytometry analysis were used to assess the cytokine secretion capacity and proliferation ability. Eight patients with MSLN expression were enrolled to evaluate the safety and efficacy of MSLN-DAP CAR-T cell therapy. Single-cell sequencing was performed to explore the dynamics of immune cells in patients during treatment and to identify the transcriptomic signatures associated with efficacy and toxicity. RESULTS We found that multichain DAP-CAR formed by combining a natural killer cell immunoglobulin-like receptor truncator and DAP12 exhibited better cytotoxicity and tumor-killing capacity than other natural killer cell-activated receptors associated with DAP12, DAP10, or CD3Z. The safety and efficacy of MSLN-DAP CAR-T cell therapy in patients with ovarian cancer and mesothelioma were evaluated in a single-arm, open-label clinical trial (ChiCTR2100046544); two patients achieved partial response, while four patients had a stable disease status. Furthermore, single-cell sequencing analysis indicated that KT032 CAR-T cell infusion could recruit more immune cells and temporarily remodel the TME. CONCLUSIONS Our study highlights the safety and therapeutic efficacy of multiple-chain DAP-CAR-T cell therapy targeting MSLN to treat patients with ovarian cancer and mesothelioma. TRIAL REGISTRATION ChiCTR.org.cn, ChiCTR2100046544 . May 21, 2021.
Collapse
Affiliation(s)
- Tongpeng Xu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| | - Tian Tian
- Department of Geriatric Hematology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Chen Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China
| | - Xiaofeng Chen
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Xiangrong Zuo
- Department of Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Hanyu Zhou
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
- Department of Oncology, Gusu School, Suzhou Municipal Hospital, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, People's Republic of China
| | - Jianan Bai
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Chenhui Zhao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Sujie Fu
- The Second Affiliated Hospitalof , Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Chongqi Sun
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Ting Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China
| | - Ling Zhu
- Department of Oncology, Xishan People's Hospital of Wuxi City, Wuxi, People's Republic of China
| | - Jingzhi Zhang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China
| | - Enxiu Wang
- Nanjing CART Medical Technology Co., Ltd, Nanjing, 210032, People's Republic of China.
| | - Ming Sun
- Suzhou Cancer Center Core Laboratory, Gusu School, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215001, People's Republic of China.
| | - Yongqian Shu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210029, People's Republic of China.
| |
Collapse
|
6
|
Wu B, Zhang B, Li B, Wu H, Jiang M. Cold and hot tumors: from molecular mechanisms to targeted therapy. Signal Transduct Target Ther 2024; 9:274. [PMID: 39420203 PMCID: PMC11491057 DOI: 10.1038/s41392-024-01979-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/20/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024] Open
Abstract
Immunotherapy has made significant strides in cancer treatment, particularly through immune checkpoint blockade (ICB), which has shown notable clinical benefits across various tumor types. Despite the transformative impact of ICB treatment in cancer therapy, only a minority of patients exhibit a positive response to it. In patients with solid tumors, those who respond well to ICB treatment typically demonstrate an active immune profile referred to as the "hot" (immune-inflamed) phenotype. On the other hand, non-responsive patients may exhibit a distinct "cold" (immune-desert) phenotype, differing from the features of "hot" tumors. Additionally, there is a more nuanced "excluded" immune phenotype, positioned between the "cold" and "hot" categories, known as the immune "excluded" type. Effective differentiation between "cold" and "hot" tumors, and understanding tumor intrinsic factors, immune characteristics, TME, and external factors are critical for predicting tumor response and treatment results. It is widely accepted that ICB therapy exerts a more profound effect on "hot" tumors, with limited efficacy against "cold" or "altered" tumors, necessitating combinations with other therapeutic modalities to enhance immune cell infiltration into tumor tissue and convert "cold" or "altered" tumors into "hot" ones. Therefore, aligning with the traits of "cold" and "hot" tumors, this review systematically delineates the respective immune characteristics, influencing factors, and extensively discusses varied treatment approaches and drug targets based on "cold" and "hot" tumors to assess clinical efficacy.
Collapse
Affiliation(s)
- Bo Wu
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bo Zhang
- Department of Youth League Committee, The Fourth Affiliated Hospital, China Medical University, Shenyang, China
| | - Bowen Li
- Department of Pancreatic and Gastrointestinal Surgery, Ningbo No. 2 Hospital, Ningbo, China
| | - Haoqi Wu
- Department of Gynaecology and Obstetrics, The Second Hospital of Dalian Medical University, Dalian, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
7
|
Cheever A, Kang CC, O’Neill KL, Weber KS. Application of novel CAR technologies to improve treatment of autoimmune disease. Front Immunol 2024; 15:1465191. [PMID: 39445021 PMCID: PMC11496059 DOI: 10.3389/fimmu.2024.1465191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has become an important treatment for hematological cancers, and its success has spurred research into CAR T cell therapies for other diseases, including solid tumor cancers and autoimmune diseases. Notably, the development of CAR-based treatments for autoimmune diseases has shown great progress recently. Clinical trials for anti-CD19 and anti-BCMA CAR T cells in treating severe B cell-mediated autoimmune diseases, like systemic lupus erythematosus (SLE), have shown lasting remission thus far. CAR T cells targeting autoreactive T cells are beginning clinical trials for treating T cell mediated autoimmune diseases. Chimeric autoantigen receptor (CAAR) T cells specifically target and eliminate only autoreactive B cells, and they have shown promise in treating mucosal pemphigus vulgaris and MuSK myasthenia gravis. Regulatory CAR T cells have also been developed, which show potential in altering autoimmune affected areas by creating a protective barrier as well as helping decrease inflammation. These new treatments are only the beginning of potential CAR T cell applications in treating autoimmune disease. Novel CAR technologies have been developed that increase the safety, potency, specificity, and efficacy of CAR T cell therapy. Applying these novel modifications to autoimmune CARs has the potential to enhance the efficacy and applicability of CAR therapies to autoimmune disease. This review will detail several recently developed CAR technologies and discuss how their application to autoimmune disease will improve this emerging field. These include logic-gated CARs, soluble protein-secreting CARs, and modular CARs that enable CAR T cell therapies to be more specific, reach a wider span of target cells, be safer for patients, and give a more potent cytotoxic response. Applying these novel CAR technologies to the treatment of autoimmune diseases has the potential to revolutionize this growing application of CAR T cell therapies.
Collapse
|
8
|
Nabulsi NA, Nazari JL, Lee TA, Patel PR, Sweiss KI, Le T, Sharp LK. Perceptions of prescription opioids among marginalized patients with hematologic malignancies in the context of the opioid epidemic: a qualitative study. J Cancer Surviv 2024; 18:1285-1296. [PMID: 37022642 DOI: 10.1007/s11764-023-01370-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 03/20/2023] [Indexed: 04/07/2023]
Abstract
PURPOSE Opioids are essential for treating pain in hematologic malignancies (HM), yet are heavily stigmatized in the era of the opioid epidemic. Stigma and negative attitudes towards opioids may contribute to poorly managed cancer pain. We aimed to understand patient attitudes towards opioids for HM pain management, particularly among historically marginalized populations. METHODS We interviewed a convenience sample of 20 adult patients with HM during outpatient visits at an urban academic medical center. Semi-structured interviews were audio-recorded, transcribed, and qualitatively analyzed using the framework method. RESULTS Among 20 participants, 12 were female and half were Black. Median age was 62 (interquartile range = 54-68). HM diagnoses included multiple myeloma (n = 10), leukemia (n = 5), lymphoma (n = 4), and myelofibrosis (n = 1). Eight themes emerged from interviews that seemed to influence HM-related pain self-management, including (1) fear of opioid-related harms, (2) opioid side effects and harms to health, (3) fatalism and stoicism, (4) perceived value of opioids for HM-related pain, (5) low perceived susceptibility to opioid-related harms and externalizing blame, (6) preferences for non-opioid pain management approaches, (7) trust in providers and opioid accessibility, and (8) external sources of pain management support and information. CONCLUSIONS This qualitative study demonstrates that fears and stigmatized views of opioids can conflict with marginalized patients' needs to manage debilitating HM-related pain. Negative attitudes towards opioids were shaped by the opioid epidemic and reduced willingness to seek out or use analgesics. IMPLICATIONS FOR CANCER SURVIVORS These findings help expose patient-level barriers to optimal HM pain management, revealing attitudes, and knowledge to be targeted by future pain management interventions in HM.
Collapse
Affiliation(s)
- Nadia A Nabulsi
- Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA.
| | - Jonathan L Nazari
- Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Todd A Lee
- Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Pritesh R Patel
- Division of Hematology and Oncology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Karen I Sweiss
- Department of Pharmacy Practice, University of Illinois Chicago, Chicago, IL, USA
| | - Thy Le
- College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| | - Lisa K Sharp
- Department of Pharmacy Systems, Outcomes and Policy, College of Pharmacy, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
9
|
Gui J, Li M, Xu J, Zhang X, Mei H, Lan X. [ 18F]FDG PET/CT for prognosis and toxicity prediction of diffuse large B-cell lymphoma patients with chimeric antigen receptor T-cell therapy. Eur J Nucl Med Mol Imaging 2024; 51:2308-2319. [PMID: 38467921 DOI: 10.1007/s00259-024-06667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/25/2024] [Indexed: 03/13/2024]
Abstract
PURPOSE Chimeric antigen receptor (CAR) T-cell therapy has been confirmed to benefit patients with relapsed and/or refractory diffuse large B-cell lymphoma (DLBCL). It is important to provide precise and timely predictions of the efficacy and toxicity of CAR T-cell therapy. In this study, we evaluated the value of [18F]fluorodeoxyglucose positron emission tomography/computed tomography ([18F]FDG PET/CT) combining with clinical indices and laboratory indicators in predicting outcomes and toxicity of anti-CD19 CAR T-cell therapy for DLBCL patients. METHODS Thirty-eight DLBCL patients who received CAR T-cell therapy and underwent [18F]FDG PET/CT within 3 months before (pre-infusion) and 1 month after CAR T-cell infusion (M1) were retrospectively reviewed and regularly followed up. Maximum standardized uptake value (SUVmax), total lesion glycolysis (TLG), metabolic tumor volume (MTV), clinical indices, and laboratory indicators were recorded at pre-infusion and M1 time points, and changes in these indices were calculated. Progression-free survival (PFS) and overall survival (OS) were as endpoints. Based on the multivariate Cox regression analysis, two predictive models for PFS and OS were developed and evaluated the efficiency. Pre-infusion indices were subjected to predict the grade of cytokine release syndrome (CRS) resulting from toxic reactions. RESULTS For survival analysis at a median follow-up time of 18.2 months, patients with values of international prognostic index (IPI), SUVmax at M1, and TLG at M1 above their optimal thresholds had a shorter PFS (median PFS: 8.1 months [IPI ≥ 2] vs. 26.2 months [IPI < 2], P = 0.025; 3.1 months [SUVmax ≥ 5.69] vs. 26.8 months [SUVmax < 5.69], P < 0.001; and 3.1 months [TLG ≥ 23.79] vs. 26.8 months [TLG < 23.79], P < 0.001). In addition, patients with values of SUVmax at M1 and ∆SUVmax% above their optimal thresholds had a shorter OS (median OS: 12.6 months [SUVmax ≥ 15.93] vs. 'not reached' [SUVmax < 15.93], P < 0.001; 32.5 months [∆SUVmax% ≥ -46.76] vs. 'not reached' [∆SUVmax% < -46.76], P = 0.012). Two novel predictive models for PFS and OS were visualized using nomogram. The calibration analysis and the decision curves demonstrated good performance of the models. Spearman's rank correlation (rs) analysis revealed that the CRS grade correlated strongly with the pre-infusion SUVmax (rs = 0.806, P < 0.001) and moderately with the pre-infusion TLG (rs = 0.534, P < 0.001). Multinomial logistic regression analysis revealed that the pre-infusion value of SUVmax correlated with the risk of developing a higher grade of CRS (P < 0.001). CONCLUSION In this group of DLBCL patients who underwent CAR T-cell therapy, SUVmax at M1, TLG at M1, and IPI were independent risk factors for PFS, and SUVmax at M1 and ∆SUVmax% for OS. Based on these indicators, two novel predictive models were established and verified the efficiency for evaluating PFS and OS. Moreover, pre-infusion SUVmax correlated with the severity of any subsequent CRS. We conclude that metabolic parameters measured using [18F]FDG PET/CT can identify DLBCL patients who will benefit most from CAR T-cell therapy, and the value before CAR T-cell infusion may predict its toxicity in advance.
