1
|
Zorpas AA. The hidden concept and the beauty of multiple "R" in the framework of waste strategies development reflecting to circular economy principles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175508. [PMID: 39153637 DOI: 10.1016/j.scitotenv.2024.175508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
There are numerous unresolved research questions, along with ongoing debates, regarding how to achieve a circular economy and at what level. The forthcoming circular economy standard (ISO 59000 framework, ISO59010) as a result from the ISO/TC 323, from the International Organization for Standardization (ISO) aims to offer global implementation pathways using a unified technical language. The most challenging aspect of circularity, whether viewed scientifically, technically, and/or legislatively, is how to enhance prosperity while reducing reliance on primary materials and energy to achieve climate neutrality by 2050, thereby aiding the EU in achieving a successful and equitable transition towards a sustainable future. Strategies in the framework of waste management and circular economy are essential and needed to reduce the impact of several processes on the environment through product, processes, and corporate policies using green applicable sustainable resources and environmental management systems. In addition, "measuring something that is not there" is very complex and not fully comprehensible, not clear and not tangible from organizations, researchers, policy makers and citizens. The willingness and ability of individuals or organizations to take actions towards a low-carbon society involves grappling with various perspectives, such as social norms and economic viability. Circular economy is considered a tool in combating climate change and implementing climate mitigation (as well as adaptation) measures. Moreover, to date, there has been no common scientific or technical language for the application of the circular economy concept. This paper highlights the multitude of "Rs" beyond the well-known (3Rs) Reduce-Reuse-Recycle pattern, which can be applied in various contexts to assist SMEs (Small and Medium Enterprises), organizations and even citizens successfully adopt circular economy principles. Is also explores how these "Rs" can be utilized to measure intangible aspects (something that is not there). The results indicate that more than 55Rs exist which directly involved in the circular economy framework, also considering waste management strategies. The findings of this study reveal the existence of over 100 "Rs" beyond the well-known principles of "reduce, reuse, recycle," each playing a distinct role in the development of strategies aimed at addressing waste management issues and advancing circularity towards a low-carbon society. Furthermore, the results could be useful for any policy makers, consultants, engineers, practitioners, urban planners, academics etc., in order to develop, apply, monitor, measure and improve any strategy such as circular economy strategy, waste prevention, zero waste, reuse, reduce, energy recovery etc., in the framework of circular economy principles, solid waste management and beyond.
Collapse
Affiliation(s)
- Antonis A Zorpas
- Laboratory of Chemical Engineering and Engineering Sustainability, Sustainable Environmental Engineering Master Program, Faculty of Pure and Applied Sciences, Open University of Cyprus, Giannou Kranidioti 89, 2231, www.ouc.ac.cy, Latsia, Nicosia, Cyprus.
| |
Collapse
|
2
|
Deng P, Chen L, Li Y, Liu BW, Wang XL, Wang YZ. Selectively self-recyclable, highly transparent and fire-safe polycarbonate plastic enabled by thermally responsive phosphonium-phosphate. MATERIALS HORIZONS 2024. [PMID: 39421959 DOI: 10.1039/d4mh01139b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Both the circular economy and fire-safety of polymer plastics have become a global consensus. Herein, an integrated strategy for selectively self-recyclable, highly-transparent and fire-safe polycarbonate plastic is proposed by thermally responsive phosphonium-phosphate (DP). During its service life, DP, as a flame-retardant with good compatibility, enables polycarbonate plastic with high transparency in visible light, excellent self-extinguishing and high fire-safety. After consumption, DP, as a catalyst, triggers the selective self-recycling of DP-containing polycarbonate in mixed plastics and even in same-kind polycarbonate plastics without an external catalyst. Importantly, the oxygen-consuming mechanism at high temperature in fire accidents (>350 °C) and the double hydrogen bond catalysis mechanism at a lower temperature (180 °C) of DP are key to the life cycle management of polycarbonate from use-stage to post-consumption. This work inspires a new solution to plastic pollution by designing sustainable plastics that satisfy both service-stage and end-of-life criteria, striving towards a zero-waste circular economy.
Collapse
Affiliation(s)
- Pan Deng
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Lin Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yue Li
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Bo-Wen Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Xiu-Li Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
3
|
Figalla S, Jašek V, Fučík J, Menčík P, Přikryl R. Poly(lactide) Upcycling Approach through Transesterification for Stereolithography 3D Printing. Biomacromolecules 2024; 25:6645-6655. [PMID: 39359070 PMCID: PMC11480983 DOI: 10.1021/acs.biomac.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
The legislature determines the recycled and waste contents in fabrication processes to ensure more sustainable production. PLA's mechanical recycling and reuse are limited due to the performance decrease caused by thermal or hydrolytic instability. Our concept introduces an upcycling route involving PLA depolymerization using propylene glycol as a reactant, followed by the methacrylation, assuring the liquid systems' curability provided by radical polymerization. PLA-containing curable systems were studied from a rheological and thermomechanical viewpoint. The viscosity levels varied from 33 to 3911 mPa·s at 30 °C, giving a wide capability potential. The best system reached 2240 MPa storage modulus, 164.1 °C glass-transition temperature, and 145.6 °C heat-resistant index, competitive values to commercial systems. The printability was verified for all of the systems. Eventually, our concept led to SLA resin production containing PLA waste content up to 51 wt %.
Collapse
Affiliation(s)
- Silvestr Figalla
- Institute
of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Vojtěch Jašek
- Institute
of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Jan Fučík
- Institute
of Environmental Chemistry, Faculty of Chemistry, Brno University of Technology, 612 00 Brno, Czech
Republic
| | - Přemysl Menčík
- Institute
of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| | - Radek Přikryl
- Institute
of Materials Chemistry, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic
| |
Collapse
|
4
|
Hu Y, Tian Y, Zou C, Moon TS. The current progress of tandem chemical and biological plastic upcycling. Biotechnol Adv 2024; 77:108462. [PMID: 39395608 DOI: 10.1016/j.biotechadv.2024.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/31/2024] [Accepted: 10/03/2024] [Indexed: 10/14/2024]
Abstract
Each year, millions of tons of plastics are produced for use in such applications as packaging, construction, and textiles. While plastic is undeniably useful and convenient, its environmental fate and transport have raised growing concerns about waste and pollution. However, the ease and low cost of producing virgin plastic have so far made conventional plastic recycling economically unattractive. Common contaminants in plastic waste and shortcomings of the recycling processes themselves typically mean that recycled plastic products are of relatively low quality in some cases. The high cost and high energy requirements of typical recycling operations also reduce their economic benefits. In recent years, the bio-upcycling of chemically treated plastic waste has emerged as a promising alternative to conventional plastic recycling. Unlike recycling, bio-upcycling uses relatively mild process conditions to economically transform pretreated plastic waste into value-added products. In this review, we first provide a précis of the general methodology and limits of conventional plastic recycling. Then, we review recent advances in hybrid chemical/biological upcycling methods for different plastics, including polyethylene terephthalate, polyurethane, polyamide, polycarbonate, polyethylene, polypropylene, polystyrene, and polyvinyl chloride. For each kind of plastic, we summarize both the pretreatment methods for making the plastic bio-available and the microbial chassis for degrading or converting the treated plastic waste to value-added products. We also discuss both the limitations of upcycling processes for major plastics and their potential for bio-upcycling.
Collapse
Affiliation(s)
- Yifeng Hu
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Yuxin Tian
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Chenghao Zou
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, United States; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, United States; Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States.
| |
Collapse
|
5
|
Minami Y, Honobe R, Tsuyuki S, Sato K, Yoshida M. Facile Depolymerization of Thermally Stable Polyetherethersulfone and Polyetheretherketone Using Hydroquinone and Bases. CHEMSUSCHEM 2024:e202401778. [PMID: 39304518 DOI: 10.1002/cssc.202401778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Super engineering plastics such as polyetheretherketone (PEEK) and polyetherethersulfone (PEES) exhibit thermal stability, chemical resistance, and mechanical strength. Such characteristics are attributed to their robust chemical structures composed of stable aryl ethers. These features make chemical recycling difficult. This is because it is necessary to overcome through the stability of the material and then precisely cleave the stable bonds. This study demonstrates the depolymerization of PEES and PEEK by hydroquinone in the presence of sodium hydroxide in 1,3-dimethyl-2-imidazolidinone (DMI) solvent at 150 °C. This method effectively provides monomeric products, diphenylsulfone and benzophenone having two 4-hydroxyphenoxy groups at both para positions. DMI solvent was the crucial factor for this transformation, since it enhanced the reactivity of hydroquinone to cleave the aryl ether bonds.
Collapse
Affiliation(s)
- Yasunori Minami
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- PRESTO, Japan Science and Technology Agency (JST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
- Graduate School of Pure and Applied Science Department, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Rena Honobe
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Shunsuke Tsuyuki
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
6
|
Santomasi G, Aquilino R, Brouwer M, De Gisi S, Smeding I, Todaro F, Notarnicola M, Thoden van Velzen EU. Strategies to enhance the circularity of non-bottle PET packaging waste based on a detailed material characterisation. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:293-306. [PMID: 38954921 DOI: 10.1016/j.wasman.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
The compositions of Dutch lightweight packaging waste (LWP) and sorted products named "PET (Polyethylene terephthalate) trays" have been determined on object level. Additionally, the PET trays from both waste types were sorted in 16 categories representing their packaging use and material build-up. The material composition of at least 10 representative trays from each category was determined with chemical and thermal analysis, based on which the average material composition per category was established. Based on this data the average material composition of sorted PET tray products was approximated. The recyclability of the various categories of PET trays was assessed based on their material build-up. The most ubiquitous PET trays in Dutch LWP and sorted products were only found to be suitable to produce opaque recycled PET with mechanical recycling processes. Whereas only some more uncommon PET trays can be used to produce transparent recycled PET with mechanical recycling processes. Depolymerisation is deemed to be a more appropriate recycling process that will allow the production of transparent food-grade recycled PET.
