1
|
Saccenti D, Lauro LJR, Crespi SA, Moro AS, Vergallito A, Grgič RG, Pretti N, Lamanna J, Ferro M. Boosting Psychotherapy With Noninvasive Brain Stimulation: The Whys and Wherefores of Modulating Neural Plasticity to Promote Therapeutic Change. Neural Plast 2024; 2024:7853199. [PMID: 39723244 PMCID: PMC11669434 DOI: 10.1155/np/7853199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
The phenomenon of neural plasticity pertains to the intrinsic capacity of neurons to undergo structural and functional reconfiguration through learning and experiential interaction with the environment. These changes could manifest themselves not only as a consequence of various life experiences but also following therapeutic interventions, including the application of noninvasive brain stimulation (NIBS) and psychotherapy. As standalone therapies, both NIBS and psychotherapy have demonstrated their efficacy in the amelioration of psychiatric disorders' symptoms, with a certain variability in terms of effect sizes and duration. Consequently, scholars suggested the convenience of integrating the two interventions into a multimodal treatment to boost and prolong the therapeutic outcomes. Such an approach is still in its infancy, and the physiological underpinnings substantiating the effectiveness and utility of combined interventions are still to be clarified. Therefore, this opinion paper aims to provide a theoretical framework consisting of compelling arguments as to why adding NIBS to psychotherapy can promote therapeutic change. Namely, we will discuss the physiological effects of the two interventions, thus providing a rationale to explain the potential advantages of a combined approach.
Collapse
Affiliation(s)
- Daniele Saccenti
- Department of Psychology, Sigmund Freud University, Milan, Italy
| | - Leonor J. Romero Lauro
- Department of Psychology and NeuroMi, University of Milano-Bicocca, Milan, Italy
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
| | - Sofia A. Crespi
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Andrea S. Moro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | | | | | - Novella Pretti
- Cognitive Studies, Cognitive Psychotherapy School and Research Center, Milan, Italy
- Clinical Psychology Center, Division of Neurology, Galliera Hospital, Genoa, Italy
| | - Jacopo Lamanna
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| | - Mattia Ferro
- Department of Psychology, Sigmund Freud University, Milan, Italy
- Center for Behavioral Neuroscience and Communication (BNC), Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
2
|
Bounoua N, Joseph JE, Adams ZW, Crum KI, Sege CT, McTeague LM, Hajcak G, Halliday CA, Danielson CK. Interpersonal violence moderates sustained-transient threat co-activation in the vmPFC and amygdala in a community sample of youth. Dev Psychopathol 2024:1-10. [PMID: 39587380 DOI: 10.1017/s0954579424001743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The increased risk for psychopathology associated with interpersonal violence exposure (IPV, e.g., physical abuse, sexual assault) is partially mediated by neurobiological alterations in threat-related processes. Evidence supports parsing neural circuitry related to transient and sustained threat, as they appear to be separable processes with distinct neurobiological underpinnings. Although childhood is a sensitive period for neurodevelopment, most prior work has been conducted in adult samples. Further, it is unknown how IPV exposure may impact transient-sustained threat neural interactions. The current study tested the moderating role of IPV exposure on sustained vmPFC-transient amygdala co-activation during an fMRI task during which threat and neutral cues were predictably or unpredictably presented. Analyses were conducted in a sample of 212 community-recruited youth (M/SDage = 11.77/2.44 years old; 51.9% male; 56.1% White/Caucasian). IPV-exposed youth evidenced a positive sustained vmPFC-transient amygdala co-activation, while youth with no IPV exposure did not show this association. Consistent with theoretical models, effects were specific to unpredictable, negative trials and to exposure to IPV (i.e., unrelated to non-IPV traumatic experiences). Although preliminary, these findings provide novel insight into how childhood IPV exposure may alter neural circuity involved in specific facets of threat processing.