Collapse
Affiliation(s)
- Jinbo Gui
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, Hubei, 430022, China
| | - Mengting Li
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, Hubei, 430022, China
| | - Jia Xu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China
| | - Xiao Zhang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, Hubei, 430022, China
| | - Heng Mei
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, Hubei, 430022, China.
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan, 430022, China.
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
- Hubei Key Laboratory of Molecular Imaging, Wuhan, 430022, China.
- Key Laboratory of Biological Targeted Therapy of the Ministry of Education, Wuhan, Hubei, 430022, China.
| |
Collapse
|
10
|
Khan IR, Sadida HQ, Hashem S, Singh M, Macha MA, Al-Shabeeb Akil AS, Khurshid I, Bhat AA. Therapeutic implications of signaling pathways and tumor microenvironment interactions in esophageal cancer. Biomed Pharmacother 2024; 176:116873. [PMID: 38843587 DOI: 10.1016/j.biopha.2024.116873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/20/2024] Open
Abstract
Esophageal cancer (EC) is significantly influenced by the tumor microenvironment (TME) and altered signaling pathways. Downregulating these pathways in EC is essential for suppressing tumor development, preventing metastasis, and enhancing therapeutic outcomes. This approach can increase tumor sensitivity to treatments, enhance patient outcomes, and inhibit cancer cell proliferation and spread. The TME, comprising cellular and non-cellular elements surrounding the tumor, significantly influences EC's development, course, and treatment responsiveness. Understanding the complex relationships within the TME is crucial for developing successful EC treatments. Immunotherapy is a vital TME treatment for EC. However, the heterogeneity within the TME limits the application of anticancer drugs outside clinical settings. Therefore, identifying reliable microenvironmental biomarkers that can detect therapeutic responses before initiating therapy is crucial. Combining approaches focusing on EC signaling pathways with TME can enhance treatment outcomes. This integrated strategy aims to interfere with essential signaling pathways promoting cancer spread while disrupting factors encouraging tumor development. Unraveling aberrant signaling pathways and TME components can lead to more focused and efficient treatment approaches, identifying specific cellular targets for treatments. Targeting the TME and signaling pathways may reduce metastasis risk by interfering with mechanisms facilitating cancer cell invasion and dissemination. In conclusion, this integrative strategy has significant potential for improving patient outcomes and advancing EC research and therapy. This review discusses the altered signaling pathways and TME in EC, focusing on potential future therapeutics.
Collapse
Affiliation(s)
- Inamu Rashid Khan
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine Doha 26999, Qatar
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr. B. R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir 192122, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar
| | - Ibraq Khurshid
- Department of Zoology, Central University of Kashmir, Ganderbal, Jammu and Kashmir 191201, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha 26999, Qatar.
| |
Collapse
|
11
|
Gitto SB, Ihewulezi CJN, Powell DJ. Adoptive T cell therapy for ovarian cancer. Gynecol Oncol 2024; 186:77-84. [PMID: 38603955 PMCID: PMC11216867 DOI: 10.1016/j.ygyno.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Although ovarian cancer patients typically respond to standard of care therapies, including chemotherapy and DNA repair inhibitors, the majority of tumors recur highlighting the need for alternative therapies. Ovarian cancer is an immunogenic cancer in which the accumulation of tumor infiltrating lymphocytes (TILs), particularly T cells, is associated with better patient outcome. Thus, harnessing the immune system through passive administration of T cells, a process called adoptive cell therapy (ACT), is a promising therapeutic option for the treatment of ovarian cancer. There are multiple routes by which tumor-specific T cell products can be generated. Dendritic cell cancer vaccines can be administered to the patients to induce or bolster T cell responses against tumor antigens or be utilized ex vivo to prime T cells against tumor antigens; these T cells can then be prepared for infusion. ACT protocols can also utilize naturally-occurring tumor-reactive T cells isolated from a patient tumor, known as TILs, as these cells often are heterogeneous in composition and antigen specificity with patient-specific cancer recognition. Alternatively, T cells may be sourced from the peripheral blood, including those that are genetically modified to express a tumor antigen-specific T cell receptor (TCR) or chimeric antigen receptor (CAR) to redirect their specificity and promote their activity against tumor cells expressing the target tumor antigen. Here, we review current ACT strategies for ovarian cancer and provide insights into advancing ACT therapy strategies for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sarah B Gitto
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chibuike J N Ihewulezi
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Alayoubi AM, Khawaji ZY, Mohammed MA, Mercier FE. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann Hematol 2024; 103:1805-1817. [PMID: 37736806 DOI: 10.1007/s00277-023-05457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | | | - François E Mercier
- Divisions of Experimental Medicine & Hematology, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
13
|
Shang Q, Xue L, Lu A, Jia Y, Zuo Y, Zeng H, Zhang L. Efficacy and Safety of Children With Relapsed/Refractory B-Cell Acute Lymphoblastic Leukemia After Anti-CD19 CAR T-Cell Therapy Without Bridging Transplantation. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:392-399.e5. [PMID: 38429221 DOI: 10.1016/j.clml.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND Anti-CD19 chimeric antigen receptor (CAR) T-cell therapies have demonstrated significant efficacy in achieving complete remission (CR) in pediatric patients with relapsed/refractory (R/R) B-cell acute lymphoblastic leukemia (B-ALL). However, a considerable number of patients experience relapse within 1 year after CAR T-cell therapy, leading to an extremely poor prognosis, particularly in patients without bridging transplantation. MATERIALS AND METHODS In our study, we investigated 42 children with R/R B-ALL who underwent anti-CD19 CAR T-cell therapy without bridging transplantation at our center. All patients were included in the response analysis and evaluated for survival and toxicity. RESULTS The cohort that received the CAR T-cell infusion exhibited a 100% CR rate by day 28 (d28). The overall survival (OS) at 4 years was 61.3% ± 8.5%, and the event-free survival (EFS) was 55.9% ± 7.9%, with a median follow-up duration of 50.1 months. Minimal residual disease (MRD) ≥1% was associated with inferior outcomes, resulting in lower 4-year OS (P = .033) and EFS (P = .014) compared to MRD<1%. The incidences of grade ≥3 cytokine release syndrome (CRS) and neurotoxicity were 26.8% and 23.8%, respectively. Furthermore, MRD≥1% was identified as an independent factor associated with increased severity of CRS and occurrence of neurotoxicity. CONCLUSION These findings suggest that reducing the pre-infusion MRD could serve as an effective treatment strategy to enhance the outcomes of CAR T-cell therapy.
Collapse
Affiliation(s)
- Qianwen Shang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Lian Xue
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Aidong Lu
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Yueping Jia
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - YingXi Zuo
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Huimin Zeng
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China
| | - Leping Zhang
- Department of Pediatrics, Peking University People's Hospital, Peking University, Beijing, China.
| |
Collapse
|
14
|
Li Z, Xiong W, Liang Z, Wang J, Zeng Z, Kołat D, Li X, Zhou D, Xu X, Zhao L. Critical role of the gut microbiota in immune responses and cancer immunotherapy. J Hematol Oncol 2024; 17:33. [PMID: 38745196 PMCID: PMC11094969 DOI: 10.1186/s13045-024-01541-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024] Open
Abstract
The gut microbiota plays a critical role in the progression of human diseases, especially cancer. In recent decades, there has been accumulating evidence of the connections between the gut microbiota and cancer immunotherapy. Therefore, understanding the functional role of the gut microbiota in regulating immune responses to cancer immunotherapy is crucial for developing precision medicine. In this review, we extract insights from state-of-the-art research to decipher the complicated crosstalk among the gut microbiota, the systemic immune system, and immunotherapy in the context of cancer. Additionally, as the gut microbiota can account for immune-related adverse events, we discuss potential interventions to minimize these adverse effects and discuss the clinical application of five microbiota-targeted strategies that precisely increase the efficacy of cancer immunotherapy. Finally, as the gut microbiota holds promising potential as a target for precision cancer immunotherapeutics, we summarize current challenges and provide a general outlook on future directions in this field.
