1
|
Park S, Lee YW, Choi S, Jo H, Kim N, Cho S, Lee E, Choi EB, Park I, Jeon Y, Noh H, Seok SH, Oh SH, Choi YK, Kwon HK, Seo JY, Nam KT, Park JW, Choi KS, Lee HY, Yun JW, Seong JK. Post-COVID metabolic enzyme alterations in K18-hACE2 mice exacerbate alcohol-induced liver injury through transcriptional regulation. Free Radic Biol Med 2025; 229:1-12. [PMID: 39798903 DOI: 10.1016/j.freeradbiomed.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/22/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), poses a significant threat to global public health. Despite reports of liver injury during viral disease, the occurrence and detailed mechanisms underlying the development of secondary exogenous liver injury, particularly in relation to changes in metabolic enzymes, remain to be fully elucidated. Therefore, this study was aimed to investigate the mechanisms underlying SARS-CoV-2-induced molecular alterations in hepatic metabolism and the consequent secondary liver injury resulting from alcohol exposure. We investigated the potential effects of SARS-CoV-2 infection on alcohol-induced liver injury in Keratin 18 promoter-human angiotensin converting enzyme 2 (K18-hACE2) transgenic mice. Mice were intranasally infected with 1 × 102 PFU of SARS-CoV-2. Following a 14 d recovery period from infection, the recovered mice were orally administered alcohol at 6 g/kg. Prior SARS-CoV-2 infection aggravated alcohol-induced liver injury based on increased alanine aminotransferase levels and cytoplasmic vacuolation. Interestingly, infected mice exhibited lower blood alcohol levels and higher levels of acetaldehyde, a toxic alcohol metabolite, compared to uninfected mice after the same period of alcohol consumption. Along with alterations of several metabolic process-related terms identified through RNA sequencing, notably, upregulation of cytochrome P450 2E1 (CYP2E1) and CYP1A2 was observed in infected mice compared to control value prior to alcohol exposure, with no significant impact of SARS-CoV-2 on intestinal damage. Tumor necrosis factor-alpha persistently showed upregulated expression in the infected mice; it also enhanced aryl hydrocarbon receptor and Sp1 expressions and their binding activity to Cyp1a2 and Cyp2e1 promoters, respectively, in hepatocytes, promoting the upregulation of their transcription. Our findings suggest that SARS-CoV-2 infection exacerbates alcohol-induced liver injury through the transcriptional activation of Cyp1a2 and Cyp2e1, providing valuable insights for the development of clinical recommendations on long COVID.
Collapse
Affiliation(s)
- SiYeong Park
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Youn Woo Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, 23488, Republic of Korea
| | - Seunghoon Choi
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS, Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Harin Jo
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - NaHyun Kim
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sumin Cho
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eunji Lee
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Bin Choi
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inyoung Park
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Jeon
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyuna Noh
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS, Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Hyuk Seok
- Laboratory of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Hyun Oh
- Laboratory of Histology, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yang-Kyu Choi
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ho-Keun Kwon
- Department of Microbiology and Immunology and Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jun-Young Seo
- Severance Biomedical Science Institute, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ki Taek Nam
- Department of Biomedical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Graduate School of Medical Science, BK21 Project, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jun Won Park
- Laboratory of Laboratory Animal Medicine, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kang-Seuk Choi
- Laboratory of Avian Diseases, BK21 PLUS Program for Veterinary Science and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ho-Young Lee
- Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, 23488, Republic of Korea.
| | - Jun-Won Yun
- Laboratory of Veterinary Toxicology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Je Kyung Seong
- Korea Mouse Phenotyping Center, Seoul National University, Seoul, 08826, Republic of Korea; Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS, Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea; Interdisciplinary Program for Bioinformatics, Program for Cancer Biology and BIO-MAX/N-Bio Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
2
|
Gannon J, Chengappa KNR, Cotes RO, Leung JG, Frailey P, Piechowicz M, Kistler E, Nathaniel V, Eldredge C, Alessandro J, Clinebell K, Yabs M, Adair D, Zimmerman J. A model for timely dissemination of critical information: Clozapine toxicity during the COVID pandemic. Ment Health Clin 2025; 15:30-35. [PMID: 39974758 PMCID: PMC11835370 DOI: 10.9740/mhc.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/30/2024] [Indexed: 02/21/2025] Open
Abstract
Clozapine is the only medication approved for treatment-resistant schizophrenia. Clozapine toxicity associated with COVID-19 infection could be amplified by concomitant nirmatrelvir/ritonavir. Knowledge gaps among clinicians and patients led to patient safety concerns and the implementation of a quality improvement (QI) project focused on rapid education dissemination. This QI project focused on clinicians, patients, and caregivers. Steps included clinician education at system, regional, and national levels and patient/caregiver education at system and regional levels. Optimization of electronic health record (EHR) tools facilitated efficient clinical workflows, targeted patient education to facilitate shared decision making, and promoted best practices. Education concerning risk for COVID-19, clozapine toxicity, and nirmatrelvir/ritonavir drug interactions was distributed to more than 1400 clinicians via e-mail and conference presentations. Enduring continuing education materials had more than 1200 views. Verbal or written education was rapidly delivered to 231 patients/caregivers and documented via autotext, an EHR tool. Following presentation of this QI project at a schizophrenia conference, more than 95% of attendees, including health care clinicians and patients/caregivers, rated their understanding of COVID-19, clozapine toxicity, and the interaction with nirmatrelvir/ritonavir as "very high" or "high." Separately, web-hosted continuing education platforms indicated that more than 75% of clinicians rated their understanding of these 2 issues as "very high" or "high" upon module completion. By educating patients/caregivers and clinicians about COVID-19 infection and nirmatrelvir-/ritonavir-associated toxicity risks, this project helped ensure safe prescription of clozapine during the COVID-19 pandemic. This project could serve as a rapid risk mitigation dissemination model of patient safety education.
Collapse
Affiliation(s)
- Jessica Gannon
- (Corresponding author) Associate Professor, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Ambulatory Medical Director, Comprehensive Recovery Services, Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania,
| | - K N Roy Chengappa
- Professor, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Service Line Chief, Comprehensive Recovery Services, Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Robert O Cotes
- Associate Professor and Distinguished Physician, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia; Director, Clinical & Research Program for Psychosis at Grady Health System, Atlanta, Georgia
| | - Jonathan G Leung
- Psychiatric Clinical Pharmacist, Department of Pharmacy and Psychiatry, Mayo Clinic, Rochester, Minnesota
| | - Patrick Frailey
- PGY4, University of Pittsburgh Medical Center Western Psychiatric Hospital, Pittsburgh, Pennsylvania
| | - Mariel Piechowicz
- PGY4, University of Pittsburgh Medical Center Western Psychiatric Hospital, Pittsburgh, Pennsylvania
| | - Elizabeth Kistler
- Assistant Professor, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Attending Physician, Comprehensive Recovery Services, Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Vernon Nathaniel
- Assistant Professor, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Medical Director, Community Treatment Teams, Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Cynthia Eldredge
- Professional Staff Nurse, Comprehensive Recovery Services, Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Jade Alessandro
- Systems Analyst-Technical Pro, Analytics & Reporting Information Technology, Health Services, Information Services Division, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Kimberly Clinebell
- Clinical Assistant Professor of Psychiatry, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Medical Director, Pine Child and Adolescent Partial Hospitalization Program/Intensive Outpatient Program, Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Melanie Yabs
- Clinical Pharmacist, Department of Psychiatry, Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Dale Adair
- Chief Psychiatric Officer, Office of the Medical Director, Department of Human Services, Office of Mental Health and Substance Abuse Services, Harrisburg, Pennsylvania
| | - Joseph Zimmerman
- Director of Quality and Patient Safety, Western Psychiatric Hospital, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
3
|
Nwabufo CK. Uncovering the impact of COVID-19-mediated bidirectional dysregulation of cytochrome P450 3A4 on systemic and pulmonary drug concentrations using physiologically based pharmacokinetic modeling. Drug Metab Dispos 2025; 53:100008. [PMID: 39884806 DOI: 10.1124/dmd.124.001893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 01/22/2025] Open
Abstract
Several clinical studies have shown that COVID-19 increases the systemic concentration of drugs in hospitalized patients with COVID-19. However, it is unclear how COVID-19-mediated bidirectional dysregulation of hepatic and pulmonary cytochrome P450 (CYP) 3A4 affects drug concentrations, especially in the lung tissue, which is most affected by the disease. Herein, physiologically based pharmacokinetic modeling was used to demonstrate the differences in systemic and pulmonary concentrations of 4 respiratory infectious disease drugs when CYP3A4 is concurrently downregulated in the liver and upregulated in the lung based on existing clinical data on COVID-19-CYP3A4 interactions at varying severity levels including outpatients, non-intensive care unit (ICU), and ICU patients. The study showed that hepatic metabolism is the primary determinant of both systemic and pulmonary drug concentrations despite the concurrent bidirectional dysregulation of liver and lung CYP3A4. ICU patients had the most systemic and pulmonary drug exposure, with a percentage increase in the area under the concentration-time curve in the plasma compartment of approximately 44%, 56%, 114%, and 196% for clarithromycin, nirmatrelvir, dexamethasone, and itraconazole, respectively, relative to the healthy group. Within the ICU cohort, clarithromycin exhibited its highest exposure in lung tissue mass with a fold change of 1189, whereas nirmatrelvir and dexamethasone showed their highest exposure in the plasma compartment, with fold changes of about 126 and 5, respectively, compared with the maximum therapeutic concentrations for their target pathogens. Itraconazole was significantly underexposed in the lung fluid compartment, potentially explaining its limited efficacy for the treatment of COVID-19. These findings underscore the importance of optimizing dosing regimens in at risk ICU patients to enhance both efficacy and safety profiles. SIGNIFICANCE STATEMENT: This study investigated whether COVID-19-mediated concurrent hepatic downregulation and pulmonary upregulation of cytochrome P450 (CYP) 3A4 leads to differences in the systemic and pulmonary concentrations of 4 respiratory medicines. The study demonstrated that intercompartmental differences in drug concentrations were driven by only hepatic CYP3A4 expression. This work suggests that ICU patients with significant COVID-19-CYP3A4 interactions may be at risk of clinically relevant COVID-19-drug interactions, highlighting the need for optimizing dosing regimens in this patient group to improve safety and efficacy.
Collapse
Affiliation(s)
- Chukwunonso K Nwabufo
- Current affiliation: Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada; Current affiliation: OneDrug Inc., Toronto, Ontario, Canada; Program in Translational Medicine, Hospital for Sick Children, Toronto, Ontario, Canada; Centre for Applied Pharmacokinetic Research, School of Health Sciences, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
4
|
Torso NDG, Rodrigues-Soares F, Altamirano C, Ramírez-Roa R, Sosa-Macías M, Galavíz-Hernández C, Terán E, Peñas-LLedó E, Dorado P, LLerena A. CYP2C19 genotype-phenotype correlation: current insights and unanswered questions. Drug Metab Pers Ther 2024; 39:201-206. [PMID: 39663234 DOI: 10.1515/dmpt-2024-0093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
The CYP2C19 enzyme is implicated in the metabolism of several clinically used drugs. Its phenotype is usually predicted by genotyping and indicates the expected enzymatic activity for each patient. However, with a few exceptions, CYP2C19 genotyping has not resulted in a reliable prediction of the metabolizer status, since most of the evidence currently available for this prediction comes from research into populations of predominantly European ancestry. Therefore, this review discusses the main factors that may alter the expected phenotype, as well as the urgent need to include ethnically diverse populations in further studies, so that, in the long term, it is possible to establish guidelines appropriate to these groups.
