1
|
Ricard-Blum S, Vivès RR, Schaefer L, Götte M, Merline R, Passi A, Heldin P, Magalhães A, Reis CA, Skandalis SS, Karamanos NK, Perez S, Nikitovic D. A biological guide to glycosaminoglycans: current perspectives and pending questions. FEBS J 2024; 291:3331-3366. [PMID: 38500384 DOI: 10.1111/febs.17107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/08/2024] [Accepted: 02/20/2024] [Indexed: 03/20/2024]
Abstract
Mammalian glycosaminoglycans (GAGs), except hyaluronan (HA), are sulfated polysaccharides that are covalently attached to core proteins to form proteoglycans (PGs). This article summarizes key biological findings for the most widespread GAGs, namely HA, chondroitin sulfate/dermatan sulfate (CS/DS), keratan sulfate (KS), and heparan sulfate (HS). It focuses on the major processes that remain to be deciphered to get a comprehensive view of the mechanisms mediating GAG biological functions. They include the regulation of GAG biosynthesis and postsynthetic modifications in heparin (HP) and HS, the composition, heterogeneity, and function of the tetrasaccharide linkage region and its role in disease, the functional characterization of the new PGs recently identified by glycoproteomics, the selectivity of interactions mediated by GAG chains, the display of GAG chains and PGs at the cell surface and their impact on the availability and activity of soluble ligands, and on their move through the glycocalyx layer to reach their receptors, the human GAG profile in health and disease, the roles of GAGs and particular PGs (syndecans, decorin, and biglycan) involved in cancer, inflammation, and fibrosis, the possible use of GAGs and PGs as disease biomarkers, and the design of inhibitors targeting GAG biosynthetic enzymes and GAG-protein interactions to develop novel therapeutic approaches.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- Univ Lyon 1, ICBMS, UMR 5246 University Lyon 1 - CNRS, Villeurbanne cedex, France
| | | | - Liliana Schaefer
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Germany
| | - Rosetta Merline
- Institute of Pharmacology and Toxicology, Goethe University, Frankfurt, Germany
| | | | - Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ana Magalhães
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Celso A Reis
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Res. Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Serge Perez
- Centre de Recherche sur les Macromolécules Végétales, University of Grenoble-Alpes, CNRS, France
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, Heraklion, Greece
| |
Collapse
|
2
|
Petrov PB, Considine JM, Izzi V, Naba A. Matrisome AnalyzeR - a suite of tools to annotate and quantify ECM molecules in big datasets across organisms. J Cell Sci 2023; 136:jcs261255. [PMID: 37555624 PMCID: PMC10499032 DOI: 10.1242/jcs.261255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
The extracellular matrix (ECM) is a complex meshwork of proteins that forms the scaffold of all tissues in multicellular organisms. It plays crucial roles in all aspects of life - from orchestrating cell migration during development, to supporting tissue repair. It also plays critical roles in the etiology or progression of diseases. To study this compartment, we have previously defined the compendium of all genes encoding ECM and ECM-associated proteins for multiple organisms. We termed this compendium the 'matrisome' and further classified matrisome components into different structural or functional categories. This nomenclature is now largely adopted by the research community to annotate '-omics' datasets and has contributed to advance both fundamental and translational ECM research. Here, we report the development of Matrisome AnalyzeR, a suite of tools including a web-based application and an R package. The web application can be used by anyone interested in annotating, classifying and tabulating matrisome molecules in large datasets without requiring programming knowledge. The companion R package is available to more experienced users, interested in processing larger datasets or in additional data visualization options.
Collapse
Affiliation(s)
- Petar B. Petrov
- Infotech Institute, University of Oulu, FI-90014 Oulu, Finland
| | - James M. Considine
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine & Faculty of Medicine, BioIM Unit, University of Oulu, FI-90014 Oulu, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Fl-00290 Helsinki, Finland
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
3
|
Carrilho MR, Scaffa PMC, Dionizio A, Ventura TMO, Buzalaf MAR, Vidal CMP. Differential analysis of the dentin soluble proteomic. J Dent 2023; 131:104454. [PMID: 36781100 DOI: 10.1016/j.jdent.2023.104454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/04/2023] [Accepted: 02/09/2023] [Indexed: 02/13/2023] Open
Abstract
OBJECTIVES To perform a differential analysis of the dentin soluble proteomic and assess the effects of tissue health state and protocol for protein extraction. We hypothesized the dentin soluble proteomic varies according to the tissue physiopathological state (intact vs. caries-affected) and protocol used to extract its proteins. METHODS Dentin from freshly extracted non-carious and carious teeth were randomly assigned for protein extraction using either guanidine-HCl/ethylenediaminetetraacetic acid (EDTA) or acetic acid. Protein extracts from intact and caries-affected dentin were processed and digested with trypsin for shotgun label-free proteomic analysis (nLC-ESI-MS/MS). Peptides identification was performed on a nanoACQUITY UPLC-Xevo Q-Tof MS system. Peptides identified with scores of confidence greater than 95% were included in the quantitative statistical analysis embedded in the PLGS software. Differences between experimental conditions were calculated using Student test-t with significance pre-set at α=0.05. RESULTS A total of 158 human proteins were identified. Approximately one-sixth of proteins (24/158) were present in at least two different extracts. Conversely, the greatest number of proteins (134/158) was identified uniquely in only one of the extracts. Overall, a larger number of soluble proteins was retrieved from caries-affected than intact dentin (86/158). Likewise, a greater number of proteins was extracted by the guanidine-HCl/EDTA (106/158) in comparison to acetic acid protocol. Several proteins detected in dentin extracts, mainly those from caries-affected teeth, are biological and/or metabolically involved with tissue turnover/remodeling. CONCLUSION The identity/abundance of soluble proteins retrieved from and remained in dentin noticeably depend on this tissue physiopathological state and protocol used to remove its minerals. CLINICAL SIGNIFICANCE The present findings brought new insight into the proteomic phenotype of human dentin and may provide targets for the development of novel caries disease-prevention therapies.