Collapse
Affiliation(s)
- Zehua Li
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Weixi Xiong
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Zhu Liang
- Chinese Academy of Medical Sciences (CAMS), CAMS Oxford Institute (COI), Nuffield Department of Medicine, University of Oxford, Oxford, England
- Target Discovery Institute, Center for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, England
| | - Jinyu Wang
- Departments of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Ziyi Zeng
- Department of Neonatology, West China Second University Hospital of Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Functional Genomics, Medical University of Lodz, Lodz, Poland
- Department of Biomedicine and Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Xi Li
- Department of Urology, Churchill Hospital, Oxford University Hospitals NHS Foundation, Oxford, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Brain-Inspired Technology of West China Hospital, Sichuan University, Chengdu, China
| | - Xuewen Xu
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Linyong Zhao
- Department of General Surgery and Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Wu X, Cao Z, Chen Z, Wang Y, He H, Xiao P, Hu S, Lu J, Li B. Infectious complications in pediatric patients undergoing CD19+CD22+ chimeric antigen receptor T-cell therapy for relapsed/refractory B-lymphoblastic leukemia. Clin Exp Med 2024; 24:87. [PMID: 38662121 PMCID: PMC11045589 DOI: 10.1007/s10238-024-01339-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Chimeric antigen receptor T-cell (CAR-T) therapy is effective in the treatment of relapsed/refractory acute B-lymphoblastic leukemia (R/R B-ALL); however, patients who receive CAR-T therapy are predisposed to infections, with considerable detrimental effects on long-term survival rates and the quality of life of patients. This study retrospectively analyzed infectious complications in 79 pediatric patients with R/R B-ALL treated with CAR-T cells at our institution. Overall, 53 patients developed 88 infections. Nine patients experienced nine infections during lymphodepletion chemotherapy, 35 experienced 41 infections during the early phase (days 0-+ 30 after infusion), and 29 experienced 38 infections during the late phase (day + 31-+ 90 after infusion). Pathogens were identified in 31 infections, including 23 bacteria, seven viruses, and one fungus. Four patients were admitted to the intensive care unit for infection and one died. In a univariate analysis, there were ten factors associated with infection, including tumor load, lymphodepleting chemotherapy, neutrophil deficiency and lymphocyte reduction, cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), etc. In a multivariate analysis, CRS ≥ grade 3 was identified as a risk factor for infection (hazard ratio = 2.41, 95% confidence interval: 1.08-5.36, P = 0.031). Therefore, actively reducing the CRS grade may decrease the risk of infection and improve the long-term quality of life of these patients.
Collapse
Affiliation(s)
- Xiaochen Wu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Zhanmeng Cao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Zihan Chen
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Yi Wang
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Hailong He
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Peifang Xiao
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China
| | - Shaoyan Hu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China.
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, Suzhou, 215002, Jiangsu, China.
| | - Benshang Li
- Key Laboratory of Pediatric Hematology and Oncology, Department of Hematology and Oncology, Shanghai Children's Medical Center, Ministry of Health, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
16
|
Li B, Lin M, Wu L. Drug-induced AF: Arrhythmogenic Mechanisms and Management Strategies. Arrhythm Electrophysiol Rev 2024; 13:e06. [PMID: 38706787 PMCID: PMC11066853 DOI: 10.15420/aer.2023.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/12/2024] [Indexed: 05/07/2024] Open
Abstract
AF is a prevalent condition that is associated with various modifiable and unmodifiable risk factors. Drug-induced AF, despite being commonly under-recognised, can be relatively easy to manage. Numerous cardiovascular and non-cardiovascular agents, including catecholaminergic agents, adenosine, anti-tumour agents and others, have been reported to induce AF. However, the mechanisms underlying drug-induced AF are diverse and not fully understood. The complexity of clinical scenarios and insufficient knowledge regarding drug-induced AF have rendered the management of this condition complicated, and current treatment guidelines follow those for other types of AF. Here, we present a review of the epidemiology of drug-induced AF and highlight a range of drugs that can induce or exacerbate AF, along with their molecular and electrophysiological mechanisms. Given the inadequate evidence and lack of attention, further research is crucial to underscore the clinical significance of drug-induced AF, clarify the underlying mechanisms and develop effective treatment strategies for the condition.
Collapse
Affiliation(s)
- Bingxun Li
- Department of Cardiology, Peking University First HospitalBeijing, China
| | - Mingjie Lin
- Department of Cardiology, Qilu Hospital of Shandong University Qingdao BranchQingdao, China
| | - Lin Wu
- Department of Cardiology, Peking University First HospitalBeijing, China
- Key Laboratory of Medical Electrophysiology of the Ministry of Education and Institute of Cardiovascular Research, Southwest Medical UniversityLuzhou, China
- State Key Laboratory of Vascular Homeostasis and Remodeling, Peking UniversityBeijing, China
| |
Collapse
|
17
|
Shao W, Yao Y, Yang L, Li X, Ge T, Zheng Y, Zhu Q, Ge S, Gu X, Jia R, Song X, Zhuang A. Novel insights into TCR-T cell therapy in solid neoplasms: optimizing adoptive immunotherapy. Exp Hematol Oncol 2024; 13:37. [PMID: 38570883 PMCID: PMC10988985 DOI: 10.1186/s40164-024-00504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Adoptive immunotherapy in the T cell landscape exhibits efficacy in cancer treatment. Over the past few decades, genetically modified T cells, particularly chimeric antigen receptor T cells, have enabled remarkable strides in the treatment of hematological malignancies. Besides, extensive exploration of multiple antigens for the treatment of solid tumors has led to clinical interest in the potential of T cells expressing the engineered T cell receptor (TCR). TCR-T cells possess the capacity to recognize intracellular antigen families and maintain the intrinsic properties of TCRs in terms of affinity to target epitopes and signal transduction. Recent research has provided critical insight into their capability and therapeutic targets for multiple refractory solid tumors, but also exposes some challenges for durable efficacy. In this review, we describe the screening and identification of available tumor antigens, and the acquisition and optimization of TCRs for TCR-T cell therapy. Furthermore, we summarize the complete flow from laboratory to clinical applications of TCR-T cells. Last, we emerge future prospects for improving therapeutic efficacy in cancer world with combination therapies or TCR-T derived products. In conclusion, this review depicts our current understanding of TCR-T cell therapy in solid neoplasms, and provides new perspectives for expanding its clinical applications and improving therapeutic efficacy.
Collapse
Affiliation(s)
- Weihuan Shao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yiran Yao
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Ludi Yang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiaoran Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Tongxin Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Yue Zheng
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Qiuyi Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Shengfang Ge
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Xiang Gu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| | - Ai Zhuang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, 639 Zhi Zao Ju Road, Shanghai Ninth People's Hospital, Shanghai, 200011, People's Republic of China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
18
|
Nie S, Qin Y, Ou L, Chen X, Li L. In Situ Reprogramming of Immune Cells Using Synthetic Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310168. [PMID: 38229527 DOI: 10.1002/adma.202310168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/12/2024] [Indexed: 01/18/2024]
Abstract
In the past decade, adoptive cell therapy with chimeric antigen receptor-T (CAR-T) cells has revolutionized cancer treatment. However, the complexity and high costs involved in manufacturing current adoptive cell therapy greatly inhibit its widespread availability and access. To address this, in situ cell therapy, which directly reprograms immune cells inside the body, has recently been developed as a promising alternative. Here, an overview of the recent progress in the development of synthetic nanomaterials is provided to deliver plasmid DNA or mRNA for in situ reprogramming of T cells and macrophages, focusing especially on in situ CAR therapies. Also, the main challenges for in situ immune cell reprogramming are discussed and some approaches to overcome these barriers to fulfill the clinical applications are proposed.
Collapse
Affiliation(s)
- Shihong Nie
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuyang Qin
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Liyuan Ou
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Ling Li
- West China School of Public Health and West China Fourth Hospital, and State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
19
|
Çakmak R, Bektaş M. Individualized High Dose Intravenous Anakinra Treatment in Cancer Patients with COVID-19 Associated Cytokine Storm: A Retrospective Controlled Study. INFECTIOUS DISEASES & CLINICAL MICROBIOLOGY 2024; 6:32-43. [PMID: 38633444 PMCID: PMC11019726 DOI: 10.36519/idcm.2024.287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 02/14/2024] [Indexed: 04/19/2024]
Abstract
Objective Patients with COVID-19 accompanying cancer have been reported to have higher morbidity and mortality. In this study, we aimed to evaluate the high-dose high intravenous anakinra treatment response and outcome in patients with COVID-19-associated cytokine storm accompanying cancer. Materials and Methods This retrospective observational study was carried out at a tertiary referral center between September 01, 2021, and February 01, 2022, in Turkey. The study population consisted of two groups: patients receiving high-dose intravenous anakinra and patients treated with standard care. Results Data from 146 patients in the anakinra group and 114 patients in the control group were analyzed. Malignancy frequency was 11% (n=16) in the anakinra group and 7% (n=8) in the control group. In survival analysis, a significantly lower survival rate was observed in patients with malignancy than those without in the control group (log-rank: p=0.002) and patients with malignancy in the control group compared to the anakinra group (log-rank: p=0.013). However, it did not differ between patients with and without malignancy in the anakinra group (log-rank: p=0.9). Conclusion In the control group, mortality was higher in patients with malignancy compared to those without malignancy, but not in the anakinra group. Also, mortality was higher in patients receiving SoC compared to anakinra. Intravenous high-dose anakinra treatment is safe and effective in patients with COVID-19 accompanying cancer.