Collapse
Affiliation(s)
- Nadine de Godoy Torso
- School of Medical Sciences, Universidade Estadual de Campinas, Campinas, Brazil
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| | - Fernanda Rodrigues-Soares
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
- Department of Pathology, Genetic and Evolution, 74348 Biological and Natural Sciences Institute, Universidade Federal Do Triângulo Mineiro , Uberaba, Brazil
| | - Catalina Altamirano
- Universidad Nacional Autónoma de Nicaragua - León, Facultad de Ciencias Médicas, León, Nicaragua
| | | | - Martha Sosa-Macías
- Instituto Politécnico Nacional-CIIDIR, Academia de Genómica, Durango, México
| | | | | | - Eva Peñas-LLedó
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| | - Pedro Dorado
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| | - Adrián LLerena
- University Institute for Bio-Sanitary Research of Extremadura, Badajoz, Spain
| |
Collapse
|
5
|
de Jong LM, van de Kreeke M, Ahmadi M, Swen JJ, Knibbe CAJ, van Hasselt JGC, Manson ML, Krekels EHJ. Changes in Plasma Clearance of CYP450 Probe Drugs May Not be Specific for Altered In Vivo Enzyme Activity Under (Patho)Physiological Conditions: How to Interpret Findings of Probe Cocktail Studies. Clin Pharmacokinet 2024; 63:1585-1595. [PMID: 39463211 PMCID: PMC11573838 DOI: 10.1007/s40262-024-01426-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND AND OBJECTIVE CYP450 (CYP) phenotyping involves quantifying an individual's plasma clearance of CYP-specific probe drugs, as a proxy for in vivo CYP enzyme activity. It is increasingly applied to study alterations in CYP enzyme activity under various (patho)physiological conditions, such as inflammation, obesity, or pregnancy. The phenotyping approach assumes that changes in plasma clearance of probe drugs are driven by changes in CYP enzyme activity. However, plasma clearance is also influenced by protein binding, blood-to-plasma ratio, and hepatic blood flow, all of which may change under (patho)physiological conditions. METHODS Using a physiologically based pharmacokinetic (PBPK) workflow, we aimed to evaluate whether the plasma clearance of commonly used CYP probe drugs is indeed directly proportional to alterations in CYP enzyme activity (sensitivity), and to what extent alterations in protein binding, blood-to-plasma ratio, and hepatic blood flow observed under (patho)physiological conditions impact plasma clearance (specificity). RESULTS Plasma clearance of CYP probe drugs is sensitive to alterations in CYP enzyme activity, since alterations in intrinsic clearance between - 90% and + 150% resulted in near-proportional changes in plasma clearance, except for midazolam in the case of > 50% CYP3A4 induction. However, plasma clearance also changed near-proportionally with alterations in the unbound drug fraction, diminishing probe specificity. This was particularly relevant for high protein-bound probe drugs, as alterations in plasma protein binding resulted in larger relative changes in the unbound drug fraction. Alterations in the blood-to-plasma ratio and hepatic blood flow of ± 50% resulted in plasma clearance changes of less than ± 16%, meaning they limitedly impacted plasma clearance of CYP probe drugs, except for midazolam. In order to correct for the impact of non-metabolic determinants on probe drug plasma clearance, an R script was developed to calculate how much the CYP enzyme activity is actually altered under (patho)physiological conditions, when alterations in the unbound drug fraction, blood-to-plasma ratio, and/or hepatic blood flow also impact probe drug plasma clearance. CONCLUSIONS As plasma protein binding can change under (patho)physiological conditions, alterations in unbound drug fraction should be accounted for when using CYP probe drug plasma clearance as a proxy for CYP enzyme activity in patient populations. The tool developed in this study can support researchers in determining alterations in CYP enzyme activity in patients with (patho)physiological conditions.
Collapse
Affiliation(s)
- Laura M de Jong
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Marinda van de Kreeke
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Mariam Ahmadi
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Catherijne A J Knibbe
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
- Department of Clinical Pharmacy, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - J G Coen van Hasselt
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Martijn L Manson
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Elke H J Krekels
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
- Certara Inc, Princeton, NJ, USA.
| |
Collapse
|
6
|
Krohmer E, Haefeli WE. Comment on: Increased Theophylline Plasma Concentrations in a Patient With COVID-19. Ann Pharmacother 2024:10600280241278336. [PMID: 39250178 DOI: 10.1177/10600280241278336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024] Open
Affiliation(s)
- Evelyn Krohmer
- Internal Medicine IX: Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, Medical Faculty Heidelberg/Heidelberg University Hospital, Heidelberg, Germany
| | - Walter E Haefeli
- Internal Medicine IX: Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University, Medical Faculty Heidelberg/Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
Pippa LF, Vozmediano V, Mitrov‐Winkelmolen L, Touw D, Soliman A, Cristofoletti R, Salgado Junior W, de Moraes NV. Impact of obesity and roux-en-Y gastric bypass on the pharmacokinetics of (R)- and (S)-omeprazole and intragastric pH. CPT Pharmacometrics Syst Pharmacol 2024; 13:1528-1541. [PMID: 38923321 PMCID: PMC11533107 DOI: 10.1002/psp4.13189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
This study employed physiologically-based pharmacokinetic-pharmacodynamics (PBPK/PD) modeling to predict the effect of obesity and gastric bypass surgery on the pharmacokinetics and intragastric pH following omeprazole treatment. The simulated plasma concentrations closely matched the observed data from non-obese, morbidly obese, and post-gastric bypass populations. Obesity significantly reduces CYP3A4 and CYP2C19 activities, as reflected by the metabolic ratio [omeprazole sulphone]/[omeprazole] and [5-hydroxy-omeprazole]/[omeprazole]. The morbidly obese model accounted for the down-regulation of CYP2C19 and CYP3A4 to recapitulate the observed data. Sensitivity analysis showed that intestinal CYP3A4, gastric pH, small intestine bypass, and the delay in bile release do not have a major influence on omeprazole exposure. Hepatic CYP3A4 had a significant impact on the AUC of (S)-omeprazole, while hepatic CYP2C19 affected both (R)- and (S)-omeprazole AUC. After gastric bypass surgery, the activity of CYP3A4 and CYP2C19 is restored. The PBPK model was linked to a mechanism-based PD model to assess the effect of omeprazole on intragastric pH. Following 40 mg omeprazole, the mean intragastric pH was 4.3, 4.6, and 6.6 in non-obese, obese, and post-gastric bypass populations, and the daily time with pH >4 was 14.7, 16.4, and 24 h. Our PBPK/PD approach provides a comprehensive understating of the impact of obesity and weight loss on CYP3A4 and CYP2C19 activity and omeprazole pharmacokinetics. Given that simulated intragastric pH is relatively high in post-RYGB patients, irrespective of the dose of omeprazole, additional clinical outcomes are imperative to assess the effect of proton pump inhibitor in preventing marginal ulcers in this population.
Collapse
Affiliation(s)
- Leandro F. Pippa
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | - Valvanera Vozmediano
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | | | - Daan Touw
- Department of Clinical Pharmacy and PharmacologyUniversity Medical Center GroningenGroningenThe Netherlands
- Department of Pharmaceutical Analysis, Groningen Research Institute of Pharmacy, Faculty of Science and EngineeringUniversity of GroningenGroningenThe Netherlands
| | - Amira Soliman
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
- Department of Pharmacy Practice, Faculty of PharmacyHelwan UniversityHelwanEgypt
| | - Rodrigo Cristofoletti
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| | | | - Natalia Valadares de Moraes
- Department of Pharmaceutics, Center for Pharmacometrics and Systems Pharmacology, College of PharmacyUniversity of FloridaOrlandoFloridaUSA
| |
Collapse
|
8
|
Thomaz MDL, Vieira CP, Caris JA, Marques MP, Rocha A, Paz TA, Rezende REF, Lanchote VL. Liver Fibrosis Stages Affect Organic Cation Transporter 1/2 Activities in Hepatitis C Virus-Infected Patients. Pharmaceuticals (Basel) 2024; 17:865. [PMID: 39065716 PMCID: PMC11280093 DOI: 10.3390/ph17070865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
This study aims to evaluate the impact of liver fibrosis stages of chronic infection with hepatitis C virus (HCV) on the in vivo activity of organic cation transporters (hepatic OCT1 and renal OCT2) using metformin (MET) as a probe drug. Participants allocated in Group 1 (n = 15, mild to moderate liver fibrosis) or 2 (n = 13, advanced liver fibrosis and cirrhosis) received a single MET 50 mg oral dose before direct-acting antiviral (DAA) drug treatment (Phase 1) and 30 days after achieving sustained virologic response (Phase 2). OCT1/2 activity (MET AUC0-24) was found to be reduced by 25% when comparing the two groups in Phase 2 (ratio 0.75 (0.61-0.93), p < 0.05) but not in Phase 1 (ratio 0.81 (0.66-0.98), p > 0.05). When Phases 1 and 2 were compared, no changes were detected in both Groups 1 (ratio 1.10 (0.97-1.24), p > 0.05) and 2 (ratio 1.03 (0.94-1.12), p > 0.05). So, this study shows a reduction of approximately 25% in the in vivo activity of OCT1/2 in participants with advanced liver fibrosis and cirrhosis after achieving sustained virologic response and highlights that OCT1/2 in vivo activity depends on the liver fibrosis stage of chronic HCV infection.
Collapse
Affiliation(s)
- Matheus De Lucca Thomaz
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Carolina Pinto Vieira
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Juciene Aparecida Caris
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Maria Paula Marques
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Adriana Rocha
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Tiago Antunes Paz
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| | - Rosamar Eulira Fontes Rezende
- Division of Gastroenterology, Department of Internal Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14049-900, Brazil;
- Reference Center, Hepatitis Outpatient Clinic, Municipal Health Secretary, Ribeirão Preto 14049-900, Brazil
| | - Vera Lucia Lanchote
- Department of Clinical Analysis, Food Science and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, Brazil; (M.D.L.T.); (C.P.V.); (J.A.C.); (M.P.M.); (A.R.); (T.A.P.)
| |
Collapse
|
9
|
Ansermot N, Vathanarasa H, Ranjbar S, Gholam M, Crettol S, Vandenberghe F, Gamma F, Plessen KJ, von Gunten A, Conus P, Eap CB. Therapeutic Drug Monitoring of Olanzapine: Effects of Clinical Factors on Plasma Concentrations in Psychiatric Patients. Ther Drug Monit 2024; 46:00007691-990000000-00234. [PMID: 38833576 PMCID: PMC11554250 DOI: 10.1097/ftd.0000000000001227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/31/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Therapeutic drug monitoring (TDM) is strongly recommended for olanzapine due to its high pharmacokinetic variability. This study aimed to investigate the impact of various clinical factors on olanzapine plasma concentrations in patients with psychiatric disorders. METHODS The study used TDM data from the PsyMetab cohort, including 547 daily dose-normalized, steady-state, olanzapine plasma concentrations (C:D ratios) from 248 patients. Both intrinsic factors (eg, sex, age, body weight) and extrinsic factors (eg, smoking status, comedications, hospitalization) were examined. Univariate and multivariable, linear, mixed-effects models were employed, with a stepwise selection procedure based on Akaike information criterion to identify the relevant covariates. RESULTS In the multivariable model (based on 440 observations with a complete data set), several significant findings emerged. Olanzapine C:D ratios were significantly lower in smokers (β = -0.65, P < 0.001), valproate users (β = -0.53, P = 0.002), and inpatients (β = -0.20, P = 0.025). Furthermore, the C:D ratios decreased significantly as the time since the last dose increased (β = -0.040, P < 0.001). The male sex had a significant main effect on olanzapine C:D ratios (β = -2.80, P < 0.001), with significant interactions with age (β = 0.025, P < 0.001) and body weight (β = 0.017, P = 0.011). The selected covariates explained 30.3% of the variation in C:D ratios, with smoking status accounting for 7.7% and sex contributing 6.9%. The overall variation explained by both the fixed and random parts of the model was 67.4%. The model facilitated the prediction of olanzapine C:D ratios based on sex, age, and body weight. CONCLUSIONS The clinical factors examined in this study, including sex, age, body weight, smoking status, and valproate comedication, remarkably influence olanzapine C:D ratios. Considering these factors, in addition to TDM and the clinical situation, could be important for dose adjustment.