Collapse
Affiliation(s)
| | - Polliana M C Scaffa
- Department of Biological Sciences/Bauru School of Dentistry/University of São Paulo, SP, Brazil
| | - Aline Dionizio
- Department of Biological Sciences/Bauru School of Dentistry/University of São Paulo, SP, Brazil
| | - Talita M O Ventura
- Department of Biological Sciences/Bauru School of Dentistry/University of São Paulo, SP, Brazil
| | - Marilia A R Buzalaf
- Department of Biological Sciences/Bauru School of Dentistry/University of São Paulo, SP, Brazil
| | - Cristina M P Vidal
- Department of Operative Dentistry/College of Dentistry/University of Iowa, IA, USA
| |
Collapse
|
4
|
Kyriakopoulou K, Piperigkou Z, Tzaferi K, Karamanos NK. Trends in extracellular matrix biology. Mol Biol Rep 2023; 50:853-863. [PMID: 36342580 PMCID: PMC9884264 DOI: 10.1007/s11033-022-07931-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022]
Abstract
Extracellular matrixes (ECMs) are intricate 3-dimensional macromolecular networks of unique architectures with regulatory roles in cell morphology and functionality. As a dynamic native biomaterial, ECM undergoes constant but tightly controlled remodeling that is crucial for the maintenance of normal cellular behavior. Under pathological conditions like cancer, ECM remodeling ceases to be subjected to control resulting in disease initiation and progression. ECM is comprised of a staggering number of molecules that interact not only with one another, but also with neighboring cells via cell surface receptors. Such interactions, too many to tally, are of paramount importance for the identification of novel disease biomarkers and more personalized therapeutic intervention. Recent advances in big data analytics have allowed the development of online databases where researchers can take advantage of a stochastic evaluation of all the possible interactions and narrow them down to only those of interest for their study, respectively. This novel approach addresses the limitations that currently exist in studies, expands our understanding on ECM interactions, and has the potential to advance the development of targeted therapies. In this article we present the current trends in ECM biology research and highlight its importance in tissue integrity, the main interaction networks, ECM-mediated cell functional properties and issues related to pharmacological targeting.
Collapse
Affiliation(s)
- Konstantina Kyriakopoulou
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
| | - Zoi Piperigkou
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 261 10, Patras, Greece
| | - Kyriaki Tzaferi
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece
| | - Nikos K Karamanos
- Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04, Patras, Greece.
- Foundation for Research and Technology-Hellas (FORTH), Institute of Chemical Engineering Sciences (ICE-HT), 261 10, Patras, Greece.
| |
Collapse
|
5
|
Ricard-Blum S. Building, Visualizing, and Analyzing Glycosaminoglycan-Protein Interaction Networks. Methods Mol Biol 2023; 2619:211-224. [PMID: 36662472 DOI: 10.1007/978-1-0716-2946-8_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This chapter describes how to generate, visualize, and analyze interaction networks of glycosaminoglycans (GAGs), which are linear polyanionic polysaccharides mostly located at the cell surface and in the extracellular matrix. The protocol is divided into three major steps: (1) the collection of GAG-mediated interaction data, (2) the visualization of GAG interaction networks, and (3) the computational enrichment analyses of these networks to identify their overrepresented features (e.g., protein domains, location, molecular functions, and biological pathways) compared to a reference proteome. These analyses are critical to interpret GAG interactomic datasets, decipher their specificities and functions, and ultimately identify GAG-protein interactions to target for therapeutic purpose.
