1
|
Federico M. The Immunologic Downsides Associated with the Powerful Translation of Current COVID-19 Vaccine mRNA Can Be Overcome by Mucosal Vaccines. Vaccines (Basel) 2024; 12:1281. [PMID: 39591184 PMCID: PMC11599006 DOI: 10.3390/vaccines12111281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
The action of mRNA-based vaccines requires the expression of the antigen in cells targeted by lipid nanoparticle-mRNA complexes. When the vaccine antigen is not fully retained by the producer cells, its local and systemic diffusion can have consequences depending on both the levels of antigen expression and its biological activity. A peculiarity of mRNA-based COVID-19 vaccines is the extraordinarily high amounts of the Spike antigen expressed by the target cells. In addition, vaccine Spike can be shed and bind to ACE-2 cell receptors, thereby inducing responses of pathogenetic significance including the release of soluble factors which, in turn, can dysregulate key immunologic processes. Moreover, the circulatory immune responses triggered by the vaccine Spike is quite powerful, and can lead to effective anti-Spike antibody cross-binding, as well as to the emergence of both auto- and anti-idiotype antibodies. In this paper, the immunologic downsides of the strong efficiency of the translation of the mRNA associated with COVID-19 vaccines are discussed together with the arguments supporting the idea that most of them can be avoided with the advent of next-generation, mucosal COVID-19 vaccines.
Collapse
Affiliation(s)
- Maurizio Federico
- National Center for Global Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| |
Collapse
|
2
|
Soliman AM, Ghorab WM, Ghorab MM, ElKenawy NM, El-Sabbagh WA, Ramadan LA. Novel quinazoline sulfonamide-based scaffolds modulate methicillin-resistant Staphylococcus aureus (MRSA) pneumonia in immunodeficient irradiated model: Regulatory role of TGF-β. Bioorg Chem 2024; 150:107559. [PMID: 38905889 DOI: 10.1016/j.bioorg.2024.107559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
A library of new quinazoline pharmacophores bearing benzenesulfonamide moiety was designed and synthesized. Compounds 3a-n were screened for their in vitro antimicrobial activity against eight multidrug-resistant clinical isolates. Compounds 3d and 3n exhibited prominent antibacterial activity, specifically against MRSA. After exhibiting relative in vitro and in vivo safety, compound 3n was selected to assess its anti-inflammatory activity displaying promising COX-2 inhibitory activity compared to Ibuprofen. In vivo experimental MRSA pneumonia model was conducted on immunodeficient (irradiated) mice to reveal the antimicrobial and anti-inflammatory responses of compound 3n compared to azithromycin (AZ). Treatment with compound 3n (10 and 20 mg/kg) as well as AZ resulted in a significant decrease in bacterial counts in lung tissues, suppression of serum C-reactive protein (CRP), lung interleukin-6 (IL-6), myeloperoxidase activity (MPO) and transforming growth factor-β (TGF-β). Compound 3n showed a non-significant deviation of lung TGF-β1 from normal values which in turn controlled the lung inflammatory status and impacted the histopathological results. Molecular docking of 3n showed promising interactions inside the active sites of TGF-β and COX-2. Our findings present a new dual-target quinazoline benzenesulfonamide derivative 3n, which possesses significant potential for treating MRSA-induced pneumonia in an immunocompromised state.
Collapse
Affiliation(s)
- Aiten M Soliman
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Walid M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Mostafa M Ghorab
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Nora M ElKenawy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Walaa A El-Sabbagh
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt
| | - Laila A Ramadan
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt; Pharmacology & Toxicology Department, Faculty of Pharmacy, Egyptian Russian University, Egypt
| |
Collapse
|
3
|
Aghajani Mir M. Illuminating the pathogenic role of SARS-CoV-2: Insights into competing endogenous RNAs (ceRNAs) regulatory networks. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 122:105613. [PMID: 38844190 DOI: 10.1016/j.meegid.2024.105613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/20/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024]
Abstract
The appearance of SARS-CoV-2 in 2019 triggered a significant economic and health crisis worldwide, with heterogeneous molecular mechanisms that contribute to its development are not yet fully understood. Although substantial progress has been made in elucidating the mechanisms behind SARS-CoV-2 infection and therapy, it continues to rank among the top three global causes of mortality due to infectious illnesses. Non-coding RNAs (ncRNAs), being integral components across nearly all biological processes, demonstrate effective importance in viral pathogenesis. Regarding viral infections, ncRNAs have demonstrated their ability to modulate host reactions, viral replication, and host-pathogen interactions. However, the complex interactions of different types of ncRNAs in the progression of COVID-19 remains understudied. In recent years, a novel mechanism of post-transcriptional gene regulation known as "competing endogenous RNA (ceRNA)" has been proposed. Long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and viral ncRNAs function as ceRNAs, influencing the expression of associated genes by sequestering shared microRNAs. Recent research on SARS-CoV-2 has revealed that disruptions in specific ceRNA regulatory networks (ceRNETs) contribute to the abnormal expression of key infection-related genes and the establishment of distinctive infection characteristics. These findings present new opportunities to delve deeper into the underlying mechanisms of SARS-CoV-2 pathogenesis, offering potential biomarkers and therapeutic targets. This progress paves the way for a more comprehensive understanding of ceRNETs, shedding light on the intricate mechanisms involved. Further exploration of these mechanisms holds promise for enhancing our ability to prevent viral infections and develop effective antiviral treatments.
Collapse
Affiliation(s)
- Mahsa Aghajani Mir
- Deputy of Research and Technology, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
4
|
Saal M, Loeffler-Wirth H, Gruenewald T, Doxiadis I, Lehmann C. Genetic Predisposition to SARS-CoV-2 Infection: Cytokine Polymorphism and Disease Transmission within Households. BIOLOGY 2023; 12:1385. [PMID: 37997984 PMCID: PMC10669642 DOI: 10.3390/biology12111385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
We addressed the question of the influence of the molecular polymorphism of cytokines from different T helper subsets on the susceptibility to SARS-CoV-2 infection. From a cohort of 527 samples (collected from 26 May 2020 to 31 March 2022), we focused on individuals living in the same household (n = 58) with the SARS-CoV-2-infected person. We divided them into households with all individuals SARS-CoV-2 PCR positive (n = 29, households, 61 individuals), households with mixed PCR pattern (n = 24, 62) and negative households (n = 5, 15), respectively. TGF-β1 and IL-6 were the only cytokines tested with a significant difference between the cohorts. We observed a shift toward Th2 and the regulatory Th17 and Treg subset regulation for households with all members infected compared to those without infection. These data indicate that the genetically determined balance between the cytokines acting on different T helper cell subsets may play a pivotal role in transmission of and susceptibility to SARS-CoV-2 infection. Contacts infected by their index persons were more likely to highly express TGF-β1, indicating a reduced inflammatory response. Those not infected after contact had a polymorphism leading to a higher IL-6 expression. IL-6 acts in innate immunity, allergy and on the T helper cell differentiation, explaining the reduced susceptibility to SARS-CoV-2.