Collapse
Affiliation(s)
- Nicolas Ansermot
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Harish Vathanarasa
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Setareh Ranjbar
- Psychiatric Epidemiology and Psychopathology Research Centre, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Mehdi Gholam
- Psychiatric Epidemiology and Psychopathology Research Centre, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Séverine Crettol
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Frederik Vandenberghe
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Franziska Gamma
- Les Toises Psychiatry and Psychotherapy Centre, Lausanne, Switzerland
| | - Kerstin Jessica Plessen
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
| | - Chin B. Eap
- Unit of Pharmacogenetics and Clinical Psychopharmacology, Centre for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, University of Lausanne, Prilly, Switzerland
- Centre for Research and Innovation in Clinical Pharmaceutical Sciences, University of Lausanne, Lausanne, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland; and
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, Geneva and Lausanne, Switzerland
| |
Collapse
|
10
|
Tremmel R, Hofmann U, Haag M, Schaeffeler E, Schwab M. Circulating Biomarkers Instead of Genotyping to Establish Metabolizer Phenotypes. Annu Rev Pharmacol Toxicol 2024; 64:65-87. [PMID: 37585662 DOI: 10.1146/annurev-pharmtox-032023-121106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Pharmacogenomics (PGx) enables personalized treatment for the prediction of drug response and to avoid adverse drug reactions. Currently, PGx mainly relies on the genetic information of absorption, distribution, metabolism, and excretion (ADME) targets such as drug-metabolizing enzymes or transporters to predict differences in the patient's phenotype. However, there is evidence that the phenotype-genotype concordance is limited. Thus, we discuss different phenotyping strategies using exogenous xenobiotics (e.g., drug cocktails) or endogenous compounds for phenotype prediction. In particular, minimally invasive approaches focusing on liquid biopsies offer great potential to preemptively determine metabolic and transport capacities. Early studies indicate that ADME phenotyping using exosomes released from the liver is reliable. In addition, pharmacometric modeling and artificial intelligence improve phenotype prediction. However, further prospective studies are needed to demonstrate the clinical utility of individualized treatment based on phenotyping strategies, not only relying on genetics. The present review summarizes current knowledge and limitations.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch-Institute of Clinical Pharmacology, Stuttgart, Germany;
- University of Tuebingen, Tuebingen, Germany
- Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies," University of Tuebingen, Tuebingen, Germany
- Departments of Clinical Pharmacology, and Pharmacy and Biochemistry, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center Heidelberg (DKFZ), Partner Site, Tübingen, Germany
| |
Collapse
|
11
|
Torres-Carrillo N, Martínez-López E, Torres-Carrillo NM, López-Quintero A, Moreno-Ortiz JM, González-Mercado A, Gutiérrez-Hurtado IA. Pharmacomicrobiomics and Drug-Infection Interactions: The Impact of Commensal, Symbiotic and Pathogenic Microorganisms on a Host Response to Drug Therapy. Int J Mol Sci 2023; 24:17100. [PMID: 38069427 PMCID: PMC10707377 DOI: 10.3390/ijms242317100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Microorganisms have a close relationship with humans, whether it is commensal, symbiotic, or pathogenic. Recently, it has been documented that microorganisms may influence the response to drug therapy. Pharmacomicrobiomics is an emerging field that focuses on the study of how variations in the microbiome affect the disposition, action, and toxicity of drugs. Two additional sciences have been added to complement pharmacomicrobiomics, namely toxicomicrobiomics, which explores how the microbiome influences drug metabolism and toxicity, and pharmacoecology, which refers to modifications in the microbiome as a result of drug administration. In this context, we introduce the concept of "drug-infection interaction" to describe the influence of pathogenic microorganisms on drug response. This review analyzes the current state of knowledge regarding the relevance of microorganisms in the host's response to drugs. It also highlights promising areas for future research and proposes the term "drug-infection interaction" as an extension of pharmacomicrobiomics.
Collapse
Affiliation(s)
- Norma Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Erika Martínez-López
- Instituto de Nutrigenética y Nutrigenómica Traslacional, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Nora Magdalena Torres-Carrillo
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (N.T.-C.); (N.M.T.-C.)
| | - Andres López-Quintero
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - José Miguel Moreno-Ortiz
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Anahí González-Mercado
- Instituto de Genética Humana “Dr. Enrique Corona Rivera”, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (J.M.M.-O.); (A.G.-M.)
| | - Itzae Adonai Gutiérrez-Hurtado
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| |
Collapse
|
12
|
Tomlinson B, Li YH. What is the impact of type 2 diabetes mellitus on CYP450 metabolic activities? Expert Opin Drug Metab Toxicol 2023; 19:867-870. [PMID: 37997258 DOI: 10.1080/17425255.2023.2288246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/22/2023] [Indexed: 11/25/2023]
Affiliation(s)
- Brian Tomlinson
- Faculty of Medicine, Macau University of Science and Technology, Macau, China
| | - Yan-Hong Li
- The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
13
|
Cuomo A, Barillà G, Serafini G, Aguglia A, Amerio A, Cattolico M, Carmellini P, Spiti A, Fagiolini A. Drug-drug interactions between COVID-19 therapeutics and psychotropic medications. Expert Opin Drug Metab Toxicol 2023; 19:925-936. [PMID: 38032183 DOI: 10.1080/17425255.2023.2288681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION The coronavirus (COVID-19) pandemic has led to as well as exacerbated mental health disorders, leading to increased use of psychotropic medications. Co-administration of COVID-19 and psychotropic medications may result in drug-drug interactions (DDIs), that may compromise both the safety and efficacy of both medications. AREAS COVERED This review provides an update of the current evidence on DDIs between COVID-19 and psychotropic medications. The interactions are categorized into pharmacokinetic, pharmacodynamic, and other relevant types. A thorough literature search was conducted using electronic databases to identify relevant studies, and extract data to highlight potential DDIs, clinical implications, and management strategies. EXPERT OPINION Understanding and managing potential DDIs between COVID-19 and psychotropic medications is paramount to ensuring safe and effective treatment of patients with COVID-19 and mental illness. Awareness of the diverse spectrum of DDIs, vigilant monitoring, and judicious dose modifications, while choosing pharmacotherapeutic options with low risk of interaction whenever possible, are necessary. Ongoing and future investigations should continue to review the dynamic landscape of COVID-19 therapeutic modalities and their interactions with psychotropic medications.
Collapse
Affiliation(s)
- Alessandro Cuomo
- Division of Psychiatry, Department of Molecular Medicine University of Siena School of Medicine Siena, Siena, Italy
| | - Giovanni Barillà
- Division of Psychiatry, Department of Molecular Medicine University of Siena School of Medicine Siena, Siena, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- Department of Neuroscience, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Aguglia
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- Department of Neuroscience, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Amerio
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, Section of Psychiatry, University of Genoa, Genoa, Italy
- Department of Neuroscience, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Cattolico
- Division of Psychiatry, Department of Molecular Medicine University of Siena School of Medicine Siena, Siena, Italy
| | - Pietro Carmellini
- Division of Psychiatry, Department of Molecular Medicine University of Siena School of Medicine Siena, Siena, Italy
| | - Alessandro Spiti
- Division of Psychiatry, Department of Molecular Medicine University of Siena School of Medicine Siena, Siena, Italy
| | - Andrea Fagiolini
- Division of Psychiatry, Department of Molecular Medicine University of Siena School of Medicine Siena, Siena, Italy
| |
Collapse
|
14
|
Clinebell K, Thomas J, Yabs M, Chengappa KNR. Longitudinal observations of the severity of COVID-19 infection and its impact on clozapine/norclozapine levels and clozapine toxicity in patients experiencing multiple episodes. Schizophr Res 2023; 262:142-145. [PMID: 37967494 DOI: 10.1016/j.schres.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/17/2023]
Affiliation(s)
- Kimberly Clinebell
- Pine IOP and Partial, Department of Psychiatry, UPMC-Western Psychiatric Hospital, United States of America
| | - Jane Thomas
- ReSolve Crisis Services, UPMC-Western Psychiatric Hospital, United States of America
| | - Melanie Yabs
- CRS Oxford Clinic and LTSR, UPMC-Western Psychiatric Hospital, United States of America
| | - K N Roy Chengappa
- University of Pittsburgh School of Medicine, Department of Psychiatry, Service Line Chief - CRS Service Line, UPMC-Western Psychiatric Hospital, United States of America.
| |
Collapse
|
15
|
Kuzin M, Gardin F, Götschi M, Xepapadakos F, Kawohl W, Seifritz E, Trauzeddel A, Paulzen M, Schoretsanitis G. Changes in Psychotropic Drug Blood Levels After SARS-CoV-2 Vaccination: A Two-Center Cohort Study. Ther Drug Monit 2023; 45:792-796. [PMID: 37296505 DOI: 10.1097/ftd.0000000000001118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/27/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Limited evidence from case reports suggests that coronavirus disease 2019 (COVID-19) vaccination may interact with the treatment outcomes of psychiatric medications. Apart from clozapine, reports on the effect of COVID-19 vaccination on other psychotropic agents are scarce. This study aimed to investigate the impact of COVID-19 vaccination on the plasma levels of different psychotropic drugs using therapeutic drug monitoring. METHODS Plasma levels of psychotropic agents, including agomelatine, amisulpride, amitriptyline, escitalopram, fluoxetine, lamotrigine, mirtazapine, olanzapine, quetiapine, sertraline, trazodone, and venlafaxine, from inpatients with a broad spectrum of psychiatric diseases receiving COVID-19 vaccinations were collected at 2 medical centers between 08/2021 and 02/2022 under steady-state conditions before and after vaccination. Postvaccination changes were estimated as a percentage of baseline. RESULTS Data from 16 patients who received COVID-19 vaccination were included. The largest changes in plasma levels were reported for quetiapine (+101.2%) and trazodone (-38.5%) in 1 and 3 patients, respectively, 1 day postvaccination compared with baseline levels. One week postvaccination, the plasma levels of fluoxetine (active moiety) and escitalopram increased by 31% and 24.9%, respectively. CONCLUSIONS This study provides the first evidence of major changes in the plasma levels of escitalopram, fluoxetine, trazodone, and quetiapine after COVID-19 vaccination. When planning COVID-19 vaccination for patients treated with these medications, clinicians should monitor rapid changes in bioavailability and consider short-term dose adjustments to ensure safety.