Collapse
Affiliation(s)
- Ramazan Çakmak
- Department of Internal Medicine, Division of Endocrinology and Metabolism, İstinye University School of Medicine, İstanbul, Türkiye
| | - Murat Bektaş
- Department of Internal Medicine, Division of Rheumatology, Aksaray Training and Research Hospital, Aksaray, Türkiye
- Department of Internal Medicine, Division of Rheumatology, İstanbul Aydın University School of Medicine, İstanbul, Türkiye
| |
Collapse
|
20
|
Esmaeilzadeh A, Hadiloo K, Jabbari M, Elahi R. Current progress of chimeric antigen receptor (CAR) T versus CAR NK cell for immunotherapy of solid tumors. Life Sci 2024; 337:122381. [PMID: 38145710 DOI: 10.1016/j.lfs.2023.122381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
Equipping cancer-fighting immune cells with chimeric antigen receptor (CAR) has gained immense attention for cancer treatment. CAR-engineered T cells (CAR T cells) are the first immune-engineered cells that have achieved brilliant results in anti-cancer therapy. Despite promising anti-cancer features, CAR T cells could also cause fatal side effects and have shown inadequate efficacy in some studies. This has led to the introduction of other candidates for CAR transduction, e.g., Natural killer cells (NK cells). Regarding the better safety profile and anti-cancer properties, CAR-armored NK cells (CAR NK cells) could be a beneficial and suitable alternative to CAR T cells. Since introducing these two cells as anti-cancer structures, several studies have investigated their efficacy and safety, and most of them have focused on hematological malignancies. Solid tumors have unique properties that make them more resistant and less curable cancers than hematological malignancies. In this review article, we conduct a comprehensive review of the structure and properties of CAR NK and CAR T cells, compare the recent experience of immunotherapy with CAR T and CAR NK cells in various solid cancers, and overview current challenges and future solutions to battle solid cancers using CARNK cells.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran; Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Kaveh Hadiloo
- Student Research Committee, Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran; School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Marjan Jabbari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Reza Elahi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
21
|
Zhou Y, Li Y, Wang H, Sun H, Su J, Fan Y, Xing W, Fu J. Mesenchymal Stem Cells Target Gastric Cancer and Deliver Epirubicin via Tunneling Nanotubes for Enhanced Chemotherapy. Curr Stem Cell Res Ther 2024; 19:1402-1413. [PMID: 38173205 DOI: 10.2174/011574888x287102240101060146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND A reduced effective local concentration significantly contributes to the unsatisfactory therapeutic results of epirubicin in gastric cancer. Mesenchymal stem cells exhibit targeted chemotaxis towards solid tumors and form tunneling nanotubes with tumor cells, facilitating the delivery of various substances. This study demonstrates the novelty of mesenchymal stem cells in releasing epirubicin into gastric cancer cells through tunneling nanotubes. OBJECTIVE Epirubicin delivery to gastric cancer cells using mesenchymal stem cells. METHODS In vitro transwell migration assays, live cell tracking, and in vivo targeting assays were used to demonstrate the chemotaxis of mesenchymal stem cells towards gastric cancer. We verified the targeted chemotaxis of mesenchymal stem cells towards gastric cancer cells and the epirubicin loading ability using a high-content imaging system (Equipment type:Operetta CLS). Additionally, tunneling nanotube formation and the targeted release of epirubicin-loaded mesenchymal stem cells co-cultured with gastric cancer cells through mesenchymal stem cell-tunneling nanotubes into gastric cancer cells was observed using Operetta CLS. RESULTS Mesenchymal stem cells demonstrated targeted chemotaxis towards gastric cancer, with effective epirubicin loading and tolerance. Co-culturing induced tunneling nanotube formation between these cells. Epirubicin-loaded mesenchymal stem cells were released into gastric cancer cells through tunneling nanotubes, significantly increasing their non-viability compared to the negative control group (p < 0.05). CONCLUSIONS We identified a novel approach for precisely targeting epirubicin release in gastric cancer cells. Therefore, mesenchymal stem cell-tunneling nanotubes could serve as a potential tool for targeted delivery of drugs, enhancing their chemotherapeutic effects in cancer cells.
Collapse
Affiliation(s)
- Yali Zhou
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yumin Li
- Key Laboratory of Digestive System Tumors, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Haibin Wang
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Haolin Sun
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Jing Su
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Yaqiong Fan
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Wei Xing
- Cuiying Biomedical Research Center, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| | - Jie Fu
- Department of General Surgery, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China
| |
Collapse
|
22
|
Liu Y, Peng C, Ahad F, Ali Zaidi SA, Muluh TA, Fu Q. Advanced Strategies of CAR-T Cell Therapy in Solid Tumors and Hematological Malignancies. Recent Pat Anticancer Drug Discov 2024; 19:557-572. [PMID: 38213150 DOI: 10.2174/0115748928277331231218115402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/10/2023] [Indexed: 01/13/2024]
Abstract
Chimeric antigen receptor T-cells, known as CAR-T cells, represent a promising breakthrough in the realm of adoptive cell therapy. These T-cells are genetically engineered to carry chimeric antigen receptors that specifically target tumors. They have achieved notable success in the treatment of blood-related cancers, breathing new life into this field of medical research. However, numerous obstacles limit chimeric antigen receptors T-cell therapy's efficacy, such as it cannot survive in the body long. It is prone to fatigue and exhaustion, leading to difficult tumor elimination and repeated recurrence, affecting solid tumors and hematological malignancies. The challenges posed by solid tumors, especially in the context of the complex solid-tumor microenvironment, require specific strategies. This review outlines recent advancements in improving chimeric antigen receptors T-cell therapy by focusing on the chimeric antigen receptors protein, modifying T-cells, and optimizing the interaction between T-cells and other components within the tumor microenvironment. This article aims to provide an extensive summary of the latest discoveries regarding CAR-T cell therapy, encompassing its application across various types of human cancers. Moreover, it will delve into the obstacles that have emerged in recent times, offering insights into the challenges faced by this innovative approach. Finally, it highlights novel therapeutic options in treating hematological and solid malignancies with chimeric antigen receptors T-cell therapies.
Collapse
Affiliation(s)
- Yangjie Liu
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan, PRC China
| | - Cao Peng
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan PRC China
| | - Faiza Ahad
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Syed Aqib Ali Zaidi
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Tobias Achu Muluh
- Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
| | - Qiuxia Fu
- Department of Pharmacy, Luzhou People's Hospital, Luzhou 646000, Sichuan PRC China
| |
Collapse
|
23
|
Yang X, Ren H, Li Z, Peng X, Fu J. Combinations of radiotherapy with immunotherapy in nasopharyngeal carcinoma. Int Immunopharmacol 2023; 125:111094. [PMID: 37871379 DOI: 10.1016/j.intimp.2023.111094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND The treatment of nasopharyngeal carcinoma (NPC) is currently based on concurrent chemoradiotherapy. The prognosis of early NPC is better, while the prognosis of advanced NPC is poor. Immunotherapy is becoming increasingly commonly employed in clinical practice as a new strategy for treating malignant tumors. It has shown promising results in the treatment of certain malignant tumors, making it a current clinical research hotspot. METHODS This review summarizes the current immunotherapy on NPC, highlighting the application of immunotherapy and radiotherapy in the treatment of NPC. RESULTS X-rays can either increase or suppress anti-tumor immune responses through various pathways and mechanisms. Immune checkpoint inhibitors can usually enhance X-ray-induced anti-tumor immune responses. Detecting the immune checkpoint markers and tumor mutation markers, and the functional status of effector cells in patients can aid in the development of individualized treatment that improves the treatment efficacy with reducing drug resistance and adverse reactions. The development of a multivalent vaccine for NPC will help improve the efficacy of the vaccine. Combining techniques that increase the tumor antigens release, such as radiotherapy and oncolytic virus vaccines, may enhance the ability of the immune response. CONCLUSIONS To shed further light on the application of immunotherapy in NPC, large pooled studies must accumulate sufficient cases with detailed exposure data.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hanru Ren
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University, Pudong Medical Center, Shanghai, China
| | - Zhen Li
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xue Peng
- Department of Breast Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Fu
- Department of Radiation Oncology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
24
|
Ba D, Li H, Liu R, Zhang P, Tang Y. Exploratory study on the efficacy of bortezomib combining mitoxantrone or CD22-CAR T therapy targeting CD19-negative relapse after CD19-CAR T cell therapy with a simpler cell-line-based model. Apoptosis 2023; 28:1534-1545. [PMID: 37243774 DOI: 10.1007/s10495-023-01853-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/29/2023]
Abstract
Target-negative relapse after CD19 chimeric antigen receptor engineered (CAR) T cell therapy for patients with B lineage acute lymphoblastic leukemia (B-ALL) presents limited treatment options with dismal outcomes. Although CD22-CAR T cells mediate similarly potent antineoplastic effects in patients with CD19dim or even CD19-negative relapse following CD19-directed immunotherapy, a high rate of relapse associated with diminished CD22 cell surface expression has also been observed. Therefore, it is unclear whether any other therapeutic options are available. Mitoxantrone has shown significant antineoplastic activity in patients with relapsed or refractory leukemia over the past decades, and in some cases, the addition of bortezomib to conventional chemotherapeutic agents has demonstrated improved response rates. However, whether this mitoxantrone and bortezomib combination therapy is effective for those patients who have relapsed B-ALL after receiving CD19-CAR T cell therapy remains to be elucidated. In this study, we established a cellular model system using a CD19-positive B-ALL cell line Nalm-6 to investigate the treatment options for CD19-negative relapsed B-ALL after CD19-CAR T cell therapy. In addition to CD22-CAR T therapy, we observed that the combination of bortezomib and mitoxantrone exhibited effective anti-leukemia activity in the CD19-negative Nalm-6 cell line by downregulating p-AKT and p-mTOR. These results suggest that this combination therapy is a possible option for target-negative refractory leukemia cells after CAR-T cell treatment.
Collapse
Affiliation(s)
- Diandian Ba
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Hongzhe Li
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Rongrong Liu
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Ping Zhang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China
| | - Yongmin Tang
- Department/Center of Hematology-oncology, Pediatric Leukemia Diagnostic and Therapeutic Technology Research Center of Zhejiang Province, Children's Hospital of Zhejiang University School of Medicine, National Clinical Research Center for Child Health, #57 Zhuganxiang Road, Yan-an Street, Hangzhou, 310003, PR China.
| |
Collapse
|
25
|
Wu Z, Yu X, Zhang S, He Y, Guo W. Novel roles of PIWI proteins and PIWI-interacting RNAs in human health and diseases. Cell Commun Signal 2023; 21:343. [PMID: 38031146 PMCID: PMC10685540 DOI: 10.1186/s12964-023-01368-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023] Open
Abstract
Non-coding RNA has aroused great research interest recently, they play a wide range of biological functions, such as regulating cell cycle, cell proliferation, and intracellular substance metabolism. Piwi-interacting RNAs (piRNAs) are emerging small non-coding RNAs that are 24-31 nucleotides in length. Previous studies on piRNAs were mainly limited to evaluating the binding to the PIWI protein family to play the biological role. However, recent studies have shed more lights on piRNA functions; aberrant piRNAs play unique roles in many human diseases, including diverse lethal cancers. Therefore, understanding the mechanism of piRNAs expression and the specific functional roles of piRNAs in human diseases is crucial for developing its clinical applications. Presently, research on piRNAs mainly focuses on their cancer-specific functions but lacks investigation of their expressions and epigenetic modifications. This review discusses piRNA's biogenesis and functional roles and the recent progress of functions of piRNA/PIWI protein complexes in human diseases. Video Abstract.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Shuijun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, 450052, China.