Collapse
Affiliation(s)
- Giusy Santomasi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n.4, I-70125 Bari, Italy.
| | - Rosiana Aquilino
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n.4, I-70125 Bari, Italy
| | - Marieke Brouwer
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Sabino De Gisi
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n.4, I-70125 Bari, Italy
| | - Ingeborg Smeding
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Francesco Todaro
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n.4, I-70125 Bari, Italy
| | - Michele Notarnicola
- Department of Civil, Environmental, Land, Building Engineering and Chemistry (DICATECh), Polytechnic University of Bari, Via E. Orabona n.4, I-70125 Bari, Italy
| | - Eggo U Thoden van Velzen
- Wageningen Food & Biobased Research, Wageningen University & Research, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
7
|
Seok J, Phan NTY, Kim JC, Shin H, Choi M. Catalytic Synergy between Lewis Acidic Alumina and Pt in Hydrodechlorination for Plastic Chemical Recycling. J Am Chem Soc 2024; 146:23881-23890. [PMID: 39141826 DOI: 10.1021/jacs.4c06231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Pyrolysis-based plastic chemical recycling has gained significant industrial attention due to its advantage of eliminating complex plastic sorting processes. However, plastic pyrolysis oil contains various components that require stringent removal before subsequent processes. In particular, Cl compounds originating from the decomposition of poly(vinyl chloride) can cause serious corrosion of reactors and catalyst deactivation in downstream processes. While extensive research has been conducted on the removal of other heteroatoms (S, N, and O) from organic compounds via hydrotreating, studies on the removal of Cl have been scarce. In this study, hydrodechlorination over Pt catalysts on various supports is comprehensively investigated using 1,2-dichloroethane as a model reactant. Our results demonstrate that Pt on γ-Al2O3 can exhibit exceptionally high catalytic activity compared to those on other supports due to a distinct bifunctional mechanism. Rigorous studies reveal that the Lewis acidic pentacoordinated Al sites of γ-Al2O3 activate C-Cl bonds, whereas Pt activates H2 and provides spillover H to remove Cl as HCl. The bifunctional mechanism enables the minimized use of precious Pt (<0.1 wt %) to achieve high activity. Pt/γ-Al2O3 also allows for efficient Cl removal (96.8%) with high stability in treating waste plastic pyrolysis oil containing 7500 ppm of Cl.
Collapse
Affiliation(s)
- Jin Seok
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Nhi Thi Yen Phan
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jeong-Chul Kim
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Hyeyoung Shin
- Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Minkee Choi
- Department of Chemical and Biomolecular Engineering (BK21 Four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
8
|
Sun J, Dong J, Gao L, Zhao YQ, Moon H, Scott SL. Catalytic Upcycling of Polyolefins. Chem Rev 2024; 124:9457-9579. [PMID: 39151127 PMCID: PMC11363024 DOI: 10.1021/acs.chemrev.3c00943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 08/18/2024]
Abstract
The large production volumes of commodity polyolefins (specifically, polyethylene, polypropylene, polystyrene, and poly(vinyl chloride)), in conjunction with their low unit values and multitude of short-term uses, have resulted in a significant and pressing waste management challenge. Only a small fraction of these polyolefins is currently mechanically recycled, with the rest being incinerated, accumulating in landfills, or leaking into the natural environment. Since polyolefins are energy-rich materials, there is considerable interest in recouping some of their chemical value while simultaneously motivating more responsible end-of-life management. An emerging strategy is catalytic depolymerization, in which a portion of the C-C bonds in the polyolefin backbone is broken with the assistance of a catalyst and, in some cases, additional small molecule reagents. When the products are small molecules or materials with higher value in their own right, or as chemical feedstocks, the process is called upcycling. This review summarizes recent progress for four major catalytic upcycling strategies: hydrogenolysis, (hydro)cracking, tandem processes involving metathesis, and selective oxidation. Key considerations include macromolecular reaction mechanisms relative to small molecule mechanisms, catalyst design for macromolecular transformations, and the effect of process conditions on product selectivity. Metrics for describing polyolefin upcycling are critically evaluated, and an outlook for future advances is described.
Collapse
Affiliation(s)
- Jiakai Sun
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Jinhu Dong
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Lijun Gao
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Yu-Quan Zhao
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
| | - Hyunjin Moon
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| | - Susannah L. Scott
- Department
of Chemistry and Biochemistry, University
of California, Santa
Barbara, California 93106-9510, United States
- Department
of Chemical Engineering, University of California, Santa Barbara, California 93106-5080, United
States
| |
Collapse
|
9
|
Li J, Zhang X, Liu X, Liao X, Huang J, Jiang Y. Co-upcycling of Plastic Waste and Biowaste via Tandem Transesterification Reactions. JACS AU 2024; 4:3135-3145. [PMID: 39211608 PMCID: PMC11350736 DOI: 10.1021/jacsau.4c00459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Polyethylene terephthalate (PET) and glycerol are prevalent forms of plastic and biowaste, necessitating facile and effective strategies for their upcycling treatment. Herein, we present an innovative one-pot reaction system for the concurrent depolymerization of PET plastics and the transesterification of glycerol into dimethyl terephthalate (DMT), a valuable feedstock in polymer manufacturing. This process occurs in the presence of methyl acetate (MA), a byproduct of the industrial production of acetic acid. The upcycling of biowaste glycerol into glycerol acetates renders them valuable additives for application in both the biofuel and chemical industries. This integrated reaction system enhances the conversion of glycerol to acetins compared with the singular transesterification of glycerol. In this approach, cost-effective catalysts, based on perovskite-structured CaMnO3, were employed. The catalyst undergoes in situ reconstruction in the tandem PET/glycerol/MA system due to glycerolation between the metal oxides and glycerol/acetins. This process results in the formation of small metal oxide nanoparticles confined in amorphous metal glycerolates, thereby enhancing the PET depolymerization efficiency. The optimized coupled reaction system can achieve a product yield exceeding 70% for glycerol acetates and 68% for PET monomers. This research introduces a tandem pathway for the simultaneous upcycling of PET plastic waste and biowaste glycerol with minimal feedstock input and maximal reactant utilization efficiency, promising both economic advantages and positive environmental impacts.
Collapse
Affiliation(s)
- Jiaquan Li
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2037, Australia
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Xingmo Zhang
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2037, Australia
| | - Xingxu Liu
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2037, Australia
| | - Xiuping Liao
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Jun Huang
- School
of Chemical and Biomolecular Engineering, Sydney Nano Institute, The University of Sydney, Sydney, New South Wales 2037, Australia
| | - Yijiao Jiang
- School
of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
10
|
Okonye LU, Ren J. A comprehensive review of PETW recycling for supercapacitor applications. Heliyon 2024; 10:e35285. [PMID: 39170277 PMCID: PMC11336431 DOI: 10.1016/j.heliyon.2024.e35285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
The rising measure of waste produced from polyethene terephthalate (PET) and the interest in eco-accommodating energy storage arrangements have prompted escalated examination into reusing waste PET into supercapacitors. This review aims to provide a comprehensive overview of the most recent advancements in the recycling of polyethylene terephthalate waste (PETW), as a supercapacitor electrode precursor. The review looks at different methodologies for recovering PET from waste, including mechanical, chemical, enzyme, etc. It further explores the combination strategies for electrode materials produced using PET. Besides, PET-derived materials' electrochemical performance in supercapacitor application is likewise broken down, with an emphasis on key electrochemical boundaries like capacitive behaviour, cyclic stability, and electrochemical impedance spectroscopy. The need for scalable and cost-effective recycling methods, the creation of eco-friendly electrolytes, and the improvement of the electrochemical performance of recycled PET-based supercapacitors are just a few of the issues and opportunities highlighted in this expanding eco-friendly industry. Overall, the goal of this review is to provide a comprehensive understanding of the cutting-edge developments in the use of recycled PETW as a precursor for supercapacitor electrodes, highlighting the eco-friendly energy storage solution's potential and contributing to a sustainable future.
Collapse
Affiliation(s)
- Leonard U. Okonye
- Department of Mechanical Engineering Science, University of Johannesburg, Cnr Kingsway and University Roads, Auckland Park, 2092, Johannesburg, South Africa
| | - Jianwei Ren
- Department of Chemical Engineering, University of Pretoria, Cnr Lynwood Road and Roper Street, Hatfield, 0028, South Africa
| |
Collapse
|
11
|
Yang S, Li Y, Nie M, Liu X, Wang Q, Chen N, Zhang C. Lifecycle Management for Sustainable Plastics: Recent Progress from Synthesis, Processing to Upcycling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404115. [PMID: 38869422 DOI: 10.1002/adma.202404115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Plastics, renowned for their outstanding properties and extensive applications, assume an indispensable and irreplaceable role in modern society. However, the ubiquitous consumption of plastic items has led to a growing accumulation of plastic waste. Unreasonable practices in the production, utilization, and recycling of plastics have led to substantial energy resource depletion and environmental pollution. Herein, the state-of-the-art advancements in the lifecycle management of plastics are timely reviewed. Unlike typical reviews focused on plastic recycling, this work presents an in-depth analysis of the entire lifecycle of plastics, covering the whole process from synthesis, processing, to ultimate disposal. The primary emphasis lies on selecting judicious strategies and methodologies at each lifecycle stage to mitigate the adverse environmental impact of waste plastics. Specifically, the article delineates the rationale, methods, and advancements realized in various lifecycle stages through both physical and chemical recycling pathways. The focal point is the attainment of optimal recycling rates for waste plastics, thereby alleviating the ecological burden of plastic pollution. By scrutinizing the entire lifecycle of plastics, the article aims to furnish comprehensive solutions for reducing plastic pollution and fostering sustainability across all facets of plastic production, utilization, and disposal.
Collapse
Affiliation(s)
- Shuangqiao Yang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Min Nie
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610041, China
- The Research Department of Resource Carbon Neutrality, Tianfu Yongxing Laboratory, Chengdu, 610213, China
| |
Collapse
|
12
|
Oh S, Stache EE. Recent advances in oxidative degradation of plastics. Chem Soc Rev 2024; 53:7309-7327. [PMID: 38884337 DOI: 10.1039/d4cs00407h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Oxidative degradation is a powerful method to degrade plastics into oligomers and small oxidized products. While thermal energy has been conventionally employed as an external stimulus, recent advances in photochemistry have enabled photocatalytic oxidative degradation of polymers under mild conditions. This tutorial review presents an overview of oxidative degradation, from its earliest examples to emerging strategies. This review briefly discusses the motivation and the development of thermal oxidative degradation of polymers with a focus on underlying mechanisms. Then, we will examine modern studies primarily relevant to catalytic thermal oxidative degradation and photocatalytic oxidative degradation. Lastly, we highlight some unique studies using unconventional approaches for oxidative polymer degradation, such as electrochemistry.
