1
|
Daly AK. Genetic and Genomic Approaches to the Study of Drug-Induced Liver Injury. Liver Int 2025; 45:e16191. [PMID: 39704445 DOI: 10.1111/liv.16191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 11/17/2024] [Indexed: 12/21/2024]
Abstract
Idiosyncratic hepatotoxicity induced by prescribed drugs has been known since the early 20th century. Identifying risk factors, including genetic factors, that trigger this drug-induced liver injury (DILI) has been an important priority for many years, both to prevent drugs that cause liver injury being licensed and as a potential means of preventing at-risk patients being prescribed causative drugs. Improved methods for genomic analysis, particularly the development of genome-wide association studies, have facilitated the identification of genomic risk factors for DILI, but, to date, there are only two main examples, liver injury caused by amoxicillin-clavulanate (AC) and by flucloxacillin, where genetic risk factors causing the injury have been identified and replicated with understanding of the underlying mechanism. There has also been progress on identifying genetic risk factors for liver injury caused by other anti-infective agents, herbal remedies and nonsteroidal anti-inflammatory drugs. The majority of genetic risk factors identified to date are specific human leucocyte antigen (HLA) alleles and evidence that these alleles preferentially present self-peptides inappropriately to T cells in the liver has been obtained. Non-HLA genes also contribute to genetic susceptibility, both as co-factors in T-cell responses and, in the case of isoniazid-only, drug metabolism. Polygenic risk scores to predict DILI have been developed, both a simple score that predicts AC injury and complex scores that may be applied to DILI more generally and provide evidence that additional risk factors other than HLA genes exist.
Collapse
Affiliation(s)
- Ann K Daly
- Faculty of Medical Sciences, Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
2
|
Villarreal-González RV, Ortega-Cisneros M, Cadenas-García DE, Canel-Paredes A, Fraga-Olvera A, Delgado-Bañuelos A, Rico-Solís GA, Ochoa-García IV, Jiménez-Sandoval JO, Ramírez-Heredia J, Flores-González JV, Cortés-Grimaldo RM, Zecua-Nájera Y. [Delayed hypersensitivity reactions to drugs: Group Report of the Drug Allergy Committee of the Mexican College of Clinical Immunology and Allergy (CMICA).]. REVISTA ALERGIA MÉXICO 2024; 71:169-188. [PMID: 39625799 DOI: 10.29262/ram.v71i3.1299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/12/2023] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Adverse drug reactions are defined as unexpected reactions, either derived from the pharmacokinetics of the treatment (Type A) or as a host immune response (Type B), resulting in harmful or undesirable manifestations in the patient following the administration of pharmacological therapy. Type B reactions are less defined and are considered a result of hypersensitivity to pharmacological treatment, categorized as immediate (within 1 to 6 hours after exposure) and delayed or non-immediate (occurring 6 hours after exposure). OBJECTIVE A review to describe the immunological mechanisms of delayed hypersensitivity reactions to drugs. METHODS A search of major medical databases on delayed hypersensitivity reactions to drugs was conducted. The review was limited to articles published in the period between 2013 and 2023, taking into consideration articles written in English and Spanish. RESULTS The terms defining delayed hypersensitivity reactions to drugs, their classification, clinical manifestations, diagnosis, treatment algorithms, and prognosis. CONCLUSIONS Adverse drug reactions represent a challenge for the specialist physician, with a complex pathophysiology. A prompt diagnosis and treatment focused on the drug phenotype and its immunological expression are required to provide a multidisciplinary approach.
Collapse
Affiliation(s)
- Rosalaura Virginia Villarreal-González
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Oncología, Centro Universitario Contra el Cáncer. Facultad de Medicina, Monterrey, Nuevo León, México.
| | - Margarita Ortega-Cisneros
- Departamento de Inmunología Clínica y Alergia, Unidad Médica de Alta Especialidad, Hospital de Especialidades Centro Médico Nacional de Occidente, IMSS, Jalisco, México
| | - Diana Estefanía Cadenas-García
- Universidad Autónoma de Nuevo León, Hospital Universitario "Dr. José Eleuterio González", Servicio de Oncología, Centro Universitario Contra el Cáncer. Facultad de Medicina, Monterrey, Nuevo León, México
| | - Alejandra Canel-Paredes
- Instituto Tecnológico de Estudios Superiores de Monterrey ITESM, Hospital Zambrano Hellion, Monterrey, Nuevo León, México
| | | | - Angélica Delgado-Bañuelos
- Instituto Mexicano del Seguro Social, Hospital General Regional 58, Servicio de Alergia e Inmunología Clínica. León, Guanajuato, México
| | | | - Itzel Vianey Ochoa-García
- Departamento de Inmunología Clínica y Alergia, Unidad Médica de Alta Especialidad, Hospital de Especialidades Centro Médico Nacional de Occidente, IMSS, Jalisco, México
| | - Jaime Omar Jiménez-Sandoval
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI; Hospital Regional Río Blanco, SESVER, Departamento de Alergia e Inmunología Clínica, Río Blanco, Veracruz, México
| | - Jennifer Ramírez-Heredia
- Instituto Mexicano del Seguro Social, Centro Médico Nacional Siglo XXI; Hospital MAC, Irapuato, Guanajuato, México
| | | | - Rosa María Cortés-Grimaldo
- Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad, Hospital de Pediatría del Centro Médico Nacional de Occidente. Departamento de Alergia e Inmunología Clínica. Guadalajara, Jalisco, México
| | - Yahvéh Zecua-Nájera
- Centro Médico Nacional La Raza; Centro Médico San Carlos, Tlaxcala, Tlaxcala, México
| |
Collapse
|
3
|
Shah PN, Romar GA, Manukyan A, Ko WC, Hsieh PC, Velasquez GA, Schunkert EM, Fu X, Guleria I, Bronson RT, Wei K, Waldman AH, Vleugels FR, Liang MG, Giobbie-Hurder A, Mostaghimi A, Schmidt BA, Barrera V, Foreman RK, Garber M, Divito SJ. Systemic and skin-limited delayed-type drug hypersensitivity reactions associate with distinct resident and recruited T cell subsets. J Clin Invest 2024; 134:e178253. [PMID: 39042477 PMCID: PMC11364394 DOI: 10.1172/jci178253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024] Open
Abstract
Delayed-type drug hypersensitivity reactions are major causes of morbidity and mortality. The origin, phenotype, and function of pathogenic T cells across the spectrum of severity require investigation. We leveraged recent technical advancements to study skin-resident memory T cells (TRMs) versus recruited T cell subsets in the pathogenesis of severe systemic forms of disease, Stevens-Johnson syndrome/toxic epidermal necrolysis (SJS/TEN) and drug reaction with eosinophilia and systemic symptoms (DRESS), and skin-limited disease, morbilliform drug eruption (MDE). Microscopy, bulk transcriptional profiling, and single-cell RNA-sequencing (scRNA-Seq) plus cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) plus T cell receptor sequencing (TCR-Seq) supported clonal expansion and recruitment of cytotoxic CD8+ T cells from circulation into skin along with expanded and nonexpanded cytotoxic CD8+ skin TRM in SJS/TEN. Comparatively, MDE displayed a cytotoxic T cell profile in skin without appreciable expansion and recruitment of cytotoxic CD8+ T cells from circulation, implicating TRMs as potential protagonists in skin-limited disease. Mechanistic interrogation in patients unable to recruit T cells from circulation into skin and in a parallel mouse model supported that skin TRMs were sufficient to mediate MDE. Concomitantly, SJS/TEN displayed a reduced Treg signature compared with MDE. DRESS demonstrated recruitment of cytotoxic CD8+ T cells into skin as in SJS/TEN, yet a pro-Treg signature as in MDE. These findings have important implications for fundamental skin immunology and clinical care.