Collapse
Affiliation(s)
- Maxim Kuzin
- Clienia Schloessli, Private Psychiatric Hospital and Academic Teaching Hospital of the University of Zurich, Oetwil am See, Zurich, Switzerland
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Fabian Gardin
- Clienia Schloessli, Private Psychiatric Hospital and Academic Teaching Hospital of the University of Zurich, Oetwil am See, Zurich, Switzerland
| | - Markus Götschi
- Clienia Schloessli, Private Psychiatric Hospital and Academic Teaching Hospital of the University of Zurich, Oetwil am See, Zurich, Switzerland
| | - Franziskos Xepapadakos
- Clienia Schloessli, Private Psychiatric Hospital and Academic Teaching Hospital of the University of Zurich, Oetwil am See, Zurich, Switzerland
- University of Nicosia Medical School, Nicosia, Cyprus
| | - Wolfram Kawohl
- Clienia Schloessli, Private Psychiatric Hospital and Academic Teaching Hospital of the University of Zurich, Oetwil am See, Zurich, Switzerland
- University of Nicosia Medical School, Nicosia, Cyprus
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | | | - Michael Paulzen
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany
- Alexianer Hospital Aachen, Aachen, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, and JARA-Translational Brain Medicine, Aachen, Germany
| | - Georgios Schoretsanitis
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Northwell Health, The Zucker Hillside Hospital, New York, New York; and
- Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, New York
| |
Collapse
|
16
|
Harnisch LO, Brockmöller J, Hapke A, Sindern J, Bruns E, Evertz R, Toischer K, Danner BC, Mielke D, Rohde V, Abboud T. Oral Drug Absorption and Drug Disposition in Critically Ill Cardiac Patients. Pharmaceutics 2023; 15:2598. [PMID: 38004576 PMCID: PMC10674156 DOI: 10.3390/pharmaceutics15112598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/26/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: In critically ill cardiac patients, parenteral and enteral food and drug administration routes may be used. However, it is not well known how drug absorption and metabolism are altered in this group of adult patients. Here, we analyze drug absorption and metabolism in patients after cardiogenic shock using the pharmacokinetics of therapeutically indicated esomeprazole. (2) Methods: The pharmacokinetics of esomeprazole were analyzed in a consecutive series of patients with cardiogenic shock and controls before and after elective cardiac surgery. Esomeprazole was administered orally or with a nasogastric tube and once as an intravenous infusion. (3) Results: The maximum plasma concentration and AUC of esomeprazole were, on average, only half in critically ill patients compared with controls (p < 0.005) and remained lower even seven days later. Interestingly, esomeprazole absorption was also markedly compromised on day 1 after elective surgery. The metabolites of esomeprazole showed a high variability between patients. The esomeprazole sulfone/esomeprazole ratio reflecting CYP3A4 activity was significantly lower in critically ill patients even up to day 7, and this ratio was negatively correlated with CRP values (p = 0.002). The 5'-OH-esomeprazole and 5-O-desmethyl-esomeprazol ratios reflecting CYP2C19 activity did not differ significantly between critically ill and control patients. (4) Conclusions: Gastrointestinal drug absorption can be significantly reduced in critically ill cardiac patients compared with elective patients with stable cardiovascular disease. The decrease in bioavailability indicates that, under these conditions, any vital medication should be administered intravenously to maintain high levels of medications. After shock, hepatic metabolism via the CYP3A4 enzyme may be reduced.
Collapse
Affiliation(s)
- Lars-Olav Harnisch
- Department of Anesthesiology, University of Göttingen Medical Center, 37075 Göttingen, Germany
| | - Jürgen Brockmöller
- Department of Clinical Pharmacology, University of Göttingen Medical Center, 37075 Göttingen, Germany; (J.B.); (E.B.)
| | - Anne Hapke
- Department of Neurosurgery, University of Göttingen Medical Center, 37075 Göttingen, Germany; (A.H.); (D.M.); (V.R.); (T.A.)
- Department of Otorhinolaryngology-Head and Neck Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Juliane Sindern
- Department of Neurosurgery, University of Göttingen Medical Center, 37075 Göttingen, Germany; (A.H.); (D.M.); (V.R.); (T.A.)
- Department of Anesthesiology and Critical Care Medicine, Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Ellen Bruns
- Department of Clinical Pharmacology, University of Göttingen Medical Center, 37075 Göttingen, Germany; (J.B.); (E.B.)
| | - Ruben Evertz
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, 37075 Göttingen, Germany; (R.E.); (K.T.)
| | - Karl Toischer
- Department of Cardiology and Pneumology, University of Göttingen Medical Center, 37075 Göttingen, Germany; (R.E.); (K.T.)
| | - Bernhard C. Danner
- Department of Cardiac, Thoracic and Vascular Surgery, University of Göttingen Medical Center, 37075 Göttingen, Germany;
| | - Dorothee Mielke
- Department of Neurosurgery, University of Göttingen Medical Center, 37075 Göttingen, Germany; (A.H.); (D.M.); (V.R.); (T.A.)
| | - Veit Rohde
- Department of Neurosurgery, University of Göttingen Medical Center, 37075 Göttingen, Germany; (A.H.); (D.M.); (V.R.); (T.A.)
| | - Tammam Abboud
- Department of Neurosurgery, University of Göttingen Medical Center, 37075 Göttingen, Germany; (A.H.); (D.M.); (V.R.); (T.A.)
| |
Collapse
|
17
|
Kuzin M, Boeglin C, Schoretsanitis G, Pannu M, Kawohl W, Xepapadakos F. Letter to the editor: Clozapine plasma levels under co-medication with fluvoxamine during COVID-19 infection: A case report. Schizophr Res 2023; 261:110-112. [PMID: 37717507 DOI: 10.1016/j.schres.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Affiliation(s)
- Maxim Kuzin
- Clienia Schloessli, Private Psychiatric Hospital and Academic Teaching Hospital of the University of Zurich, Oetwil am See, Zurich, Switzerland; Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany; University of Nicosia Medical School, Nicosia, Cyprus.
| | - Carla Boeglin
- Clienia Schloessli, Private Psychiatric Hospital and Academic Teaching Hospital of the University of Zurich, Oetwil am See, Zurich, Switzerland
| | - Georgios Schoretsanitis
- Arbeitsgemeinschaft für Neuropsychopharmakologie und Pharmakopsychiatrie (AGNP)-Work Group "Therapeutic Drug Monitoring", Nürnberg, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland; The Zucker Hillside Hospital, Department of Psychiatry Research, Northwell Health, Glen Oaks, NY, USA; Department of Psychiatry, Zucker School of Medicine at Northwell/Hofstra, Hempstead, NY, USA
| | | | - Wolfram Kawohl
- Clienia Schloessli, Private Psychiatric Hospital and Academic Teaching Hospital of the University of Zurich, Oetwil am See, Zurich, Switzerland; University of Nicosia Medical School, Nicosia, Cyprus; Department of Psychiatry, Psychotherapy and Psychosomatics, Hospital of Psychiatry, University of Zurich, Zurich, Switzerland
| | - Franziskos Xepapadakos
- Clienia Schloessli, Private Psychiatric Hospital and Academic Teaching Hospital of the University of Zurich, Oetwil am See, Zurich, Switzerland; University of Nicosia Medical School, Nicosia, Cyprus
| |
Collapse
|
18
|
Benzi JRDL, Melli PPDS, Duarte G, Unadkat JD, Lanchote VL. The Impact of Inflammation on the In Vivo Activity of the Renal Transporters OAT1/3 in Pregnant Women Diagnosed with Acute Pyelonephritis. Pharmaceutics 2023; 15:2427. [PMID: 37896187 PMCID: PMC10610490 DOI: 10.3390/pharmaceutics15102427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Inflammation can regulate hepatic drug metabolism enzymes and transporters. The impact of inflammation on renal drug transporters remains to be elucidated. We aimed to quantify the effect of inflammation (caused by acute pyelonephritis) on the in vivo activity of renal OAT1/3, using the probe drug furosemide. Pregnant women (second or third trimester) received a single oral dose of furosemide 40 mg during acute pyelonephritis (Phase 1; n = 7) and after its resolution (Phase 2; n = 7; by treatment with intravenous cefuroxime 750 mg TID for 3-7 days), separated by 10 to 14 days. The IL-6, IFN-γ, TNF-α, MCP-1, and C-reactive protein plasma concentrations were higher in Phase I vs. Phase II. The pregnant women had a lower geometric mean [CV%] furosemide CLsecretion (3.9 [43.4] vs. 6.7 [43.8] L/h) and formation clearance to the glucuronide (1.1 [85.9] vs. 2.3 [64.1] L/h) in Phase 1 vs. Phase 2. Inflammation reduced the in vivo activity of renal OAT1/3 (mediating furosemide CLsecretion) and UGT1A9/1A1 (mediating the formation of furosemide glucuronide) by approximately 40% and 54%, respectively, presumably by elevating the plasma cytokine concentrations. The dosing regimens of narrow therapeutic window OAT drug substrates may need to be adjusted during inflammatory conditions.
Collapse
Affiliation(s)
- Jhohann Richard de Lima Benzi
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, São Paulo, Brazil;
| | - Patrícia Pereira dos Santos Melli
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (P.P.d.S.M.)
| | - Geraldo Duarte
- Department of Obstetrics and Gynecology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, São Paulo, Brazil; (P.P.d.S.M.)
| | - Jashvant D. Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, WA 98195, USA
| | - Vera Lucia Lanchote
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-903, São Paulo, Brazil;
| |
Collapse
|
19
|
Patanwala AE, Jager NGL, Radosevich JJ, Brüggemann R. An update on drug-drug interactions for care of the acutely ill in the era of COVID-19. Am J Health Syst Pharm 2023; 80:1301-1308. [PMID: 37368815 PMCID: PMC10516707 DOI: 10.1093/ajhp/zxad152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Indexed: 06/29/2023] Open
Abstract
PURPOSE To provide key pharmacological concepts underlying drug-drug interactions (DDIs), a decision-making framework, and a list of DDIs that should be considered in the context of contemporary acutely ill patients with COVID-19. SUMMARY DDIs are frequently encountered in the acutely ill. The implications of DDIs include either increased risk of drug toxicity or decreased effectiveness, which may have severe consequences in the acutely ill due to lower physiological and neurocognitive reserves in these patients. In addition, an array of additional therapies and drug classes have been used for COVID-19 that were not typically used in the acute care setting. In this update on DDIs in the acutely ill, we provide key pharmacological concepts underlying DDIs, including a discussion of the gastric environment, the cytochrome P-450 (CYP) isozyme system, transporters, and pharmacodynamics in relation to DDIs. We also provide a decision-making framework that elucidates the identification of DDIs, risk assessment, selection of alternative therapies, and monitoring. Finally, important DDIs pertaining to contemporary acute care clinical practice related to COVID-19 are discussed. CONCLUSION Interpreting and managing DDIs should follow a pharmacologically based approach and a systematic decision-making process to optimize patient outcomes.
Collapse
Affiliation(s)
- Asad E Patanwala
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Camperdown, New South Wales, and Department of Pharmacy, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Nynke G L Jager
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, and Radboudumc Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - John J Radosevich
- Department of Pharmacy Services, Dignity Health–St. Joseph’s Hospital & Medical Center, Phoenix, AZ, USA
| | - Roger Brüggemann
- Department of Pharmacy, Radboud University Medical Center, Nijmegen, and Radboudumc Institute for Health Sciences Center of Expertise in Mycology Radboudumc/CWZ, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
20
|
Bozkurt I, Gözler T, Yüksel I, Ulucan K, Tarhan KN. Prognostic Value of CYP1A2 (rs2069514 and rs762551) Polymorphisms in COVID-19 Patients. Balkan J Med Genet 2023; 26:35-42. [PMID: 37576788 PMCID: PMC10413886 DOI: 10.2478/bjmg-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023] Open
Abstract
The aim of the study was to examine the genotype-allele determination of CYP1A2 rs2069514 and rs762551 polymorphisms in patients with mild and severe COVID-19 and to determine their effectiveness as prognostic criteria in COVID-19. The study consists of 60 patients who were hospitalized in intensive care or outpatient treatment due to COVID-19 in Istanbul NP Brain Hospital between 2020-2021. Genotyping was conducted by Real-Time PCR. Age (p<0.001); chronic disease (p=0.002); cardiovascular disease (p=0.004); respiratory distress (p<0.001); neurological disease (p=0.004); fatigue (p=0.048); loss of taste and smell (p=0.003); nausea/vomiting (p=0.026); intubated (p<0.001); ground glass image (p<0.001) and CYP1A2 genotypes (p<0.001) showed a statistically significant difference between patients with and without intensive care admission. According to multivariate logistic regression analysis, CYP1A2 *1A/*1C + *1C/*1C genotypes (OR:5.23 95% CI: 1.22-22.36; p=0.025), chronic disease (OR:4.68 95% CI:1.14-19.15; p=0.032) or patients at 65 years or older (OR:5.17, 95%CI:1.26-21.14; p=0.022) increased the risk of admission to the intensive care unit. According to our results, we strongly suggest considering the CYP1A2 rs2069514 and rs762551 polymorphisms as important predictors of Intensive Care Unit admission in patients with COVID-19, and we also suggest that genotype results will guide clinicians for the benefit and the efficiency of the treatment.