Collapse
Affiliation(s)
- Sewon Oh
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA
| | - Erin E Stache
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA.
| |
Collapse
|
13
|
Cheng J, Xie J, Xi Y, Wu X, Zhang R, Mao Z, Yang H, Li Z, Li C. Selective Upcycling of Polyethylene Terephthalate towards High-valued Oxygenated Chemical Methyl p-Methyl Benzoate using a Cu/ZrO 2 Catalyst. Angew Chem Int Ed Engl 2024; 63:e202319896. [PMID: 38197522 DOI: 10.1002/anie.202319896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Upgrading of polyethylene terephthalate (PET) waste into valuable oxygenated molecules is a fascinating process, yet it remains challenging. Herein, we developed a two-step strategy involving methanolysis of PET to dimethyl terephthalate (DMT), followed by hydrogenation of DMT to produce the high-valued chemical methyl p-methyl benzoate (MMB) using a fixed-bed reactor and a Cu/ZrO2 catalyst. Interestingly, we discovered the phase structure of ZrO2 significantly regulates the selectivity of products. Cu supported on monoclinic ZrO2 (5 %Cu/m-ZrO2 ) exhibits an exceptional selectivity of 86 % for conversion of DMT to MMB, while Cu supported on tetragonal ZrO2 (5 %Cu/t-ZrO2 ) predominantly produces p-xylene (PX) with selectivity of 75 %. The superior selectivity of MMB over Cu/m-ZrO2 can be attributed to the weaker acid sites present on m-ZrO2 compared to t-ZrO2 . This weak acidity of m-ZrO2 leads to a moderate adsorption capability of MMB, and facilitating its desorption. Furthermore, DFT calculations reveal Cu/m-ZrO2 catalyst shows a higher effective energy barrier for cleavage of second C-O bond compared to Cu/t-ZrO2 catalyst; this distinction ensures the high selectivity of MMB. This catalyst not only presents an approach for upgrading of PET waste into fine chemicals but also offers a strategy for controlling the primary product in a multistep hydrogenation reaction.
Collapse
Affiliation(s)
- Jianian Cheng
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Jin Xie
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Yongjie Xi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000 Gansu, China
| | - Xiaojing Wu
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Ruihui Zhang
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zhihe Mao
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Hongfang Yang
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Zelong Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
| | - Can Li
- Key Laboratory of Advanced Catalysis, Gansu Province, State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, 730000, China
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian National Laboratory for Clean Energy, Dalian, Liaoning, 116023, China
| |
Collapse
|
14
|
De Tommaso J, Galli F, Weber R, Dubois JL, Patience GS. Total Capital Investment of plastic recycling plants correlates with energy losses and capacity. CHEMSUSCHEM 2024; 17:e202301172. [PMID: 38216531 DOI: 10.1002/cssc.202301172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Plastic pollution is a generational problem, and stakeholders are turning to chemical recycling as a potential solution. However, decision-makers necessitate quick and reliable capital investment estimations to evaluate innovative technologies, especially in the early project stage, when limited historical data are available. To address this need, we built a database of 160+ chemical recycling plants, querying for nominal capacity, year and place of construction, total capital investment (TCI), number of long-term jobs and opportunity of subsidies. Then, we compared conventional association of the advancement of cost engineering AACE class 5 estimation methods, with literature estimates, and commercial capital expenditure confidence intervals for pyrolysis, gasification, solvolysis, and selective dissolution. We demonstrate the unreliability of classic methods, and we propose ballpark correlations based on the plant capacity, or the energy loss. Chemical recycling plants suffer from poor economy of scale (with current technologies), and capacity is not always the best indicator for TCI estimation. Pyrolysis and gasification are energy-driven technologies, and their TCI correlates very well (R2 =0.91-0.92) with the total energy losses. Solvolysis and selective dissolution, instead, are at an earlier development stage, so cost engineers or researchers will have to accept less certain TCI vs capacity (R2 =0.60).
Collapse
Affiliation(s)
- Jacopo De Tommaso
- Polytechnique Montrèal, 2500 ch. de polytechnique, Montréal, Québec, Canada
| | - Federico Galli
- Genie Chimique et biotechnologique, University of Sherbrooke, 2500 Bd. De l'Université, J1K 2R1, Sherbrooke, Québec, Canada
| | - Robert Weber
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Jean-Luc Dubois
- Altuglas International/Trinseo, Innovatieweg 14, 4542 NH, Hoek, The Netherland
| | - Gregory S Patience
- Polytechnique Montrèal, 2500 ch. de polytechnique, Montréal, Québec, Canada
| |
Collapse
|
15
|
Lou X, Liu F, Li Q, Chu M, Wang G, Chen J, Cao M. Advances in solar-driven, electro/photoelectrochemical, and microwave-assisted upcycling of waste polyesters. Chem Commun (Camb) 2024; 60:2828-2838. [PMID: 38362916 DOI: 10.1039/d3cc05930h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Plastic waste in the environment causes significant environmental pollution. The potential of using chemical methods for upcycling plastic waste offers a dual solution to ensure resource sustainability and environmental restoration. This article provides a comprehensive overview of the latest technologies driven by solar-driven, electro/photoelectrochemical-catalytic, and microwave-assisted methods for the conversion of plastics into various valuable chemicals. It emphasizes selective conversion during the plastic transformation process, elucidates reaction pathways, and optimizes product selectivity. Finally, the article offers insights into the future developments of chemical upcycling of polyesters.
Collapse
Affiliation(s)
- Xiangxi Lou
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Fangyue Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Qingye Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Mingyu Chu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Guiling Wang
- Key Laboratory of Superlight Materials and Surface Technology of Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China.
| | - Jinxing Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Muhan Cao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
16
|
Xu S, Tang J, Fu L. Catalytic Strategies for the Upcycling of Polyolefin Plastic Waste. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:3984-4000. [PMID: 38364857 DOI: 10.1021/acs.langmuir.3c03195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Chemical upgrading of waste plastics is currently one of the most important methods for addressing plastic pollution. In comparison to the current methods of incineration or landfill, chemical upgrading enables the utilization of carbon and hydrogen elements in waste plastics as resources. This process strongly relies on efficient catalysts and reaction systems. Through catalyst design, waste plastics can be converted into fuels or chemicals under the optimized reaction conditions, extending their life cycles. In this review, we systematically discuss various chemical conversion methods for polyolefin waste plastics, which account for a large proportion of waste plastics. We further explore the remaining challenges and future development trends in this field, including improving product value through product engineering and shifting research perspectives to exploring the tolerance of catalysts toward impurities in practical waste plastic waste rather than using pure plastic feedstock.
Collapse
Affiliation(s)
- Shaodan Xu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Junhong Tang
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| | - Li Fu
- College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, People's Republic of China
| |
Collapse
|
17
|
Vuppaladadiyam SSV, Vuppaladadiyam AK, Sahoo A, Urgunde A, Murugavelh S, Šrámek V, Pohořelý M, Trakal L, Bhattacharya S, Sarmah AK, Shah K, Pant KK. Waste to energy: Trending key challenges and current technologies in waste plastic management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169436. [PMID: 38160846 DOI: 10.1016/j.scitotenv.2023.169436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Due to the 'forever' degrading nature of plastic waste, plastic waste management is often complicated. The applications of plastic are ubiquitous and inevitable in many scenarios. Current global waste plastics production is ca. 3.5 MMT per year, and with the current trend, plastic waste production will reach 25,000 MMT by 2040. However, the rapid growth in plastic manufacture and the material's inherent nature resulted in the accumulation of a vast amount of plastic garbage. The current recycling rate is <10 %, while the large volumes of discarded plastic waste cause environmental and ecological problems. Recycling rates for plastic vary widely by region and type of plastic. In some developed countries, the recycling rate for plastics is around 20-30 %, while in many developing nations, it is much lower. These statistics highlight the magnitude of the plastic waste problem and the urgent need for comprehensive strategies to manage plastic waste more effectively and reduce its impact on the environment. This review critically analyses past studies on the essential and efficient techniques for turning plastic trash into treasure. Additionally, an attempt has been made to provide a comprehensive understanding of the plastic upcycling process, the 3Rs policy, and the life-cycle assessment (LCA) of plastic conversion. The review advocates pyrolysis as one of the most promising methods of turning plastic trash into valuable chemicals. In addition, plastic waste management can be severely impacted due to uncontrollable events, such as Covid 19 pandemic. Recycling and chemical upcycling can certainly bring value to the end-of-life plastic. However, the LCA analysis indicated there is still a huge scope for innovation in chemical upcycling area compared to mechanical recycling. The formulation of policies and heightened public participation could play a pivotal role in reducing the environmental repercussions of plastic waste and facilitating a shift towards a more sustainable future.
Collapse
Affiliation(s)
| | | | - Abhisek Sahoo
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ajay Urgunde
- Department of Chemistry and Biochemistry, Auburn University, AL 36849, USA
| | - S Murugavelh
- CO(2) Research and Green Technologies Centre, Vellore Institute of Technology, Vellore, India
| | - Vít Šrámek
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic; Department of Gaseous and Solid Fuels and Air Protection, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Michael Pohořelý
- Department of Power Engineering, Faculty of Environmental Technology, University of Chemistry and Technology, Technická 5, 166 28 Prague 6, Czech Republic
| | - Lukáš Trakal
- Department of Environmental Geosciences, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Praha 6, Suchdol, Czech Republic
| | - Sankar Bhattacharya
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Kalpit Shah
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kamal K Pant
- Department of Chemical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
18
|
Minami Y, Imamura S, Matsuyama N, Nakajima Y, Yoshida M. Catalytic thiolation-depolymerization-like decomposition of oxyphenylene-type super engineering plastics via selective carbon-oxygen main chain cleavages. Commun Chem 2024; 7:37. [PMID: 38378901 PMCID: PMC10879179 DOI: 10.1038/s42004-024-01120-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
As the effective use of carbon resources has become a pressing societal issue, the importance of chemical recycling of plastics has increased. The catalytic chemical decomposition for plastics is a promising approach for creating valuable products under efficient and mild conditions. Although several commodity and engineering plastics have been applied, the decompositions of stable resins composed of strong main chains such as polyamides, thermoset resins, and super engineering plastics are underdeveloped. Especially, super engineering plastics that have high heat resistance, chemical resistance, and low solubility are nearly unexplored. In addition, many super engineering plastics are composed of robust aromatic ethers, which are difficult to cleave. Herein, we report the catalytic depolymerization-like chemical decomposition of oxyphenylene-based super engineering plastics such as polyetheretherketone and polysulfone using thiols via selective carbon-oxygen main chain cleavage to form electron-deficient arenes with sulfur functional groups and bisphenols. The catalyst combination of a bulky phosphazene base P4-tBu with inorganic bases such as tripotassium phosphate enabled smooth decomposition. This method could be utilized with carbon- or glass fiber-enforced polyetheretherketone materials and a consumer resin. The sulfur functional groups in one product could be transformed to amino and sulfonium groups and fluorine by using suitable catalysts.