Collapse
Affiliation(s)
- Nadia Bounoua
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Jane E Joseph
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Zachary W Adams
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kathleen I Crum
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Christopher T Sege
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Lisa M McTeague
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - Greg Hajcak
- Department of Psychology, Florida State University, Tallahassee, FL, USA
| | - Colleen A Halliday
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | | |
Collapse
|
3
|
Somerville Y, Abend R. The Organization of Anxiety Symptoms Along the Threat Imminence Continuum. Curr Top Behav Neurosci 2024. [PMID: 39579323 DOI: 10.1007/7854_2024_548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Pathological anxiety is highly prevalent, impairing, and often chronic. Yet, despite considerable research, mechanistic understanding of anxiety and its translation to clinical practice remain limited. Here, we first highlight two foundational complications that contribute to this gap: a reliance on a phenomenology-driven definition of pathological anxiety in neurobiological mechanistic research, and a limited understanding of the chronicity of anxiety symptom expression. We then posit that anxiety symptoms may reflect aberrant expression of otherwise normative defensive responses. Accordingly, we propose that threat imminence, an organizing dimension for normative defensive responses observed across species, may be applied to organize and understand anxiety symptoms along a temporal dimension of expression. Empirical evidence linking distinct anxiety symptoms and the aberrant expression of imminence-dependent defensive responses is reviewed, alongside the neural mechanisms which may underpin these cognitive, physiological, and behavioral responses. Drawing from extensive translational and clinical research, we suggest that understanding anxiety symptoms through this neurobiologically-informed framework may begin to overcome the conceptual complications hindering advancement in mechanistic research and clinical interventions for pathological anxiety.
Collapse
Affiliation(s)
- Ya'ira Somerville
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel
| | - Rany Abend
- Baruch Ivcher School of Psychology, Reichman University, Herzliya, Israel.
| |
Collapse
|
4
|
Hunsberger HC, Lee S, Jin M, Lanio M, Whye A, Cha J, Scarlata M, Matthews LC, Jayaseelan K, Denny CA. Sex-Specific Effects of Anxiety on Cognition and Activity-Dependent Neural Networks: Insights From (Female) Mice and (Wo)men. Biol Psychiatry 2024:S0006-3223(24)01621-4. [PMID: 39349155 DOI: 10.1016/j.biopsych.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND Neuropsychiatric symptoms, such as depression and anxiety, are observed in 90% of patients with Alzheimer's disease (AD), two-thirds of whom are women. Neuropsychiatric symptoms usually manifest long before AD onset creating a therapeutic opportunity. Here, we examined the impact of anxiety on AD progression and the underlying brainwide neuronal mechanisms. METHODS To gain mechanistic insight into how anxiety affects AD progression, we performed a cross-sectional analysis on mood, cognition, and neural activity using the ArcCreERT2 x eYFP (enhanced yellow fluorescent protein) x amyloid precursor protein/presenilin 1 (APP/PS1) (AD) mice. The Alzheimer's Disease Neuroimaging Initiative dataset was used to determine the impact of anxiety on AD progression in humans. RESULTS Female APP/PS1 mice exhibited anxiety-like behavior and cognitive decline at an earlier age than control mice and male mice. Brainwide analysis of c-Fos+ revealed changes in regional correlations and overall network connectivity in APP/PS1 mice. Sex-specific eYFP+/c-Fos+ changes were observed; female APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in dorsal CA3, whereas male APP/PS1 mice exhibited less eYFP+/c-Fos+ cells in the dorsal dentate gyrus. In the Alzheimer's Disease Neuroimaging Initiative dataset, anxiety predicted transition to dementia. Female participants positive for anxiety and amyloid transitioned more quickly to dementia than male participants. CONCLUSIONS While future studies are needed to understand whether anxiety is a predictor, a neuropsychiatric biomarker, or a comorbid symptom that occurs during disease onset, these results suggest that there are sex differences in AD network dysfunction and that personalized medicine may benefit male and female patients with AD rather than a one-size-fits-all approach.