Collapse
Affiliation(s)
- I Bozkurt
- Department of Medical Biochemistry, Faculty of Medicine, Üsküdar University, Istanbul, Turkey
| | - T Gözler
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Faculty of Medicine, Üsküdar University, Istanbul, Turkey
| | - I Yüksel
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Faculty of Medicine, Üsküdar University, Istanbul, Turkey
| | - K Ulucan
- Department of Medical Genetics and Molecular Diagnostic Laboratory, Faculty of Medicine, Üsküdar University, Istanbul, Turkey
- Department of Medical Biology and Genetics, Faculty of Dentistry, Marmara University, Istanbul, Turkey
| | - KN Tarhan
- Uskudar University NP Hospital, Istanbul, Turkey
| |
Collapse
|
21
|
Steinbronn C, Chhonker YS, Stewart J, Leingang H, Heller KB, Krows ML, Paasche‐Orlow M, Bershteyn A, Stankiewicz Karita HC, Agrawal V, Laufer M, Landovitz R, Wener M, Murry DJ, Johnston C, Barnabas RV, Arnold SLM. A linked physiologically based pharmacokinetic model for hydroxychloroquine and metabolite desethylhydroxychloroquine in SARS-CoV-2(-)/(+) populations. Clin Transl Sci 2023; 16:1243-1257. [PMID: 37118968 PMCID: PMC10339702 DOI: 10.1111/cts.13527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/13/2023] [Accepted: 03/29/2023] [Indexed: 04/30/2023] Open
Abstract
Hydroxychloroquine (HCQ) is Food and Drug Administration (FDA)-approved for malaria, systemic and chronic discoid lupus erythematosus, and rheumatoid arthritis. Because HCQ has a proposed multimodal mechanism of action and a well-established safety profile, it is often investigated as a repurposed therapeutic for a range of indications. There is a large degree of uncertainty in HCQ pharmacokinetic (PK) parameters which complicates dose selection when investigating its use in new disease states. Complications with HCQ dose selection emerged as multiple clinical trials investigated HCQ as a potential therapeutic in the early stages of the COVID-19 pandemic. In addition to uncertainty in baseline HCQ PK parameters, it was not clear if disease-related consequences of SARS-CoV-2 infection/COVID-19 would be expected to impact the PK of HCQ and its primary metabolite desethylhydroxychloroquine (DHCQ). To address the question whether SARS-CoV-2 infection/COVID-19 impacted HCQ and DHCQ PK, dried blood spot samples were collected from SARS-CoV-2(-)/(+) participants administered HCQ. When a previously published physiologically based pharmacokinetic (PBPK) model was used to fit the data, the variability in exposure of HCQ and DHCQ was not adequately captured and DHCQ concentrations were overestimated. Improvements to the previous PBPK model were made by incorporating the known range of blood to plasma concentration ratios (B/P) for each compound, adjusting HCQ and DHCQ distribution settings, and optimizing DHCQ clearance. The final PBPK model adequately captured the HCQ and DHCQ concentrations observed in SARS-CoV-2(-)/(+)participants, and incorporating COVID-19-associated changes in cytochrome P450 activity did not further improve model performance for the SARS-CoV-2(+) population.
Collapse
Affiliation(s)
- Claire Steinbronn
- Department of PharmaceuticsUniversity of WashingtonSeattleWashingtonUSA
| | - Yashpal S. Chhonker
- Department of Pharmacy Practice and ScienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jenell Stewart
- Division of Infectious DiseasesHennepin Healthcare Research InstituteMinneapolisMinnesotaUSA
- Department of MedicineUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Hannah Leingang
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Kate B. Heller
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Meighan L. Krows
- Department of Global HealthUniversity of WashingtonSeattleWashingtonUSA
| | - Michael Paasche‐Orlow
- Department of MedicineTufts Medical CenterBostonMassachusettsUSA
- Division of Primary CareTufts Medical CenterBostonMassachusettsUSA
| | - Anna Bershteyn
- Department of Population HealthNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | | | - Vaidehi Agrawal
- Center for Vaccine Development and Global HealthUniversity of Maryland BaltimoreBaltimoreMarylandUSA
| | - Miriam Laufer
- Center for Vaccine Development and Global HealthUniversity of Maryland BaltimoreBaltimoreMarylandUSA
| | - Raphael Landovitz
- UCLA Center for Clinical AIDS Research and EducationDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Mark Wener
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Daryl J. Murry
- Department of Pharmacy Practice and ScienceUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | | | - Ruanne V. Barnabas
- Massachusetts General HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | | |
Collapse
|
22
|
Deshpande K, Lange KR, Stone WB, Yohn C, Schlesinger N, Kagan L, Auguste AJ, Firestein BL, Brunetti L. The influence of SARS-CoV-2 infection on expression of drug-metabolizing enzymes and transporters in a hACE2 murine model. Pharmacol Res Perspect 2023; 11:e01071. [PMID: 37133236 PMCID: PMC10155506 DOI: 10.1002/prp2.1071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/08/2023] [Accepted: 02/08/2023] [Indexed: 05/04/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the resulting Coronavirus disease 2019 emerged in late 2019 and is responsible for significant morbidity and mortality worldwide. A hallmark of severe COVID-19 is exaggerated systemic inflammation, regarded as a "cytokine storm," which contributes to the damage of various organs, primarily the lungs. The inflammation associated with some viral illnesses is known to alter the expression of drug-metabolizing enzymes and transporters. These alterations can lead to modifications in drug exposure and the processing of various endogenous compounds. Here, we provide evidence to support changes in the mitochondrial ribonucleic acid expression of a subset of drug transporters (84 transporters) in the liver, kidneys, and lungs and metabolizing enzymes (84 enzymes) in the liver in a humanized angiotensin-converting enzyme 2 receptor mouse model. Specifically, three drug transporters (Abca3, Slc7a8, Tap1) and the pro-inflammatory cytokine IL-6 were upregulated in the lungs of SARS-CoV-2 infected mice. We also found significant downregulation of drug transporters responsible for the movement of xenobiotics in the liver and kidney. Additionally, expression of cytochrome P-450 2f2 which is known to metabolize some pulmonary toxicants, was significantly decreased in the liver of infected mice. The significance of these findings requires further exploration. Our results suggest that further research should emphasize altered drug disposition when investigating therapeutic compounds, whether re-purposed or new chemical entities, in other animal models and ultimately in individuals infected with SARS-CoV-2. Moreover, the influence and impact of these changes on the processing of endogenous compounds also require further investigation.
Collapse
Affiliation(s)
- Kiran Deshpande
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Center of Excellence in Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Keith R. Lange
- Department of Cell Biology and Neuroscience, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - William B. Stone
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science InstituteVirginia Polytechnic Institute and State UniversityVirginiaUSA
| | - Christine Yohn
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Center of Excellence in Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Naomi Schlesinger
- Division of RheumatologyDepartment of Medicine, Rutgers Robert Wood Johnson Medical SchoolNew BrunswickNew JerseyUSA
| | - Leonid Kagan
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Center of Excellence in Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Albert J. Auguste
- Department of Entomology, College of Agriculture and Life Sciences, Fralin Life Science InstituteVirginia Polytechnic Institute and State UniversityVirginiaUSA
- Center for Emerging, Zoonotic, and Arthropod‐borne PathogensVirginia Polytechnic Institute and State UniversityBlacksburgVirginiaUSA
| | - Bonnie L. Firestein
- Department of Cell Biology and Neuroscience, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| | - Luigi Brunetti
- Department of Pharmaceutics, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
- Center of Excellence in Pharmaceutical Translational Research and Education, Ernest Mario School of Pharmacy, RutgersThe State University of New JerseyPiscatawayNew JerseyUSA
| |
Collapse
|
23
|
Lim SYM, Al Bishtawi B, Lim W. Role of Cytochrome P450 2C9 in COVID-19 Treatment: Current Status and Future Directions. Eur J Drug Metab Pharmacokinet 2023; 48:221-240. [PMID: 37093458 PMCID: PMC10123480 DOI: 10.1007/s13318-023-00826-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
The major human liver drug metabolising cytochrome P450 (CYP) enzymes are downregulated during inflammation and infectious disease state, especially during coronavirus disease 2019 (COVID-19) infection. The influx of proinflammatory cytokines, known as a 'cytokine storm', during severe COVID-19 leads to the downregulation of CYPs and triggers new cytokine release, which further dampens CYP expression. Impaired drug metabolism, along with the inevitable co-administration of drugs or 'combination therapy' in patients with COVID-19 with various comorbidities, could cause drug-drug interactions, thus worsening the disease condition. Genetic variability or polymorphism in CYP2C9 across different ethnicities could contribute to COVID-19 susceptibility. A number of drugs used in patients with COVID-19 are inducers or inhibitors of, or are metabolised by, CYP2C9, and co-administration might cause pharmacokinetic and pharmacodynamic interactions. It is also worth mentioning that some of the COVID-19 drug interactions are due to altered activity of other CYPs including CYP3A4. Isoniazid/rifampin for COVID-19 and tuberculosis co-infection; lopinavir/ritonavir and cobicistat/remdesivir combination therapy; or multi-drug therapy including ivermectin, azithromycin, montelukast and acetylsalicylic acid, known as TNR4 therapy, all improved recovery in patients with COVID-19. However, a combination of CYP2C9 inducers, inhibitors or both, and plausibly different CYP isoforms could lead to treatment failure, hepatotoxicity or serious side effects including thromboembolism or bleeding, as observed in the combined use of azithromycin/warfarin. Further, herbs that are CYP2C9 inducers and inhibitors, showed anti-COVID-19 properties, and in silico predictions postulated that phytochemical compounds could inhibit SARS-CoV-2 virus particles. COVID-19 vaccines elicit immune responses that activate cytokine release, which in turn suppresses CYP expression that could be the source of compromised CYP2C9 drug metabolism and the subsequent drug-drug interaction. Future studies are recommended to determine CYP regulation in COVID-19, while recognising the involvement of CYP2C9 and possibly utilising CYP2C9 as a target gene to tackle the ever-mutating SARS-CoV-2.
Collapse
Affiliation(s)
- Sharoen Yu Ming Lim
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia.
| | - Basel Al Bishtawi
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Semenyih, Malaysia
| | - Willone Lim
- Faculty of Engineering, Computing and Science, Swinburne University of Technology, 93350, Kuching, Malaysia
| |
Collapse
|
24
|
Cen Z, Lu B, Ji Y, Chen J, Liu Y, Jiang J, Li X, Li X. Virus-induced breath biomarkers: A new perspective to study the metabolic responses of COVID-19 vaccinees. Talanta 2023; 260:124577. [PMID: 37116359 PMCID: PMC10122548 DOI: 10.1016/j.talanta.2023.124577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 04/30/2023]
Abstract
Coronavirus disease 2019 (COVID-19) vaccines can protect people from the infection; however, the action mechanism of vaccine-mediated metabolism remains unclear. Herein, we performed breath tests in COVID-19 vaccinees that revealed metabolic reprogramming induced by protective immune responses. In total, 204 breath samples were obtained from COVID-19 vaccinees and non-vaccinated controls, wherein numerous volatile organic compounds (VOCs) were detected by comprehensive two-dimensional gas chromatography and time-of-flight mass spectrometry system. Subsequently, 12 VOCs were selected as biomarkers to construct a signature panel using alveolar gradients and machine learning-based procedure. The signature panel could distinguish vaccinees from control group with a high prediction performance (AUC, 0.9953; accuracy, 94.42%). The metabolic pathways of these biomarkers indicated that the host-pathogen interactions enhanced enzymatic activity and microbial metabolism in the liver, lung, and gut, potentially constituting the dominant action mechanism of vaccine-driven metabolic regulation. Thus, our findings of this study highlight the potential of measuring exhaled VOCs as rapid, non-invasive biomarkers of viral infections. Furthermore, breathomics appears as an alternative for safety evaluation of biological agents and disease diagnosis.