Collapse
Affiliation(s)
- Pranali N. Shah
- Department of Dermatology, Brigham and Women’s Hospital (BWH), Harvard Medical School, Boston, Massachusetts, USA
| | - George A. Romar
- Department of Dermatology, Brigham and Women’s Hospital (BWH), Harvard Medical School, Boston, Massachusetts, USA
| | | | - Wei-Che Ko
- Bioinformatics and Integrative Biology Program, and
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Pei-Chen Hsieh
- Department of Dermatology, Brigham and Women’s Hospital (BWH), Harvard Medical School, Boston, Massachusetts, USA
| | - Gustavo A. Velasquez
- Department of Dermatology, Brigham and Women’s Hospital (BWH), Harvard Medical School, Boston, Massachusetts, USA
| | - Elisa M. Schunkert
- Department of Dermatology, Brigham and Women’s Hospital (BWH), Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaopeng Fu
- Department of Dermatology, Brigham and Women’s Hospital (BWH), Harvard Medical School, Boston, Massachusetts, USA
| | - Indira Guleria
- Department of Pathology, BWH, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, and
| | - Roderick T. Bronson
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kevin Wei
- Division of Rheumatology, Inflammation, and Immunity, BWH and Harvard Medical School, Boston, Massachusetts, USA
| | - Abigail H. Waldman
- Department of Dermatology, Brigham and Women’s Hospital (BWH), Harvard Medical School, Boston, Massachusetts, USA
| | - Frank R. Vleugels
- Department of Dermatology, Brigham and Women’s Hospital (BWH), Harvard Medical School, Boston, Massachusetts, USA
| | - Marilyn G. Liang
- Department of Dermatology, Boston Children’s Hospital (BCH), Harvard Medical School, Boston, Massachusetts, USA
| | - Anita Giobbie-Hurder
- Department of Data Science, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Arash Mostaghimi
- Department of Dermatology, Brigham and Women’s Hospital (BWH), Harvard Medical School, Boston, Massachusetts, USA
| | | | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Ruth K. Foreman
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Manuel Garber
- Bioinformatics Core
- Bioinformatics and Integrative Biology Program, and
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Sherrie J. Divito
- Department of Dermatology, Brigham and Women’s Hospital (BWH), Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
Aleksic M, Meng X. Protein Haptenation and Its Role in Allergy. Chem Res Toxicol 2024; 37:850-872. [PMID: 38834188 PMCID: PMC11187640 DOI: 10.1021/acs.chemrestox.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Humans are exposed to numerous electrophilic chemicals either as medicines, in the workplace, in nature, or through use of many common cosmetic and household products. Covalent modification of human proteins by such chemicals, or protein haptenation, is a common occurrence in cells and may result in generation of antigenic species, leading to development of hypersensitivity reactions. Ranging in severity of symptoms from local cutaneous reactions and rhinitis to potentially life-threatening anaphylaxis and severe hypersensitivity reactions such as Stephen-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), all these reactions have the same Molecular Initiating Event (MIE), i.e. haptenation. However, not all individuals who are exposed to electrophilic chemicals develop symptoms of hypersensitivity. In the present review, we examine common chemistry behind the haptenation reactions leading to formation of neoantigens. We explore simple reactions involving single molecule additions to a nucleophilic side chain of proteins and complex reactions involving multiple electrophilic centers on a single molecule or involving more than one electrophilic molecule as well as the generation of reactive molecules from the interaction with cellular detoxification mechanisms. Besides generation of antigenic species and enabling activation of the immune system, we explore additional events which result directly from the presence of electrophilic chemicals in cells, including activation of key defense mechanisms and immediate consequences of those reactions, and explore their potential effects. We discuss the factors that work in concert with haptenation leading to the development of hypersensitivity reactions and those that may act to prevent it from developing. We also review the potential harnessing of the specificity of haptenation in the design of potent covalent therapeutic inhibitors.
Collapse
Affiliation(s)
- Maja Aleksic
- Safety
and Environmental Assurance Centre, Unilever,
Colworth Science Park, Sharnbrook, Bedford MK44
1LQ, U.K.
| | - Xiaoli Meng
- MRC
Centre for Drug Safety Science, Department of Molecular and Clinical
Pharmacology, The University of Liverpool, Liverpool L69 3GE, U.K.
| |
Collapse
|
5
|
Bordbar A, Manches O, Nowatzky J. Biology of HLA class I associated inflammatory diseases. Best Pract Res Clin Rheumatol 2024; 38:101977. [PMID: 39085016 PMCID: PMC11441793 DOI: 10.1016/j.berh.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Human leukocyte antigen (HLA) class I association is a well-established feature of common and uncommon inflammatory diseases, but it is unknown whether it impacts the pathogenesis of these disorders. The "arthritogenic peptide" hypothesis proposed initially for HLA-B27-associated ankylosing spondylitis (AS) seems the most intuitive to serve as a model for other HLA class I-associated diseases, but evidence supporting it has been scarce. Recent technological advances and the discovery of epistatic relationships between disease-associated HLA class I and endoplasmic reticulum aminopeptidase (ERAP) coding variants have led to the generation of new data and conceptual approaches to the problem requiring its re-examination. Continued success in these endeavors holds promise to resolve a Gordian Knot in human immunobiology. It may ultimately benefit patients by enabling the development of new therapies and precision tools for assessing disease risk and predicting treatment responses.
Collapse
Affiliation(s)
- Ali Bordbar
- New York University Grossman School of Medicine, Department of Medicine, New York, NY, USA
| | - Olivier Manches
- New York University Grossman School of Medicine, Department of Medicine, New York, NY, USA
| | - Johannes Nowatzky
- New York University Grossman School of Medicine, Department of Medicine, New York, NY, USA; New York University Grossman School of Medicine, Department of Pathology, USA; New York University Grossman School of Medicine, Department of Medicine Division of Rheumatology, NYU Langone Ocular Rheumatology Program, New York, NY, USA; New York University Grossman School of Medicine, Department of Medicine, Division of Rheumatology, NYU Langone Center for Behçet's Disease, New York, NY, USA.
| |
Collapse
|
6
|
Hung SI, Mockenhaupt M, Blumenthal KG, Abe R, Ueta M, Ingen-Housz-Oro S, Phillips EJ, Chung WH. Severe cutaneous adverse reactions. Nat Rev Dis Primers 2024; 10:30. [PMID: 38664435 DOI: 10.1038/s41572-024-00514-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/21/2024] [Indexed: 06/15/2024]
Abstract
Severe cutaneous adverse reactions (SCARs), which include Stevens-Johnson syndrome and toxic epidermal necrolysis, drug reaction with eosinophilia and systemic symptoms (also known as drug-induced hypersensitivity syndrome), acute generalized exanthematous pustulosis, and generalized bullous fixed drug eruption, are life-threatening conditions. The pathogenesis of SCARs involves T cell receptors recognizing drug antigens presented by human leukocyte antigens, triggering the activation of distinct T cell subsets. These cells interact with keratinocytes and various immune cells, orchestrating cutaneous lesions and systemic manifestations. Genetic predisposition, impaired drug metabolism, viral reactivation or infections, and heterologous immunity influence SCAR development and clinical presentation. Specific genetic associations with distinct SCAR phenotypes have been identified, leading to the implementation of genetic screening before prescription in various countries to prevent SCARs. Whilst systemic corticosteroids and conventional immunomodulators have been the primary therapeutic agents, evolving strategies, including biologics and small molecules targeting tumour necrosis factor, different cytokines, or Janus kinase signalling pathways, signify a shift towards a precision management paradigm that considers individual clinical presentations.
Collapse
Affiliation(s)
- Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan, Taiwan
- Department and Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Maja Mockenhaupt
- Dokumentationszentrum schwerer Hautreaktionen (dZh), Department of Dermatology, Medical Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Kimberly G Blumenthal
- Division of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Mayumi Ueta
- Department of Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saskia Ingen-Housz-Oro
- Dermatology Department, AP-HP, Henri Mondor Hospital, Reference Centre for Toxic Bullous Diseases and Severe Drug Reactions TOXIBUL, Université Paris Est Créteil EpiDermE, Créteil, France
| | - Elizabeth J Phillips
- Center for Drug Safety and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taipei/Linkou branches, and Chang Gung University, Taoyuan, Taiwan.