Collapse
Affiliation(s)
- Holly C Hunsberger
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York
| | - Seonjoo Lee
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York; Mental Health Data Science, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York
| | - Michelle Jin
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Marcos Lanio
- Neurobiology and Behavior Graduate Program, Columbia University, New York, New York; Medical Scientist Training Program (MSTP), Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Alicia Whye
- Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York
| | - Jiook Cha
- Department of Biostatistics (in Psychiatry), Mailman School of Public Health, Columbia University, New York, New York; Division of Child and Adolescent Psychiatry, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Data Science Institute, Columbia University, New York, New York; Department of Psychology, Seoul National University, Seoul, South Korea
| | - Miranda Scarlata
- Department of Neuroscience, Vassar College, Poughkeepsie, New York
| | - Louise C Matthews
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York
| | | | - Christine A Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc. (RFMH)/New York State Psychiatric Institute (NYSPI), New York, New York; Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), New York, New York.
| |
Collapse
|
5
|
Azriel O, Arad G, Tik N, Weiser M, Bloch M, Garber E, Lazarov A, Pine DS, Tavor I, Bar-Haim Y. Neural activation changes following attention bias modification treatment or a selective serotonin reuptake inhibitor for social anxiety disorder. Psychol Med 2024; 54:1-13. [PMID: 39252484 PMCID: PMC11496228 DOI: 10.1017/s0033291724001521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 02/01/2024] [Accepted: 04/11/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Delineation of changes in neural function associated with novel and established treatments for social anxiety disorder (SAD) can advance treatment development. We examined such changes following selective serotonin reuptake inhibitor (SSRI) and attention bias modification (ABM) variant - gaze-contingent music reward therapy (GC-MRT), a first-line and an emerging treatments for SAD. METHODS Eighty-one patients with SAD were allocated to 12-week treatments of either SSRI or GC-MRT, or waitlist (ns = 22, 29, and 30, respectively). Baseline and post-treatment functional magnetic resonance imaging (fMRI) data were collected during a social-threat processing task, in which attention was directed toward and away from threat/neutral faces. RESULTS Patients who received GC-MRT or SSRI showed greater clinical improvement relative to patients in waitlist. Compared to waitlist patients, treated patients showed greater activation increase in the right inferior frontal gyrus and anterior cingulate cortex when instructed to attend toward social threats and away from neutral stimuli. An additional anterior cingulate cortex cluster differentiated between the two active groups. Activation in this region increased in ABM and decreased in SSRI. In the ABM group, symptom change was positively correlated with neural activation change in the dorsolateral prefrontal cortex. CONCLUSIONS Brain function measures show both shared and treatment-specific changes following ABM and SSRI treatments for SAD, highlighting the multiple pathways through which the two treatments might work. Treatment-specific neural responses suggest that patients with SAD who do not fully benefit from SSRI or ABM may potentially benefit from the alternative treatment, or from a combination of the two. TRIAL REGISTRATION ClinicalTrials.gov, Identifier: NCT03346239. https://clinicaltrials.gov/ct2/show/NCT03346239.
Collapse
Affiliation(s)
- Omer Azriel
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Gal Arad
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Niv Tik
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mark Weiser
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Psychiatry, Sheba Medical Center, Tel Aviv, Israel
| | - Miki Bloch
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Psychiatric Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Eddie Garber
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Psychiatric Department, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Amit Lazarov
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Daniel S. Pine
- Section on Developmental Affective Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - Ido Tavor
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yair Bar-Haim
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
6
|
Huang S, De Brigard F, Cabeza R, Davis SW. Connectivity analyses for task-based fMRI. Phys Life Rev 2024; 49:139-156. [PMID: 38728902 PMCID: PMC11116041 DOI: 10.1016/j.plrev.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024]
Abstract
Functional connectivity is conventionally defined by measuring the similarity between brain signals from two regions. The technique has become widely adopted in the analysis of functional magnetic resonance imaging (fMRI) data, where it has provided cognitive neuroscientists with abundant information on how brain regions interact to support complex cognition. However, in the past decade the notion of "connectivity" has expanded in both the complexity and heterogeneity of its application to cognitive neuroscience, resulting in greater difficulty of interpretation, replication, and cross-study comparisons. In this paper, we begin with the canonical notions of functional connectivity and then introduce recent methodological developments that either estimate some alternative form of connectivity or extend the analytical framework, with the hope of bringing better clarity for cognitive neuroscience researchers.