Collapse
Affiliation(s)
- Yasunori Minami
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
- PRESTO, Japan Science and Technology Agency (JST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan.
| | - Sae Imamura
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Nao Matsuyama
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yumiko Nakajima
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Masaru Yoshida
- Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| |
Collapse
|
19
|
Wang Y, Chang BP, Veksha A, Kashcheev A, Tok ALY, Lipik V, Yoshiie R, Ueki Y, Naruse I, Lisak G. Processing plastic waste via pyrolysis-thermolysis into hydrogen and solid carbon additive to ethylene-vinyl acetate foam for cushioning applications. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132996. [PMID: 37988865 DOI: 10.1016/j.jhazmat.2023.132996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/04/2023] [Accepted: 11/10/2023] [Indexed: 11/23/2023]
Abstract
A strategy for enhancing value creation from pyrolysis gas and oil, derived from plastic waste, through the generation of two additional outputs of solid carbon and hydrogen was investigated. Three types of hard-to-recycle plastic waste (marine plastic litter, household mixed plastics and cosmetic products packaging) were thermally treated in two stages: (i) decomposition of feedstock into gas and oil via pyrolysis at 600 °C; and (ii) thermolytic conversion of the pyrolysis gas and a fraction of oil into hydrogen and solid carbon at 1300 °C separately. The thermolysis of both pyrolysis gas and oil fractions predominantly resulted in the production of solid carbon (39-70 wt% per plastic feedstock and carbon content of 91.3-98.6 wt%) and H2-rich gas (H2 yield of 5.9-10.8 wt% per plastic waste feedstock and H2 content of 71.4-97.2 vol% per gas volume). The incorporation of pyrolysis oil into the thermolysis process could enhance the outputs of solid carbon and hydrogen. Characterizations of solid carbon and hydrogen obtained from pyrolysis gas and oil fractions were further conducted. The observed similar properties of H2 and solid carbon from pyrolysis gas and oil supported the feasibility of introducing all the pyrolytic products together into the thermolysis process without condensation of oil. To enhance the value of these solid carbon derived from plastics for practical usage, we utilized the obtained solid carbon as a reinforcing agent for polymer composite foam development. The solid carbon reinforced composite foam displayed great abrasion resistance (wear loss: 240 mg), compression strength (0.347 MPa), and dynamic impact properties (energy returned: 124 J/m and energy absorbed: 57.3 J/m), emphasizing the viability of solid carbon as a nucleating agent and reinforcing filler in polymer foam for cushioning applications. Overall, the strategy of pyrolysis-thermolysis, which harnesses both pyrolysis gas and oil, unlocks additional value creation by producing two new outputs from plastic waste. Depending on the market prices for solid carbon and hydrogen, this can substantially change the economics of plastic waste management and create new revenue streams, incentivizing plastic waste collection and processing.
Collapse
Affiliation(s)
- Yuxin Wang
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; Department of Mechanical Systems Engineering, Nagoya University, Tokai National Higher Education and Research, 464-8603, Japan
| | - Boon Peng Chang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Andrei Veksha
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Aleksandr Kashcheev
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Alfred Ling Yoong Tok
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Vitali Lipik
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Ryo Yoshiie
- Department of Mechanical Systems Engineering, Nagoya University, Tokai National Higher Education and Research, 464-8603, Japan
| | - Yasuaki Ueki
- Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research, 464-8601, Japan
| | - Ichiro Naruse
- Institute of Materials and Systems for Sustainability, Nagoya University, Tokai National Higher Education and Research, 464-8601, Japan
| | - Grzegorz Lisak
- Residues and Resource Reclamation Centre (R3C), Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
20
|
Wei SY, Wang CY, Guo C, Zhu YN, Cao XW, Kuang QL, He GJ. Oxidization and Chain-Branching Reaction for Recycling HDPE and Mixed HDPE/PP with In-situ Compatibilization by Ozone-Induced Reactive Extrusion. CHEMSUSCHEM 2024; 17:e202301035. [PMID: 37724860 DOI: 10.1002/cssc.202301035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/14/2023] [Accepted: 09/14/2023] [Indexed: 09/21/2023]
Abstract
High-density polyethylene (HDPE) and isotactic polypropylene (iPP) are widely used in industrial and residential applications due to their low cost and chemical stability, thus their recycling process can contribute to a circular economy. However, both polymers are non-polar materials, and the incompatibility with most other materials leads to substantially inferior properties of blends. In this work, we propose a flexible compatibilization strategy to improve the compatibility of HDPE/iPP blends. Ozone is adopted to induce reactive extrusion for rapid oxidation of HDPE and chain-branching reactions for both HDPE and HDPE/iPP blends. During extrusion process, ozone oxidizes HDPE effectively in a short time and introduces oxygen-containing groups such as carbonyl and ester groups, which improves the hydrophilicity. The addition of trimethylolpropane triacrylate (TMPTA) could promote branching reaction and facilitate the formation of HDPE-g-iPP copolymers, which improved the compatibility for HDPE/iPP. As a result, the impact strength of ozone-modified HDPE and HDPE/iPP blends increased by 22 % and 82 %, respectively, and the tensile strength also increased. This strategy would have potential applications in the field of sorting-free and solvent-free recycling of waste polyolefin plastics.
Collapse
Affiliation(s)
- Shi-Yi Wei
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chun-Yan Wang
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chao Guo
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ya-Nan Zhu
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xian-Wu Cao
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| | | | - Guang-Jian He
- National Engineering Research Center of Novel Equipment for Polymer Processing, The Key Laboratory of Polymer Processing Engineering of Ministry of Education, Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, School of Mechanical & Automotive Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
21
|
Chai M, Xu G, Yang R, Sun H, Wang Q. Degradation Product-Promoted Depolymerization Strategy for Chemical Recycling of Poly(bisphenol A carbonate). Molecules 2024; 29:640. [PMID: 38338384 PMCID: PMC10856637 DOI: 10.3390/molecules29030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The accumulation of waste plastics has a severe impact on the environment, and therefore, the development of efficient chemical recycling methods has become an extremely important task. In this regard, a new strategy of degradation product-promoted depolymerization process was proposed. Using N,N'-dimethyl-ethylenediamine (DMEDA) as a depolymerization reagent, an efficient chemical recycling of poly(bisphenol A carbonate) (BPA-PC or PC) material was achieved under mild conditions. The degradation product 1,3-dimethyl-2-imidazolidinone (DMI) was proven to be a critical factor in facilitating the depolymerization process. This strategy does not require catalysts or auxiliary solvents, making it a truly green process. This method improves the recycling efficiency of PC and promotes the development of plastic reutilization.
Collapse
Affiliation(s)
- Maoqing Chai
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
| | - Guangqiang Xu
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Rulin Yang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Hongguang Sun
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China;
| | - Qinggang Wang
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China;
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
- Shandong Energy Institute, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| |
Collapse
|
22
|
Ma C, Kumagai S, Saito Y, Yoshioka T, Huang X, Shao Y, Ran J, Sun L. Recent Advancements in Pyrolysis of Halogen-Containing Plastics for Resource Recovery and Halogen Upcycling: A State-of-the-Art Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1423-1440. [PMID: 38197317 DOI: 10.1021/acs.est.3c09451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Plastic waste has emerged as a serious issue due to its impact on environmental degradation and resource scarcity. Plastic recycling, especially of halogen-containing plastics, presents challenges due to potential secondary pollution and lower-value implementations. Chemical recycling via pyrolysis is the most versatile and robust approach for combating plastic waste. In this Review, we present recent advancements in halogen-plastic pyrolysis for resource utilization and the potential pathways from "reducing to recycling to upcycling" halogens. We emphasize the advanced management of halogen-plastics through copyrolysis with solid wastes (waste polymers, biomass, coal, etc.), which is an efficient method for dealing with mixed wastes to obtain high-value products while reducing undesirable substances. Innovations in catalyst design and reaction configurations for catalytic pyrolysis are comprehensively evaluated. In particular, a tandem catalysis system is a promising route for halogen removal and selective conversion of targeted products. Furthermore, we propose novel insights regarding the utilization and upcycling of halogens from halogen-plastics. This includes the preparation of halogen-based sorbents for elemental mercury removal, the halogenation-vaporization process for metal recovery, and the development of halogen-doped functional materials for new materials and energy applications. The reutilization of halogens facilitates the upcycling of halogen-plastics, but many efforts are needed for mutually beneficial outcomes. Overall, future investigations in the development of copyrolysis and catalyst-driven technologies for upcycling halogen-plastics are highlighted.
Collapse
Affiliation(s)
- Chuan Ma
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Shogo Kumagai
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Yuko Saito
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Toshiaki Yoshioka
- Graduate School of Environmental Studies, Tohoku University, 6-6-07 Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Xin Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yunlin Shao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jingyu Ran
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Ministry of Education, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Lushi Sun
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
23
|
Qian Q, Ren J. From plastic waste to potential wealth: Upcycling technologies, process synthesis, assessment and optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167897. [PMID: 37866600 DOI: 10.1016/j.scitotenv.2023.167897] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/02/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Global plastics production has doubled since the beginning of 21st century. Efficient technology is called for plastics waste valorization. The current review provides an overview of the main waste plastic chemical upcycling technologies to produce value-added products. Various technologies including gasification and pyrolysis are under reviewed. However, several review literatures have paid attention to the details and experimental progress in these chemical upcycling techniques. In this review, we attempt to conclude the progress in a multi-scale systems-by-systems perspective. After a brief overview of the current state-of-the-art chemical upcycling techniques, larger-scale process synthesis, assessment, and optimization methodologies to address the sustainability and environmental issues are summarized. Techno-economic analysis and life cycle assessment are selected as two powerful tools for process assessment. Three particular application scenarios of optimization methodologies including experimental design, process synthesis and supply chain management are consequently introduced. Very little work on review articles have summarized the plastic waste-to-wealth process in the systems engineering perspective. Review results show that (1) gasification and pyrolysis offer promising avenues for the conversion of plastic waste into valuable products. These technologies can be integrated with other subsystems to enhance the economic and environmental performance of the overall system. (2) Response surface methodology is commonly used in experimental design and parameter optimization. It allows researchers to systematically investigate the effects of various parameters and optimize process conditions to maximize desired outputs. (3) Superstructure optimization frameworks are valuable tools for process synthesis and pathway selection in plastic waste conversion. However, the potential superstructure is pre-defined. (4) Green supply chain and multi-objective supply chain frameworks can be applied to the design of plastic waste recycling networks, taking into account both economic and environmental considerations.