Collapse
Affiliation(s)
- Zhengnan Cen
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Bingqing Lu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Yongyan Ji
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Jian Chen
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Yongqian Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Jiakui Jiang
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China
| | - Xue Li
- Institute of Mass Spectrometry and Atmospheric Environment, Jinan University, Guangzhou, 510632, PR China
| | - Xiang Li
- Department of Environmental Science & Engineering, Fudan University, Shanghai, 200438, PR China.
| |
Collapse
|
25
|
Leung JG. Part
II
: Interactive case—Clinical pearls of clozapine. JOURNAL OF THE AMERICAN COLLEGE OF CLINICAL PHARMACY 2023. [DOI: 10.1002/jac5.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
26
|
Villemure S, Trenaman SC, Goralski KB. The impact of COVID-19 infection on cytochrome P450 3A4-mediated drug metabolism and drug interactions. Expert Opin Drug Metab Toxicol 2023; 19:329-332. [PMID: 37345482 DOI: 10.1080/17425255.2023.2228680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Affiliation(s)
- Samuel Villemure
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Shanna C Trenaman
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
- Nova Scotia Health Authority, Halifax, Nova Scotia
| | - Kerry B Goralski
- College of Pharmacy, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Pediatrics, IWK Health Centre
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| |
Collapse
|
27
|
McColl ER, Croyle MA, Zamboni WC, Honer WG, Heise M, Piquette-Miller M, Goralski KB. COVID-19 Vaccines and the Virus: Impact on Drug Metabolism and Pharmacokinetics. Drug Metab Dispos 2023; 51:130-141. [PMID: 36273826 PMCID: PMC11022893 DOI: 10.1124/dmd.122.000934] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/07/2022] [Accepted: 09/30/2022] [Indexed: 01/08/2023] Open
Abstract
This article reports on an American Society of Pharmacology and Therapeutics, Division of Drug Metabolism and Disposition symposium held at Experimental Biology on April 2, 2022, in Philadelphia. As of July 2022, over 500 million people have been infected with SARS-CoV-2 (the virus causing COVID-19) and over 12 billion vaccine doses have been administered. Clinically significant interactions between viral infections and hepatic drug metabolism were first recognized over 40 years ago during a cluster of pediatric theophylline toxicity cases attributed to reduced hepatic drug metabolism amid an influenza B outbreak. Today, a substantive body of research supports that the activated innate immune response generally decreases hepatic cytochrome P450 activity. The interactions extend to drug transporters and other organs and have the potential to impact drug absorption, distribution, metabolism, and excretion (ADME). Based on this knowledge, altered ADME is predicted with SARS-CoV-2 infection or vaccination. The report begins with a clinical case exploring the possibility of SARS-CoV-2 vaccination increasing clozapine levels. This is followed by discussions of how SARS-CoV-2 infection or vaccines alter the metabolism and disposition of complex drugs, such as nanoparticles and biologics and small molecule therapies. The review concludes with a discussion of the effects of viral infections on placental amino acid transport and their potential to impact fetal development. The session improved our understanding of the impact of emerging viral infections and vaccine technologies on drug metabolism and disposition, which will help mitigate drug toxicity and improve drug and vaccine safety and effectiveness. SIGNIFICANCE STATEMENT: Altered pharmacokinetics of small molecule and complex molecule drugs and fetal brain distribution of amino acids following SARS-CoV-2 infection or immunization are possible. The proposed mechanisms involve decreased liver cytochrome P450 metabolism of small molecules, enhanced innate immune system metabolism of complex molecules, and altered placental and fetal blood-brain barrier amino acid transport, respectively. Future research is needed to understand the effects of these interactions on adverse drug responses, drug and vaccine safety, and effectiveness and fetal neurodevelopment.
Collapse
Affiliation(s)
- Eliza R McColl
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Maria A Croyle
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - William C Zamboni
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - William G Honer
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Mark Heise
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Micheline Piquette-Miller
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| | - Kerry B Goralski
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario, Canada (E.R.M., M.P-M.); Department of Molecular Pharmaceutics and Drug Delivery and LaMontagne Center for Infectious Disease, University of Texas at Austin, College of Pharmacy, Austin, Texas (M.A.C.); Eshelman School of Pharmacy (W.C.Z.) and Department of Genetics, Department of Microbiology and Immunology, and The Rapidly Emerging Antiviral Drug Development Initiative (READDI) (M.H.), University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of British Columbia and British Columbia Mental Health and Substance Use Services Research Institute, Vancouver, British Columbia, Canada (W.G.H.); and College of Pharmacy, Faculty of Health and Department of Pharmacology and Department of Pediatrics, Faculty of Medicine, Dalhousie University (K.B.G.); Division of Pediatric Hematology and Oncology, Department of Pediatrics, IWK Health Centre (K.B.G.); and Beatrice Hunter Cancer Research Institute (K.B.G.), Halifax, Nova Scotia, Canada
| |
Collapse
|
28
|
The Modernization of Clozapine: A Recapitulation of the Past in the United States and the View Forward. J Clin Psychopharmacol 2022; 42:565-580. [PMID: 36170148 DOI: 10.1097/jcp.0000000000001606] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Although clozapine was Food and Drug Administration (FDA) approved more than 3 decades ago, major barriers and gaps in knowledge continue to prevent its effective and safe use. We review modern-day problems encountered with clozapine in the United States (US). METHODS Information surrounding current administrative, clinical, research, and technological gaps or barriers related to clozapine use in the US was reviewed. FINDINGS The history of how clozapine became FDA approved likely contributes to gaps in knowledge. The frequency of safety warnings added to the FDA prescribing information may add to fears about clozapine, as evidence by numerous published survey studies. The clozapine Risk Evaluation and Mitigation Strategy (REMS) program has been modified several times in the last decade, causing access and safety issues for patients, which are discussed. Evidence may suggest that the FDA REMS requirements for hematologic monitoring are too cumbersome, and there may be ability to safely loosen requirements. The COVID-19 pandemic brought forth the ability for extended interval monitoring but also greater awareness of the clozapine-inflammation interaction. Newer guidelines published describe considerations in personalizing clozapine titration based on principles of ethnopsychopharmacology. Emerging technologies to support the use of clozapine are not widely available. IMPLICATIONS Clozapine is a unique life-saving drug but it is underused in the US, despite its established efficacy. The 2021 REMS changes led to significant difficulties for providers and patients. We highlight the importance of the clozapine-inflammation interaction, therapeutic drug monitoring, and the ability for individual care based on patient-specific factors. There is an urgent need for advancing technology used for clozapine monitoring, evaluating barriers created by REMS, and establishing consistent practices throughout the US.
Collapse
|
29
|
Klyushova LS, Perepechaeva ML, Grishanova AY. The Role of CYP3A in Health and Disease. Biomedicines 2022; 10:2686. [PMID: 36359206 PMCID: PMC9687714 DOI: 10.3390/biomedicines10112686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/16/2022] Open
Abstract
CYP3A is an enzyme subfamily in the cytochrome P450 (CYP) superfamily and includes isoforms CYP3A4, CYP3A5, CYP3A7, and CYP3A43. CYP3A enzymes are indiscriminate toward substrates and are unique in that these enzymes metabolize both endogenous compounds and diverse xenobiotics (including drugs); almost the only common characteristic of these compounds is lipophilicity and a relatively large molecular weight. CYP3A enzymes are widely expressed in human organs and tissues, and consequences of these enzymes' activities play a major role both in normal regulation of physiological levels of endogenous compounds and in various pathological conditions. This review addresses these aspects of regulation of CYP3A enzymes under physiological conditions and their involvement in the initiation and progression of diseases.
Collapse
Affiliation(s)
| | - Maria L. Perepechaeva
- Institute of Molecular Biology and Biophysics, Federal Research Center of Fundamental and Translational Medicine, Timakova Str. 2, 630117 Novosibirsk, Russia
| | | |
Collapse
|
30
|
Neupane B, Pandya H, Pandya T, Austin R, Spooner N, Rudge J, Mulla H. Inflammation and cardiovascular status impact midazolam pharmacokinetics in critically ill children: An observational, prospective, controlled study. Pharmacol Res Perspect 2022; 10:e01004. [PMID: 36036654 PMCID: PMC9422629 DOI: 10.1002/prp2.1004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/12/2022] [Accepted: 07/26/2022] [Indexed: 12/02/2022] Open
Abstract
Altered physiology caused by critical illness may change midazolam pharmacokinetics and thereby result in adverse reactions and outcomes in this vulnerable patient population. This study set out to determine which critical illness-related factors impact midazolam pharmacokinetics in children using population modeling. This was an observational, prospective, controlled study of children receiving IV midazolam as part of routine care. Children recruited into the study were either critically-ill receiving continuous infusions of midazolam or otherwise well, admitted for elective day-case surgery (control) who received a single IV bolus dose of midazolam. The primary outcome was to determine the population pharmacokinetics and identify covariates that influence midazolam disposition during critical illness. Thirty-five patients were recruited into the critically ill arm of the study, and 54 children into the control arm. Blood samples for assessing midazolam and 1-OH-midazolam concentrations were collected opportunistically (critically ill arm) and in pre-set time windows (control arm). Pharmacokinetic modeling demonstrated a significant change in midazolam clearance with acute inflammation (measured using C-Reactive Protein), cardio-vascular status, and weight. Simulations predict that elevated C-Reactive Protein and compromised cardiovascular function in critically ill children result in midazolam concentrations up to 10-fold higher than in healthy children. The extremely high concentrations of midazolam observed in some critically-ill children indicate that the current therapeutic dosing regimen for midazolam can lead to over-dosing. Clinicians should be aware of this risk and intensify monitoring for oversedation in such patients.
Collapse
Affiliation(s)
- Bikalpa Neupane
- Department of Respiratory Sciences, College of Life SciencesUniversity of LeicesterLeicesterUK
- Jenny Lind Children's HospitalNorfolk and Norwich University Hospital NHS TrustNorwichUK
| | - Hitesh Pandya
- Department of Respiratory Sciences, College of Life SciencesUniversity of LeicesterLeicesterUK
| | - Tej Pandya
- Royal Bolton NHS Foundation TrustFarnworthUK
| | | | - Neil Spooner
- Spooner Bioanalytical Solutions LimitedHertfordUK
| | | | - Hussain Mulla
- Department of Respiratory Sciences, College of Life SciencesUniversity of LeicesterLeicesterUK
- Department of PharmacyUniversity Hospitals of Leicester NHS TrustLeicesterUK
| |
Collapse
|
31
|
Zoller M, Paal M, Greimel A, Kallee S, Vogeser M, Irlbeck M, Schroeder I, Liebchen U, Scharf C. Serum linezolid concentrations are reduced in critically ill patients with pulmonary infections: A prospective observational study. J Crit Care 2022; 71:154100. [PMID: 35780622 DOI: 10.1016/j.jcrc.2022.154100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 12/15/2022]
Abstract
RATIONALE The concentration-time profile of linezolid varies considerably in critically ill patients. Question of interest is, if the site of infection influences linezolid serum concentrations. METHODS 68 critically ill patients, treated with linezolid, were included. The concentration-time-profile for linezolid was determined using maximum a-posteriori predictions. A trough concentration (Cmin) between 2 and 10 mg/L was defined as the target. A generalized linear model (GLM) was established to evaluate potential covariates. RESULTS The indications for linezolid therapy were in descending order: peritonitis (38.2%), pneumonia (25.0%), infectious acute respiratory distress syndrome (ARDS) (19.1%), and other non-pulmonary infection (17.7%). 27.2 and 7.9% of Cmin were subtherapeutic and toxic, respectively. In the GLM, ARDS (mean: -2.1 mg/L, CI: -3.0 to -1.2 mg/L) and pneumonia (mean: -2.2 mg/L, CI: -2.8 to -1.6 mg/L) were significant (p < 0.001) determinants of Cmin. Patients with ARDS (mean: 2.3 mg/L, 51.2% subtherapeutic, 0.0% toxic) and pneumonia (mean: 3.5 mg/L, 41.5% subtherapeutic, 7.7% toxic) had significantly (p < 0.001) lower Cmin than those with peritonitis (mean: 5.5 mg/L, 14.4% subtherapeutic, 9.3% toxic) and other non-pulmonary infection (mean: 5.2 mg/L, 3.3% subtherapeutic, 16.5% toxic). CONCLUSION Linezolid serum concentrations are reduced in patients with pulmonary infections. Future studies should investigate if other linezolid thresholds are needed in those patients due to linezolid pooling in patients´ lung.