Collapse
Affiliation(s)
- Shenyang Huang
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States.
| | - Felipe De Brigard
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States; Department of Philosophy, Duke University, Durham, NC 27708, United States
| | - Roberto Cabeza
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Center for Cognitive Neuroscience, Duke University, Durham, NC 27708, United States
| | - Simon W Davis
- Department of Psychology and Neuroscience, Duke University, Durham, NC 27708, United States; Department of Philosophy, Duke University, Durham, NC 27708, United States; Department of Neurology, Duke University School of Medicine, Durham, NC 27708, United States
| |
Collapse
|
7
|
Chaudhary S, Hu S, Hu K, Dominguez JC, Chao HH, Li CSR. Sex differences in the effects of trait anxiety and age on resting-state functional connectivities of the amygdala. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023; 14:100646. [PMID: 38105798 PMCID: PMC10723810 DOI: 10.1016/j.jadr.2023.100646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023] Open
Abstract
Background Numerous studies characterized how resting-state functional connectivities (rsFCs) of the amygdala were disrupted in emotional disorders and varied with emotional traits, including anxiety. With trait anxiety known to diminish with age, a critical issue concerns disambiguating the effects of age and anxiety on amygdala rsFCs in studying the neural bases of individual differences in anxiety. Methods Two-hundred adults (83 women) 19-85 years of age underwent fMRI and assessment for trait anxiety. Amygdala rsFC correlates were identified using multiple regression with age and anxiety in the same model for all and separately in men and women. The rsFC correlates were examined for age-anxiety interaction. Results Anxiety was negatively correlated with amygdala-temporooccipital gyri rsFC in all and in men alone. In women, amgydala rsFC with the thalamus/pallidum, angular/supramarginal gyri, inferior temporal gyrus, and posterior insula correlated positively and rsFC with calcarine cortex and caudate correlated negatively with anxiety. We also observed sex differences in age correlation of amgydala-posterior cingulate cortex/precuneus and -insula/temporoparietal rsFCs, with stronger associations in women. In women alone, anxiety and age interacted to determine amygdala rsFC with the thalamus/pallidum, calcarine cortex, and caudate, with older age associated with stronger correlation between anxiety and the rsFCs. Limitations The findings need to be validated in an independent sample and further explored using task-based data. Conclusion Highlighting anxiety- and age- specific as well as interacting correlates of amygdala rsFCs and sex differences in the correlates, the findings may shed light on the neural markers of anxiety.
Collapse
Affiliation(s)
- Shefali Chaudhary
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Sien Hu
- Department of Psychology, State University of New York at Oswego, Oswego, NY 13126, USA
| | - Kesong Hu
- Department of Psychology, University of Arkansas, Little Rock, AR 72204, USA
| | | | - Herta H. Chao
- VA Connecticut Healthcare System, West Haven, CT 06516, USA
- Department of Medicine, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
- Wu Tsai Institute, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
8
|
Abend R. Understanding anxiety symptoms as aberrant defensive responding along the threat imminence continuum. Neurosci Biobehav Rev 2023; 152:105305. [PMID: 37414377 PMCID: PMC10528507 DOI: 10.1016/j.neubiorev.2023.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 06/22/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Threat-anticipatory defensive responses have evolved to promote survival in a dynamic world. While inherently adaptive, aberrant expression of defensive responses to potential threat could manifest as pathological anxiety, which is prevalent, impairing, and associated with adverse outcomes. Extensive translational neuroscience research indicates that normative defensive responses are organized by threat imminence, such that distinct response patterns are observed in each phase of threat encounter and orchestrated by partially conserved neural circuitry. Anxiety symptoms, such as excessive and pervasive worry, physiological arousal, and avoidance behavior, may reflect aberrant expression of otherwise normative defensive responses, and therefore follow the same imminence-based organization. Here, empirical evidence linking aberrant expression of specific, imminence-dependent defensive responding to distinct anxiety symptoms is reviewed, and plausible contributing neural circuitry is highlighted. Drawing from translational and clinical research, the proposed framework informs our understanding of pathological anxiety by grounding anxiety symptoms in conserved psychobiological mechanisms. Potential implications for research and treatment are discussed.