Collapse
Affiliation(s)
- Qiming Qian
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jingzheng Ren
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
24
|
Chauhan M, Antil N, Rana B, Akhtar N, Thadhani C, Begum W, Manna K. Isoreticular Metal-Organic Frameworks Confined Mononuclear Ru-Hydrides Enable Highly Efficient Shape-Selective Hydrogenolysis of Polyolefins. JACS AU 2023; 3:3473-3484. [PMID: 38155638 PMCID: PMC10751774 DOI: 10.1021/jacsau.3c00633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 12/30/2023]
Abstract
Upcycling nonbiodegradable plastics such as polyolefins is paramount due to their ever-increasing demand and landfills after usage. Catalytic hydrogenolysis is highly appealing to convert polyolefins into targeted value-added products under mild reaction conditions compared with other methods, such as high-temperature incineration and pyrolysis. We have developed three isoreticular zirconium UiO-metal-organic frameworks (UiO-MOFs) node-supported ruthenium dihydrides (UiO-RuH2), which are efficient heterogeneous catalysts for hydrogenolysis of polyethylene at 200 °C, affording liquid hydrocarbons with a narrow distribution and excellent selectivity via shape-selective catalysis. UiO-66-RuH2 catalyzed hydrogenolysis of single-use low-density polyethylene (LDPE) produced a C12 centered narrow bell-shaped distribution of C8-C16 alkanes in >80% yield and 90% selectivity in the liquid phase. By tuning the pore sizes of the isoreticular UiO-RuH2 MOF catalysts, the distribution of the products could be systematically altered, affording different fuel-grade liquid hydrocarbons from LDPE in high yields. Our spectroscopic and theoretical studies and control experiments reveal that UiO-RuH2 catalysts enable highly efficient upcycling of plastic wastes under mild conditions owing to their unique combination of coordinatively unsaturated single-site Ru-active sites, uniform and tunable pores, well-defined porous structure, and superior stability. The kinetics and theoretical calculations also identify the C-C bond scission involving β-alkyl transfer as the turnover-limiting step.
Collapse
Affiliation(s)
- Manav Chauhan
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neha Antil
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Bharti Rana
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Chhaya Thadhani
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian
Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
25
|
Fan LX, Chen L, Zhang HY, Xu WH, Wang XL, Xu S, Wang YZ. Dual Photo-Responsive Diphenylacetylene Enables PET In-Situ Upcycling with Reverse Enhanced UV-Resistance and Strength. Angew Chem Int Ed Engl 2023; 62:e202314448. [PMID: 37938175 DOI: 10.1002/anie.202314448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
A novel in situ chemical upcycling strategy for plastic waste is proposed by the customized diphenylacetylene monomer with dual photo-response. That is, diphenylacetylene reactive monomers are in situ inserted into the macromolecular chain of polyethylene terephthalate (PET) plastics/fibers through one-pot transesterification of slight-depolymerization and re-polymerization. On the one hand, the diphenylacetylene group absorbs short-wave high-energy UV rays and then releases long-wave low-energy harmless fluorescence. On the other hand, the UV-induced photo-crosslinking reaction among diphenylacetylene groups produces extended π-conjugated structure, resulting in a red-shift (due to decreased HOMO-LUMO separation) in the UV absorption band and locked crosslink points between PET chains. Therefore, with increasing UV exposure time, the upcycled PET plastics exhibit reverse enhanced UV resistance and mechanical strength (superior to original performance), instead of serious UV-photodegradation and damaged performance. This upcycling strategy at oligomer-scale not only provides a new idea for traditional plastic recycling, but also solves the common problem of gradual degradation of polymer performance during use.
Collapse
Affiliation(s)
- Li-Xia Fan
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Lin Chen
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Hua-Yu Zhang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Wen-Hao Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiu-Li Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Shimei Xu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, China
| |
Collapse
|
26
|
Zhu J, Dong G, Feng F, Ye J, Liao CH, Wu CH, Chen SC. Microplastics in the soil environment: Focusing on the sources, its transformation and change in morphology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165291. [PMID: 37406689 DOI: 10.1016/j.scitotenv.2023.165291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Microplastics (MPs) are small plastic pieces less than 5 mm in size. Previous studies have focused on the sources, transports, and fates of MPs in marine or sediment environments. However, limited attention has been given to the role of land as the primary source of MPs, and how plastic polymers are transformed into MPs through biological or abiotic effects during the transport process remains unclear. Here, we focus on the exploration of the main sources of MPs in the soil, highlighting that MP generation is not solely a byproduct of plastic production but can also result from the impact of biological and abiotic factors during the process of MPs transport. This review presents a new perspective on understanding the degradation of MPs in soil, considering soil as a distinct fluid and suggesting that the main transformation and change mediated by abiotic factors occur on the soil surface, while the main biodegradation occurs in the soil interior. This viewpoint is suggested because the role of some abiotic factors becomes less obvious in the soil interior, and MPs, whose surface is expected to colonize microorganisms, are gradually considered a carbon source independent of photosynthesis and net primary production. This review emphasizes the need to understand basic MPs information in soil for a rational evaluation of its environmental toxicity. Such understanding enables better control of MPs pollution in affected areas and prevents contamination in unaffected regions. Finally, knowledge gaps and future research directions necessary for advancements in this field are provided.
Collapse
Affiliation(s)
- Junyu Zhu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China
| | - Guowen Dong
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Fu Feng
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China
| | - Jing Ye
- College of Environment and chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi, People's Republic of China
| | - Ching-Hua Liao
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Chih-Hung Wu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China
| | - Sheng-Chung Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, People's Republic of China; School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, People's Republic of China; Fujian Provincial Key Laboratory of Resources and Environmental Monitoring and Sustainable Management and Utilization, Sanming University, Sanming, Fujian, People's Republic of China.
| |
Collapse
|
27
|
Minami Y, Inagaki Y, Tsuyuki T, Sato K, Nakajima Y. Hydroxylation-Depolymerization of Oxyphenylene-Based Super Engineering Plastics To Regenerate Arenols. JACS AU 2023; 3:2323-2332. [PMID: 37654597 PMCID: PMC10466334 DOI: 10.1021/jacsau.3c00357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 09/02/2023]
Abstract
Super engineering plastics, high-performance thermoplastic resins, show high thermal stability and mechanical strength as well as chemical resistance. On the other hand, chemical recycling for these plastics has not been developed due to their stability. This study describes depolymerization of oxyphenylene super engineering plastics via carbon-oxygen main chain cleaving hydroxylation reaction with an alkali hydroxide nucleophile. This method is conducted with cesium hydroxide as a hydroxy source and calcium hydride as a dehydration agent in 1,3-dimethyl-2-imidazolidinone, which provides hydroxylated monomers effectively. In the case of polysulfone, both 4,4'-sulfonyldiphenol (bisphenol S) and 4,4'-(propane-2,2-diyl)diphenol (bisphenol A) were obtained in high yields. Other super engineering plastics such as polyethersulfone, polyphenylsulfone, and polyetheretherketone were also applicable to this depolymerization.
Collapse
Affiliation(s)
- Yasunori Minami
- Interdisciplinary
Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- PRESTO,
Japan Science and Technology Agency (JST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yuuki Inagaki
- Interdisciplinary
Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
- Yoshimoto
Kogyo Holdings, 5-18-21
Shinjuku, Shinjuku-ku, Tokyo 160-0022, Japan
| | - Tomoo Tsuyuki
- Interdisciplinary
Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Kazuhiko Sato
- Interdisciplinary
Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| | - Yumiko Nakajima
- Interdisciplinary
Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology
(AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan
| |
Collapse
|
28
|
Kim MS, Chang H, Zheng L, Yan Q, Pfleger BF, Klier J, Nelson K, Majumder ELW, Huber GW. A Review of Biodegradable Plastics: Chemistry, Applications, Properties, and Future Research Needs. Chem Rev 2023; 123:9915-9939. [PMID: 37470246 DOI: 10.1021/acs.chemrev.2c00876] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Environmental concerns over waste plastics' effect on the environment are leading to the creation of biodegradable plastics. Biodegradable plastics may serve as a promising approach to manage the issue of environmental accumulation of plastic waste in the ocean and soil. Biodegradable plastics are the type of polymers that can be degraded by microorganisms into small molecules (e.g., H2O, CO2, and CH4). However, there are misconceptions surrounding biodegradable plastics. For example, the term "biodegradable" on product labeling can be misconstrued by the public to imply that the product will degrade under any environmental conditions. Such misleading information leads to consumer encouragement of excessive consumption of certain goods and increased littering of products labeled as "biodegradable". This review not only provides a comprehensive overview of the state-of-the-art biodegradable plastics but also clarifies the definitions and various terms associated with biodegradable plastics, including oxo-degradable plastics, enzyme-mediated plastics, and biodegradation agents. Analytical techniques and standard test methods to evaluate the biodegradability of polymeric materials in alignment with international standards are summarized. The review summarizes the properties and industrial applications of previously developed biodegradable plastics and then discusses how biomass-derived monomers can create new types of biodegradable polymers by utilizing their unique chemical properties from oxygen-containing functional groups. The terminology and methodologies covered in the paper provide a perspective on directions for the design of new biodegradable polymers that possess not only advanced performance for practical applications but also environmental benefits.