Collapse
Affiliation(s)
- Marius Saal
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany; (M.S.); (I.D.)
| | - Henry Loeffler-Wirth
- Interdisciplinary Centre for Bioinformatics, IZBI, Leipzig University, Haertelstr. 16–18, 04107 Leipzig, Germany;
| | - Thomas Gruenewald
- Clinic for Infectious Diseases and Tropical Medicine, Klinikum Chemnitz, Flemmingstraße 2, 09116 Chemnitz, Germany;
| | - Ilias Doxiadis
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany; (M.S.); (I.D.)
| | - Claudia Lehmann
- Laboratory for Transplantation Immunology, University Hospital Leipzig, Johannisallee 32, 04103 Leipzig, Germany; (M.S.); (I.D.)
| |
Collapse
|
5
|
Frischbutter S, Durek P, Witkowski M, Angermair S, Treskatsch S, Maurer M, Radbruch A, Mashreghi MF. Serum TGF-β as a predictive biomarker for severe disease and fatality of COVID-19. Eur J Immunol 2023; 53:e2350433. [PMID: 37386908 DOI: 10.1002/eji.202350433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/01/2023]
Abstract
For targeted intervention in coronavirus disease 2019 (COVID-19), there is a high medical need for biomarkers that predict disease progression and severity in the first days after symptom onset. This study assessed the utility of early transforming growth factor β (TGF-β) serum levels in COVID-19 patients to predict disease severity, fatality, and response to dexamethasone therapy. Patients with severe COVID-19 had significantly higher TGF-β levels (416 pg/mL) as compared to patients with mild (165 pg/mL, p < 0.0001) or moderate COVID-19 (241 pg/mL; p < 0.0001). Receiver operating characteristics area under the curve values were 0.92 (95% confidence interval [CI] 0.85-0.99, cut-off: 255 pg/mL) for mild versus severe COVID-19, and 0.83 (95% CI 0.65-1.0, cut-off: 202 pg/mL) for moderate versus severe COVID-19. Patients who died of severe COVID-19 had significantly higher TGF-β levels (453 pg/mL) as compared to convalescent patients (344 pg/mL), and TGF-β levels predicted fatality (area under the curve: 0.75, 95% CI 0.53-0.96). TGF-β was significantly reduced in severely ill patients treated with dexamethasone (301 pg/mL) as compared to untreated patients (416 pg/mL; p < 0.05). Early TGF-β serum levels in COVID-19 patients predict, with high accuracy, disease severity, and fatality. In addition, TGF-β serves as a specific biomarker to assess response to dexamethasone treatment.
Collapse
Affiliation(s)
- Stefan Frischbutter
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Allergology, Campus Benjamin Franklin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Pawel Durek
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Mario Witkowski
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Laboratory of Innate Immunity, Institute of Microbiology, Infectious Diseases and Immunology, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Stefan Angermair
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Sascha Treskatsch
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Anesthesiology and Intensive Care Medicine, Campus Benjamin Franklin, Berlin, Germany
| | - Marcus Maurer
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of Allergology, Campus Benjamin Franklin, Berlin, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Allergology and Immunology, Berlin, Germany
| | - Andreas Radbruch
- Cell Biology, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| | - Mir-Farzin Mashreghi
- Therapeutic Gene Regulation, Deutsches Rheuma-Forschungszentrum (DRFZ), Institute of the Leibniz Association, Berlin, Germany
| |
Collapse
|
6
|
Smith M, Meliopoulos V, Tan S, Bub T, Brigleb PH, Sharp B, Crawford JC, Prater MS, Pruett-Miller SM, Schultz-Cherry S. The β6 Integrin Negatively Regulates TLR7-Mediated Epithelial Immunity via Autophagy During Influenza A Virus Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555098. [PMID: 37693589 PMCID: PMC10491108 DOI: 10.1101/2023.08.28.555098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Integrins are essential surface receptors that sense extracellular changes to initiate various intracellular signaling cascades. The rapid activation of the epithelial-intrinsic β6 integrin during influenza A virus (IAV) infection has been linked to innate immune impairments. Yet, how β6 regulates epithelial immunity remains undefined. Here, we identify the role of β6 in mediating the Toll-like receptor 7 (TLR7) through the regulation of intracellular trafficking. We demonstrate that deletion of the β6 integrin in lung epithelial cells significantly enhances the TLR7-mediated activation of the type I interferon (IFN) response during homeostasis and respiratory infection. IAV-induced β6 facilitates TLR7 trafficking to lysosome-associated membrane protein (LAMP2a) components, leading to a reduction in endosomal compartments and associated TLR7 signaling. Our findings reveal an unappreciated role of β6-induced autophagy in influencing epithelial immune responses during influenza virus infection.
Collapse
|
7
|
Bolívar-Marín S, Castro M, Losada-Floriano D, Cortés S, Perdomo-Celis F, Lastra G, Narváez CF. A Specific Pattern and Dynamics of Circulating Cytokines Are Associated with the Extension of Lung Injury and Mortality in Colombian Adults with Coronavirus Disease-19. J Interferon Cytokine Res 2023; 43:206-215. [PMID: 37103589 DOI: 10.1089/jir.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023] Open
Abstract
Increased systemic levels of inflammatory cytokines have been associated with the development of pathophysiologic events during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. To further explore differences in the pattern and dynamics of plasma cytokines in individuals with coronavirus disease-19 (COVID-19), and the relationship with disease mortality, here we evaluated the plasma levels of proinflammatory and regulatory cytokines in Colombian patient survivors and nonsurvivors of SARS-CoV-2 infection. Individuals with confirmed COVID-19, with other respiratory diseases requiring hospitalization, and healthy controls, were included. Plasma levels of interleukin (IL)-6, tumor necrosis factor (TNF)-α, interferon-γ, IL-10, soluble tumor necrosis factor receptor I (sTNFRI), and transforming growth factor-β1 were measured by a bead-based assay or enzyme-linked immunosorbent assay and clinical, laboratory, and tomographic parameters were registered during hospitalization. The levels of most of the evaluated cytokines were increased in COVID-19 individuals relative to healthy controls. The levels of IL-6, IL-10, and sTNFRI were directly associated with the development of respiratory failure, immune dysregulation, and coagulopathy, as well as with COVID-19 mortality. Particularly, the early, robust, and persistent increase of circulating IL-6 characterized COVID-19 nonsurvivors, while survivors were able to counteract the inflammatory cytokine response. In addition, IL-6 systemic levels positively correlated with the tomographic extension of lung damage in individuals with COVID-19. Thus, an exacerbated inflammatory cytokine response, particularly mediated by IL-6 added to the inefficiency of regulatory cytokines, distinguishes COVID-19-associated tissue disturbances, severity, and mortality in Colombian adults.