Collapse
Affiliation(s)
- Michael Zoller
- Department of Anesthesiology, University Hospital, LMU Munich, Germany
| | - Michael Paal
- Institute of Laboratory Medicine, University hospital, LMU Munich, Germany
| | - Antonia Greimel
- Department of Anesthesiology, University Hospital, LMU Munich, Germany
| | - Simon Kallee
- Department of Anesthesiology, University Hospital, LMU Munich, Germany
| | - Michael Vogeser
- Institute of Laboratory Medicine, University hospital, LMU Munich, Germany
| | - Michael Irlbeck
- Department of Anesthesiology, University Hospital, LMU Munich, Germany
| | - Ines Schroeder
- Department of Anesthesiology, University Hospital, LMU Munich, Germany
| | - Uwe Liebchen
- Department of Anesthesiology, University Hospital, LMU Munich, Germany
| | - Christina Scharf
- Department of Anesthesiology, University Hospital, LMU Munich, Germany.
| |
Collapse
|
32
|
Chen KF, Jones HM, Gill KL. Physiologically Based Pharmacokinetic Modeling To Predict Drug-Biologic Interactions with Cytokine Modulators: Are These Relevant and Is Interleukin-6 Enough? Drug Metab Dispos 2022; 50:1322-1331. [PMID: 36100353 DOI: 10.1124/dmd.122.000926] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/22/2022] Open
Abstract
Drugs that modulate cytokine levels are often used for the treatment of cancer as well as inflammatory or immunologic disorders. Pharmacokinetic drug-biologic interactions (DBIs) may arise from suppression or elevation of cytochrome P450 (P450) enzymes caused by the increase or decrease in cytokine levels after administration of these therapies. There is in vitro and in vivo evidence that demonstrates a clear link between raised interleukin (IL)-6 levels and P450 suppression, in particular CYP3A4. However, despite this, the changes in IL-6 levels in vivo rarely lead to significant drug interactions (area under the curve and Cmax ratios < 2-fold). The clinical significance of such interactions therefore remains questionable and is dependent on the therapeutic index of the small molecule therapy. Physiologically based pharmacokinetic (PBPK) modeling has been used successfully to predict the impact of raised IL-6 on P450 activities. Beyond IL-6, published data show little evidence that IL-8, IL-10, and IL-17 suppress P450 enzymes. In vitro data suggest that IL-1β, IL-2, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ can cause suppression of P450 enzymes. Despite in vivo there being a link between IL-6 levels and P450 suppression, the evidence to support a direct effect of IL-2, IL-8, IL-10, IL-17, IFN-γ, TNF-α, or vascular endothelial growth factor on P450 activity is inconclusive. This commentary will discuss the relevance of such drug-biologic interactions and whether current PBPK models considering only IL-6 are sufficient. SIGNIFICANCE STATEMENT: This commentary summarizes the current in vitro and in vivo literature regarding cytokine-mediated cytochrome P450 suppression and compares the relative suppressive potential of different cytokines in reference to interleukin (IL)-6. It also discusses the relevance of drug-biologic interactions to therapeutic use of small molecule drugs and whether current physiologically based pharmacokinetic models considering only IL-6 are sufficient to predict the extent of drug-biologic interactions.
Collapse
Affiliation(s)
- Kuan-Fu Chen
- Certara UK Limited (Simcyp Division), Sheffield, United Kingdom
| | - Hannah M Jones
- Certara UK Limited (Simcyp Division), Sheffield, United Kingdom
| | | |
Collapse
|
33
|
Terrier J, Lenoir C, Samer C. CYP450 3A4/5 Containment During SARS-CoV-2 Infection. Clin Pharmacol Ther 2022; 113:218. [PMID: 36076327 PMCID: PMC9538688 DOI: 10.1002/cpt.2725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 01/27/2023]
Affiliation(s)
- Jean Terrier
- Clinical Pharmacology and Toxicology Service, Anesthesiology, Pharmacology and Intensive Care DepartmentGeneva University HospitalsGenevaSwitzerland,Division of General Internal MedicineGeneva University HospitalsGenevaSwitzerland
| | - Camille Lenoir
- Clinical Pharmacology and Toxicology Service, Anesthesiology, Pharmacology and Intensive Care DepartmentGeneva University HospitalsGenevaSwitzerland
| | - Caroline Samer
- Clinical Pharmacology and Toxicology Service, Anesthesiology, Pharmacology and Intensive Care DepartmentGeneva University HospitalsGenevaSwitzerland
| |
Collapse
|
34
|
Zhan Y, Yue H, Liang W, Wu Z. Effects of COVID-19 on Arrhythmia. J Cardiovasc Dev Dis 2022; 9:jcdd9090292. [PMID: 36135437 PMCID: PMC9504579 DOI: 10.3390/jcdd9090292] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 01/08/2023] Open
Abstract
The World Health Organization announced that COVID-19, with SARS-CoV-2 as its pathogen, had become a pandemic on 11 March 2020. Today, the global epidemic situation is still serious. With the development of research, cardiovascular injury in patients with COVID-19, such as arrhythmia, myocardial injury, and heart failure, is the second major symptom in addition to respiratory symptoms, and cardiovascular injury is related to the prognosis and mortality of patients. The incidence of arrhythmia in COVID-19 patients ranges from 10% to 20%. The potential mechanisms include viral infection-induced angiotensin-converting enzyme 2 expression change, myocarditis, cytokine storm, cardiac injury, electrophysiological effects, hypoxemia, myocardial strain, electrolyte abnormalities, intravascular volume imbalance, drug toxicities and interactions, and stress response caused by virus infection. COVID-19 complicated with arrhythmia needs to be accounted for and integrated in management. This article reviews the incidence, potential mechanisms, and related management measures of arrhythmia in COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | - Zhong Wu
- Correspondence: ; Tel.: +86-028-85422897
| |
Collapse
|
35
|
Alegría-Arcos M, Barbosa T, Sepúlveda F, Combariza G, González J, Gil C, Martínez A, Ramírez D. Network pharmacology reveals multitarget mechanism of action of drugs to be repurposed for COVID-19. Front Pharmacol 2022; 13:952192. [PMID: 36052135 PMCID: PMC9424758 DOI: 10.3389/fphar.2022.952192] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
The coronavirus disease 2019 pandemic accelerated drug/vaccine development processes, integrating scientists all over the globe to create therapeutic alternatives against this virus. In this work, we have collected information regarding proteins from SARS-CoV-2 and humans and how these proteins interact. We have also collected information from public databases on protein–drug interactions. We represent this data as networks that allow us to gain insights into protein–protein interactions between both organisms. With the collected data, we have obtained statistical metrics of the networks. This data analysis has allowed us to find relevant information on which proteins and drugs are the most relevant from the network pharmacology perspective. This method not only allows us to focus on viral proteins as the main targets for COVID-19 but also reveals that some human proteins could be also important in drug repurposing campaigns. As a result of the analysis of the SARS-CoV-2–human interactome, we have identified some old drugs, such as disulfiram, auranofin, gefitinib, suloctidil, and bromhexine as potential therapies for the treatment of COVID-19 deciphering their potential complex mechanism of action.
Collapse
Affiliation(s)
- Melissa Alegría-Arcos
- Facultad de Ingeniería y Negocios, Universidad de Las Américas, Sede Providencia, Santiago, Chile
| | - Tábata Barbosa
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá, Colombia
| | - Felipe Sepúlveda
- Department of Molecular Genetics and Microbiology, Biological Sciences Faculty, Pontifical Catholic University of Chile, Santiago, Chile
| | - German Combariza
- Universidad Externado de Colombia, Departamento de Matemáticas, Bogotá, Colombia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Sede Bogotá, Bogotá, Colombia
| | - Carmen Gil
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - Ana Martínez
- Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Madrid, Spain
| | - David Ramírez
- Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Santiago, Chile
- Research Center for the Development of Novel Therapeutic Alternatives for Alcohol Use Disorders, Santiago, Chile
- *Correspondence: David Ramírez,
| |
Collapse
|
36
|
Li J, Peng P, Lai KP. Therapeutic targets and functions of curcumol against COVID-19 and colon adenocarcinoma. Front Nutr 2022; 9:961697. [PMID: 35967794 PMCID: PMC9372556 DOI: 10.3389/fnut.2022.961697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 08/01/2022] [Indexed: 11/29/2022] Open
Abstract
Since 2019, the coronavirus disease (COVID-19) has caused 6,319,395 deaths worldwide. Although the COVID-19 vaccine is currently available, the latest variant of the virus, Omicron, spreads more easily than earlier strains, and its mortality rate is still high in patients with chronic diseases, especially cancer patients. So, identifying a novel compound for COVID-19 treatment could help reduce the lethal rate of the viral infection in patients with cancer. This study applied network pharmacology and systematic bioinformatics analysis to determine the possible use of curcumol for treating colon adenocarcinoma (COAD) in patients infected with COVID-19. Our results showed that COVID-19 and COAD in patients shared a cluster of genes commonly deregulated by curcumol. The clinical pathological analyses demonstrated that the expression of gamma-aminobutyric acid receptor subunit delta (GABRD) was associated with the patients' hazard ratio. More importantly, the high expression of GABRD was associated with poor survival rates and the late stages of COAD in patients. The network pharmacology result identified seven-core targets, including solute carrier family 6 member 3, gamma-aminobutyric acid receptor subunit pi, butyrylcholinesterase, cytochrome P450 3A4, 17-beta-hydroxysteroid dehydrogenase type 2, progesterone receptor, and GABRD of curcumol for treating patients with COVID-19 and COAD. The bioinformatic analysis further highlighted their importance in the biological processes and molecular functions in gland development, inflammation, retinol, and steroid metabolism. The findings of this study suggest that curcumol could be an alternative compound for treating patients with COVID-19 and COAD.