Collapse
Affiliation(s)
- Min Soo Kim
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Hochan Chang
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Lei Zheng
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Qiang Yan
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Microbiology Doctoral Training Program, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - John Klier
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Kevin Nelson
- Amcor, Neenah Innovation Center, Neenah, Wisconsin 54956, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - George W Huber
- Department of Chemical and Biological Engineering, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
29
|
Xu Z, Munyaneza NE, Zhang Q, Sun M, Posada C, Venturo P, Rorrer NA, Miscall J, Sumpter BG, Liu G. Chemical upcycling of polyethylene, polypropylene, and mixtures to high-value surfactants. Science 2023; 381:666-671. [PMID: 37561876 DOI: 10.1126/science.adh0993] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 06/16/2023] [Indexed: 08/12/2023]
Abstract
Conversion of plastic wastes to fatty acids is an attractive means to supplement the sourcing of these high-value, high-volume chemicals. We report a method for transforming polyethylene (PE) and polypropylene (PP) at ~80% conversion to fatty acids with number-average molar masses of up to ~700 and 670 daltons, respectively. The process is applicable to municipal PE and PP wastes and their mixtures. Temperature-gradient thermolysis is the key to controllably degrading PE and PP into waxes and inhibiting the production of small molecules. The waxes are upcycled to fatty acids by oxidation over manganese stearate and subsequent processing. PP ꞵ-scission produces more olefin wax and yields higher acid-number fatty acids than does PE ꞵ-scission. We further convert the fatty acids to high-value, large-market-volume surfactants. Industrial-scale technoeconomic analysis suggests economic viability without the need for subsidies.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | | | - Qikun Zhang
- Department of Chemistry, Chemical Engineering and Materials Science, Ministry of Education Key Laboratory of Molecular and Nano Probes, Shandong Normal University, Shandong 250014, PR China
| | - Mengqi Sun
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Carlos Posada
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Paul Venturo
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Nicholas A Rorrer
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Joel Miscall
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
- BOTTLE Consortium, Golden, CO 80401, USA
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Guoliang Liu
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
- Department of Chemical Engineering, Department of Materials Science and Engineering, Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA
| |
Collapse
|
30
|
Chan K, Zinchenko A. Templating of catalytic gold and silver nanoparticles by waste plastic PET-derived hydrogel playing a dual role of a reductant and a matrix. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 164:20-28. [PMID: 37185066 DOI: 10.1016/j.wasman.2023.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/17/2023] [Accepted: 03/26/2023] [Indexed: 05/17/2023]
Abstract
The progressive accumulation of discarded plastic in the environment demands further development of waste management of plastic waste and conversion technologies of such waste to value-added materials. Recently, the conversion of plastic waste to functional materials via chemical recycling has attracted considerable attention. In this report, plastic waste (PET) was utilized for the preparation of a hydrogel-based catalyst via a cross-linking reaction of PET-derived oligo(terephthalamide)s followed by the electroless metallization. The polymeric matrix of PET-derived hydrogel plays multiple roles of (i) an adsorption media for noble metal ions such as Au3+ and Ag+, (ii) a reducing agent of Au3+ and Ag+ ions to Au0 and Ag0, and (iii) a matrix for the controlled growth of Au and Ag nanoparticles (AuNPs and AgNPs). The obtained hybrid hydrogels after metallization contained well-dispersed AuNPs and AgNPs of 6.1 ± 3.7 nm or 6.1 ± 1.4 nm size, respectively. The catalytic activities of the hybrid hydrogels with metal nanoparticles were studied in a model system of p-nitrophenol reduction in an aqueous solution. The hybrid materials of both Au@hydrogel and Ag@hydrogel were catalytically active for the reduction of p-nitrophenol, obeying the first-order kinetics. Importantly, the AuNPs or AgNPs in the hydrogel matrix preserved the original catalytic activity after multiple p-nitrophenol reduction reactions, showing a promising reusability of the catalysts. The proposed here approach aims to broaden the scope of conversion routes of plastic waste to value-added materials as well as to develop new types of polymeric matrices for templating and growth of metal nanoparticles for catalytic applications.
Collapse
Affiliation(s)
- Kayee Chan
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Anatoly Zinchenko
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan.
| |
Collapse
|
31
|
Belden E, Rando M, Ferrara OG, Himebaugh ET, Skangos CA, Kazantzis NK, Paffenroth RC, Timko MT. Machine Learning Predictions of Oil Yields Obtained by Plastic Pyrolysis and Application to Thermodynamic Analysis. ACS ENGINEERING AU 2023; 3:91-101. [PMID: 37096175 PMCID: PMC10119934 DOI: 10.1021/acsengineeringau.2c00038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 04/26/2023]
Abstract
Chemical recycling via thermal processes such as pyrolysis is a potentially viable way to convert mixed streams of waste plastics into usable fuels and chemicals. Unfortunately, experimentally measuring product yields for real waste streams can be time- and cost-prohibitive, and the yields are very sensitive to feed composition, especially for certain types of plastics like poly(ethylene terephthalate) (PET) and polyvinyl chloride (PVC). Models capable of predicting yields and conversion from feed composition and reaction conditions have potential as tools to prioritize resources to the most promising plastic streams and to evaluate potential preseparation strategies to improve yields. In this study, a data set consisting of 325 data points for pyrolysis of plastic feeds was collected from the open literature. The data set was divided into training and test sub data sets; the training data were used to optimize the seven different machine learning regression methods, and the testing data were used to evaluate the accuracy of the resulting models. Of the seven types of models, eXtreme Gradient Boosting (XGBoost) predicted the oil yield of the test set with the highest accuracy, corresponding to a mean absolute error (MAE) value of 9.1%. The optimized XGBoost model was then used to predict the oil yields from real waste compositions found in Municipal Recycling Facilities (MRFs) and the Rhine River. The dependence of oil yields on composition was evaluated, and strategies for removing PET and PVC were assessed as examples of how to use the model. Thermodynamic analysis of a pyrolysis system capable of achieving oil yields predicted using the machine-learned model showed that pyrolysis of Rhine River plastics should be net exergy producing under most reasonable conditions.
Collapse
Affiliation(s)
- Elizabeth
R. Belden
- Department
of Chemical Engineering, Worcester Polytechnic
Institute, 100 Institute Road, Worcester, Massachusetts01609, United States
| | - Matthew Rando
- Department
of Chemical Engineering, Worcester Polytechnic
Institute, 100 Institute Road, Worcester, Massachusetts01609, United States
| | - Owen G. Ferrara
- Department
of Chemical Engineering, Worcester Polytechnic
Institute, 100 Institute Road, Worcester, Massachusetts01609, United States
| | - Eric T. Himebaugh
- Department
of Chemical Engineering, Worcester Polytechnic
Institute, 100 Institute Road, Worcester, Massachusetts01609, United States
| | - Christopher A. Skangos
- Department
of Chemical Engineering, Worcester Polytechnic
Institute, 100 Institute Road, Worcester, Massachusetts01609, United States
| | - Nikolaos K. Kazantzis
- Department
of Chemical Engineering, Worcester Polytechnic
Institute, 100 Institute Road, Worcester, Massachusetts01609, United States
| | - Randy C. Paffenroth
- Department
of Mathematical Sciences, Worcester Polytechnic
Institute, 100 Institute Road, Worcester, Massachusetts01609, United States
- Department
of Computer Science, and Data Science Program, Worcester Polytechnic Institute, 100 Institute Road, Worcester, Massachusetts01609, United States
| | - Michael T. Timko
- Department
of Chemical Engineering, Worcester Polytechnic
Institute, 100 Institute Road, Worcester, Massachusetts01609, United States
| |
Collapse
|
32
|
Gallegos MV, Meyer M, Jori K, Mizrahi M, Sambeth J, Peluso MA, Damonte L. Design of Catalysts for Glycolysis of Polyethylene Terephthalate from Spent Batteries. ChemistrySelect 2023. [DOI: 10.1002/slct.202300359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- María V. Gallegos
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. J. Ronco” (CINDECA) CONICET-UNLP-CIC 47 n° 257 1900 La Plata Bs.As Argentina
| | - Marcos Meyer
- Instituto de Física La Plata (IFLP), Dto. De Física Facultad de Cs. Exactas CONICET-UNLP La Plata Argentina
| | - Khalil Jori
- Instituto de Fisicoquímica Teórica y Aplicada (INIFTA), Dto. de Química Facultad de Cs. Exactas UNLP-CONICET 64 y diagonal 113 1900 La Plata Argentina
| | - Martín Mizrahi
- Instituto de Fisicoquímica Teórica y Aplicada (INIFTA), Dto. de Química Facultad de Cs. Exactas UNLP-CONICET 64 y diagonal 113 1900 La Plata Argentina
- Facultad de Ingeniería Universidad Nacional de La Plata. 1 y 47 La Plata Buenos Aires Argentina
| | - Jorge Sambeth
- Centro de Investigación y Desarrollo en Ciencias Aplicadas “Dr. J. Ronco” (CINDECA) CONICET-UNLP-CIC 47 n° 257 1900 La Plata Bs.As Argentina
| | - Miguel A. Peluso
- Laboratorio UPL (CICPBA-UNLP) C. Centenario y 506 1897 M.B. Gonnet Bs.As. Argentina
| | - Laura Damonte
- Instituto de Física La Plata (IFLP), Dto. De Física Facultad de Cs. Exactas CONICET-UNLP La Plata Argentina
| |
Collapse
|
33
|
Jung H, Shin G, Kwak H, Hao LT, Jegal J, Kim HJ, Jeon H, Park J, Oh DX. Review of polymer technologies for improving the recycling and upcycling efficiency of plastic waste. CHEMOSPHERE 2023; 320:138089. [PMID: 36754297 DOI: 10.1016/j.chemosphere.2023.138089] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Human society has become increasingly reliant on plastic because it allows for convenient and sanitary living. However, recycling rates are currently low, which means that the majority of plastic waste ends up in landfills or the ocean. Increasing recycling and upcycling rates is a critical strategy for addressing the issues caused by plastic pollution, but there are several technical limitations to overcome. This article reviews advancements in polymer technology that aim to improve the efficiency of recycling and upcycling plastic waste. In food packaging, natural polymers with excellent gas barrier properties and self-cleaning abilities have been introduced as environmentally friendly alternatives to existing materials and to reduce food-derived contamination. Upcycling and valorization approaches have emerged to transform plastic waste into high-value-added products. Recent advancements in the development of recyclable high-performance plastics include the design of super engineering thermoplastics and engineering chemical bonds of thermosets to make them recyclable and biodegradable. Further research is needed to develop more cost-effective and scalable technologies to address the plastic pollution problem through sustainable recycling and upcycling.