Collapse
Affiliation(s)
- Sara Bolívar-Marín
- Programa de Medicina, División de Inmunología; Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Marcela Castro
- Servicio de Neumología, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
- Área de Medicina Interna; Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | | | - Santiago Cortés
- Servicio de Neumología, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
- Área de Medicina Interna; Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Federico Perdomo-Celis
- Instituto de Genética Humana, Facultad de Medicina, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Giovani Lastra
- Servicio de Neumología, E.S.E. Hospital Universitario de Neiva, Neiva, Huila, Colombia
- Área de Medicina Interna; Facultad de Ciencias de la Salud, Universidad Surcolombiana, Neiva, Huila, Colombia
| | - Carlos F Narváez
- Programa de Medicina, División de Inmunología; Universidad Surcolombiana, Neiva, Huila, Colombia
| |
Collapse
|
8
|
Norris EG, Pan XS, Hocking DC. Receptor-binding domain of SARS-CoV-2 is a functional αv-integrin agonist. J Biol Chem 2023; 299:102922. [PMID: 36669646 PMCID: PMC9846890 DOI: 10.1016/j.jbc.2023.102922] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Among the novel mutations distinguishing SARS-CoV-2 from similar coronaviruses is a K403R substitution in the receptor-binding domain (RBD) of the viral spike (S) protein within its S1 region. This amino acid substitution occurs near the angiotensin-converting enzyme 2-binding interface and gives rise to a canonical RGD adhesion motif that is often found in native extracellular matrix proteins, including fibronectin. Here, the ability of recombinant S1-RBD to bind to cell surface integrins and trigger downstream signaling pathways was assessed and compared with RGD-containing, integrin-binding fragments of fibronectin. We determined that S1-RBD supported adhesion of fibronectin-null mouse embryonic fibroblasts as well as primary human small airway epithelial cells, while RBD-coated microparticles attached to epithelial monolayers in a cation-dependent manner. Cell adhesion to S1-RBD was RGD dependent and inhibited by blocking antibodies against αv and β3 but not α5 or β1 integrins. Similarly, we observed direct binding of S1-RBD to recombinant human αvβ3 and αvβ6 integrins, but not α5β1 integrins, using surface plasmon resonance. S1-RBD adhesion initiated cell spreading, focal adhesion formation, and actin stress fiber organization to a similar extent as fibronectin. Moreover, S1-RBD stimulated tyrosine phosphorylation of the adhesion mediators FAK, Src, and paxillin; triggered Akt activation; and supported cell proliferation. Thus, the RGD sequence of S1-RBD can function as an αv-selective integrin agonist. This study provides evidence that cell surface αv-containing integrins can respond functionally to spike protein and raises the possibility that S1-mediated dysregulation of extracellular matrix dynamics may contribute to the pathogenesis and/or post-acute sequelae of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Emma G Norris
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Xuan Sabrina Pan
- Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Denise C Hocking
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA; Department of Biomedical Engineering, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA.
| |
Collapse
|
9
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
10
|
Arguinchona LM, Zagona-Prizio C, Joyce ME, Chan ED, Maloney JP. Microvascular significance of TGF-β axis activation in COVID-19. Front Cardiovasc Med 2023; 9:1054690. [PMID: 36684608 PMCID: PMC9852847 DOI: 10.3389/fcvm.2022.1054690] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/09/2022] [Indexed: 01/09/2023] Open
Abstract
As 2023 approaches, the COVID-19 pandemic has killed millions. While vaccines have been a crucial intervention, only a few effective medications exist for prevention and treatment of COVID-19 in breakthrough cases or in unvaccinated or immunocompromised patients. SARS-CoV-2 displays early and unusual features of micro-thrombosis and immune dysregulation that target endothelial beds of the lungs, skin, and other organs. Notably, anticoagulation improves outcomes in some COVID-19 patients. The protein transforming growth factor-beta (TGF-β1) has constitutive roles in maintaining a healthy microvasculature through its roles in regulating inflammation, clotting, and wound healing. However, after infection (including viral infection) TGF-β1 activation may augment coagulation, cause immune dysregulation, and direct a path toward tissue fibrosis. Dysregulation of TGF-β signaling in immune cells and its localization in areas of microvascular injury are now well-described in COVID-19, and such events may contribute to the acute respiratory distress syndrome and skin micro-thrombosis outcomes frequently seen in severe COVID-19. The high concentration of TGF-β in platelets and in other cells within microvascular thrombi, its ability to activate the clotting cascade and dysregulate immune pathways, and its pro-fibrotic properties all contribute to a unique milieu in the COVID-19 microvasculature. This unique environment allows for propagation of microvascular clotting and immune dysregulation. In this review we summarize the physiological functions of TGF-β and detail the evidence for its effects on the microvasculature in COVID-19. In addition, we explore the potential role of existing TGF-β inhibitors for the prevention and treatment of COVID-19 associated microvascular thrombosis and immune dysregulation.
Collapse
Affiliation(s)
- Lauren M. Arguinchona
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Caterina Zagona-Prizio
- School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Megan E. Joyce
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Edward D. Chan
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, United States,National Jewish Health, Denver, CO, United States
| | - James P. Maloney
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States,*Correspondence: James P. Maloney,
| |
Collapse
|
11
|
Kadam AH, Kandasamy K, Buss T, Cederstrom B, Yang C, Narayanapillai S, Rodriguez J, Levin MD, Koziol J, Olenyuk B, Borok Z, Chrastina A, Schnitzer JE. Targeting caveolae to pump bispecific antibody to TGF-β into diseased lungs enables ultra-low dose therapeutic efficacy. PLoS One 2022; 17:e0276462. [PMID: 36413536 PMCID: PMC9681080 DOI: 10.1371/journal.pone.0276462] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/06/2022] [Indexed: 11/23/2022] Open
Abstract
The long-sought-after "magic bullet" in systemic therapy remains unrealized for disease targets existing inside most tissues, theoretically because vascular endothelium impedes passive tissue entry and full target engagement. We engineered the first "dual precision" bispecific antibody with one arm pair to precisely bind to lung endothelium and drive active delivery and the other to precisely block TGF-β effector function inside lung tissue. Targeting caveolae for transendothelial pumping proved essential for delivering most of the injected intravenous dose precisely into lungs within one hour and for enhancing therapeutic potency by >1000-fold in a rat pneumonitis model. Ultra-low doses (μg/kg) inhibited inflammatory cell infiltration, edema, lung tissue damage, disease biomarker expression and TGF-β signaling. The prodigious benefit of active vs passive transvascular delivery of a precision therapeutic unveils a new promising drug design, delivery and therapy paradigm ripe for expansion and clinical testing.