- Department of Dermatology, Chang Gung Memorial Hospital, Xiamen branch, Xiamen, China.
| |
Collapse
|
7
|
Doña I, Torres MJ, Celik G, Phillips E, Tanno LK, Castells M. Changing patterns in the epidemiology of drug allergy. Allergy 2024; 79:613-628. [PMID: 38084822 DOI: 10.1111/all.15970] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/23/2023] [Accepted: 11/26/2023] [Indexed: 03/01/2024]
Abstract
Drug allergy (DA) remains a complex and unaddressed problem worldwide that often deprives patients of optimal medication choices and places them at risk for life-threatening reactions. Underdiagnosis and overdiagnosis are common and due to the lack of standardized definitions and biomarkers. The true burden of DA is unknown, and recent efforts in data gathering through electronic medical records are starting to provide emerging patterns around the world. Ten percent of the general population engaged in health care claim to have a DA, and the most common label is penicillin allergy. Up to 20% of emergency room visits for anaphylaxis are due to DA and 15%-20% of hospitalized patients report DA. It is estimated that DA will increase based on the availability and use of new and targeted antibiotics, vaccines, chemotherapies, biologicals, and small molecules, which are aimed at improving patient's options and quality of life. Global and regional variations in the prevalence of diseases such as human immunodeficiency virus and mycobacterial diseases, and the drugs used to treat these infections have an impact on DA. The aim of this review is to provide an update on the global impact of DA by presenting emerging data on drug epidemiology in adult and pediatric populations.
Collapse
Affiliation(s)
- Immaculada Doña
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain
| | - Maria Jose Torres
- Allergy Research Group, Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Malaga, Spain
- Allergy Unit, Hospital Regional Universitario de Málaga, Malaga, Spain
- Departamento de Medicina, Universidad de Málaga, Malaga, Spain
| | - Gulfem Celik
- Division of Immunology and Allergy, Department of Chest Diseases, Ankara University School of Medicine, Ankara, Turkey
| | - Elizabeth Phillips
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Luciana Kase Tanno
- Division of Allergy, Department of Pulmonology, Allergy and Thoracic Oncology, University Hospital of Montpellier, Montpellier, France
- Desbrest Institute of Epidemiology and Public Health, UMR UA11 University of Montpellier-INSERM, Montpellier, France
- WHO Collaborating Centre on Scientific Classification Support, Montpellier, France
| | - Mariana Castells
- Division of Allergy and Immunology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
8
|
Krantz MS, Marks ME, Phillips EJ. The clinical application of genetic testing in DILI, are we there yet? Clin Liver Dis (Hoboken) 2024; 23:e0218. [PMID: 38872778 PMCID: PMC11168851 DOI: 10.1097/cld.0000000000000218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/12/2024] [Indexed: 06/15/2024] Open
Affiliation(s)
- Matthew S. Krantz
- Division of Allergy, Department of Medicine, Pulmonary and Critical Care Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Madeline E. Marks
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Elizabeth J. Phillips
- Department of Medicine, Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| |
Collapse
|
9
|
Guin D, Kukreti R. Drug hypersensitivity linked to genetic variations of human leukocyte antigen. Ther Drug Monit 2024:387-417. [DOI: 10.1016/b978-0-443-18649-3.00018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Lee EY, Copaescu AM, Trubiano JA, Phillips EJ, Wolfson AR, Ramsey A. Drug Allergy in Women. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:3615-3623. [PMID: 37805007 DOI: 10.1016/j.jaip.2023.09.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/21/2023] [Accepted: 09/27/2023] [Indexed: 10/09/2023]
Abstract
Across all settings, women self-report more drug allergies than do men. Although there is epidemiologic evidence of increased drug allergy labeling in postpubertal females, the evidence base for female sex as a risk factor for true immune-mediated drug hypersensitivity reactions (DHRs), particularly in fatal drug-induced anaphylaxis, is low. A focus on the known immunologic mechanisms described in immediate and delayed DHR, layered on known hormonal and genetic sex differences that drive other immune-mediated diseases, could be the key to understanding biological sex variations in DHR. Particular conditions that highlight the impact of drug allergy in women include (1) pregnancy, in which a drug allergy label is associated with increased maternal and fetal complications; (2) multiple drug intolerance syndrome, associated with anxiety and depression; and (3) female-predominant autoimmune medical conditions in the context of mislabeling of the drug allergy or increased underlying risk. In this review, we describe the importance of drug allergy in the female population, mainly focusing on the epidemiology and risk, the mechanisms, and the associated conditions and psychosocial factors. By performing a detailed analysis of the current literature, we provide focused conclusions and identify existing knowledge gaps that should be prioritized for future research.
Collapse
Affiliation(s)
- Erika Yue Lee
- Division of Clinical Immunology and Allergy, Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada; Eliot Phillipson Clinician-Scientist Training Program, University of Toronto, Toronto, Ontario, Canada
| | - Ana Maria Copaescu
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia; Division of Allergy and Clinical Immunology, Department of Medicine, McGill University Health Centre, McGill University, Montreal, Quebec, Canada; Research Institute of McGill University Health Centre, McGill University, McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, Austin Health, University of Melbourne, Heidelberg, Victoria, Australia
| | - Jason A Trubiano
- Centre for Antibiotic Allergy and Research, Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia; National Centre for Infections in Cancer, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Department of Infectious Diseases, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Elizabeth J Phillips
- Center for Drug Safety and Immunology, Vanderbilt University Medical Centre, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Anna R Wolfson
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass; Department of Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, Mass
| | - Allison Ramsey
- Rochester Regional Health, Rochester, NY; Clinical Assistant Professor of Medicine, Department of Allergy/Immunology/Rheumatology, University of Rochester, Rochester, NY.
| |
Collapse
|
11
|
Liao JM, Zhan Y, Zhang Z, Cui JJ, Yin JY. HLA-targeted sequencing reveals the pathogenic role of HLA-B*15:02/HLA-B*13:01 in albendazole-induced liver failure: a case report and a review of the literature. Front Pharmacol 2023; 14:1288068. [PMID: 38027017 PMCID: PMC10670799 DOI: 10.3389/fphar.2023.1288068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the serious adverse drug reactions (ADRs), which belongs to immune-mediated adverse drug reactions (IM-ADRs). As an essential health drug, albendazole has rarely been reported to cause serious liver damage. A young man in his 30 s developed severe jaundice, abnormal transaminases, and poor blood coagulation mechanism after taking albendazole, and eventually developed into severe liver failure. The patient was found heterozygous of HLA-B*15:02 and HLA-B*13:01 through HLA-targeted sequencing, which may have a pathogenic role in the disease. This case report summarizes his presentation, treatment, and prognosis. A useful summary of the diagnosis and associated genetic variant information is provided.
Collapse
Affiliation(s)
- Jin-Mao Liao
- Department of Hepotology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yan Zhan
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Zhang
- Department of Hepotology, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jia-Jia Cui
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatric Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacology, Central South University, Changsha, China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
12
|
Marks ME, Botta RK, Abe R, Beachkofsky TM, Boothman I, Carleton BC, Chung WH, Cibotti RR, Dodiuk-Gad RP, Grimstein C, Hasegawa A, Hoofnagle JH, Hung SI, Kaffenberger B, Kroshinsky D, Lehloenya RJ, Martin-Pozo M, Micheletti RG, Mockenhaupt M, Nagao K, Pakala S, Palubinsky A, Pasieka HB, Peter J, Pirmohamed M, Reyes M, Saeed HN, Shupp J, Sukasem C, Syu JY, Ueta M, Zhou L, Chang WC, Becker P, Bellon T, Bonnet K, Cavalleri G, Chodosh J, Dewan AK, Dominguez A, Dong X, Ezhkova E, Fuchs E, Goldman J, Himed S, Mallal S, Markova A, McCawley K, Norton AE, Ostrov D, Phan M, Sanford A, Schlundt D, Schneider D, Shear N, Shinkai K, Tkaczyk E, Trubiano JA, Volpi S, Bouchard CS, Divito SJ, Phillips EJ. Updates in SJS/TEN: collaboration, innovation, and community. Front Med (Lausanne) 2023; 10:1213889. [PMID: 37901413 PMCID: PMC10600400 DOI: 10.3389/fmed.2023.1213889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/31/2023] [Indexed: 10/31/2023] Open
Abstract
Stevens-Johnson Syndrome/Toxic Epidermal Necrolysis (SJS/TEN) is a predominantly drug-induced disease, with a mortality rate of 15-20%, that engages the expertise of multiple disciplines: dermatology, allergy, immunology, clinical pharmacology, burn surgery, ophthalmology, urogynecology, and psychiatry. SJS/TEN has an incidence of 1-5/million persons per year in the United States, with even higher rates globally. One of the challenges of SJS/TEN has been developing the research infrastructure and coordination to answer questions capable of transforming clinical care and leading to improved patient outcomes. SJS/TEN 2021, the third research meeting of its kind, was held as a virtual meeting on August 28-29, 2021. The meeting brought together 428 international scientists, in addition to a community of 140 SJS/TEN survivors and family members. The goal of the meeting was to brainstorm strategies to support the continued growth of an international SJS/TEN research network, bridging science and the community. The community workshop section of the meeting focused on eight primary themes: mental health, eye care, SJS/TEN in children, non-drug induced SJS/TEN, long-term health complications, new advances in mechanisms and basic science, managing long-term scarring, considerations for skin of color, and COVID-19 vaccines. The meeting featured several important updates and identified areas of unmet research and clinical need that will be highlighted in this white paper.