Collapse
Affiliation(s)
- Hyuni Jung
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Giyoung Shin
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hojung Kwak
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Lam Tan Hao
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Jonggeon Jegal
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyo Jeong Kim
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea
| | - Hyeonyeol Jeon
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| | - Jeyoung Park
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| | - Dongyeop X Oh
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429, Republic of Korea; Advanced Materials and Chemical Engineering, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
34
|
Lee S, Kim YT, Lin KYA, Lee J. Plastic-Waste-Derived Char as an Additive for Epoxy Composite. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2602. [PMID: 37048896 PMCID: PMC10095672 DOI: 10.3390/ma16072602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Tremendous amounts of plastic waste are generated daily. The indiscriminate disposal of plastic waste can cause serious global environmental issues, such as leakages of microplastics into the ecosystem. Thus, it is necessary to find a more sustainable way to reduce the volume of plastic waste by converting it into usable materials. Pyrolysis provides a sustainable solution for the production of carbonaceous materials (e.g., char). Plastic-waste-derived char can be used as an additive in epoxy composites to improve the properties and performance of neat epoxy resins. This review compiles relevant knowledge on the potential of additives for epoxy composites originating from plastic waste. It also highlights the potential of plastic-waste-derived char materials for use in materials in various industries.
Collapse
Affiliation(s)
- Seonho Lee
- Department of Global Smart City, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| | - Yong Tae Kim
- Chemical and Process Technology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Daejeon 34114, Republic of Korea
| | - Kun-Yi Andrew Lin
- Innovation and Development Center of Sustainable Agriculture, Department of Environmental Engineering, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung 402, Taiwan
| | - Jechan Lee
- Department of Global Smart City, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
- School of Civil, Architectural Engineering and Landscape Architecture, Sungkyunkwan University, 2066 Seobu-ro, Suwon 16419, Republic of Korea
| |
Collapse
|
35
|
Liu Y, Shi J, Mao L, Lu B, Kang X, Jin H. Base- or acid-assisted polystyrene plastic degradation in supercritical CO 2. WASTE DISPOSAL & SUSTAINABLE ENERGY 2023; 5:1-11. [PMID: 37359813 PMCID: PMC10023313 DOI: 10.1007/s42768-023-00139-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 06/28/2023]
Abstract
Plastic has caused serious "white pollution" to the environment, and the highly inert characteristics of plastic bring a major challenge for degradation. Supercritical fluids have unique physical properties and have been widely used in various fields. In this work, supercritical CO2 (Sc-CO2) with mild conditions was selected and assisted by NaOH/HCl solution to degrade polystyrene (PS) plastic, and the reaction model was designed using response surface methodology (RSM). It was found that, regardless of the types of assistance solutions, the factors affecting PS degradation efficiencies were reaction temperature, reaction time, and NaOH/HCl concentration. At the temperature of 400 °C, time of 120 min, and base/acid concentration of 5% (in weight), 0.15 g PS produced 126.88/116.99±5 mL of gases with 74.18/62.78±5 mL of H2, and consumed 81.2/71.5±5 mL of CO2. Sc-CO2 created a homogeneous environment, which made PS highly dispersed and uniformly heated, thus promoting the degradation of PS. Moreover, Sc-CO2 also reacted with the degradation products to produce new CO and more CH4 and C2Hx (x=4, 6). Adding NaOH/HCl solution not only improved the solubility of PS in Sc-CO2, but also provided a base/acid environment that reduced the activation energy of the reaction, and effectively improved the degradation efficiencies of PS. In short, degrading PS in Sc-CO2 is feasible, and better results are obtained with the assistance of base/acid solution, which can provide a reference for the disposal of waste plastics in the future. Supplementary Information The online version contains supplementary material available at 10.1007/s42768-023-00139-1.
Collapse
Affiliation(s)
- Yanbing Liu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an, 710049 Shaanxi China
| | - Jinwen Shi
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an, 710049 Shaanxi China
| | - Liuhao Mao
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an, 710049 Shaanxi China
| | - Bingru Lu
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an, 710049 Shaanxi China
| | - Xing Kang
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an, 710049 Shaanxi China
| | - Hui Jin
- International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, 28 West Xianning Road, Xi’an, 710049 Shaanxi China
| |
Collapse
|
36
|
Kulkarni A, Quintens G, Pitet LM. Trends in Polyester Upcycling for Diversifying a Problematic Waste Stream. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Amruta Kulkarni
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Greg Quintens
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| | - Louis M. Pitet
- Advanced Functional Polymers (AFP) Laboratory, Institute for Materials Research (imo-imomec), Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
| |
Collapse
|
37
|
A Renewable Lignin-based Thermoplastic Adhesive for Steel Joining. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
|
38
|
Zhang Y, Chen X, Cheng L, Gu J, Xu Y. Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:ijerph20054048. [PMID: 36901058 PMCID: PMC10001737 DOI: 10.3390/ijerph20054048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
The transformation of waste plastics into fuels via energy-efficient and low-cost pyrolysis could incentivize better waste plastic management. Here, we report pressure-induced phase transitions in polyethylene, which continue to heat up without additional heat sources, prompting the thermal cracking of plastics into premium fuel products. When the nitrogen initial pressure is increased from 2 to 21 bar, a monotonically increasing peak temperature is observed (from 428.1 °C to 476.7 °C). At 21 bar pressure under different atmosphere conditions, the temperature change driven by high-pressure helium is lower than that driven by nitrogen or argon, indicating that phase transition is related to the interaction between long-chain hydrocarbons and intercalated high-pressure medium layers. In view of the high cost of high-pressure inert gases, the promotion or inhibition effect of low-boiling hydrocarbons (transitioning into the gaseous state with increasing temperature) on phase transition is explored, and a series of light components are used as phase transition initiators to replace high-pressure inert gases to experiment. The reason that the quantitative conversion of polyethylene to high-quality fuel products is realized through the addition of 1-hexene at a set temperature of 340 °C and the initial atmospheric pressure. This discovery provides a method for recycling plastics by low energy pyrolysis. In addition, we envisage recovering some of the light components after plastic pyrolysis as phase change initiators for the next batch of the process. This method is able to reduce the cost of light hydrocarbons or high-pressure gas insertion, reduce heat input, and improve material and energy utilization.
Collapse
Affiliation(s)
- Yuanjia Zhang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
- Correspondence:
| | - Xueru Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Leilei Cheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Jing Gu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| | - Yulin Xu
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
- School of Energy Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
| |
Collapse
|
39
|
Minami Y, Matsuyama N, Takeichi Y, Watanabe R, Mathew S, Nakajima Y. Depolymerization of robust polyetheretherketone to regenerate monomer units using sulfur reagents. Commun Chem 2023; 6:14. [PMID: 36697710 PMCID: PMC9873933 DOI: 10.1038/s42004-023-00814-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
Super engineering plastics, high-performance thermoplastic resins such as polyetheretherketone, and polyphenylene sulfide have been utilized in industries, owing to their high thermal stability and mechanical strength. However, their robustness hinders their depolymerization to produce monomers and low-weight molecules. Presently, chemical recycling for most super engineering plastics remains relatively unexplored. Herein, we report the depolymerization of insoluble polyetheretherketone using sulfur nucleophiles via carbon-oxygen bond cleavages to form benzophenone dithiolate and hydroquinone. Treatment with organic halides converted only the former products to afford various dithiofunctionalized benzophenones. The depolymerization proceeded as a solid-liquid reaction in the initial phase. Therefore, this method was not affected by the shape of polyetheretherketone, e.g., pellets or films. Moreover, this depolymerization method was applicable to carbon- or glass fiber-enforced polyetheretherketone material. The depolymerized product, dithiofunctionalized benzophenones, could be converted into diiodobenzophenone, which was applicable to the polymerization.
Collapse
Affiliation(s)
- Yasunori Minami
- grid.208504.b0000 0001 2230 7538Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan ,grid.419082.60000 0004 1754 9200PRESTO, Japan Science and Technology Agency (JST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Nao Matsuyama
- grid.208504.b0000 0001 2230 7538Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Yasuo Takeichi
- grid.136593.b0000 0004 0373 3971Department of Applied Physics, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 Japan
| | - Ryota Watanabe
- grid.208504.b0000 0001 2230 7538Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Siby Mathew
- grid.208504.b0000 0001 2230 7538Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| | - Yumiko Nakajima
- grid.208504.b0000 0001 2230 7538Interdisciplinary Research Center for Catalytic Chemistry (IRC3), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565 Japan
| |
Collapse
|
40
|
Chau HK, Nguyen QP, Jerdy AC, Bui DP, Lobban LL, Wang B, Crossley SP. Role of Water on Zeolite-Catalyzed Dehydration of Polyalcohols and EVOH Polymer. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Han K. Chau
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Quy P. Nguyen
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Ana Carolina Jerdy
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Dai-Phat Bui
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Lance L. Lobban
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Bin Wang
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| | - Steven P. Crossley
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, Oklahoma73019, United States
| |
Collapse
|
41
|
Zheng K, Wu Y, Hu Z, Wang S, Jiao X, Zhu J, Sun Y, Xie Y. Progress and perspective for conversion of plastic wastes into valuable chemicals. Chem Soc Rev 2023; 52:8-29. [PMID: 36468343 DOI: 10.1039/d2cs00688j] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Today, discarded plastics in nature have caused serious "white pollution", however these plastic wastes contain abundant carbon resources that could serve as the feedstock to produce commodities. Because of this, it is requisite to convert these plastic wastes into valuable chemicals. Herein, the state-of-the-art techniques for plastic conversion are divided into two categories, those performed under violent conditions and mild conditions, in which the conversion mechanisms are discussed. The strategies under violent conditions are closer to practical application thanks to their excellent conversion efficiencies, while the strategies under mild conditions are more environmentally friendly, showing enormous development potential in the future. We summarize in detail the pyrolysis, hydropyrolysis, solvolysis and microwave-initiated catalysis for bond cleavage in plastic wastes at temperatures ranging from 448 to 973 K. Also, we overview the photocatalysis, electrocatalysis and biocatalysis for bond cleavage in plastic wastes at near and even normal temperature and pressure. Finally, we present some suggestions and outlooks concerning the improvement of current techniques and in-depth mechanisms of investigation for conversion of plastics into valuable chemicals.