Collapse
Affiliation(s)
- Anil H. Kadam
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Kathirvel Kandasamy
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Tim Buss
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Brittany Cederstrom
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Chun Yang
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Sreekanth Narayanapillai
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Juan Rodriguez
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Michael D. Levin
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Jim Koziol
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Bogdan Olenyuk
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Zea Borok
- Department of Medicine, UCSD School of Medicine, La Jolla, California, United States of America
| | - Adrian Chrastina
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
| | - Jan E. Schnitzer
- Proteogenomics Research Institute for Systems Medicine (PRISM), La Jolla, California, United States of America
- Institute for Engineering in Medicine, UCSD, La Jolla, California, United States of America
| |
Collapse
|
12
|
Dupuy A, Ju LA, Chiu J, Passam FH. Mechano-Redox Control of Integrins in Thromboinflammation. Antioxid Redox Signal 2022; 37:1072-1093. [PMID: 35044225 DOI: 10.1089/ars.2021.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Significance: How mechanical forces and biochemical cues are coupled remains a miracle for many biological processes. Integrins, well-known adhesion receptors, sense changes in mechanical forces and reduction-oxidation reactions (redox) in their environment to mediate their adhesive function. The coupling of mechanical and redox function is a new area of investigation. Disturbance of normal mechanical forces and the redox balance occurs in thromboinflammatory conditions; atherosclerotic plaques create changes to the mechanical forces in the circulation. Diabetes induces redox changes in the circulation by the production of reactive oxygen species and vascular inflammation. Recent Advances: Integrins sense changes in the blood flow shear stress at the level of focal adhesions and respond to flow and traction forces by increased signaling. Talin, the integrin-actin linker, is a traction force sensor and adaptor. Oxidation and reduction of integrin disulfide bonds regulate their adhesion. A conserved disulfide bond in integrin αlpha IIb beta 3 (αIIbβ3) is directly reduced by the thiol oxidoreductase endoplasmic reticulum protein 5 (ERp5) under shear stress. Critical Issues: The coordination of mechano-redox events between the extracellular and intracellular compartments is an active area of investigation. Another fundamental issue is to determine the spatiotemporal arrangement of key regulators of integrins' mechanical and redox interactions. How thromboinflammatory conditions lead to mechanoredox uncoupling is relatively unexplored. Future Directions: Integrated approaches, involving disulfide bond biochemistry, microfluidic assays, and dynamic force spectroscopy, will aid in showing that cell adhesion constitutes a crossroad of mechano- and redox biology, within the same molecule, the integrin. Antioxid. Redox Signal. 37, 1072-1093.
Collapse
Affiliation(s)
- Alexander Dupuy
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| | - Lining Arnold Ju
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia.,School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Darlington, Australia
| | - Joyce Chiu
- Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,ACRF Centenary Cancer Research Centre, The Centenary Institute, Camperdown, Australia
| | - Freda H Passam
- Central Clinical School, Faculty of Medicine and Health, The University of Sydney, Camperdown, Australia.,Charles Perkins Centre, The University of Sydney, Camperdown, Australia.,Heart Research Institute, Newtown, Australia
| |
Collapse
|
13
|
Heinl ES, Lorenz S, Schmidt B, Nasser M Laqtom N, Mazzulli JR, Francelle L, Yu TW, Greenberg B, Storch S, Tegtmeier I, Othmen H, Maurer K, Steinfurth M, Witzgall R, Milenkovic V, Wetzel CH, Reichold M. CLN7/MFSD8 may be an important factor for SARS-CoV-2 cell entry. iScience 2022; 25:105082. [PMID: 36093380 PMCID: PMC9444308 DOI: 10.1016/j.isci.2022.105082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/12/2022] [Accepted: 08/31/2022] [Indexed: 11/12/2022] Open
Abstract
The SARS-CoV-2 virus has triggered a worldwide pandemic. According to the BioGrid database, CLN7 (MFSD8) is thought to interact with several viral proteins. The aim of this work was to investigate a possible involvement of CLN7 in the infection process. Experiments on a CLN7-deficient HEK293T cell line exhibited a 90% reduced viral load compared to wild-type cells. This observation may be linked to the finding that CLN7 ko cells have a significantly reduced GM1 content in their cell membrane. GM1 is found highly enriched in lipid rafts, which are thought to play an important role in SARS-CoV-2 infection. In contrast, overexpression of CLN7 led to an increase in viral load. This study provides evidence that CLN7 is involved in SARS-CoV-2 infection. This makes it a potential pharmacological target for drug development against COVID-19. Furthermore, it provides insights into the physiological function of CLN7 where still only little is known about.
Collapse
Affiliation(s)
- Elena-Sofia Heinl
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Sebastian Lorenz
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Barbara Schmidt
- Institute of Clinical Microbiology and Hygiene, University of Regensburg, 93053 Regensburg, Germany
| | - Nouf Nasser M Laqtom
- Departments of Chemical Engineering and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Joseph R. Mazzulli
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Laetitia Francelle
- The Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Timothy W. Yu
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Benjamin Greenberg
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Stephan Storch
- Children’s Hospital Biochemistry, University Medical Center Hamburg Eppendorf, 20246 Hamburg, Germany
| | - Ines Tegtmeier
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Helga Othmen
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
- Institute for Molecular and Cellular Anatomy, University Regensburg, 93053 Regensburg, Germany
| | - Katja Maurer
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Malin Steinfurth
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| | - Ralph Witzgall
- Institute for Molecular and Cellular Anatomy, University Regensburg, 93053 Regensburg, Germany
| | - Vladimir Milenkovic
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Christian H. Wetzel
- Department of Psychiatry and Psychotherapy, University of Regensburg, 93053 Regensburg, Germany
| | - Markus Reichold
- Medical Cell Biology, University Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Begum R, Mamun-Or-Rashid ANM, Lucy TT, Pramanik MK, Sil BK, Mukerjee N, Tagde P, Yagi M, Yonei Y. Potential Therapeutic Approach of Melatonin against Omicron and Some Other Variants of SARS-CoV-2. Molecules 2022; 27:6934. [PMID: 36296527 PMCID: PMC9609612 DOI: 10.3390/molecules27206934] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
The Omicron variant (B.529) of COVID-19 caused disease outbreaks worldwide because of its contagious and diverse mutations. To reduce these outbreaks, therapeutic drugs and adjuvant vaccines have been applied for the treatment of the disease. However, these drugs have not shown high efficacy in reducing COVID-19 severity, and even antiviral drugs have not shown to be effective. Researchers thus continue to search for an effective adjuvant therapy with a combination of drugs or vaccines to treat COVID-19 disease. We were motivated to consider melatonin as a defensive agent against SARS-CoV-2 because of its various unique properties. Over 200 scientific publications have shown the significant effects of melatonin in treating diseases, with strong antioxidant, anti-inflammatory, and immunomodulatory effects. Melatonin has a high safety profile, but it needs further clinical trials and experiments for use as a therapeutic agent against the Omicron variant of COVID-19. It might immediately be able to prevent the development of severe symptoms caused by the coronavirus and can reduce the severity of the infection by improving immunity.