Collapse
Affiliation(s)
- Madeline E. Marks
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Ramya Krishna Botta
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Thomas M. Beachkofsky
- Departments of Dermatology and Medicine, Uniformed Services University, Bethesda, MD, United States
| | - Isabelle Boothman
- The SFI Centre for Research Training in Genomics Data Science, Dublin, Ireland
| | - Bruce C. Carleton
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia and the British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Ricardo R. Cibotti
- National Institute of Arthritis and Musculoskeletal and Skin (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Roni P. Dodiuk-Gad
- Department of Dermatology, Emek Medical Center, Afula, Israel
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Dermatology, Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa, Israel
| | - Christian Grimstein
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Akito Hasegawa
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Jay H. Hoofnagle
- Liver Disease Research Branch, Division of Digestive Diseases and Nutrition of NIDDK, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Benjamin Kaffenberger
- Department of Dermatology, Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Daniela Kroshinsky
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Rannakoe J. Lehloenya
- Division of Dermatology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Michelle Martin-Pozo
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Robert G. Micheletti
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Maja Mockenhaupt
- Dokumentationszentrum schwerer Hautreaktionen (dZh), Department of Dermatology, Medical Center and Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Keisuke Nagao
- National Institute of Arthritis and Musculoskeletal and Skin (NIAMS), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Suman Pakala
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Amy Palubinsky
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Helena B. Pasieka
- Departments of Dermatology and Medicine, Uniformed Services University, Bethesda, MD, United States
- The Burn Center, MedStar Washington Hospital Center, Washington, D.C., DC, United States
- Department of Dermatology, MedStar Health/Georgetown University, Washington, D.C., DC, United States
| | - Jonathan Peter
- Division of Allergy and Clinical Immunology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Munir Pirmohamed
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, United Kingdom
| | - Melissa Reyes
- Center for Drug Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD, United States
| | - Hajirah N. Saeed
- Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, United States
| | - Jeffery Shupp
- Department of Surgery, Plastic and Reconstructive Surgery, Biochemistry, and Molecular and Cellular Biology, MedStar Washington Hospital Center, Georgetown University School of Medicine, Washington, D.C., DC, United States
| | - Chonlaphat Sukasem
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Jhih Yu Syu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Mayumi Ueta
- Department of Frontier Medical Science and Technology for Ophthalmology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Li Zhou
- Division of General Internal Medicine and Primary Care, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Wan-Chun Chang
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia and the British Columbia Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Patrice Becker
- Division of Allergy, Immunology, and Transplantation, National Institute of Allergy and Infectious Disease, Bethesda, MD, United States
| | - Teresa Bellon
- Drug Hypersensitivity Laboratory, La Paz Health Research Institute (IdiPAZ), Madrid, Spain
| | - Kemberlee Bonnet
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Gianpiero Cavalleri
- The SFI Centre for Research Training in Genomics Data Science, Dublin, Ireland
| | - James Chodosh
- University of New Mexico School of Medicine, Albuquerque, NM, United States
| | - Anna K. Dewan
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Arturo Dominguez
- Department of Dermatology and Internal Medicine, UT Southwestern Medical Center, Dallas, TX, United States
| | - Xinzhong Dong
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology and Dermatology, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY, United States
| | - Esther Fuchs
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA, United States
| | - Jennifer Goldman
- Division of Pediatric Infectious Diseases and Clinical Pharmacology, Children’s Mercy, Kansas City, MO, United States
| | - Sonia Himed
- College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Simon Mallal
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alina Markova
- Department of Dermatology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College, New York, NY, United States
| | - Kerry McCawley
- Stevens-Johnson Syndrome Foundation, Westminster, CO, United States
| | - Allison E. Norton
- Division of Pediatric Allergy, Immunology, and Pulmonary Medicine, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - David Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Michael Phan
- Division of Pharmacovigilance-I, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, United States
| | - Arthur Sanford
- Division of Trauma, Surgical Critical Care, and Burns, Loyola University Medical Center, Chicago, IL, United States
| | - David Schlundt
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Daniel Schneider
- Department of Psychiatry and Surgery, MedStar Washington Hospital Center, Georgetown University School of Medicine, Washington, D.C., DC, United States
| | - Neil Shear
- Department of Dermatology, Emek Medical Center, Afula, Israel
| | - Kanade Shinkai
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, United States
| | - Eric Tkaczyk
- Department of Veterans Affairs, Vanderbilt Dermatology Translational Research Clinic (VDTRC.org), Nashville, TN, United States
| | - Jason A. Trubiano
- Department of Infectious Diseases and Medicine, Austin Health, University of Melbourne, Melbourne, VIC, Australia
| | - Simona Volpi
- National Human Genome Research Institute (NHGRI), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Charles S. Bouchard
- Department of Opthalmology, Loyola University Medical Center, Chicago, IL, United States
| | - Sherrie J. Divito
- Department of Dermatology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Elizabeth J. Phillips
- Center for Drug Interactions and Immunology, Division of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
13
|
Kattan E, Elgueta MF, Merino S, Retamal J. Sedation and Analgesia for Toxic Epidermal Necrolysis in the Intensive Care Unit: Few Certainties, Many Questions Ahead. J Pers Med 2023; 13:1194. [PMID: 37623445 PMCID: PMC10455435 DOI: 10.3390/jpm13081194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/25/2023] [Accepted: 07/26/2023] [Indexed: 08/26/2023] Open
Abstract
Toxic epidermal necrolysis (TEN) is a rare, acute mucocutaneous life-threatening disease. Although research has focused on the pathophysiological and therapeutic aspects of the disease, there is a paucity of data in the literature regarding pain management and sedation in the intensive care unit (ICU). Most therapies have been extrapolated from other situations and/or the general ICU population. These patients present unique challenges during the progression of the disease and could end up requiring invasive mechanical ventilation due to inadequate pain management, which is potentially avoidable through a comprehensive treatment approach. In this review, we will present clinical and pathophysiological aspects of TEN, analyze pain pathways and relevant pharmacology, and propose therapeutic alternatives based on a rational and multimodal approach.
Collapse
Affiliation(s)
- Eduardo Kattan
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile;
| | - Maria Francisca Elgueta
- División de Anestesiología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile;
| | - Sebastian Merino
- Servicio de Anestesiología, Complejo Asistencial Sótero del Río, Santiago 8330077, Chile;
| | - Jaime Retamal
- Departamento de Medicina Intensiva, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile;
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| |
Collapse
|
14
|
Bruno PM, Timms RT, Abdelfattah NS, Leng Y, Lelis FJN, Wesemann DR, Yu XG, Elledge SJ. High-throughput, targeted MHC class I immunopeptidomics using a functional genetics screening platform. Nat Biotechnol 2023; 41:980-992. [PMID: 36593401 PMCID: PMC10314971 DOI: 10.1038/s41587-022-01566-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 10/13/2022] [Indexed: 01/03/2023]
Abstract
Identification of CD8+ T cell epitopes is critical for the development of immunotherapeutics. Existing methods for major histocompatibility complex class I (MHC class I) ligand discovery are time intensive, specialized and unable to interrogate specific proteins on a large scale. Here, we present EpiScan, which uses surface MHC class I levels as a readout for whether a genetically encoded peptide is an MHC class I ligand. Predetermined starting pools composed of >100,000 peptides can be designed using oligonucleotide synthesis, permitting large-scale MHC class I screening. We exploit this programmability of EpiScan to uncover an unappreciated role for cysteine that increases the number of predicted ligands by 9-21%, reveal affinity hierarchies by analysis of biased anchor peptide libraries and screen viral proteomes for MHC class I ligands. Using these data, we generate and iteratively refine peptide binding predictions to create EpiScan Predictor. EpiScan Predictor performs comparably to other state-of-the-art MHC class I peptide binding prediction algorithms without suffering from underrepresentation of cysteine-containing peptides. Thus, targeted immunopeptidomics using EpiScan will accelerate CD8+ T cell epitope discovery toward the goal of individual-specific immunotherapeutics.