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, 450052, China.
| |
Collapse
|
26
|
Wang C, Wang J, Che S, Zhao H. CAR-T cell therapy for hematological malignancies: History, status and promise. Heliyon 2023; 9:e21776. [PMID: 38027932 PMCID: PMC10658259 DOI: 10.1016/j.heliyon.2023.e21776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
For many years, the methods of cancer treatment are usually surgery, chemotherapy and radiation therapy. Although these methods help to improve the condition, most tumors still have a poor prognosis. In recent years, immunotherapy has great potential in tumor treatment. Chimeric antigen receptor T-cell immunotherapy (CAR-T) uses the patient's own T cells to express chimeric antigen receptors. Chimeric antigen receptor (CAR) recognizes tumor-associated antigens and kills tumor cells. CAR-T has achieved good results in the treatment of hematological tumors. In 2017, the FDA approved the first CAR-T for the treatment of B-cell acute lymphoblastic leukemia (ALL). In October of the same year, the FDA approved CAR-T to treat B-cell lymphoma. In order to improve and enhance the therapeutic effect, CAR-T has become a research focus in recent years. The structure of CAR, the targets of CAR-T treatment, adverse reactions and improvement measures during the treatment process are summarized. This review is an attempt to highlight recent and possibly forgotten findings of advances in chimeric antigen receptor T cell for treatment of hematological tumors.
Collapse
Affiliation(s)
- Chao Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Jianpeng Wang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Shusheng Che
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, Shandong, 266005, China
| |
Collapse
|
27
|
Wang Y, Yan Q, Fan C, Mo Y, Wang Y, Li X, Liao Q, Guo C, Li G, Zeng Z, Xiong W, Huang H. Overview and countermeasures of cancer burden in China. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2515-2526. [PMID: 37071289 PMCID: PMC10111086 DOI: 10.1007/s11427-022-2240-6] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/03/2022] [Indexed: 04/19/2023]
Abstract
Cancer is one of the leading causes of human death worldwide. Treatment of cancer exhausts significant medical resources, and the morbidity and mortality caused by cancer is a huge social burden. Cancer has therefore become a serious economic and social problem shared globally. As an increasingly prevalent disease in China, cancer is a huge challenge for the country's healthcare system. Based on recent data published in the Journal of the National Cancer Center on cancer incidence and mortality in China in 2016, we analyzed the current trends in cancer incidence and changes in cancer mortality and survival rate in China. And also, we examined several key risk factors for cancer pathogenesis and discussed potential countermeasures for cancer prevention and treatment in China.
Collapse
Affiliation(s)
- Yian Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qijia Yan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Chunmei Fan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Guiyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China.
| | - He Huang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China.
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Disease Genome Research Center, The Third Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
28
|
Guo C, Kong L, Xiao L, Liu K, Cui H, Xin Q, Gu X, Jiang C, Wu J. The impact of the gut microbiome on tumor immunotherapy: from mechanism to application strategies. Cell Biosci 2023; 13:188. [PMID: 37828613 PMCID: PMC10571290 DOI: 10.1186/s13578-023-01135-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Immunotherapy is one of the fastest developing areas in the field of oncology. Many immunological treatment strategies for refractory tumors have been approved and marketed. Nevertheless, much clinical and preclinical experimental evidence has shown that the efficacy of immunotherapy in tumor treatment varies markedly among individuals. The commensal microbiome mainly colonizes the intestinal lumen in humans, is affected by a variety of factors and exhibits individual variation. Moreover, the gut is considered the largest immune organ of the body due to its influence on the immune system. In the last few decades, with the development of next-generation sequencing (NGS) techniques and in-depth research, the view that the gut microbiota intervenes in antitumor immunotherapy through the immune system has been gradually confirmed. Here, we review important studies published in recent years focusing on the influences of microbiota on immune system and the progression of malignancy. Furthermore, we discuss the mechanism by which microbiota affect tumor immunotherapy, including immune checkpoint blockade (ICB) and adoptive T-cell therapy (ACT), and strategies for modulating the microbial composition to facilitate the antitumor immune response. Finally, opportunity and some challenges are mentioned to enable a more systematic understanding of tumor treatment in the future and promote basic research and clinical application in related fields.
Collapse
Affiliation(s)
- Ciliang Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingkai Kong
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Lingjun Xiao
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Kua Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Huawei Cui
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
| | - Qilei Xin
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Xiaosong Gu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China
| | - Chunping Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| | - Junhua Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, National Institute of Healthcare Data Science at Nanjing University, Nanjing University, 22 Hankou Road, Nanjing, 210093, Jiangsu, China.
- Jinan Microecological Biomedicine Shandong Laboratory, Shounuo City Light West Block, Qingdao Road 3716#, Huaiyin District, Jinan, Shandong, China.
| |
Collapse
|
29
|
Lin Y, Raje NS, Berdeja JG, Siegel DS, Jagannath S, Madduri D, Liedtke M, Rosenblatt J, Maus MV, Massaro M, Petrocca F, Yeri A, Finney O, Caia A, Yang Z, Martin N, Campbell TB, Rytlewski J, Fuller J, Hege K, Munshi NC, Kochenderfer JN. Idecabtagene vicleucel for relapsed and refractory multiple myeloma: post hoc 18-month follow-up of a phase 1 trial. Nat Med 2023; 29:2286-2294. [PMID: 37592106 PMCID: PMC10504071 DOI: 10.1038/s41591-023-02496-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 07/11/2023] [Indexed: 08/19/2023]
Abstract
Idecabtagene vicleucel (ide-cel) is a B-cell-maturation antigen (BCMA)-directed chimeric antigen receptor T cell therapy. We performed a post hoc analysis of a single-arm phase 1 multicenter study in relapsed/refractory multiple myeloma (CRB-401) (n = 62; median follow-up, 18.1 months). The primary endpoint was safety outcomes, and secondary endpoints included overall response rate (ORR), complete response (CR) and very good partial response (VGPR). The study met its primary endpoint with low rates of grade 3/grade 4 cytokine release syndrome (6.5%) and neurotoxicity (1.6%). ORR was 75.8%; 64.5% achieved VGPR or better and 38.7% achieved CR or stringent CR. Among exploratory endpoints, median duration of response, progression-free survival (PFS) and overall survival were 10.3, 8.8 and 34.2 months, respectively, and ide-cel expansion in blood and bone marrow correlated with clinical efficacy and postinfusion reduction of soluble BCMA. Patients with PFS ≥ 18 months had more naive and less exhausted T cells in apheresis material and improved functional T cell phenotype in the drug product compared with those with less durable responses. These results confirm ide-cel safety, tolerability and efficacy and describe T cell qualities that correlate with durable response. Clinicaltrials.gov identifier : NCT02658929 .
Collapse
Affiliation(s)
- Yi Lin
- Mayo Clinic, Rochester, MN, USA.
| | - Noopur S Raje
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | - Jesús G Berdeja
- Sarah Cannon Research Institute and Tennessee Oncology, Nashville, TN, USA
| | - David S Siegel
- Hackensack University Medical Center, Hackensack, NJ, USA
| | | | | | | | | | - Marcela V Maus
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - James N Kochenderfer
- Surgery Branch, National Cancer Institute/National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
30
|
Guarra F, Colombo G. Computational Methods in Immunology and Vaccinology: Design and Development of Antibodies and Immunogens. J Chem Theory Comput 2023; 19:5315-5333. [PMID: 37527403 PMCID: PMC10448727 DOI: 10.1021/acs.jctc.3c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Indexed: 08/03/2023]
Abstract
The design of new biomolecules able to harness immune mechanisms for the treatment of diseases is a prime challenge for computational and simulative approaches. For instance, in recent years, antibodies have emerged as an important class of therapeutics against a spectrum of pathologies. In cancer, immune-inspired approaches are witnessing a surge thanks to a better understanding of tumor-associated antigens and the mechanisms of their engagement or evasion from the human immune system. Here, we provide a summary of the main state-of-the-art computational approaches that are used to design antibodies and antigens, and in parallel, we review key methodologies for epitope identification for both B- and T-cell mediated responses. A special focus is devoted to the description of structure- and physics-based models, privileged over purely sequence-based approaches. We discuss the implications of novel methods in engineering biomolecules with tailored immunological properties for possible therapeutic uses. Finally, we highlight the extraordinary challenges and opportunities presented by the possible integration of structure- and physics-based methods with emerging Artificial Intelligence technologies for the prediction and design of novel antigens, epitopes, and antibodies.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry, University
of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Giorgio Colombo
- Department of Chemistry, University
of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
31
|
Tang L, Huang Z, Mei H, Hu Y. Immunotherapy in hematologic malignancies: achievements, challenges and future prospects. Signal Transduct Target Ther 2023; 8:306. [PMID: 37591844 PMCID: PMC10435569 DOI: 10.1038/s41392-023-01521-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 08/19/2023] Open
Abstract
The immune-cell origin of hematologic malignancies provides a unique avenue for the understanding of both the mechanisms of immune responsiveness and immune escape, which has accelerated the progress of immunotherapy. Several categories of immunotherapies have been developed and are being further evaluated in clinical trials for the treatment of blood cancers, including stem cell transplantation, immune checkpoint inhibitors, antigen-targeted antibodies, antibody-drug conjugates, tumor vaccines, and adoptive cell therapies. These immunotherapies have shown the potential to induce long-term remission in refractory or relapsed patients and have led to a paradigm shift in cancer treatment with great clinical success. Different immunotherapeutic approaches have their advantages but also shortcomings that need to be addressed. To provide clinicians with timely information on these revolutionary therapeutic approaches, the comprehensive review provides historical perspectives on the applications and clinical considerations of the immunotherapy. Here, we first outline the recent advances that have been made in the understanding of the various categories of immunotherapies in the treatment of hematologic malignancies. We further discuss the specific mechanisms of action, summarize the clinical trials and outcomes of immunotherapies in hematologic malignancies, as well as the adverse effects and toxicity management and then provide novel insights into challenges and future directions.
Collapse
Affiliation(s)
- Lu Tang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Zhongpei Huang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
- Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, 430022, Wuhan, China.