Collapse
Affiliation(s)
- Rahima Begum
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - A. N. M. Mamun-Or-Rashid
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
- Department of Environmental & Occupational Health, School of Public Health, University of Pittsburgh, 130 De Soto Str., Pittsburgh, PA 15231, USA
| | - Tanzima Tarannum Lucy
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Md. Kamruzzaman Pramanik
- Microbiology and Industrial Irradiation Division, Institute of Food and Radiation Biology, Atomic Energy Research Establishment, Savar 1349, Bangladesh
| | - Bijon Kumar Sil
- Department of Microbiology, Gono Bishwabidyalay, Dhaka 1344, Bangladesh
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, Kolkata 700118, India
- Department of Health Sciences, Novel Global Community Educational Foundation, Sydney 37729, Australia
| | - Priti Tagde
- Patel College of Pharmacy, Madhyanchal Professional University, Bhopal 462044, India
| | - Masayuki Yagi
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| | - Yoshikazu Yonei
- Anti-Aging Medical Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 TataraMiyakodani, Kyoto 610-0394, Japan
- Glycative Stress Research Center, Graduate School of Life and Medical Sciences, Doshisha University 1-3 Tatara Miyakodani, Kyoto 610-0394, Japan
| |
Collapse
|
15
|
Batiha GES, Al-kuraishy HM, Al-Gareeb AI, Welson NN. Pathophysiology of Post-COVID syndromes: a new perspective. Virol J 2022; 19:158. [PMID: 36210445 PMCID: PMC9548310 DOI: 10.1186/s12985-022-01891-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
Most COVID-19 patients recovered with low mortality; however, some patients experienced long-term symptoms described as "long-COVID" or "Post-COVID syndrome" (PCS). Patients may have persisting symptoms for weeks after acute SARS-CoV-2 infection, including dyspnea, fatigue, myalgia, insomnia, cognitive and olfactory disorders. These symptoms may last for months in some patients. PCS may progress in association with the development of mast cell activation syndrome (MCAS), which is a distinct kind of mast cell activation disorder, characterized by hyper-activation of mast cells with inappropriate and excessive release of chemical mediators. COVID-19 survivors, mainly women, and patients with persistent severe fatigue for 10 weeks after recovery with a history of neuropsychiatric disorders are more prone to develop PCS. High D-dimer levels and blood urea nitrogen were observed to be risk factors associated with pulmonary dysfunction in COVID-19 survivors 3 months post-hospital discharge with the development of PCS. PCS has systemic manifestations that resolve with time with no further complications. However, the final outcomes of PCS are chiefly unknown. Persistence of inflammatory reactions, autoimmune mimicry, and reactivation of pathogens together with host microbiome alterations may contribute to the development of PCS. The deregulated release of inflammatory mediators in MCAS produces extraordinary symptoms in patients with PCS. The development of MCAS during the course of SARS-CoV-2 infection is correlated to COVID-19 severity and the development of PCS. Therefore, MCAS is treated by antihistamines, inhibition of synthesis of mediators, inhibition of mediator release, and inhibition of degranulation of mast cells.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Al Beheira, 22511 Egypt
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Nermeen N. Welson
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Beni-Suef University, Beni Suef, 62511 Egypt
| |
Collapse
|
16
|
Jiang Y, Zhao T, Zhou X, Xiang Y, Gutierrez‐Castrellon P, Ma X. Inflammatory pathways in COVID-19: Mechanism and therapeutic interventions. MedComm (Beijing) 2022; 3:e154. [PMID: 35923762 PMCID: PMC9340488 DOI: 10.1002/mco2.154] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 02/05/2023] Open
Abstract
The 2019 coronavirus disease (COVID-19) pandemic has become a global crisis. In the immunopathogenesis of COVID-19, SARS-CoV-2 infection induces an excessive inflammatory response in patients, causing an inflammatory cytokine storm in severe cases. Cytokine storm leads to acute respiratory distress syndrome, pulmonary and other multiorgan failure, which is an important cause of COVID-19 progression and even death. Among them, activation of inflammatory pathways is a major factor in generating cytokine storms and causing dysregulated immune responses, which is closely related to the severity of viral infection. Therefore, elucidation of the inflammatory signaling pathway of SARS-CoV-2 is important in providing otential therapeutic targets and treatment strategies against COVID-19. Here, we discuss the major inflammatory pathways in the pathogenesis of COVID-19, including induction, function, and downstream signaling, as well as existing and potential interventions targeting these cytokines or related signaling pathways. We believe that a comprehensive understanding of the regulatory pathways of COVID-19 immune dysregulation and inflammation will help develop better clinical therapy strategies to effectively control inflammatory diseases, such as COVID-19.
Collapse
Affiliation(s)
- Yujie Jiang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Tingmei Zhao
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Xueyan Zhou
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduPR China
| | - Yu Xiang
- Department of BiotherapyState Key Laboratory of Biotherapy Cancer CenterWest China HospitalSichuan UniversityChengduPR China
| | - Pedro Gutierrez‐Castrellon
- Center for Translational Research on Health Science Hospital General Dr. Manuel Gea GonzalezMinistry of HealthMexico CityMexico
| | - Xuelei Ma
- Department of BiotherapyState Key Laboratory of Biotherapy Cancer CenterWest China HospitalSichuan UniversityChengduPR China
| |
Collapse
|
17
|
Huntington KE, Carlsen L, So EY, Piesche M, Liang O, El-Deiry WS. Integrin/TGF-β1 Inhibitor GLPG-0187 Blocks SARS-CoV-2 Delta and Omicron Pseudovirus Infection of Airway Epithelial Cells In Vitro, Which Could Attenuate Disease Severity. Pharmaceuticals (Basel) 2022; 15:618. [PMID: 35631444 PMCID: PMC9143518 DOI: 10.3390/ph15050618] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/15/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
As COVID-19 continues to pose major risk for vulnerable populations, including the elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination, novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding integrins, either independently or as a co-receptor with surface receptor angiotensin-converting enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate the blockade of SARS-CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi) VS-6766 enhanced the inhibition of pseudovirus infection by GLPG-0187. Because integrins activate transforming growth factor beta (TGF-β) signaling, we compared the plasma levels of active and total TGF-β in COVID-19+ patients. The plasma TGF-β1 levels correlated with age, race, and number of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-β1 levels correlated with activated TGF-β1 levels. Moreover, the inhibition of integrin signaling prevents SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and it may mitigate COVID-19 severity through decreased TGF-β1 activation. This therapeutic strategy may be further explored through clinical testing in vulnerable and unvaccinated populations.
Collapse
Affiliation(s)
- Kelsey E. Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (K.E.H.); (L.C.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA; (E.-Y.S.); (O.L.)
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (K.E.H.); (L.C.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA; (E.-Y.S.); (O.L.)
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
| | - Eui-Young So
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA; (E.-Y.S.); (O.L.)
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca 3466706, Chile
- Oncology Center, Medicine Faculty, Universidad Católica del Maule, Talca 3466706, Chile
| | - Olin Liang
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA; (E.-Y.S.); (O.L.)
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA; (K.E.H.); (L.C.)
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02903, USA; (E.-Y.S.); (O.L.)