Collapse
Affiliation(s)
- Peter M Bruno
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Richard T Timms
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, UK
| | - Nouran S Abdelfattah
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yumei Leng
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Felipe J N Lelis
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Duane R Wesemann
- Department of Medicine, Division of Allergy and Immunology, Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Massachusetts Consortium on Pathogen Readiness, Boston, MA, USA
| | - Xu G Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women's Hospital, Boston, MA, USA
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
15
|
Kwah J, Banerji A. Delayed Intradermal Skin Testing to Diagnose Culprits Drugs in Drug Reaction With Eosinophilia and Systemic Symptoms (DRESS). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:1572-1573. [PMID: 37150547 DOI: 10.1016/j.jaip.2023.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 05/09/2023]
Affiliation(s)
- Jason Kwah
- Department of Internal Medicine, Section of Rheumatology, Allergy, and Immunology, Yale School of Medicine, New Haven, Conn.
| | - Aleena Banerji
- Harvard Medical School, Boston, Mass; Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Mass
| |
Collapse
|
16
|
Almutairi M, Lister A, Zhao Q, Line J, Adair K, Tailor A, Waddington J, Clarke E, Gardner J, Thomson P, Harper N, Sun Y, Sun L, Ostrov DA, Liu H, MacEwan DJ, Pirmohamed M, Meng X, Zhang F, Naisbitt DJ. Activation of Human CD8+ T Cells with Nitroso Dapsone-Modified HLA-B*13:01-Binding Peptides. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1031-1042. [PMID: 36881872 PMCID: PMC7614401 DOI: 10.4049/jimmunol.2200531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
Previous studies have shown that cysteine-reactive drug metabolites bind covalently with protein to activate patient T cells. However, the nature of the antigenic determinants that interact with HLA and whether T cell stimulatory peptides contain the bound drug metabolite has not been defined. Because susceptibility to dapsone hypersensitivity is associated with the expression of HLA-B*13:01, we have designed and synthesized nitroso dapsone-modified, HLA-B*13:01 binding peptides and explored their immunogenicity using T cells from hypersensitive human patients. Cysteine-containing 9-mer peptides with high binding affinity to HLA-B*13:01 were designed (AQDCEAAAL [Pep1], AQDACEAAL [Pep2], and AQDAEACAL [Pep3]), and the cysteine residue was modified with nitroso dapsone. CD8+ T cell clones were generated and characterized in terms of phenotype, function, and cross-reactivity. Autologous APCs and C1R cells expressing HLA-B*13:01 were used to determine HLA restriction. Mass spectrometry confirmed that nitroso dapsone-peptides were modified at the appropriate site and were free of soluble dapsone and nitroso dapsone. APC HLA-B*13:01-restricted nitroso dapsone-modified Pep1- (n = 124) and Pep3-responsive (n = 48) CD8+ clones were generated. Clones proliferated and secreted effector molecules with graded concentrations of nitroso dapsone-modified Pep1 or Pep3. They also displayed reactivity against soluble nitroso dapsone, which forms adducts in situ, but not with the unmodified peptide or dapsone. Cross-reactivity was observed between nitroso dapsone-modified peptides with cysteine residues in different positions in the peptide sequence. These data characterize a drug metabolite hapten CD8+ T cell response in an HLA risk allele-restricted form of drug hypersensitivity and provide a framework for structural analysis of hapten HLA binding interactions.
Collapse
Affiliation(s)
- Mubarak Almutairi
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Adam Lister
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Qing Zhao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - James Line
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Kareena Adair
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Arun Tailor
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - James Waddington
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Elsie Clarke
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Joshua Gardner
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Paul Thomson
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Nicolas Harper
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - David A. Ostrov
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, College of Medicine, Gainesville, Florida, USA
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - David J. MacEwan
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Munir Pirmohamed
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Xiaoli Meng
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dean J Naisbitt
- MRC Centre for Drug Safety Science, Dept. Molecular & Clinical Pharmacology, University of Liverpool, Liverpool, UK
| |
Collapse
|
17
|
Haukamp FJ, Hartmann ZM, Pich A, Kuhn J, Blasczyk R, Stieglitz F, Bade-Döding C. HLA-B*57:01/Carbamazepine-10,11-Epoxide Association Triggers Upregulation of the NFκB and JAK/STAT Pathways. Cells 2023; 12:cells12050676. [PMID: 36899812 PMCID: PMC10000580 DOI: 10.3390/cells12050676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 02/23/2023] Open
Abstract
Measure of drug-mediated immune reactions that are dependent on the patient's genotype determine individual medication protocols. Despite extensive clinical trials prior to the license of a specific drug, certain patient-specific immune reactions cannot be reliably predicted. The need for acknowledgement of the actual proteomic state for selected individuals under drug administration becomes obvious. The well-established association between certain HLA molecules and drugs or their metabolites has been analyzed in recent years, yet the polymorphic nature of HLA makes a broad prediction unfeasible. Dependent on the patient's genotype, carbamazepine (CBZ) hypersensitivities can cause diverse disease symptoms as maculopapular exanthema, drug reaction with eosinophilia and systemic symptoms or the more severe diseases Stevens-Johnson-Syndrome or toxic epidermal necrolysis. Not only the association between HLA-B*15:02 or HLA-A*31:01 but also between HLA-B*57:01 and CBZ administration could be demonstrated. This study aimed to illuminate the mechanism of HLA-B*57:01-mediated CBZ hypersensitivity by full proteome analysis. The main CBZ metabolite EPX introduced drastic proteomic alterations as the induction of inflammatory processes through the upstream kinase ERBB2 and the upregulation of NFκB and JAK/STAT pathway implying a pro-apoptotic, pro-necrotic shift in the cellular response. Anti-inflammatory pathways and associated effector proteins were downregulated. This disequilibrium of pro- and anti-inflammatory processes clearly explain fatal immune reactions following CBZ administration.
Collapse
Affiliation(s)
- Funmilola Josephine Haukamp
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Correspondence: ; Tel.: +49-511-532-9774; Fax: +49-511-532-2079
| | - Zoe Maria Hartmann
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
- Core Facility Proteomics, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Joachim Kuhn
- Institute for Laboratory and Transfusion Medicine, Heart and Diabetes Center North Rhine-Westphalia, Ruhr University Bochum, Georgstraße 11, 32545 Bad Oeynhausen, Germany
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Florian Stieglitz
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Christina Bade-Döding
- Institute of Transfusion Medicine and Transplant Engineering, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
18
|
Banerji A, Solensky R, Phillips EJ, Khan DA. Drug Allergy Practice Parameter Updates to Incorporate Into Your Clinical Practice. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:356-368.e5. [PMID: 36563781 DOI: 10.1016/j.jaip.2022.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
The drug allergy practice parameter was developed to provide guidance on the diagnosis and management of drug hypersensitivity reactions. It was last updated in 2010. With the growth of research and evidence-based data since then, experts came together to update the practice parameter with a focus on sections that the work group deemed to have significant changes (or were not addressed) in the previous practice parameter. This review is a focused update on aspects of the practice parameter deemed to have the greatest impact on clinical practice and includes significant updates on diagnosis of antibiotic allergy including penicillin, cephalosporin, sulfonamide, fluoroquinolone, and macrolide allergies. Other topics include the evolution in our management approach to patients with aspirin/nonsteroidal anti-inflammatory drug allergy, diagnostic testing for delayed drug hypersensitivity and allergy to chemotherapeutics and biologics, and the key consensus-based statements for clinical practice. Specifically, the updated practice parameter helps allergists understand the place of 1- or 2-step drug challenges that are valuable tools often without the need for skin testing in many clinical situations. A proactive approach to delabeling penicillin allergy as well as unnecessary avoidance of safe antibiotic alternatives for patients with proven penicillin allergy is emphasized. New guidance is provided on management of patients with different phenotypes of aspirin and nonsteroidal anti-inflammatory drug hypersensitivity reactions. Approaches to delayed drug hypersensitivity and use of delayed intradermal and patch testing for specific phenotypes are reviewed. Lastly, practical approaches to management of patients with reactions to chemotherapeutics and biologics are discussed.