- Key Laboratory of Biological Targeted Therapy, the Ministry of Education, 430022, Wuhan, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430022, Wuhan, China.
| |
Collapse
|
32
|
He M, Zhang D, Cao Y, Chi C, Zeng Z, Yang X, Yang G, Sharma K, Hu K, Enikeev M. Chimeric antigen receptor-modified T cells therapy in prostate cancer: A comprehensive review on the current state and prospects. Heliyon 2023; 9:e19147. [DOI: https:/doi.org/10.1016/j.heliyon.2023.e19147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024] Open
|
33
|
He M, Zhang D, Cao Y, Chi C, Zeng Z, Yang X, Yang G, Sharma K, Hu K, Enikeev M. Chimeric antigen receptor-modified T cells therapy in prostate cancer: A comprehensive review on the current state and prospects. Heliyon 2023; 9:e19147. [PMID: 37664750 PMCID: PMC10469587 DOI: 10.1016/j.heliyon.2023.e19147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/31/2023] [Accepted: 08/14/2023] [Indexed: 09/05/2023] Open
Abstract
Recent immunotherapy research has focused on chimeric antigen receptor-modified T cells (CAR-Ts). CAR-T therapies have been clinically applied to manage hematologic malignancies with satisfactory effectiveness. However, the application of CAR-T immunotherapy in solid tumors remains challenging. Even so, current CAR-T immunotherapies for prostate cancer (PCa) have shown some promise, giving hope to patients with advanced metastatic PCa. This review aimed to elucidate different types of prostate tumor-associated antigen targets, such as prostate-specific membrane antigen and prostate stem cell antigen, and their effects. The current status of the corresponding targets in clinical research through their applications was also discussed. To improve the efficacy of CAR-T immunotherapy, we addressed the possible applications of multimodal immunotherapy, chemotherapy, and CAR-T combined therapies. The obstacles of solid tumors were concisely elaborated. Further studies should aim to discover novel potential targets and establish new models by overcoming the inherent barriers of solid tumors, such as tumor heterogeneity and the immunosuppressive nature of the tumor microenvironment.
Collapse
Affiliation(s)
- Mingze He
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Dongqi Zhang
- Department of Urology, The First Hospital of Jilin University (Lequn Branch), 130000, Changchun, China
| | - Yu Cao
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Changliang Chi
- Department of Urology, The First Hospital of Jilin University (Lequn Branch), 130000, Changchun, China
| | - Zitong Zeng
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Xinyi Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Guodong Yang
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Kritika Sharma
- I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991, Moscow, Russia
| | - Kebang Hu
- Department of Urology, The First Hospital of Jilin University (Lequn Branch), 130000, Changchun, China
| | - Mikhail Enikeev
- Institute for Urology and Reproductive Health, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| |
Collapse
|
34
|
Xia Y, Sun T, Li G, Li M, Wang D, Su X, Ye J, Ji C. Spatial single cell analysis of tumor microenvironment remodeling pattern in primary central nervous system lymphoma. Leukemia 2023; 37:1499-1510. [PMID: 37120690 PMCID: PMC10317840 DOI: 10.1038/s41375-023-01908-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/01/2023]
Abstract
To determine the overall tumor microenvironment (TME), characteristics, and transition mechanisms in primary central nervous system lymphoma (PCNSL), we performed spatial transcriptomics and matched the corresponding single-cell sequencing data of PCNSL patients. We found that tumor cells may achieve a "TME remodeling pattern" through an "immune pressure-sensing model", in which they could choose to reshape the TME into a barrier environment or a cold environment according to the immune pressure. A key FKBP5+ tumor subgroup was found to be responsible for pushing tumors into the barrier environment, which provides a possible way to evaluate the stage of PCNSL. The specific mechanism of the TME remodeling pattern and the key molecules of the immune pressure-sensing model were identified through the spatial communication analysis. Finally, we discovered the spatial and temporal distributions and variation characteristics of immune checkpoint molecules and CAR-T target molecules in immunotherapy. These data clarified the TME remodeling pattern of PCNSL, provided a reference for its immunotherapy, and provided suggestions for the TME remodeling mechanism of other cancers.
Collapse
Affiliation(s)
- Yuan Xia
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Tao Sun
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Guosheng Li
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Mingying Li
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Dongmei Wang
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiuhua Su
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Jingjing Ye
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| | - Chunyan Ji
- Department of Hematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
- Shandong Key Laboratory of Immunohematology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China.
| |
Collapse
|
35
|
Mulgaonkar A, Udayakumar D, Yang Y, Harris S, Öz OK, Ramakrishnan Geethakumari P, Sun X. Current and potential roles of immuno-PET/-SPECT in CAR T-cell therapy. Front Med (Lausanne) 2023; 10:1199146. [PMID: 37441689 PMCID: PMC10333708 DOI: 10.3389/fmed.2023.1199146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapies have evolved as breakthrough treatment options for the management of hematological malignancies and are also being developed as therapeutics for solid tumors. However, despite the impressive patient responses from CD19-directed CAR T-cell therapies, ~ 40%-60% of these patients' cancers eventually relapse, with variable prognosis. Such relapses may occur due to a combination of molecular resistance mechanisms, including antigen loss or mutations, T-cell exhaustion, and progression of the immunosuppressive tumor microenvironment. This class of therapeutics is also associated with certain unique toxicities, such as cytokine release syndrome, immune effector cell-associated neurotoxicity syndrome, and other "on-target, off-tumor" toxicities, as well as anaphylactic effects. Furthermore, manufacturing limitations and challenges associated with solid tumor infiltration have delayed extensive applications. The molecular imaging modalities of immunological positron emission tomography and single-photon emission computed tomography (immuno-PET/-SPECT) offer a target-specific and highly sensitive, quantitative, non-invasive platform for longitudinal detection of dynamic variations in target antigen expression in the body. Leveraging these imaging strategies as guidance tools for use with CAR T-cell therapies may enable the timely identification of resistance mechanisms and/or toxic events when they occur, permitting effective therapeutic interventions. In addition, the utilization of these approaches in tracking the CAR T-cell pharmacokinetics during product development and optimization may help to assess their efficacy and accordingly to predict treatment outcomes. In this review, we focus on current challenges and potential opportunities in the application of immuno-PET/-SPECT imaging strategies to address the challenges encountered with CAR T-cell therapies.
Collapse
Affiliation(s)
- Aditi Mulgaonkar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Durga Udayakumar
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Yaxing Yang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Shelby Harris
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Praveen Ramakrishnan Geethakumari
- Section of Hematologic Malignancies/Transplant and Cell Therapy, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
36
|
Li YR, Dunn ZS, Yu Y, Li M, Wang P, Yang L. Advancing cell-based cancer immunotherapy through stem cell engineering. Cell Stem Cell 2023; 30:592-610. [PMID: 36948187 PMCID: PMC10164150 DOI: 10.1016/j.stem.2023.02.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 01/04/2023] [Accepted: 02/22/2023] [Indexed: 03/24/2023]
Abstract
Advances in cell-based therapy, particularly CAR-T cell therapy, have transformed the treatment of hematological malignancies. Although an important step forward for the field, autologous CAR-T therapies are hindered by high costs, manufacturing challenges, and limited efficacy against solid tumors. With ongoing progress in gene editing and culture techniques, engineered stem cells and their application in cell therapy are poised to address some of these challenges. Here, we review stem cell-based immunotherapy approaches, stem cell sources, gene engineering and manufacturing strategies, therapeutic platforms, and clinical trials, as well as challenges and future directions for the field.
Collapse
Affiliation(s)
- Yan-Ruide Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zachary Spencer Dunn
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Yanqi Yu
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Miao Li
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Pin Wang
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA; Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Lili Yang
- Department of Microbiology, Immunology & Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
37
|
Luo YZ, Zhu H. Immunotherapy for advanced or recurrent hepatocellular carcinoma. World J Gastrointest Oncol 2023; 15:405-424. [PMID: 37009314 PMCID: PMC10052663 DOI: 10.4251/wjgo.v15.i3.405] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 02/11/2023] [Accepted: 02/28/2023] [Indexed: 03/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is associated with high morbidity and mortality, and is prone to intra- and extrahepatic metastasis due to the anatomical and functional characteristics of the liver. Due to the complexity and high relapse rate associated with radical surgery or radiofrequency ablation, immune checkpoint inhibitors (ICIs) are increasingly being used to treat HCC. Several immunotherapeutic agents, along with their combinations, have been clinically approved to treat advanced or recurrent HCC. This review discusses the leading ICIs in practice and those currently undergoing randomized phase 1–3 trials as monotherapy or combination therapy. Furthermore, we summarize the rapidly developing alternative strategies such as chimeric antigen receptor-engineered T cell therapy and tumor vaccines. Combination therapy is a promising potential treatment option. These immunotherapies are also summarized in this review, which provides insights into the advantages, limitations, and novel angles for future research in establishing viable and alternative therapies against HCC.
Collapse
Affiliation(s)
- Ying-Zhe Luo
- Department of Medical Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610075, Sichuan Province, China
| | - Hong Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
38
|
Wang J, Wang Y, Pan H, Zhao L, Yang X, Liang Z, Shen X, Zhang J, Yang J, Zhu Y, Xun J, Liang Y, Lin Q, Liang H, Li M, Zhu H. Chemokine Receptors CCR6 and PD1 Blocking scFv E27 Enhances Anti-EGFR CAR-T Therapeutic Efficacy in a Preclinical Model of Human Non-Small Cell Lung Carcinoma. Int J Mol Sci 2023; 24:ijms24065424. [PMID: 36982500 PMCID: PMC10056525 DOI: 10.3390/ijms24065424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells, a therapeutic agent for solid tumors, are not completely effective due to a lack of infiltration of T cells into the tumor site and immunity caused by Programmed Death Receptor 1(PD1). Here, an epidermal growth factor receptor (EGFR) CAR-T cell was engineered to express the chemokine receptor CCR6 and secrete PD1 blocking Single-chain antibody fragment (scFv) E27 to enhance their anti-tumor effects. The findings showed that CCR6 enhanced the migration of EGFR CAR-E27-CCR6 T cells in vitro by the Transwell migration assay. When incubated with tumor cells, EGFR CAR-E27-CCR6 T cells specifically exerted potent cytotoxicity and produced high levels of pro-inflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-2 (IL-2), and interferon-γ (IFN-γ). A non-small cell lung carcinoma (NSCLC) cell line-derived xenograft model was constructed by implanting modified A549 cell lines into immunodeficient NOD.PrkdcscidIl2rgem1/Smoc (NSG) mice. In comparison with traditional EGFR CAR-T cells, live imaging indicated that EGFR CAR-E27-CCR6 T cells displayed superior anti-tumor function. In addition, the histopathological examination of mouse organs showed no obvious organic damage. Our findings confirmed that PD1 blocking and CCR6 can enhance the anti-tumor function of EGFR CAR-T cells in an NSCLC xenograft model, providing an effective treatment strategy to improve the efficacy of CAR-T in NSCLC.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Yanan Wang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Hanyu Pan
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Lin Zhao
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Xinyi Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Zhiming Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Xiaoting Shen
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Jing Zhang
- School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Jinlong Yang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Yuqi Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Jingna Xun
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Yue Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Qinru Lin
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Huitong Liang
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Min Li
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
| | - Huanzhang Zhu
- State Key Laboratory of Genetic Engineering and Engineering Research Center of Gene Technology, Ministry of Education, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200082, China
- Correspondence: ; Tel./Fax: +86-021-31246728
| |
Collapse
|
39
|
LaBelle CA, Zhang RJ, Hunsucker SA, Armistead PM, Allbritton NL. Microraft arrays for serial-killer CD19 chimeric antigen receptor T cells and single cell isolation. Cytometry A 2023; 103:208-220. [PMID: 35899783 PMCID: PMC9883594 DOI: 10.1002/cyto.a.24678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/30/2022] [Accepted: 07/21/2022] [Indexed: 01/31/2023]
Abstract
Chimeric antigen receptor T (CAR-T) cell immunotherapies have seen success in treating hematological malignancies in recent years; however, the results can be highly variable. Single cell heterogeneity plays a key role in the variable efficacy of CAR-T cell treatments yet is largely unexplored. A major challenge is to understand the killing behavior and phenotype of individual CAR-T cells, which are able to serially kill targets. Thus, a platform capable of measuring time-dependent CAR-T cell mediated killing and then isolating single cells for downstream assays would be invaluable in characterizing CAR-T cells. An automated microraft array platform was designed to track CD19 CAR-T cell killing of CD19+ target cells and CAR-T cell motility over time followed by CAR-T cell collection based on killing behavior. The platform demonstrated automated CAR-T cell counting with up to 98% specificity and 96% sensitivity, and single cells were isolated with 89% efficiency. On average, 2.3% of single CAR-T cells were shown to participate in serial-killing of target cells, killing a maximum of three target cells in a 6 h period. The cytotoxicity and motility of >7000 individual CAR-T cells was tracked across four microraft arrays. The automated microraft array platform measured temporal cell-mediated cytotoxicity, CAR-T cell motility, CAR-T cell death, and CAR-T cell to target cell distances, followed by the capability to sort any desired CAR-T cell. The pipeline has the potential to further our understanding of T cell-based cancer immunotherapies and improve cell-therapy products for better patient outcomes.