Collapse
Affiliation(s)
- Rany Abend
- School of Psychology, Reichman University, P.O. Box 167, Herzliya 4610101, Israel; Section on Development and Affective Neuroscience, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Hu C, Jiang W, Huang J, Lin J, Huang J, Wang M, Xie J, Yuan Y. The amplitude of low-frequency fluctuation characteristics in depressed adolescents with suicide attempts: a resting-state fMRI study. Front Psychiatry 2023; 14:1228260. [PMID: 37575559 PMCID: PMC10419264 DOI: 10.3389/fpsyt.2023.1228260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/18/2023] [Indexed: 08/15/2023] Open
Abstract
Background The amplitude of low-frequency fluctuation (ALFF) is a measure of spontaneous brain activity derived from resting-state functional magnetic resonance imaging (rs-fMRI). Previous research has suggested that abnormal ALFF values may be associated with major depressive disorder (MDD) and suicide attempts in adolescents. In this study, our aim was to investigate the differences in ALFF values between adolescent MDD patients with and without a history of suicide attempts, and to explore the potential utility of ALFF as a neuroimaging biomarker for aiding in the diagnosis and prediction of suicide attempts in this population. Methods The study included 34 adolescent depression patients with suicide attempts (SU group), 43 depression patients without suicide attempts (NSU group), and 36 healthy controls (HC group). Depression was diagnosed using a threshold score greater than 17 on the Hamilton Depression Rating Scale (HDRS). The rs-fMRI was employed to calculate zALFF values and compare differences among the groups. Associations between zALFF values in specific brain regions and clinical variables such as emotion regulation difficulties were explored using Pearson partial correlation analysis. Receiver-Operating Characteristics (ROC) analysis assessed the ability of mean zALFF values to differentiate between SU and NSU groups. Results Significant differences in zALFF values were observed in the left and right inferior temporal gyrus (l-ITG, r-ITG) and right fusiform gyrus (r-FG) among the three groups (GRF corrected). Both SU and NSU groups exhibited increased zALFF values in the inferior temporal gyrus compared to the HC group. Furthermore, the SU group showed significantly higher zALFF values in the l-ITG and r-FG compared to both the NSU group and the HC group. Partial correlation analysis revealed a negative correlation between zALFF values in the left superior and middle frontal gyrus (l-SFG, l-MFG) and the degree of emotional dysregulation in the SU group (R = -0.496, p = 0.003; R = -0.484, p = 0.005). Combining zALFF values from the l-ITG and r-FG achieved successful discrimination between depressed adolescents with and without suicide attempts (AUC = 0.855) with high sensitivity (86%) and specificity (71%). Conclusion Depressed adolescents with suicidal behavior exhibit unique neural activity patterns in the inferior temporal gyrus and fusiform gyrus. These findings highlight the potential utility of these specific brain regions as biomarkers for identifying suicide risk in depressed adolescents. Furthermore, associations between emotion dysregulation and activity in their frontal gyrus regions were observed. These findings provide preliminary yet pertinent insights into the pathophysiology of suicide in depressed adolescents.
Collapse
Affiliation(s)
- Changchun Hu
- Department of Clinical Psychology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenhao Jiang
- Department of Psychosomatics and Psychiatry, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Jie Huang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Lin
- Department of Clinical Psychology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jialing Huang
- Department of Clinical Psychology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mei Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Xie
- Department of Clinical Psychology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhong Da Hospital, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Kitt ER, Odriozola P, Gee DG. Extinction Learning Across Development: Neurodevelopmental Changes and Implications for Pediatric Anxiety Disorders. Curr Top Behav Neurosci 2023; 64:237-256. [PMID: 37532964 DOI: 10.1007/7854_2023_430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Alterations in extinction learning relate to the development and maintenance of anxiety disorders across the lifespan. While exposure therapy, based on principles of extinction, can be highly effective for treating anxiety, many patients do not show sufficient improvement following treatment. In particular, evidence suggests that exposure therapy does not work sufficiently for up to 40% of children who receive this evidence-based treatment.Importantly, fear learning and extinction, as well as the neural circuitry supporting these processes, undergo dynamic changes across development. An improved understanding of developmental changes in extinction learning and the associated neural circuitry may help to identify targets to improve treatment response in clinically anxious children and adolescents. In this chapter, we provide a brief overview of methods used to study fear learning and extinction in developmental populations. We then review what is currently known about the developmental changes that occur in extinction learning and related neural circuitry. We end this chapter with a discussion of the implications of these neurodevelopmental changes for the characterization and treatment of pediatric anxiety disorders.