Collapse
Affiliation(s)
- Aleena Banerji
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Mass.
| | - Roland Solensky
- The Corvallis Clinic and Oregon State University/Oregon Health & Science University College of Pharmacy, Corvallis, Ore
| | - Elizabeth J Phillips
- Departments of Medicine, Dermatology, Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tenn
| | - David A Khan
- Department of Internal Medicine, Allergy and Immunology, The University of Texas Southwestern Medical Center, Dallas, Tex
| |
Collapse
|
19
|
Macy E, Trautmann A, Chiriac AM, Demoly P, Phillips EJ. Advances in the Understanding of Drug Hypersensitivity: 2012 Through 2022. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2023; 11:80-91. [PMID: 36384652 DOI: 10.1016/j.jaip.2022.10.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 11/11/2022]
Abstract
Over the last decade there have been key advances in understanding mechanisms, risk, and consequences of both true immunological drug hypersensitivity and unverified drug allergy labels that have changed clinical practice. This has been facilitated by the widespread adoption of electronic health records (EHRs). The vast majority of EHR drug allergy labels are unverified and cause significant morbidity from unnecessary avoidance of optimal drug therapy. There has also been significant movement in our understanding of mechanisms of drug hypersensitivity that, in addition to advancing our understanding of the pathogenesis of immediate and delayed reactions, have guided preventive efforts, diagnostic procedures, and clinical management. More widespread adoption, including scale-up of "allergy" delabeling and appropriate management, specifically for antibiotics, opiates, radiocontrast, chemotherapeutics, biologics, and nonsteroidal anti-inflammatory medications, will be necessary to improve patient outcomes over the next decade. This will require further engagement and collaboration between primary care health care providers, allergists, and other specialists.
Collapse
Affiliation(s)
- Eric Macy
- Allergy Department, Kaiser Permanente Southern California, San Diego, Calif.
| | - Axel Trautmann
- Department of Dermatology and Allergy, Allergy Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
| | - Anca M Chiriac
- Département de Pneumologie et Addictologie, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France; Sorbonne Universités, Paris, France; IDESP, UMR UA11, Univ. Montpellier-INSERM, Montpellier, France
| | - Pascal Demoly
- Département de Pneumologie et Addictologie, Hôpital Arnaud de Villeneuve, University Hospital of Montpellier, Montpellier, France; Sorbonne Universités, Paris, France; IDESP, UMR UA11, Univ. Montpellier-INSERM, Montpellier, France
| | - Elizabeth J Phillips
- Center for Drug Safety and Immunology, Vanderbilt University Medical Center, Nashville, Tenn
| |
Collapse
|
20
|
Tambur AR, Audry B, Glotz D, Jacquelinet C. Improving equity in kidney transplant allocation policies through a novel genetic metric: The Matched Donor Potential. Am J Transplant 2023; 23:45-54. [PMID: 36695620 DOI: 10.1016/j.ajt.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/12/2022] [Accepted: 08/21/2022] [Indexed: 01/13/2023]
Abstract
The demand for donors' kidneys continues to increase amid a shortage of available donors. Managing policies to thoughtfully allocate this scarce resource is a complex process. Although human leukocyte antigen (HLA) matching has been shown to prolong graft survival, its relative contribution to allocation schemes is empirically compromised owing to competing priorities. We explored using a new metric, Matched Donor Potential (MDP), to facilitate improved HLA matching while promoting equity. We interrogated all active kidney waitlist patients (N = 164 427), their corresponding unacceptable antigen files, and all effective donors in the Scientific Registry of Transplant Recipients (January 1, 2016-December 31, 2017). Cause-specific hazard functions were evaluated to assess the potential impact of the MDP metric on deceased donor transplant access rates for all candidates. Access was affected by ethnicity, blood group type, and calculated Panel Reactive Antibody (cPRA). Importantly, we show that access to transplantation is influenced by the patient's own HLA makeup regardless of their ethnicity and by the HLA makeup of effective donors. The MDP metric demonstrates a high association with access to transplantation. Adjusting Cox models to include this new metric resulted in improved access to kidney transplantation for waitlist candidates of minority heritage while significantly promoting HLA matching. Thus, the MDP metric accounts for balanced, equitable organ allocation algorithms.
Collapse
Affiliation(s)
- Anat R Tambur
- Comprehensive Transplant Center, Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | | | - Denis Glotz
- Department of Nephrology and Transplantation, Hopital Saint-Louis, Paris, France
| | | |
Collapse
|
21
|
Daly AK. Genetics of drug-induced liver injury: Current knowledge and future prospects. Clin Transl Sci 2022; 16:37-42. [PMID: 36194091 PMCID: PMC9841295 DOI: 10.1111/cts.13424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 02/05/2023] Open
Abstract
Idiosyncratic drug-induced liver injury (DILI) remains an important clinical problem, both during drug development and the prescription of a range of licensed drugs. Although rare, the consequences are serious. Ongoing studies on genetic risk factors for DILI, especially genomewide association studies, have resulted in the identification of a number of genetic risk factors, including particular HLA alleles and a few non-HLA genes, both immune-related and metabolic. Some non-HLA associations, such as N-acetyltransferase 2 in isoniazid DILI and interferon regulatory factor 6 in interferon-beta DILI are likely to be drug-specific due to the role of the associated gene, but there is also evidence for polygenic susceptibility involving pathways such as oxidative and endoplasmic reticulum stress and mitochondrial function for DILI induced by multiple drugs. Increased knowledge of genetic risk factors should assist in better understanding underlying DILI mechanisms and help improve methods for identifying hepatotoxic drugs early in development. HLA allele-specific T cell proliferation together with in silico prediction of drug binding to specific HLA proteins have confirmed genetic findings for certain common causes of DILI. However, studies in hepatocytes exposed to high drug concentrations suggest toxicity that is not dependent on genotype also occurs. It seems likely that susceptibility to DILI involves several genetic risk factors combining with other factors that affect drug levels. Despite recent progress in detecting genetic risk factors for DILI, low positive predictive values mean that general implementation of genotyping prior to prescription of potentially hepatotoxic drugs is not useful currently.
Collapse
Affiliation(s)
- Ann K. Daly
- Translational & Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
22
|
Elzagallaai AA, Rieder MJ. Genetic markers of drug hypersensitivity in pediatrics: current state and promise. Expert Rev Clin Pharmacol 2022; 15:715-728. [DOI: 10.1080/17512433.2022.2100345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Abdelbaset A Elzagallaai
- Department of Paediatrics Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Rieder
- Department of Physiology and Pharmacology Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, Ontario, Canada
| |
Collapse
|
23
|
Deshpande P, Li Y, Thorne M, Palubinsky AM, Phillips EJ, Gibson A. Practical Implementation of Genetics: New Concepts in Immunogenomics to Predict, Prevent, and Diagnose Drug Hypersensitivity. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1689-1700. [PMID: 35526777 PMCID: PMC9948495 DOI: 10.1016/j.jaip.2022.04.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 02/05/2023]
Abstract
Delayed drug hypersensitivities are CD8+ T cell-mediated reactions associated with up to 50% mortality. Human leukocyte antigen (HLA) alleles are known to predispose disease and are specific to drug, reaction, and patient ethnicity. Pretreatment screening is recommended for a handful of the strongest associations to identify and prevent drug use in high-risk patients. However, an incomplete predictive value implicates other HLA-imposed risk factors, and low carriage of many identified HLA-risk alleles combined with the high cost of sequence-based typing has limited economic viability for similar recommendation of screening across drugs and health care systems. For mitigation, an expanding armory of low-cost polymerase chain reaction-based screens is being developed, and HLA-imposed risk factors are being discovered. These include (1) polymorphic variants of metabolic and endoplasmic reticulum aminopeptidase enzymes toward multiallelic screening with increased predictivity; (2) regulation by immune checkpoint inhibitors, enabling detolerized animal models of human disease; and (3) immunodominant T cell receptors (TCR) on clonally expanded CD8+ T cells. For the latter, HLA risk-restricted TCR provides immunogenomic strategies and samples from a single patient to identify novel HLA-risk associations in underserved minority populations, tissue-relevant effector biomarkers toward earlier diagnosis and treatment, and HLA-TCR-presented immunogenic structures to aid future drug development.