Collapse
Affiliation(s)
- Kai Zheng
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yang Wu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Zexun Hu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Shumin Wang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Xingchen Jiao
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China. .,Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Juncheng Zhu
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yongfu Sun
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| | - Yi Xie
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, 230026, P. R. China.
| |
Collapse
|
42
|
Bhanderi KK, Joshi JR, Patel JV. Recycling of polyethylene terephthalate (PET Or PETE) plastics – An alternative to obtain value added products: A review. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2022.100843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
43
|
Hardy JG, Stowell AF, Mumford CI, Piacentini MG, Cronin J, Hadley C, Hendry L, Skandalis A, Verma S, Saltalippi M. Special Issue: Enabling Research in Smart Sustainable Plastic Packaging. POLYM INT 2022. [DOI: 10.1002/pi.6455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- John G. Hardy
- Department of Chemistry Lancaster University Lancaster Lancashire LA1 4YB UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Materials Science Institute Lancaster University Lancaster Lancashire LA1 4YW UK
| | - Alison F. Stowell
- Department of Organisation, Work and Technology Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Future Cities Research Institute Lancaster University Lancaster LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Clare I. Mumford
- Department of Organisation, Work and Technology Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - Maria G. Piacentini
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - James Cronin
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - Charlotte Hadley
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Linda Hendry
- Department of Management Science, Lancaster University Management School Lancaster University LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Alexandros Skandalis
- Department of Marketing Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| | - Savita Verma
- Department of Management Science Lancaster University Management School, Lancaster University LA1 4YX UK
- Pentland Centre for Sustainability in Business Lancaster University Lancaster LA1 4YX UK
| | - Matteo Saltalippi
- Department of Organisation, Work and Technology Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
- Centre for Consumption Insights Lancaster University Management School, Lancaster University Lancaster LA1 4YX UK
| |
Collapse
|
44
|
Xu J, Duan X, Zhang P, Niu Q, Dai S. Processing Poly (ethylene terephthalate) Waste into Functional Carbon Materials by Mechanochemical Extrusion. CHEMSUSCHEM 2022; 15:e202201576. [PMID: 36107132 DOI: 10.1002/cssc.202201576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/15/2022] [Indexed: 06/15/2023]
Abstract
With the plastic pollution becoming worse, the upcycling of plastic waste into functional materials is a great challenge. Herein, a mechanochemical extrusion approach was developed for processing poly(ethylene terephthalate) (PET) waste into porous carbon materials. The essence of the cyclic extrusion approach lies in the solvent-free mixing of thermoplastic PET with pore-directing additive (e. g., silica or zinc chloride) at the molecular level. PET waste could be upcycled into functional carbon with high surface area (up to 1001 m2 g-1 ), specific shapes, and preferred mechanical strength, after cyclic extrusion and carbonization. Moreover, metal species could be well dispersed onto porous carbons through solvent-free extrusion, different from traditional loading methods (impregnation method, deposition-precipitation method). In this manner, mechanochemical extrusion provides an alternative for upcycling plastic waste into value-added materials.
Collapse
Affiliation(s)
- Jialu Xu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaolan Duan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Pengfei Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, P. R. China
| | - Qiang Niu
- Inner Mongolia Erdos Power and Metallurgy Group Co., Ltd., Ordos, 017010, Inner Mongolia, P. R. China
| | - Sheng Dai
- Chemical Sciences Division, Oak Ridge National Lab, Oak Ridge, 37830 TN, United States
| |
Collapse
|
45
|
Chemical recycling and upcycling of poly(bisphenol A carbonate) via metal acetate catalyzed glycolysis. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
46
|
Das S, Liang C, Dunn JB. Plastics to fuel or plastics: Life cycle assessment-based evaluation of different options for pyrolysis at end-of-life. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 153:81-88. [PMID: 36055178 DOI: 10.1016/j.wasman.2022.08.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 08/12/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Pyrolysis is a leading technology to convert non-recyclable plastic waste to fuels or chemicals. As interest in the circular economy grows, the latter option has seemingly become more attractive. Once waste plastic is pyrolyzed to, for example, naphtha, however, additional steps are required to produce a polymer product. These steps consume additional energy and water and emit greenhouse gases (GHG). It is unclear whether this more circular option of non-recyclable plastics to virgin plastics offers environmental benefits, compared to their conversion to fuels. We therefore examine whether it is possible to determine the best use of pyrolyzing non-recyclable plastic - fuels or chemicals (low-density polyethylene (LDPE) as product)- from a life cycle perspective. We use recently published life cycle assessments of non-recycled plastics pyrolysis and consider two functional units: per unit mass of non-recyclable plastics and per unit product - MJ of naphtha or kg of LDPE. In the U.S., on a cradle-to-gate, per unit mass waste basis, producing fuel is lower-emitting than producing LDPE from pyrolysis. The opposite is true in the EU. But expanding the system boundary to the grave results in LDPE as the lower-emitting product in both regions. Naphtha and LDPE produced from non-recyclable plastics are less GHG-intensive than conventional routes to these products. Fossil fuel and water consumption and waste generation are all lower in the P2F case. Our results highlight that prioritization of P2P and P2F may depend on regional characteristics such as conventional waste management techniques and water scarcity.
Collapse
Affiliation(s)
- Sabyasachi Das
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Chao Liang
- Institute of Sustainability and Energy at Northwestern, Northwestern University, Evanston, IL, USA
| | - Jennifer B Dunn
- Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA; Center for Engineering Sustainability and Resilience, Northwestern University, Evanston, IL, USA; Northwestern-Argonne Institute of Science and Engineering, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
47
|
Rong H, Zhang Y, Ai X, Li W, Cao F, Li L. Theoretical Study on the Hydrogenolysis of Polyurethanes to Improve the Catalytic Activities. Inorg Chem 2022; 61:14662-14672. [PMID: 36062933 DOI: 10.1021/acs.inorgchem.2c02027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The metal-catalyzed hydrogenolysis of polymers is important in waste recycling; however, it is limited by the harsh reaction conditions and the low activities of catalysts, especially for earth-abundant metal-based catalysts. Herein, we perform a comprehensive study on the hydrogenolysis of polyurethane model catalyzed by Fe-, Mn-, Ru-, and Ir-iPrMACHO pincer complexes and propose a cascade mechanism comprising two-level hydrogenolysis and the hydrogenation of formaldehyde. In addition, the substrates and ligands are modulated to improve the activities of chemical recycling to monomer. It is found that the pincer ligands could dissociate from the metal centers at high reaction temperatures and further result in the deactivation of catalysts. The rigid Fe and Mn catalysts with tetradentate cyclic ligands are designed following the guidance, and the computations suggest that those designed catalysts could have high stabilities and activities.
Collapse
Affiliation(s)
- Hongli Rong
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Yahui Zhang
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Xinliang Ai
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Wan Li
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Fei Cao
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Longfei Li
- College of Pharmacy, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, Hebei University, Baoding 071002, Hebei, P. R. China
| |
Collapse
|
48
|
Lee K, Jing Y, Wang Y, Yan N. A unified view on catalytic conversion of biomass and waste plastics. Nat Rev Chem 2022; 6:635-652. [PMID: 37117711 PMCID: PMC9366821 DOI: 10.1038/s41570-022-00411-8] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2022] [Indexed: 11/08/2022]
Abstract
Originating from the desire to improve sustainability, producing fuels and chemicals from the conversion of biomass and waste plastic has become an important research topic in the twenty-first century. Although biomass is natural and plastic synthetic, the chemical nature of the two are not as distinct as they first appear. They share substantial structural similarities in terms of their polymeric nature and the types of bonds linking their monomeric units, resulting in close relationships between the two materials and their conversions. Previously, their transformations were mostly studied and reviewed separately in the literature. Here, we summarize the catalytic conversion of biomass and waste plastics, with a focus on bond activation chemistry and catalyst design. By tracking the historical and more recent developments, it becomes clear that biomass and plastic have not only evolved their unique conversion pathways but have also started to cross paths with each other, with each influencing the landscape of the other. As a result, this Review on the catalytic conversion of biomass and waste plastic in a unified angle offers improved insights into existing technologies, and more importantly, may enable new opportunities for future advances.
Collapse
Affiliation(s)
- Kyungho Lee
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yaxuan Jing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China
| | - Yanqin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, China.
| | - Ning Yan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
49
|
Choi D, Jung S, Tsang YF, Song H, Moon DH, Kwon EE. Sustainable valorization of styrofoam and CO 2 into syngas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155384. [PMID: 35452735 DOI: 10.1016/j.scitotenv.2022.155384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/21/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Plastic is a versatile material broadly used in a variety of industries. However, the current disposal practices for plastic wastes (incineration/landfilling) add the hazardous materials into the environment. To offer a sustainable valorization platform for plastic waste, this study adopted the catalytic pyrolysis process using CO2 as a co-feedstock. A model plastic waste collected from a seaport was waste buoy (WB), which has been widely used in fishing industry. Prior to the pyrolysis tests, the exact type of plastic in WB and the thermolytic characteristics of WB were examined. Since the WB was made of polystyrene, it was mainly converted into styrene monomer (styrene), dimer (diphenyl-1-butene), and trimer (2,4,6-triphenyl-1-hexene) from pyrolysis of WB. To further valorize/detoxify styrene derivatives into value-added syngas, catalytic pyrolysis of WB was practiced using the Ni-based catalysts (2/5/10 wt% Ni/SiO2). The yield of H2 from the catalytic pyrolysis process of WB was more than one magnitude higher comparing to that from the non-catalytic one. H2 formation also increased as catalyst loading increased. When flow gas was switched from inert gas to CO2, CO gas formation was enhanced due to the chemical reactions between CO2 and styrene derivatives over Ni catalysts. Syngas (H2/CO) formation under the CO2 condition was 5 times higher in comparison to the N2 condition in catalytic pyrolyses of WB with 10 wt% Ni/SiO2. CO2 also effectively suppressed coke deposition on a Ni catalyst. This study proposes a sustainable valorization and disposal platform for used plastic waste and greenhouse gas (CO2), converting them into value-added fuel.
Collapse
Affiliation(s)
- Dongho Choi
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sungyup Jung
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, New Territories 999077, Hong Kong
| | - Hocheol Song
- Department of Environment and Energy, Sejong University, Seoul 05006, Republic of Korea
| | - Deok Hyun Moon
- Department of Environmental Engineering, Chosun University, Gwangju 61452, Republic of Korea
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
50
|
|