Collapse
Affiliation(s)
- Sylvie Ricard-Blum
- ICBMS, UMR 5246 University Lyon 1, CNRS, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne Cedex, France.
| |
Collapse
|
6
|
Lausecker F, Lennon R, Randles MJ. The kidney matrisome in health, aging, and disease. Kidney Int 2022; 102:1000-1012. [PMID: 35870643 DOI: 10.1016/j.kint.2022.06.029] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/15/2022] [Accepted: 06/24/2022] [Indexed: 02/06/2023]
Abstract
Dysregulated extracellular matrix is the hallmark of fibrosis, and it has a profound impact on kidney function in disease. Furthermore, perturbation of matrix homeostasis is a feature of aging and is associated with declining kidney function. Understanding these dynamic processes, in the hope of developing therapies to combat matrix dysregulation, requires the integration of data acquired by both well-established and novel technologies. Owing to its complexity, the extracellular proteome, or matrisome, still holds many secrets and has great potential for the identification of clinical biomarkers and drug targets. The molecular resolution of matrix composition during aging and disease has been illuminated by cutting-edge mass spectrometry-based proteomics in recent years, but there remain key questions about the mechanisms that drive altered matrix composition. Basement membrane components are particularly important in the context of kidney function; and data from proteomic studies suggest that switches between basement membrane and interstitial matrix proteins are likely to contribute to organ dysfunction during aging and disease. Understanding the impact of such changes on physical properties of the matrix, and the subsequent cellular response to altered stiffness and viscoelasticity, is of critical importance. Likewise, the comparison of proteomic data sets from multiple organs is required to identify common matrix biomarkers and shared pathways for therapeutic intervention. Coupled with single-cell transcriptomics, there is the potential to identify the cellular origin of matrix changes, which could enable cell-targeted therapy. This review provides a contemporary perspective of the complex kidney matrisome and draws comparison to altered matrix in heart and liver disease.
Collapse
Affiliation(s)
- Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Randles
- Chester Medical School, Faculty of Medicine and Life Sciences, University of Chester, Chester, UK.
| |
Collapse
|
7
|
Glycosaminoglycan interaction networks and databases. Curr Opin Struct Biol 2022; 74:102355. [DOI: 10.1016/j.sbi.2022.102355] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022]
|
8
|
Meldal BHM, Perfetto L, Combe C, Lubiana T, Ferreira Cavalcante JV, Bye-A-Jee H, Waagmeester A, del-Toro N, Shrivastava A, Barrera E, Wong E, Mlecnik B, Bindea G, Panneerselvam K, Willighagen E, Rappsilber J, Porras P, Hermjakob H, Orchard S. Complex Portal 2022: new curation frontiers. Nucleic Acids Res 2022; 50:D578-D586. [PMID: 34718729 PMCID: PMC8689886 DOI: 10.1093/nar/gkab991] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/07/2021] [Accepted: 10/10/2021] [Indexed: 01/02/2023] Open
Abstract
The Complex Portal (www.ebi.ac.uk/complexportal) is a manually curated, encyclopaedic database of macromolecular complexes with known function from a range of model organisms. It summarizes complex composition, topology and function along with links to a large range of domain-specific resources (i.e. wwPDB, EMDB and Reactome). Since the last update in 2019, we have produced a first draft complexome for Escherichia coli, maintained and updated that of Saccharomyces cerevisiae, added over 40 coronavirus complexes and increased the human complexome to over 1100 complexes that include approximately 200 complexes that act as targets for viral proteins or are part of the immune system. The display of protein features in ComplexViewer has been improved and the participant table is now colour-coordinated with the nodes in ComplexViewer. Community collaboration has expanded, for example by contributing to an analysis of putative transcription cofactors and providing data accessible to semantic web tools through Wikidata which is now populated with manually curated Complex Portal content through a new bot. Our data license is now CC0 to encourage data reuse. Users are encouraged to get in touch, provide us with feedback and send curation requests through the 'Support' link.
Collapse
Affiliation(s)
- Birgit H M Meldal
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Livia Perfetto
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
- Fondazione Human Technopole, 20157 Milan, Italy
| | - Colin Combe
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Tiago Lubiana
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, Av. Professor Lineu Prestes 580, CEP 05508-000 São Paulo SP, Brasil
| | - João Vitor Ferreira Cavalcante
- Bioinformatics Multidisciplinary Environment (BioME), Digital Metropolis Institute, Federal University of Rio Grande do Norte, Av. Odilon Gomes de Lima 1722, Capim Macio, 59078-400 Natal/RN, Brasil
| | - Hema Bye-A-Jee
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | | | - Noemi del-Toro
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Anjali Shrivastava
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Elisabeth Barrera
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Edith Wong
- Department of Genetics, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Bernhard Mlecnik
- Laboratory of Integrative Cancer Immunology, INSERM, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
- Inovarion, 75005 Paris, France
| | - Gabriela Bindea
- Laboratory of Integrative Cancer Immunology, INSERM, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, 75006 Paris, France
| | - Kalpana Panneerselvam
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Egon Willighagen
- Dept of Bioinformatics - BiGCaT, NUTRIM, Maastricht University, Universiteitssingel 50, 6229 ER Maastricht, The Netherlands
| | - Juri Rappsilber
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, 13355 Berlin, Germany
| | - Pablo Porras
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Henning Hermjakob
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Sandra Orchard
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| |
Collapse
|