Collapse
Affiliation(s)
- Pooja Deshpande
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | - Yueran Li
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | - Michael Thorne
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia
| | | | - Elizabeth J Phillips
- Institute for Immunology and Infectious Disease (IIID), Murdoch University, Perth, WA, Australia,Vanderbilt University Medical Centre (VUMC), Nashville, TN, USA
| | - Andrew Gibson
- Institute for Immunology and Infectious Disease, Murdoch University, Perth, Western Australia, Australia.
| |
Collapse
|
24
|
Krantz MS, Kerchberger VE, Wei WQ. Novel Analysis Methods to Mine Immune-Mediated Phenotypes and Find Genetic Variation Within the Electronic Health Record (Roadmap for Phenotype to Genotype: Immunogenomics). THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1757-1762. [PMID: 35487368 PMCID: PMC9624141 DOI: 10.1016/j.jaip.2022.04.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The field of immunogenomics has the opportunity for accelerated genetic discovery aided by the maturation of electronic health records (EHRs) linked to DNA biobanks. Novel analysis methods in deep phenotyping of EHR data allow the full realization of the paired and increasingly dense genetic/phenotypic information available. This enables researchers to uncover genetic risk factors for the prevention and optimal treatment of immune-mediated diseases and immune-mediated adverse drug reactions. This article reviews the background of EHRs linked to DNA biobanks, potential applications to immunogenomic discovery, and current and emerging techniques in EHR-based deep phenotyping.
Collapse
Affiliation(s)
- Matthew S Krantz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| | - V Eric Kerchberger
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tenn
| | - Wei-Qi Wei
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tenn
| |
Collapse
|
25
|
Hama N, Abe R, Gibson A, Phillips EJ. Drug-Induced Hypersensitivity Syndrome (DIHS)/Drug Reaction With Eosinophilia and Systemic Symptoms (DRESS): Clinical Features and Pathogenesis. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY. IN PRACTICE 2022; 10:1155-1167.e5. [PMID: 35176506 PMCID: PMC9201940 DOI: 10.1016/j.jaip.2022.02.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 05/16/2023]
Abstract
Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DIHS/DRESS) is one example of a severe delayed T-cell-mediated adverse drug reaction. DIHS/DRESS presents with fever, widespread rash and facial edema, organ involvement, and hematological abnormalities, including eosinophilia and atypical lymphocytosis. DIHS/DRESS is associated with relapse 2 to 4 weeks after acute symptoms, often coinciding with reactivation of prevalent chronic persistent human herpesviruses such as human herpesvirus 6, EBV, and cytomegalovirus. The mortality of DIHS/DRESS is up to 10% and often related to unrecognized myocarditis and cytomegalovirus complications, with longer-term consequences that contribute to morbidity including autoimmune diseases such as thyroiditis. It is essential that all potential drug causes, including all new drugs introduced within the 8 weeks preceding onset of DIHS/DRESS symptoms, are identified. All potential drug culprits, as well as drugs that are closely related structurally to the culprit drug, should be avoided in the future. Systemic corticosteroids have remained the mainstay for the treatment of DIHS/DRESS with internal organ involvement. Steroid-sparing agents, such as cyclosporine, mycophenolate mofetil, and monthly intravenous immune globulin, have been successfully used for treatment, and careful follow-up for cytomegalovirus reactivation is recommended. Strong associations between HLA class I alleles and DIHS/DRESS predisposition include HLA-B∗13:01 and dapsone, HLA-B∗58:01 and allopurinol, and HLA-B∗32:01 and vancomycin. These have opened a pathway for prevention, risk stratification, and earlier diagnosis. Single-cell sequencing and other studies of immunopathogenesis promise to identify targeted treatment approaches.
Collapse
Affiliation(s)
- Natsumi Hama
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | - Riichiro Abe
- Division of Dermatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Andrew Gibson
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Elizabeth J Phillips
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia; Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn.
| |
Collapse
|
26
|
Stirton H, Shear NH, Dodiuk-Gad RP. Drug Reaction with Eosinophilia and Systemic Symptoms (DReSS)/Drug-Induced Hypersensitivity Syndrome (DiHS)-Readdressing the DReSS. Biomedicines 2022; 10:999. [PMID: 35625735 PMCID: PMC9138571 DOI: 10.3390/biomedicines10050999] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 12/17/2022] Open
Abstract
Drug reaction with eosinophilia and systemic symptoms (DReSS), also known as drug-induced hypersensitivity syndrome (DiHS), is a severe, systemic, T cell mediated drug reaction with combinations of cutaneous, hematologic, and internal organ involvement. Pathogenesis of DReSS is multi-factorial, involving drug-exposure, genetic predisposition through specific human leukocyte antigen (HLA) alleles and metabolism defects, viral reactivation, and immune dysregulation. Clinical features of this condition are delayed, stepwise, and heterogenous, making this syndrome challenging to recognize and diagnose. Two sets of validated diagnostic criteria exist that can be employed to diagnose DReSS/DiHS. Methods to improve early recognition of DReSS and predict disease severity has been a recent area of research focus. In vitro and in vivo tests can be employed to confirm the diagnosis and help identify culprit drugs. The mainstay treatment of DReSS is prompt withdrawal of the culprit drug, supportive treatment, and immunosuppression depending on the severity of disease. We present a comprehensive review on the most recent research and literature on DReSS, with emphasis on pathogenesis, clinical features, diagnosis, confirmatory testing modalities, and treatment. Additionally, this summary aims to highlight the differing viewpoints on this severe disease and broaden our perspective on the condition known as DReSS.
Collapse
Affiliation(s)
- Hannah Stirton
- Section of Dermatology, Department of Medicine, University of Manitoba, Winnipeg, MB R2M 3Y8, Canada;
- Division of Dermatology, Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Neil H. Shear
- Temerty Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada;
| | - Roni P. Dodiuk-Gad
- Temerty Department of Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Emek Medical Centre, Afula 1855701, Israel
- Bruce Rappaport Faculty of Medicine, Technion Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
27
|
Phillips EJ, Bouchard CS, Divito SJ. Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis-Coordinating Research Priorities to Move the Field Forward. JAMA Dermatol 2022; 158:607-608. [PMID: 35353140 DOI: 10.1001/jamadermatol.2022.0484] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Elizabeth J Phillips
- Center for Drug Safety and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee.,Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Western Australia, Australia
| | - Charles S Bouchard
- Department of Ophthalmology, Loyola University Medical Center, Maywood, Illinois
| | - Sherrie J Divito
- Department of Dermatology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
Proteomic Profiling and T Cell Receptor Usage of Abacavir Susceptible Subjects. Biomedicines 2022; 10:biomedicines10030693. [PMID: 35327495 PMCID: PMC8945713 DOI: 10.3390/biomedicines10030693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/16/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Type B adverse drug reactions (ADRs) represent a significant threat as their occurrence arises unpredictable and despite proper application of the drug. The severe immune reaction Abacavir Hypersensitivity Syndrome (AHS) that arises in HIV+ patients treated with the antiretroviral drug Abacavir (ABC) strongly correlates to the presence of the human leukocyte antigen (HLA) genotype HLA-B*57:01 and discriminates HLA-B*57:01+ HIV+ patients from ABC treatment. However, not all HLA-B*57:01+ HIV+ patients are affected by AHS, implying the involvement of further patient-specific factors in the development of AHS. The establishment of a reliable assay to classify HLA-B*57:01 carriers as ABC sensitive or ABC tolerant allowed to investigate the T cell receptor (TCR) Vβ chain repertoire of effector cells and revealed Vβ6 and Vβ24 as potential public TCRs in ABC sensitive HLA-B*57:01 carriers. Furthermore, distinct effects of ABC on the cellular proteome of ABC sensitive and tolerant volunteers were observed and suggest enhanced activation and maturation of dentritic cells (DC) in ABC sensitive volunteers. Analysis of ABC-naïve cellular proteomes identified the T cell immune regulator 1 (TCIRG1) as a potential prognostic biomarker for ABC susceptibility and the involvement of significantly upregulated proteins, particularly in peptide processing, antigen presentation, interferon (IFN), and cytokine regulation.