Collapse
Affiliation(s)
- Jun Li
- The Pharmaceutical Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Peng Peng
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Keng Po Lai
- Clinical Medicine Research Center, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
37
|
Huang J, Zhang Z, Hao C, Qiu Y, Tan R, Liu J, Wang X, Yang W, Qu H. Identifying Drug-Induced Liver Injury Associated With Inflammation-Drug and Drug-Drug Interactions in Pharmacologic Treatments for COVID-19 by Bioinformatics and System Biology Analyses: The Role of Pregnane X Receptor. Front Pharmacol 2022; 13:804189. [PMID: 35979235 PMCID: PMC9377275 DOI: 10.3389/fphar.2022.804189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Of the patients infected with coronavirus disease 2019 (COVID-19), approximately 14–53% developed liver injury resulting in poor outcomes. Drug-induced liver injury (DILI) is the primary cause of liver injury in COVID-19 patients. In this study, we elucidated liver injury mechanism induced by drugs of pharmacologic treatments against SARS-CoV-2 (DPTS) using bioinformatics and systems biology. Totally, 1209 genes directly related to 216 DPTS (DPTSGs) were genes encoding pharmacokinetics and therapeutic targets of DPTS and enriched in the pathways related to drug metabolism of CYP450s, pregnane X receptor (PXR), and COVID-19 adverse outcome. A network, constructed by 110 candidate targets which were the shared part of DPTSGs and 445 DILI targets, identified 49 key targets and four Molecular Complex Detection clusters. Enrichment results revealed that the 4 clusters were related to inflammatory responses, CYP450s regulated by PXR, NRF2-regualted oxidative stress, and HLA-related adaptive immunity respectively. In cluster 1, IL6, IL1B, TNF, and CCL2 of the top ten key targets were enriched in COVID-19 adverse outcomes pathway, indicating the exacerbation of COVID-19 inflammation on DILI. PXR-CYP3A4 expression of cluster 2 caused DILI through inflammation-drug interaction and drug-drug interactions among pharmaco-immunomodulatory agents, including tocilizumab, glucocorticoids (dexamethasone, methylprednisolone, and hydrocortisone), and ritonavir. NRF2 of cluster 3 and HLA targets of cluster four promoted DILI, being related to ritonavir/glucocorticoids and clavulanate/vancomycin. This study showed the pivotal role of PXR associated with inflammation-drug and drug-drug interactions on DILI and highlighted the cautious clinical decision-making for pharmacotherapy to avoid DILI in the treatment of COVID-19 patients.
Collapse
Affiliation(s)
- Jingjing Huang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhaokang Zhang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Department of Pharmacy, Shanghai Children’s Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yuzhen Qiu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoming Tan
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jialin Liu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaoli Wang
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| | - Hongping Qu
- Department of Critical Care, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xiaoli Wang, ; Wanhua Yang, ; Hongping Qu,
| |
Collapse
|
38
|
Hosseinzadeh A, Bagherifard A, Koosha F, Amiri S, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin effect on platelets and coagulation: Implications for a prophylactic indication in COVID-19. Life Sci 2022; 307:120866. [PMID: 35944663 PMCID: PMC9356576 DOI: 10.1016/j.lfs.2022.120866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 11/04/2022]
Abstract
Severe COVID-19 is associated with the dynamic changes in coagulation parameters. Coagulopathy is considered as a major extra-pulmonary risk factor for severity and mortality of COVID-19; patients with elevated levels of coagulation biomarkers have poorer in-hospital outcomes. Oxidative stress, alterations in the activity of cytochrome P450 enzymes, development of the cytokine storm and inflammation, endothelial dysfunction, angiotensin-converting enzyme 2 (ACE2) enzyme malfunction and renin–angiotensin system (RAS) imbalance are among other mechanisms suggested to be involved in the coagulopathy induced by severe acute respiratory syndrome coronavirus (SARS-CoV-2). The activity and function of coagulation factors are reported to have a circadian component. Melatonin, a multipotential neurohormone secreted by the pineal gland exclusively at night, regulates the cytokine system and the coagulation cascade in infections such as those caused by coronaviruses. Herein, we review the mechanisms and beneficial effects of melatonin against coagulopathy induced by SARS-CoV-2 infection.
Collapse
|
39
|
Chengappa KR, Thomas J, Kahn CE, Clinebell K, Mullen KK, Arbutiski L, Ivanov E. COVID-19 infection, fluctuations in the clozapine/norclozapine levels and metabolic ratio and clozapine toxicity: An illustrative case-report. Schizophr Res 2022; 244:66-68. [PMID: 35605549 PMCID: PMC9117158 DOI: 10.1016/j.schres.2022.05.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023]
Affiliation(s)
- K.N. Roy Chengappa
- University of Pittsburgh School of Medicine, Department of Psychiatry, CRS Service Line, UPMC-Western Psychiatric Hospital, United States of America,Corresponding author
| | - Jane Thomas
- Pathways-LTSR, CRS-Service Line, UPMC-Western Psychiatric Hospital, United States of America
| | - Charles E. Kahn
- University of Pittsburgh School of Medicine, Department of Psychiatry, UPMC-Western Psychiatric Hospital, United States of America
| | - Kimberly Clinebell
- Pathways-LTSR & Pine IOP and Partial, Department of Psychiatry, UPMC-Western Psychiatric Hospital, United States of America
| | - Kelly K. Mullen
- Pathways-LTSR, CRS-Service Line, UPMC-Western Psychiatric Hospital, United States of America
| | - Lori Arbutiski
- Behavioral Health Services, Heritage Valley Health System, UPMC-Western Psychiatric Hospital, United States of America
| | - Emil Ivanov
- Pittsburgh Psychiatry LLC, Pittsburgh, PA, United States of America
| |
Collapse
|
40
|
de Jong LM, Klomp SD, Treijtel N, Rissmann R, Swen JJ, Manson ML. A Systematic Review on Disease-Drug-Drug Interactions with immunomodulating drugs: A Critical Appraisal of Risk Assessment and Drug Labelling. Br J Clin Pharmacol 2022; 88:4387-4402. [PMID: 35484780 PMCID: PMC9545038 DOI: 10.1111/bcp.15372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 11/30/2022] Open
Abstract
Aim Use of immunomodulating therapeutics for immune‐mediated inflammatory diseases may cause disease‐drug‐drug interactions (DDDIs) by reversing inflammation‐driven alterations in the metabolic capacity of cytochrome P450 enzymes. European Medicine Agency (EMA) and US Food and Drug Administration (FDA) guidelines from 2007 recommend that the DDDI potential of therapeutic proteins should be assessed. This systematic analysis aimed to characterize the available DDDI trials with immunomodulatory drugs, experimental evidence for a DDDI risk and reported DDDI risk information in FDA/EMA approved drug labelling. Method For this systematic review, the EMA list of European Public Assessment Reports of human medicine was used to select immunomodulating monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs) marketed after 2007 at risk for a DDDI. Selected drugs were included in PubMed and Embase searches to extract reported interaction studies. The Summary of Product Characteristics (SPCs) and the United States Prescribing Information (USPIs) were subsequently used for analysis of DDDI risk descriptions. Results Clinical interaction studies to evaluate DDDI risks were performed for 12 of the 24 mAbs (50%) and for none of the TKIs. Four studies identified a DDDI risk, of which three were studies with interleukin‐6 (IL‐6) neutralizing mAbs. Based on (non)clinical data, a DDDI risk was reported in 32% of the SPCs and in 60% of the USPIs. The EMA/FDA documentation aligned with the DDDI risk potential in 35% of the 20 cases. Conclusion This systematic review reinforces that the risk for DDDI by immunomodulating drugs is target‐ and disease‐specific. Drug labelling information designates the greatest DDDI risk to mAbs that neutralize the effects of IL‐6, Tumor Necrosis Factor alfa (TNF‐α) and interleukin‐1 bèta (IL‐1β) in diseases with systemic inflammation.
Collapse
Affiliation(s)
- Laura M de Jong
- Division of System Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands.,Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| | - Sylvia D Klomp
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Nicoline Treijtel
- Centre for Human Drug Research, Leiden, the Netherlands.,Interact-Clinical Pharmacology, Dordrecht, The Netherlands
| | - Robert Rissmann
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands.,Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.,Centre for Human Drug Research, Leiden, the Netherlands
| | - Jesse J Swen
- Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn L Manson
- Division of System Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands.,Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, The Netherlands
| |
Collapse
|
41
|
Adiwidjaja J, Adattini JA, Boddy AV, McLachlan AJ. Physiologically-Based Pharmacokinetic Modeling Approaches for Patients with SARS-CoV-2 Infection: A Case Study with Imatinib. J Clin Pharmacol 2022; 62:1285-1296. [PMID: 35460539 PMCID: PMC9088354 DOI: 10.1002/jcph.2065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/16/2022] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) infection, which causes coronavirus disease 2019 (COVID‐19), manifests as mild respiratory symptoms to severe respiratory failure and is associated with inflammation and other physiological changes. Of note, substantial increases in plasma concentrations of α1‐acid‐glycoprotein and interleukin‐6 have been observed among patients admitted to the hospital with advanced SARS‐CoV‐2 infection. A physiologically based pharmacokinetic (PBPK) approach is a useful tool to evaluate and predict disease‐related changes on drug pharmacokinetics. A PBPK model of imatinib has previously been developed and verified in healthy people and patients with cancer. In this study, the PBPK model of imatinib was successfully extrapolated to patients with SARS‐CoV‐2 infection by accounting for disease‐related changes in plasma α1‐acid‐glycoprotein concentrations and the potential drug interaction between imatinib and dexamethasone. The model demonstrated a good predictive performance in describing total and unbound imatinib concentrations in patients with SARS‐CoV‐2 infection. PBPK simulations highlight that an equivalent dose of imatinib may lead to substantially higher total drug concentrations in patients with SARS‐CoV‐2 infection compared to that in patients with cancer, while the unbound concentrations remain comparable between the 2 patient populations. This supports the notion that unbound trough concentration is a better exposure metric for dose adjustment of imatinib in patients with SARS‐CoV‐2 infection, compared to the corresponding total drug concentration. Potential strategies for refinement and generalization of the PBPK modeling approach in the patient population with SARS‐CoV‐2 are also provided in this article, which could be used to guide study design and inform dose adjustment in the future.
Collapse
Affiliation(s)
- Jeffry Adiwidjaja
- Sydney Pharmacy SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
- Division of Pharmacotherapy and Experimental TherapeuticsUNC Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Josephine A. Adattini
- Sydney Pharmacy SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| | - Alan V. Boddy
- UniSA Cancer Research Institute and UniSA Clinical & Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Andrew J. McLachlan
- Sydney Pharmacy SchoolFaculty of Medicine and HealthThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
42
|
Elfaki I. The Impact of the Coronavirus (COVID-19) Infection on the Drug-Metabolizing Enzymes Cytochrome P450s. Drug Metab Lett 2022; 15:DML-EPUB-122095. [PMID: 35362390 DOI: 10.2174/1872312815666220331142046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 11/22/2022]
Abstract
Coronaviruses cause disease in human and animals. In 2019 a novel coronavirus was first characterized in Wuhan, China. It causes acute respiratory disease and designated the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or COVID-19. The COVID-19 spread to all cities of China, and in 2020 to the whole world. Patients with COVID-19 may recover without medical treatment. However, some patients need medical care. The Cytochrome p450s (CYP450s) are large superfamily of enzymes catalyze the metabolism of endogenous substrates and xenobiotics. CYP450s catalyze the biotransformation of 80% of the drug in clinical use. The CYP450 present in liver, lungs, intestine and other tissues. COVID-19 has been reported to decrease the activity of certain isoforms of CYP450s in an isoform specific manner. Furthermore, the COVID-19 infection decreases the liver functions including the drug clearance or detoxification medicated by the CYP450s. The healthcare providers should be aware of this disease-drug interaction when prescribing drugs for treatment of COVID-19 and other comorbidities.
Collapse
Affiliation(s)
- Imadeldin Elfaki
- Department of Biochemistry, Faculty of Science, University of Tabuk, Kingdom of Saudi Arabia
| |
Collapse
|
43
|
(±)-2-(2-Fluoro-[1,1′-biphenyl]-4-yl)-N-(1-phenylpropan-2-yl)propanamide. MOLBANK 2022. [DOI: 10.3390/m1319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
2-(2-fluoro-[1,1′-biphenyl]-4-yl)-N-(1-phenylpropan-2-yl)propanamide was synthesized by a reaction between amphetamine and flurbiprofen in high yields. The newly obtained hybrid molecule was fully analyzed and characterized via 1H, 13C, UV, IR, HPLC, and mass spectral data.
Collapse
|