- Legorreta Cancer Center, Brown University, Providence, RI 02903, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, RI 02903, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
| |
Collapse
|
18
|
Jiménez D, Torres Arias M. Immunouniverse of SARS-CoV-2. Immunol Med 2022; 45:186-224. [PMID: 35502127 DOI: 10.1080/25785826.2022.2066251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
SARS-CoV-2 virus has become a global health problem that has caused millions of deaths worldwide. The infection can present with multiple clinical features ranging from asymptomatic or mildly symptomatic patients to patients with severe or critical illness that can even lead to death. Although the immune system plays an important role in pathogen control, SARS-CoV-2 can drive dysregulation of this response and trigger severe immunopathology. Exploring the mechanisms of the immune response involved in host defense against SARS-CoV-2 allows us to understand its immunopathogenesis and possibly detect features that can be used as potential therapies to eliminate the virus. The main objective of this review on SARS-CoV-2 is to highlight the interaction between the virus and the immune response. We explore the function and action of the immune system, the expression of molecules at the site of infection that cause hyperinflammation and hypercoagulation disorders, the factors leading to the development of pneumonia and subsequent severe acute respiratory distress syndrome which is the leading cause of death in patients with COVID-19.
Collapse
Affiliation(s)
- Dennis Jiménez
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador
| | - Marbel Torres Arias
- Departamento de Ciencias de la Vida y Agricultura, Carrera de Ingeniería en Biotecnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí, Pichincha, Ecuador.,Laboratorio de Inmunología y Virología, CENCINAT, GISAH, Universidad de las Fuerzas Armadas, Sangolquí, Pichincha, Ecuador
| |
Collapse
|
19
|
Probing the Immune System Dynamics of the COVID-19 Disease for Vaccine Designing and Drug Repurposing Using Bioinformatics Tools. IMMUNO 2022. [DOI: 10.3390/immuno2020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of COVID-19 is complicated by immune dysfunction. The impact of immune-based therapy in COVID-19 patients has been well documented, with some notable studies on the use of anti-cytokine medicines. However, the complexity of disease phenotypes, patient heterogeneity and the varying quality of evidence from immunotherapy studies provide problems in clinical decision-making. This review seeks to aid therapeutic decision-making by giving an overview of the immunological responses against COVID-19 disease that may contribute to the severity of the disease. We have extensively discussed theranostic methods for COVID-19 detection. With advancements in technology, bioinformatics has taken studies to a higher level. The paper also discusses the application of bioinformatics and machine learning tools for the diagnosis, vaccine design and drug repurposing against SARS-CoV-2.
Collapse
|
20
|
Bugatti A, Filippini F, Bardelli M, Zani A, Chiodelli P, Messali S, Caruso A, Caccuri F. SARS-CoV-2 Infects Human ACE2-Negative Endothelial Cells through an αvβ3 Integrin-Mediated Endocytosis Even in the Presence of Vaccine-Elicited Neutralizing Antibodies. Viruses 2022; 14:v14040705. [PMID: 35458435 PMCID: PMC9032829 DOI: 10.3390/v14040705] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 02/06/2023] Open
Abstract
Integrins represent a gateway of entry for many viruses and the Arg-Gly-Asp (RGD) motif is the smallest sequence necessary for proteins to bind integrins. All Severe Acute Respiratory Syndrome Virus type 2 (SARS-CoV-2) lineages own an RGD motif (aa 403–405) in their receptor binding domain (RBD). We recently showed that SARS-CoV-2 gains access into primary human lung microvascular endothelial cells (HL-mECs) lacking Angiotensin-converting enzyme 2 (ACE2) expression through this conserved RGD motif. Following its entry, SARS-CoV-2 remodels cell phenotype and promotes angiogenesis in the absence of productive viral replication. Here, we highlight the αvβ3 integrin as the main molecule responsible for SARS-CoV-2 infection of HL-mECs via a clathrin-dependent endocytosis. Indeed, pretreatment of virus with αvβ3 integrin or pretreatment of cells with a monoclonal antibody against αvβ3 integrin was found to inhibit SARS-CoV-2 entry into HL-mECs. Surprisingly, the anti-Spike antibodies evoked by vaccination were neither able to impair Spike/integrin interaction nor to prevent SARS-CoV-2 entry into HL-mECs. Our data highlight the RGD motif in the Spike protein as a functional constraint aimed to maintain the interaction of the viral envelope with integrins. At the same time, our evidences call for the need of intervention strategies aimed to neutralize the SARS-CoV-2 integrin-mediated infection of ACE2-negative cells in the vaccine era.
Collapse
Affiliation(s)
- Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Federica Filippini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Marta Bardelli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Paola Chiodelli
- Section of General Pathology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Serena Messali
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.B.); (F.F.); (M.B.); (A.Z.); (S.M.); (A.C.)
- Correspondence:
| |
Collapse
|
21
|
Abusalah MAH, Khalifa M, Al-Hatamleh MAI, Jarrar M, Mohamud R, Chan YY. Nucleic Acid-Based COVID-19 Therapy Targeting Cytokine Storms: Strategies to Quell the Storm. J Pers Med 2022; 12:386. [PMID: 35330388 PMCID: PMC8948998 DOI: 10.3390/jpm12030386] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/21/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has shaken the world and triggered drastic changes in our lifestyle to control it. Despite the non-typical efforts, COVID-19 still thrives and plagues humanity worldwide. The unparalleled degree of infection has been met with an exceptional degree of research to counteract it. Many drugs and therapeutic technologies have been repurposed and discovered, but no groundbreaking antiviral agent has been introduced yet to eradicate COVID-19 and restore normalcy. As lethality is directly correlated with the severity of disease, hospitalized severe cases are of the greatest importance to reduce, especially the cytokine storm phenomenon. This severe inflammatory phenomenon characterized by elevated levels of inflammatory mediators can be targeted to relieve symptoms and save the infected patients. One of the promising therapeutic strategies to combat COVID-19 is nucleic acid-based therapeutic approaches, including microRNAs (miRNAs). This work is an up-to-date review aimed to comprehensively discuss the current nucleic acid-based therapeutics against COVID-19 and their mechanisms of action, taking into consideration the emerging SARS-CoV-2 variants of concern, as well as providing potential future directions. miRNAs can be used to run interference with the expression of viral proteins, while endogenous miRNAs can be targeted as well, offering a versatile platform to control SARS-CoV-2 infection. By targeting these miRNAs, the COVID-19-induced cytokine storm can be suppressed. Therefore, nucleic acid-based therapeutics (miRNAs included) have a latent ability to break the COVID-19 infection in general and quell the cytokine storm in particular.