Collapse
|
29
|
Pichler WJ, Watkins S, Yerly D. Risk Assessment in Drug Hypersensitivity: Detecting Small Molecules Which Outsmart the Immune System. FRONTIERS IN ALLERGY 2022; 3:827893. [PMID: 35386664 PMCID: PMC8974731 DOI: 10.3389/falgy.2022.827893] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/26/2022] [Indexed: 12/19/2022] Open
Abstract
Drug hypersensitivity (DH) reactions are clinically unusual because the underlying immune stimulations are not antigen-driven, but due to non-covalent drug-protein binding. The drugs may bind to immune receptors like HLA or TCR which elicits a strong T cell reaction (p-i concept), the binding may enhance the affinity of antibodies (enhanced affinity model), or drug binding may occur on soluble proteins which imitate a true antigen (fake antigen model). These novel models of DH could have a major impact on how to perform risk assessments in drug development. Herein, we discuss the difficulties of detecting such non-covalent, labile and reversible, but immunologically relevant drug-protein interactions early on in drug development. The enormous diversity of the immune system, varying interactions, and heterogeneous functional consequences make it to a challenging task. We propose that a realistic approach to detect clinically relevant non-covalent drug interactions for a new drug could be based on a combination of in vitro cell culture assays (using a panel of HLA typed donor cells) and functional analyses, supplemented by structural analysis (computational data) of the reactive cells/molecules. When drug-reactive cells/molecules with functional impact are detected in these risk assessments, a close clinical monitoring of the drug may reveal the true incidence of DH, as suppressing but also enhancing factors occurring in vivo can influence the clinical manifestation of a DH.
Collapse
|
30
|
Factors Determining Plasticity of Responses to Drugs. Int J Mol Sci 2022; 23:ijms23042068. [PMID: 35216184 PMCID: PMC8877660 DOI: 10.3390/ijms23042068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/16/2022] Open
Abstract
The plasticity of responses to drugs is an ever-present confounding factor for all aspects of pharmacology, influencing drug discovery and development, clinical use and the expectations of the patient. As an introduction to this Special Issue of the journal IJMS on pharmacological plasticity, we address the various levels at which plasticity appears and how such variability can be controlled, describing the ways in which drug responses can be affected with examples. The various levels include the molecular structures of drugs and their receptors, expression of genes for drug receptors and enzymes involved in metabolism, plasticity of cells targeted by drugs, tissues and clinical variables affected by whole body processes, changes in geography and the environment, and the influence of time and duration of changes. The article provides a rarely considered bird’s eye view of the problem and is intended to emphasize the need for increased awareness of pharmacological plasticity and to encourage further debate.
Collapse
|
31
|
Unravelling the Proteomics of HLA-B*57:01+ Antigen Presenting Cells during Abacavir Medication. J Pers Med 2022; 12:jpm12010040. [PMID: 35055355 PMCID: PMC8781935 DOI: 10.3390/jpm12010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/19/2022] Open
Abstract
Type B adverse drug reactions (ADRs) are unpredictable based on the drug’s pharmacology and represent a key challenge in pharmacovigilance. For human leukocyte antigen (HLA)-mediated type B ADRs, it is assumed that the protein/small-molecule interaction alters the biophysical and mechanistic properties of the antigen presenting cells. Sophisticated methods enabled the molecular appreciation of HLA-mediated ADRs; in several instances, the drug molecule occupies part of the HLA peptide binding groove and modifies the recruited peptide repertoire thereby causing a strong T-cell-mediated immune response that is resolved upon withdrawal of medication. The severe ADR in HLA-B*57:01+ patients treated with the antiretroviral drug abacavir (ABC) in anti-HIV therapy is an example of HLA-drug-T cell cooperation. However, the long-term damages of the HLA-B*57:01-expressing immune cells following ABC treatment remain unexplained. Utilizing full proteome sequencing following ABC treatment of HLA-B*57:01+ cells, we demonstrate stringent proteomic alteration of the HLA/drug presenting cells. The proteomic content indisputably reflects the cellular condition; this knowledge directs towards individual pharmacovigilance for the development of personalized and safe medication.
Collapse
|
32
|
Aparicio-Soto M, Curato C, Riedel F, Thierse HJ, Luch A, Siewert K. In Vitro Monitoring of Human T Cell Responses to Skin Sensitizing Chemicals-A Systematic Review. Cells 2021; 11:cells11010083. [PMID: 35011644 PMCID: PMC8750770 DOI: 10.3390/cells11010083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Chemical allergies are T cell-mediated diseases that often manifest in the skin as allergic contact dermatitis (ACD). To prevent ACD on a public health scale and avoid elicitation reactions at the individual patient level, predictive and diagnostic tests, respectively, are indispensable. Currently, there is no validated in vitro T cell assay available. The main bottlenecks concern the inefficient generation of T cell epitopes and the detection of rare antigen-specific T cells. Methods: Here, we systematically review original experimental research papers describing T cell activation to chemical skin sensitizers. We focus our search on studies published in the PubMed and Scopus databases on non-metallic allergens in the last 20 years. Results: We identified 37 papers, among them 32 (86%) describing antigen-specific human T cell activation to 31 different chemical allergens. The remaining studies measured the general effects of chemical allergens on T cell function (five studies, 14%). Most antigen-specific studies used peripheral blood mononuclear cells (PBMC) as antigen-presenting cells (APC, 75%) and interrogated the blood T cell pool (91%). Depending on the individual chemical properties, T cell epitopes were generated either by direct administration into the culture medium (72%), separate modification of autologous APC (29%) or by use of hapten-modified model proteins (13%). Read-outs were mainly based on proliferation (91%), often combined with cytokine secretion (53%). The analysis of T cell clones offers additional opportunities to elucidate the mechanisms of epitope formation and cross-reactivity (13%). The best researched allergen was p-phenylenediamine (PPD, 12 studies, 38%). For this and some other allergens, stronger immune responses were observed in some allergic patients (15/31 chemicals, 48%), illustrating the in vivo relevance of the identified T cells while detection limits remain challenging in many cases. Interpretation: Our results illustrate current hardships and possible solutions to monitoring T cell responses to individual chemical skin sensitizers. The provided data can guide the further development of T cell assays to unfold their full predictive and diagnostic potential, including cross-reactivity assessments.
Collapse
Affiliation(s)
- Marina Aparicio-Soto
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Caterina Curato
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Franziska Riedel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Hermann-Josef Thierse
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
| | - Andreas Luch
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Institute of Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany
| | - Katherina Siewert
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, 10589 Berlin, Germany; (M.A.-S.); (C.C.); (F.R.); (H.-J.T.); (A.L.)
- Correspondence: ; Tel.: +49-(0)30-18412-57001
| |
Collapse
|
33
|
Krantz MS, Stone CA, Abreo A, Phillips EJ. Reply to ''The safety and efficacy of direct oral challenge in trimethoprim-sulfamethoxazole antibiotic allergy". THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:3849-3850. [PMID: 34627544 DOI: 10.1016/j.jaip.2021.07.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 07/11/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Matthew S Krantz
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Cosby A Stone
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tenn
| | - Andrew Abreo
- Department of Pediatrics, Louisiana State University Health Sciences Center, New Orleans, La
| | - Elizabeth J Phillips
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tenn; Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tenn; Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tenn; Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, Perth, Western Australia.
| |
Collapse
|
34
|
Van Driest SL, Cascorbi I. Progress and Challenges in Pharmacogenomics. Clin Pharmacol Ther 2021; 110:529-532. [PMID: 34412159 DOI: 10.1002/cpt.2359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Affiliation(s)
- Sara L Van Driest
- Departments of Pediatrics and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, Germany
| |
Collapse
|