Collapse
Affiliation(s)
- Cody A. LaBelle
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC, and North Carolina State University, Raleigh, NC
- Department of Bioengineering, University of Washington, Seattle, WA
| | - Raymond J. Zhang
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Sally A. Hunsucker
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
| | - Paul M. Armistead
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC
- Department of Medicine, Division of Hematology, University of North Carolina, Chapel Hill, NC
| | | |
Collapse
|
40
|
Watanabe Y, Tsukahara T, Murata K, Hamada S, Kubo T, Kanaseki T, Hirohashi Y, Emori M, Teramoto A, Nakatsugawa M, Yamashita T, Torigoe T. Development of CAR-T cells specifically targeting cancer stem cell antigen DNAJB8 against solid tumours. Br J Cancer 2023; 128:886-895. [PMID: 36526673 PMCID: PMC9977765 DOI: 10.1038/s41416-022-02100-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND As therapy for solid tumours, various tumour antigens have been selected as targets, but CAR-T cells targeting these antigens have shown limited efficacy, in contrast to the effectiveness of CAR-T cells targeting haematological malignancies. In a previous report, we identified a cancer-testis antigen, DNAJB8. DNAJB8 plays a major role in tumorigenicity in cancer stem-like cells/cancer-initiating cells (CSCs/CICs). Here, we report a DNAJB8-reactive CAR yielding anti-tumour effects against renal cell carcinoma (RCC) and osteosarcoma. METHODS We constructed a second-generation chimeric antigen receptor (CAR) against HLA-A*24:02/DNAJB8-derived peptide (DNAJB_143) complex (B10 CAR). The reactivity of B10-CAR T cells against T2-A24 cells pulsed with the cognate peptide and an RCC and osteosarcoma cell lines were quantified. The effects of adoptive cell transfer (ACT) therapy were assessed using in vivo xenografted mice models. RESULTS B10 CAR-T cells recognised DNAJB8_143-pulsed T2-A24 cells and HLA-A*24:02(+)/DNAJB8(+) renal cell carcinoma and osteosarcoma cell lines. Moreover, ACT using B10 CAR-T cells showed anti-tumour effects against RCC and osteosarcoma cells. CONCLUSION B10 CAR-T cells could show specific cytotoxicity against RCC and osteosarcoma cells in vitro and in vivo. B10 CAR-T cells targeting the CSC/CIC antigen DNAJB8 might be a candidate immunotherapy for carcinoma and sarcoma.
Collapse
Affiliation(s)
- Yuto Watanabe
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan.
| | - Kenji Murata
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Shuto Hamada
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| | - Makoto Emori
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Atsushi Teramoto
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Munehide Nakatsugawa
- Department of Diagnostic Pathology, Tokyo Medical University Hachioji Medical Center, 1163 Tatemachi, Hachioji, Tokyo, 193-0998, Japan
| | - Toshihiko Yamashita
- Department of Orthopedic Surgery, Sapporo Medical University School of Medicine, South-1, West-16, Chuo-ku, Sapporo, Hokkaido, 060-8543, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University, School of Medicine, South-1, West-17, Chuo-ku, Sapporo, Hokkaido, 060-8556, Japan
| |
Collapse
|
41
|
Baulu E, Gardet C, Chuvin N, Depil S. TCR-engineered T cell therapy in solid tumors: State of the art and perspectives. SCIENCE ADVANCES 2023; 9:eadf3700. [PMID: 36791198 PMCID: PMC9931212 DOI: 10.1126/sciadv.adf3700] [Citation(s) in RCA: 150] [Impact Index Per Article: 75.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/06/2023] [Indexed: 05/25/2023]
Abstract
T cell engineering has changed the landscape of cancer immunotherapy. Chimeric antigen receptor T cells have demonstrated a remarkable efficacy in the treatment of B cell malignancies in hematology. However, their clinical impact on solid tumors has been modest so far. T cells expressing an engineered T cell receptor (TCR-T cells) represent a promising therapeutic alternative. The target repertoire is not limited to membrane proteins, and intrinsic features of TCRs such as high antigen sensitivity and near-to-physiological signaling may improve tumor cell detection and killing while improving T cell persistence. In this review, we present the clinical results obtained with TCR-T cells targeting different tumor antigen families. We detail the different methods that have been developed to identify and optimize a TCR candidate. We also discuss the challenges of TCR-T cell therapies, including toxicity assessment and resistance mechanisms. Last, we share some perspectives and highlight future directions in the field.
Collapse
Affiliation(s)
- Estelle Baulu
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
- ErVaccine Technologies, Lyon, France
| | - Célia Gardet
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | | | - Stéphane Depil
- Centre de Recherche en Cancérologie de Lyon, Lyon, France
- ErVaccine Technologies, Lyon, France
- Centre Léon Bérard, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
42
|
Miyahira AK, Hawley JE, Adelaiye-Ogala R, Calais J, Nappi L, Parikh R, Seibert TM, Wasmuth EV, Wei XX, Pienta KJ, Soule HR. Exploring new frontiers in prostate cancer research: Report from the 2022 Coffey-Holden prostate cancer academy meeting. Prostate 2023; 83:207-226. [PMID: 36443902 DOI: 10.1002/pros.24461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION The 2022 Coffey-Holden Prostate Cancer Academy (CHPCA) Meeting, "Exploring New Frontiers in Prostate Cancer Research," was held from June 23 to 26, 2022, at the University of California, Los Angeles, Luskin Conference Center, in Los Angeles, CA. METHODS The CHPCA Meeting is an annual discussion-oriented scientific conference organized by the Prostate Cancer Foundation, that focuses on emerging and next-step topics deemed critical for making the next major advances in prostate cancer research and clinical care. The 2022 CHPCA Meeting included 35 talks over 10 sessions and was attended by 73 academic investigators. RESULTS Major topic areas discussed at the meeting included: prostate cancer diversity and disparities, the impact of social determinants on research and patient outcomes, leveraging real-world and retrospective data, development of artificial intelligence biomarkers, androgen receptor (AR) signaling biology and new strategies for targeting AR, features of homologous recombination deficient prostate cancer, and future directions in immunotherapy and nuclear theranostics. DISCUSSION This article summarizes the scientific presentations from the 2022 CHPCA Meeting, with the goal that dissemination of this knowledge will contribute to furthering global prostate cancer research efforts.
Collapse
Affiliation(s)
| | - Jessica E Hawley
- Department of Medicine, Division of Medical Oncology, University of Washington, Seattle, Washington, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Remi Adelaiye-Ogala
- Department of Medicine, Division of Hematology and Oncology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, USA
| | - Jeremie Calais
- Department of Molecular and Medical Pharmacology, Ahmanson Translational Imaging Division, University of California, Los Angeles, Los Angeles, California, USA
| | - Lucia Nappi
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, British Columbia, Canada
- Department of Medical Oncology, BC Cancer, British Columbia, Canada
| | - Ravi Parikh
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Medical Ethics and Health Policy, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California, USA
- Department of Radiology, University of California San Diego, La Jolla, California, USA
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Research Service, VA San Diego Healthcare System, San Diego, California, USA
| | - Elizabeth V Wasmuth
- Department of Biochemistry and Structural Biology, University of Texas Health at San Antonio, San Antonio, Texas, USA
| | - Xiao X Wei
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kenneth J Pienta
- The James Buchanan Brady Urological Institute, The Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Howard R Soule
- Prostate Cancer Foundation, Santa Monica, California, USA
| |
Collapse
|
43
|
Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin 2023; 44:288-307. [PMID: 35927312 PMCID: PMC9889774 DOI: 10.1038/s41401-022-00953-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/03/2022] [Indexed: 02/04/2023]
Abstract
As a breakthrough strategy for cancer treatment, immunotherapy mainly consists of immune checkpoint inhibitors (ICIs) and other immunomodulatory drugs that provide a durable protective antitumor response by stimulating the immune system to fight cancer. However, due to the low response rate and unique toxicity profiles of immunotherapy, the strategies of combining immunotherapy with other therapies have attracted enormous attention. These combinations are designed to exert potent antitumor effects by regulating different processes in the cancer-immunity cycle. To date, immune-based combination therapy has achieved encouraging results in numerous clinical trials and has received Food and Drug Administration (FDA) approval for certain cancers with more studies underway. This review summarizes the emerging strategies of immune-based combination therapy, including combinations with another immunotherapeutic strategy, radiotherapy, chemotherapy, anti-angiogenic therapy, targeted therapy, bacterial therapy, and stroma-targeted therapy. Here, we highlight the rationale of immune-based combination therapy, the biomarkers and the clinical progress for these immune-based combination therapies.