Collapse
Affiliation(s)
- Mai Abdel Haleem Abusalah
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| | - Moad Khalifa
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu 16150, Kelantan, Malaysia;
| | - Mohammad A. I. Al-Hatamleh
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Mu’taman Jarrar
- College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 34212, Saudi Arabia;
- Medical Education Department, King Fahd Hospital of the University, Al-Khobar 34445, Saudi Arabia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia; (M.A.I.A.-H.); (R.M.)
| | - Yean Yean Chan
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu 16150, Kelantan, Malaysia;
| |
Collapse
|
22
|
Othman H, Messaoud HB, Khamessi O, Ben-Mabrouk H, Ghedira K, Bharuthram A, Treurnicht F, Achilonu I, Sayed Y, Srairi-Abid N. SARS-CoV-2 Spike Protein Unlikely to Bind to Integrins via the Arg-Gly-Asp (RGD) Motif of the Receptor Binding Domain: Evidence From Structural Analysis and Microscale Accelerated Molecular Dynamics. Front Mol Biosci 2022; 9:834857. [PMID: 35237662 PMCID: PMC8883519 DOI: 10.3389/fmolb.2022.834857] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
The Receptor Binding Domain (RBD) of SARS-CoV-2 virus harbors a sequence of Arg-Gly-Asp tripeptide named RGD motif, which has also been identified in extracellular matrix proteins that bind integrins as well as other disintegrins and viruses. Accordingly, integrins have been proposed as host receptors for SARS-CoV-2. However, given that the microenvironment of the RGD motif imposes a structural hindrance to the protein-protein association, the validity of this hypothesis is still uncertain. Here, we used normal mode analysis, accelerated molecular dynamics microscale simulation, and protein-protein docking to investigate the putative role of RGD motif of SARS-CoV-2 RBD for interacting with integrins. We found, that neither RGD motif nor its microenvironment showed any significant conformational shift in the RBD structure. Highly populated clusters of RBD showed no capability to interact with the RGD binding site in integrins. The free energy landscape revealed that the RGD conformation within RBD could not acquire an optimal geometry to allow the interaction with integrins. In light of these results, and in the event where integrins are confirmed to be host receptors for SARS-CoV-2, we suggest a possible involvement of other residues to stabilize the interaction.
Collapse
Affiliation(s)
- Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Haifa Ben Messaoud
- National Gene Bank of Tunisia, Boulevard du Leader Yesser Arafet, Tunis, Tunisia
| | - Oussema Khamessi
- Université de Tunis El Manar, Institut Pasteur de Tunis, LR11IPT08 Venins et Biomolecules Therapeutiques, Tunis, Tunisie
| | - Hazem Ben-Mabrouk
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics (BIMS), Institut Pasteur de Tunis (IPT), University of Tunis El Manar, Tunis, Tunisia
| | - Avani Bharuthram
- Department of Virology, National Health Laboratory Services and the School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Florette Treurnicht
- Department of Virology, National Health Laboratory Services and the School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Najet Srairi-Abid
- Laboratory of Biomolecules, Venoms and Theranostic Applications, LR20IPT01, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
23
|
Petrenko VA, Gillespie JW, De Plano LM, Shokhen MA. Phage-Displayed Mimotopes of SARS-CoV-2 Spike Protein Targeted to Authentic and Alternative Cellular Receptors. Viruses 2022; 14:v14020384. [PMID: 35215976 PMCID: PMC8879608 DOI: 10.3390/v14020384] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
The evolution of the SARS-CoV-2 virus during the COVID-19 pandemic was accompanied by the emergence of new heavily mutated viral variants with increased infectivity and/or resistance to detection by the human immune system. To respond to the urgent need for advanced methods and materials to empower a better understanding of the mechanisms of virus’s adaptation to human host cells and to the immuno-resistant human population, we suggested using recombinant filamentous bacteriophages, displaying on their surface foreign peptides termed “mimotopes”, which mimic the structure of viral receptor-binding sites on the viral spike protein and can serve as molecular probes in the evaluation of molecular mechanisms of virus infectivity. In opposition to spike-binding antibodies that are commonly used in studying the interaction of the ACE2 receptor with SARS-CoV-2 variants in vitro, phage spike mimotopes targeted to other cellular receptors would allow discovery of their role in viral infection in vivo using cell culture, tissue, organs, or the whole organism. Phage mimotopes of the SARS-CoV-2 Spike S1 protein have been developed using a combination of phage display and molecular mimicry concepts, termed here “phage mimicry”, supported by bioinformatics methods. The key elements of the phage mimicry concept include: (1) preparation of a collection of p8-type (landscape) phages, which interact with authentic active receptors of live human cells, presumably mimicking the binding interactions of human coronaviruses such as SARS-CoV-2 and its variants; (2) discovery of closely related amino acid clusters with similar 3D structural motifs on the surface of natural ligands (FGF1 and NRP1), of the model receptor of interest FGFR and the S1 spike protein; and (3) an ELISA analysis of the interaction between candidate phage mimotopes with FGFR3 (a potential alternative receptor) in comparison with ACE2 (the authentic receptor).
Collapse
Affiliation(s)
- Valery A. Petrenko
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Correspondence: (V.A.P.); (J.W.G.); Tel.: +1-334-844-2897 (V.A.P.); +1-334-844-2625 (J.W.G.)
| | - James W. Gillespie
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Correspondence: (V.A.P.); (J.W.G.); Tel.: +1-334-844-2897 (V.A.P.); +1-334-844-2625 (J.W.G.)
| | - Laura Maria De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98122 Messina, Italy;
| | | |
Collapse
|
24
|
Huntington KE, Carlsen L, So EY, Piesche M, Liang O, El-Deiry WS. Integrin/TGF-β1 inhibitor GLPG-0187 blocks SARS-CoV-2 Delta and Omicron pseudovirus infection of airway epithelial cells which could attenuate disease severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.01.02.22268641. [PMID: 35018385 PMCID: PMC8750711 DOI: 10.1101/2022.01.02.22268641] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
As COVID-19 continues to pose major risk for vulnerable populations including the elderly, immunocompromised, patients with cancer, and those with contraindications to vaccination, novel treatment strategies are urgently needed. SARS-CoV-2 infects target cells via RGD-binding integrins either independently or as a co-receptor with surface receptor angiotensin-converting enzyme 2 (ACE2). We used pan-integrin inhibitor GLPG-0187 to demonstrate blockade of SARS-CoV-2 pseudovirus infection of target cells. Omicron pseudovirus infected normal human small airway epithelial (HSAE) cells significantly less than D614G or Delta variant pseudovirus, and GLPG-0187 effectively blocked SARS-CoV-2 pseudovirus infection in a dose-dependent manner across multiple viral variants. GLPG-0187 inhibited Omicron and Delta pseudovirus infection of HSAE cells more significantly than other variants. Pre-treatment of HSAE cells with MEK inhibitor (MEKi) VS-6766 enhanced inhibition of pseudovirus infection by GLPG-0187. Because integrins activate TGF-β signaling, we compared plasma levels of active and total TGF-β in COVID-19+ patients. Plasma TGF-β1 levels correlated with age, race, and number of medications upon presentation with COVID-19, but not with sex. Total plasma TGF-β1 levels correlated with activated TGF-β1 levels. In our preclinical studies, Omicron infects lower airway lung cells less efficiently than other COVID-19 variants. Moreover, inhibition of integrin signaling prevents SARS-CoV-2 Delta and Omicron pseudovirus infectivity, and may mitigate COVID-19 severity through decreased TGF-β1 activation. This therapeutic strategy may be further explored through clinical testing in vulnerable and unvaccinated populations.
Collapse
Affiliation(s)
- Kelsey E. Huntington
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Lindsey Carlsen
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
| | - Eui-Young So
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, 02912
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
- Oncology Center, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| | - Olin Liang
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, 02912
| | - Wafik S. El-Deiry
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, Rhode Island, USA
- Legorreta Cancer Center at Brown University, Providence, Rhode Island, USA
- Pathobiology Graduate Program, Warren Alpert Medical School, Brown University, Providence, Rhode Island, USA
- Hematology-Oncology Division, Department of Medicine, Lifespan Health System and Warren Alpert Medical School, Brown University, Providence, RI, 02912
| |
Collapse
|
25
|
Amruta N, Engler-Chiurazzi EB, Murray-Brown IC, Gressett TE, Biose IJ, Chastain WH, Befeler JB, Bix G. In Vivo protection from SARS-CoV-2 infection by ATN-161 in k18-hACE2 transgenic mice. Life Sci 2021; 284:119881. [PMID: 34389403 PMCID: PMC8352850 DOI: 10.1016/j.lfs.2021.119881] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 02/06/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an infectious disease that has spread worldwide. Current treatments are limited in both availability and efficacy, such that improving our understanding of the factors that facilitate infection is urgently needed to more effectively treat infected individuals and to curb the pandemic. We and others have previously demonstrated the significance of interactions between the SARS-CoV-2 spike protein, integrin α5β1, and human ACE2 to facilitate viral entry into host cells in vitro. We previously found that inhibition of integrin α5β1 by the clinically validated small peptide ATN-161 inhibits these spike protein interactions and cell infection in vitro. In continuation with our previous findings, here we have further evaluated the therapeutic potential of ATN-161 on SARS-CoV-2 infection in k18-hACE2 transgenic (SARS-CoV-2 susceptible) mice in vivo. We discovered that treatment with single or repeated intravenous doses of ATN-161 (1 mg/kg) within 48 h after intranasal inoculation with SARS-CoV-2 lead to a reduction of lung viral load, viral immunofluorescence, and improved lung histology in a majority of mice 72 h post-infection. Furthermore, ATN-161 reduced SARS-CoV-2-induced increased expression of lung integrin α5 and αv (an α5-related integrin that has also been implicated in SARS-CoV-2 interactions) as well as the C-X-C motif chemokine ligand 10 (Cxcl10), further supporting the potential involvement of these integrins, and the anti-inflammatory potential of ATN-161, respectively, in SARS-CoV-2 infection. To the best of our knowledge, this is the first study demonstrating the potential therapeutic efficacy of targeting integrin α5β1 in SARS-CoV-2 infection in vivo and supports the development of ATN-161 as a novel SARS-CoV-2 therapy.
Collapse
Affiliation(s)
- Narayanappa Amruta
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Elizabeth B Engler-Chiurazzi
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Isabel C Murray-Brown
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Timothy E Gressett
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Ifechukwude J Biose
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Wesley H Chastain
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Jaime B Befeler
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gregory Bix
- Department of Neurosurgery, Clinical Neuroscience Research Center, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane Brain Institute, Tulane University, New Orleans, LA 70112, USA; Department of Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA; Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70122, USA.
| |
Collapse
|
26
|
Bugatti K. α V β 6 Integrin: An Intriguing Target for COVID-19 and Related Diseases. Chembiochem 2021; 22:2516-2520. [PMID: 34132013 PMCID: PMC8426704 DOI: 10.1002/cbic.202100209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/31/2021] [Indexed: 01/03/2023]
Abstract
The outbreak of SARS-CoV-2 has been an extraordinary event that constituted a global health emergency. As the novel coronavirus is continuing to spread over the world, the need for therapeutic agents to control this pandemic is increasing. αV β6 Integrin may be an intriguing target not only for the inhibition of SARS-CoV-2 entry, but also for the diagnosis/treatment of COVID-19 related fibrosis, an emerging type of fibrotic disease which will probably affect a significant part of the recovered patients. In this short article, the possible role of this integrin for fighting COVID-19 is discussed on the basis of recently published evidence, showing how its underestimated involvement may be interesting for the development of novel pharmacological tools.
Collapse
Affiliation(s)
- Kelly Bugatti
- Dipartimento di Scienze degli Alimenti e del FarmacoUniversità di ParmaParco Area delle Scienze 27A43124ParmaItaly
| |
Collapse
|
27
|
Vianello A, Del Turco S, Babboni S, Silvestrini B, Ragusa R, Caselli C, Melani L, Fanucci L, Basta G. The Fight against COVID-19 on the Multi-Protease Front and Surroundings: Could an Early Therapeutic Approach with Repositioning Drugs Prevent the Disease Severity? Biomedicines 2021; 9:710. [PMID: 34201505 PMCID: PMC8301470 DOI: 10.3390/biomedicines9070710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/15/2022] Open
Abstract
The interaction between the membrane spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the transmembrane angiotensin-converting enzyme 2 (ACE2) receptor of the human epithelial host cell is the first step of infection, which has a critical role for viral pathogenesis of the current coronavirus disease-2019 (COVID-19) pandemic. Following the binding between S1 subunit and ACE2 receptor, different serine proteases, including TMPRSS2 and furin, trigger and participate in the fusion of the viral envelope with the host cell membrane. On the basis of the high virulence and pathogenicity of SARS-CoV-2, other receptors have been found involved for viral binding and invasiveness of host cells. This review comprehensively discusses the mechanisms underlying the binding of SARS-CoV2 to ACE2 and putative alternative receptors, and the role of potential co-receptors and proteases in the early stages of SARS-CoV-2 infection. Given the short therapeutic time window within which to act to avoid the devastating evolution of the disease, we focused on potential therapeutic treatments-selected mainly among repurposing drugs-able to counteract the invasive front of proteases and mild inflammatory conditions, in order to prevent severe infection. Using existing approved drugs has the advantage of rapidly proceeding to clinical trials, low cost and, consequently, immediate and worldwide availability.
Collapse
Affiliation(s)
- Annamaria Vianello
- Department of Information Engineering, Telemedicine Section, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.F.)
| | - Serena Del Turco
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Serena Babboni
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Beatrice Silvestrini
- Department of Surgical, Medical, Molecular Pathology, and Critical Area, University of Pisa, 56122 Pisa, Italy;
| | - Rosetta Ragusa
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Chiara Caselli
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| | - Luca Melani
- Department of Territorial Medicine, ASL Toscana Nord-Ovest, 56121 Pisa, Italy;
| | - Luca Fanucci
- Department of Information Engineering, Telemedicine Section, University of Pisa, 56122 Pisa, Italy; (A.V.); (L.F.)
| | - Giuseppina Basta
- Council of National Research (CNR), Institute of Clinical Physiology, 56124 Pisa, Italy; (S.B.); (R.R.); (C.C.)
| |
Collapse
|