Collapse
Affiliation(s)
- Jiao-Jiao Ni
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Zhen Zhang
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Ming-Jie Ge
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Hangzhou, 310006, China
| | - Jing-Yu Chen
- Department of Gastroenterology, the Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China
- Cancer Center, Zhejiang University, Hangzhou, 310058, China
| | - Wei Zhuo
- Department of Cell Biology and Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
- Institution of Gastroenterology, Zhejiang University, Hangzhou, 310016, China.
- Cancer Center, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Zaib T, Cheng K, Liu T, Mei R, Liu Q, Zhou X, He L, Rashid H, Xie Q, Khan H, Xu Y, Sun P, Wu J. Expression of CD22 in Triple-Negative Breast Cancer: A Novel Prognostic Biomarker and Potential Target for CAR Therapy. Int J Mol Sci 2023; 24:ijms24032152. [PMID: 36768478 PMCID: PMC9917013 DOI: 10.3390/ijms24032152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/25/2022] [Accepted: 01/11/2023] [Indexed: 01/25/2023] Open
Abstract
Triple-negative breast cancer (TNBC) accounts for 15-20% of all breast cancer cases. Due to the lack of expression of well-known molecular targets [estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2)], there is a need for more alternative treatment approaches in TNBC. Chimeric antigen receptor (CAR)-T cell-based immunotherapy treatment is one of the latest treatment technologies with outstanding therapeutic advances in the past decade, especially in the treatment of hematologic malignancies, but the therapeutic effects of CAR-T cells against solid tumors have not yet shown significant clinical benefits. Identification of highly specific CAR-T targets in solid tumors is also crucial for its successful treatment. CD22 is reported to be a multifunctional receptor that is mainly expressed on the surface of mature B-cells (lymphocytes) and is also highly expressed in most B-cell malignancies. This study aimed to investigate the expression of CD22 in TNBC. Bioinformatic analysis was performed to evaluate the expression of CD22 in breast carcinoma and normal tissues. RNA-seq data of normal and breast carcinoma patients were downloaded from The Cancer Genome Atlas (TCGA), and differential gene expression was performed using R language. Additionally, online bioinformatics web tools (GEPIA and TNM plot) were used to evaluate the expression of CD22 in breast carcinoma and normal tissues. Western blot (WB) analysis and immunofluorescence (IF) were performed to characterize the expression of CD22 in TNBC cell lines. Immunohistochemical (IHC) staining was performed on tumor specimens from 97 TNBC patients for CD22 expression. Moreover, statistical analysis was performed to analyze the association of clinical pathological parameters with CD22 expression. Correlation analysis between overall survival data of TNBC patients and CD22 expression was also performed. Differential gene expression analysis of TCGA data revealed that CD22 is among the upregulated differentially expressed genes (DEGs) with high expression in breast cancer, as compared to normal breast tissues. WB and IF analysis revealed high expression of CD22 in TNBC cell lines. IHC results also showed that approximately 62.89% (61/97) of TNBC specimens were stained positive for CD22. Cell membrane expression of CD22 was evident in 23.71% (23/97) of TNBC specimens, and 39.18% (38/97) of TNBC specimens showed cytoplasmic/membrane expression, while 37.11% (36/97) specimens were negative for CD22. Furthermore, significant associations were found between the size of tumors in TNBC patients and CD22 expression, which unveils its potential as a prognostic biomarker. No significant correlation was found between the overall survival of TNBC patients and CD22 expression. In conclusion, we demonstrated for the first time that CD22 is highly expressed in TNBC. Based on our findings, we anticipated that CD22 could be used as a prognostic biomarker in TNBC, and it might be a potential CAR-T target in TNBC for whom few therapeutic options exist. However, more large-scale studies and clinical trials will ensure its potential usefulness as a CAR-T target in TNBC.
Collapse
Affiliation(s)
- Tahir Zaib
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Ke Cheng
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Tingdang Liu
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Ruyi Mei
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Qin Liu
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Lifang He
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou 515031, China
- Cancer Hospital of Shantou University Medical College, Shantou 515000, China
| | - Hibba Rashid
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Qingdong Xie
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Hanif Khan
- Department of Cell Systems and Anatomy, School of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Yien Xu
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- Cancer Hospital of Shantou University Medical College, Shantou 515000, China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China
- The Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
- Correspondence: (P.S.); (J.W.)
| | - Jundong Wu
- The Breast Center, Cancer Hospital of Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Breast Cancer Diagnosis and Treatment, Shantou 515031, China
- Cancer Hospital of Shantou University Medical College, Shantou 515000, China
- Correspondence: (P.S.); (J.W.)
| |
Collapse
|
45
|
Deng X, Zhou J, Cao Y. Generating universal chimeric antigen receptor expressing cell products from induced pluripotent stem cells: beyond the autologous CAR-T cells. Chin Med J (Engl) 2023; 136:127-137. [PMID: 36806264 PMCID: PMC10106131 DOI: 10.1097/cm9.0000000000002513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Indexed: 02/23/2023] Open
Abstract
ABSTRACT Adoptive therapeutic immune cells, such as chimeric antigen receptor (CAR)-T cells and natural killer cells, have established a new generation of precision medicine based on which dramatic breakthroughs have been achieved in intractable lymphoma treatments. Currently, well-explored approaches focus on autologous cells due to their low immunogenicity, but they are highly restricted by the high costs, time consumption of processing, and the insufficiency of primary cells in some patients. Induced pluripotent stem cells (iPSCs) are cell sources that can theoretically produce indefinite well-differentiated immune cells. Based on the above facts, it may be reasonable to combine the iPSC technology and the CAR design to produce a series of highly controllable and economical "live" drugs. Manufacturing hypoimmunogenic iPSCs by inactivation or over-expression at the genetic level and then arming the derived cells with CAR have emerged as a form of "off-the-shelf" strategy to eliminate tumor cells efficiently and safely in a broader range of patients. This review describes the reasonability, feasibility, superiority, and drawbacks of such approaches, summarizes the current practices and relevant research progress, and provides insights into the possible new paths for personalized cell-based therapies.
Collapse
Affiliation(s)
- Xinyue Deng
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jianfeng Zhou
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yang Cao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Scientific Research Management, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
46
|
Munshi PN, Rowley SD, Korngold R. Hematopoietic Stem Cell Transplantation for Malignant Diseases. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
47
|
Fibroblasts Impair Migration and Antitumor Activity of NK-92 Lymphocytes in a Melanoma-on-Chip Model. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 10:bioengineering10010052. [PMID: 36671624 PMCID: PMC9854880 DOI: 10.3390/bioengineering10010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023]
Abstract
Adoptive cell therapy in solid tumors, such as melanoma, is impaired, but little is known about the role that the fibroblasts present in the tumor microenvironment could exert. However, the mechanism at play is not well understood, partly due to the lack of relevant pre-clinical models. Three-dimensional culture and microfluidic chips are used to recapitulate the dynamic interactions among different types of cells in the tumor microenvironment in controlled and physiological settings. In this brief report, we propose a reductionist melanoma-on-a-chip model for evaluating the essential role of fibroblasts in the antitumor activity of lymphocytes. To this end, 3D melanoma spheroids were monocultured and co-cultured with human dermal fibroblasts and the NK-92 cell migration towards the tumor compartment was tested in a commercially available microfluidic device. Utilizing confocal microscopy, we observed the different recruitment of NK-92 cells in the presence and absence of fibroblasts. Our results show that fibroblasts' presence inhibits immune effector recruiting by exploiting a 3D pre-clinical tumor model.
Collapse
|
48
|
Wang H, Xu Y, Zuo F, Liu J, Yang J. Immune-based combination therapy for esophageal cancer. Front Immunol 2022; 13:1020290. [PMID: 36591219 PMCID: PMC9797857 DOI: 10.3389/fimmu.2022.1020290] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
Esophageal cancer (EC) is an aggressive malignancy raising a healthcare concern worldwide. Standard treatment options include surgical resection, chemotherapy, radiation therapy, and targeted molecular therapy. The five-year survival rate for all stages of EC is approximately 20%, ranging from 5% to 47%, with a high recurrence rate and poor prognosis after treatment. Immunotherapy has shown better efficacy and tolerance than conventional therapies for several malignancies. Immunotherapy of EC, including immune checkpoint inhibitors, cancer vaccines, and adoptive cell therapy, has shown clinical advantages. In particular, monoclonal antibodies against PD-1 have a satisfactory role in combination therapy and are recommended for first- or second-line treatments. Here, we present a systematic summary and analysis of immunotherapy-based combination therapies for EC.
Collapse
Affiliation(s)
- Huiling Wang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yufei Xu
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Fengli Zuo
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Junzhi Liu
- West China School of Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Jiqiao Yang
- Laboratory of Integrative Medicine, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China,Breast Center, West China Hospital of Sichuan University, Chengdu, China,*Correspondence: Jiqiao Yang,
| |
Collapse
|
49
|
Zhu X, Li Q, Zhu X. Mechanisms of CAR T cell exhaustion and current counteraction strategies. Front Cell Dev Biol 2022; 10:1034257. [PMID: 36568989 PMCID: PMC9773844 DOI: 10.3389/fcell.2022.1034257] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
The functional state of chimeric antigen receptor T (CAR T) cells determines their efficacy in vivo. Exhausted CAR T cells exhibit decreased proliferative capacity, impaired anti-tumor activity, and attenuated persistence. CAR T cell exhaustion has been recognized as a vital cause of nonresponse and relapse after CAR T cell therapy. However, the triggers and mechanisms leading to CAR T cell exhaustion remain blurry and complicated. Therefore, it is essential to clear the regulation network of CAR T cell exhaustion and explore potent solutions. Here, we review the diverse inducers of CAR T cell exhaustion in terms of manufacture process and immunosuppressive tumor microenvironment. In addition to the admitted immune checkpoint blockade, we also describe promising strategies that may reverse CAR T cell exhaustion including targeting the tumor microenvironment, epigenetics and transcriptomics.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qing Li
- Department of Hematology, Wuhan No. 1 Hospital, Wuhan, China,*Correspondence: Qing Li, ; Xiaojian Zhu,
| | - Xiaojian Zhu
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Qing Li, ; Xiaojian Zhu,
| |
Collapse
|
50
|
Nanobody-based CAR T cells targeting intracellular tumor antigens. Biomed Pharmacother 2022; 156:113919. [DOI: 10.1016/j.biopha.2022.113919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/30/2022] Open
|