Collapse
Affiliation(s)
| | - Paola Odriozola
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Dylan G Gee
- Department of Psychology, Yale University, New Haven, CT, USA.
| |
Collapse
|
11
|
Chand T, Alizadeh S, Li M, Fan Y, Jamalabadi H, Danyeli L, Nanni-Zepeda M, Herrmann L, Van der Meer J, Vester JC, Schultz M, Naschold B, Walter M. Nx4 Modulated Resting-State Functional Connectivity Between Amygdala and Prefrontal Cortex in a Placebo-Controlled, Crossover Trial. Brain Connect 2022; 12:812-822. [PMID: 35438535 PMCID: PMC9805862 DOI: 10.1089/brain.2021.0189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: The basic functional organization of the resting brain, assessed as resting-state functional connectivity (rsFC), can be affected by previous stress experience and it represents the basis on which subsequent stress experience develops. Notably, the rsFC between the amygdala and the cortical regions associated with emotion regulation and anxiety are affected during stress. The multicomponent drug Neurexan® (Nx4) has previously demonstrated a reduction in amygdala activation in an emotional face matching task and it ameliorated stress-related symptoms. We, thus, investigated the effect of Nx4 on rsFC of the amygdala before stress induction compared with baseline in mildly to moderately stressed participants. Methods: In a randomized, placebo-controlled, double-blind, crossover trial 39 participants received a single dose of placebo or Nx4. Resting-state functional magnetic resonance imaging scans were performed pre-dose and 40 to 60 min post-dose, before any stress induction. First, highly connected functional hubs were identified by global functional connectivity density (gFCD) analysis. Second, by using a seed-based approach, rsFC maps of the left centromedial amygdala (CeMA) were created. The effect of Nx4 on both was evaluated. Results: The medial prefrontal cortex was identified as a relevant functional hub affected by Nx4 in an explorative whole brain gFCD analysis. Using the seed-based approach, we then demonstrated that Nx4 significantly enhanced the negative connectivity between the left CeMA and two cortical regions: the dorsolateral and medial prefrontal cortices. Conclusions: In a resting-state condition, Nx4 reduced the prefrontal cortex gFCD and strengthened the functional coupling between the amygdala and the prefrontal cortex that is relevant for emotion regulation and the stress response. Further studies should elaborate whether this mechanism represents enhanced regulatory control of the amygdala at rest and, consequently, to a diminished susceptibility to stress. ClinicalTrials.gov ID: NCT02602275.
Collapse
Affiliation(s)
- Tara Chand
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Sarah Alizadeh
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Yan Fan
- Department Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors at the TU Dortmund (IfADo), Dortmund, Germany
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Lena Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Melanni Nanni-Zepeda
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Luisa Herrmann
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Johan Van der Meer
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | | | - Martin Walter
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Address correspondence to: Martin Walter, Department of Psychiatry and Psychotherapy, University of Tübingen, Leipziger Str. 44, Tübingen 39120, Germany
| |
Collapse
|
12
|
Sawrikar V, Macbeth A, Gillespie-Smith K, Brown M, Lopez-Williams A, Boulton K, Guestella A, Hickie I. Transdiagnostic Clinical Staging for Childhood Mental Health: An Adjunctive Tool for Classifying Internalizing and Externalizing Syndromes that Emerge in Children Aged 5-11 Years. Clin Child Fam Psychol Rev 2022; 25:613-626. [PMID: 35598197 PMCID: PMC9427921 DOI: 10.1007/s10567-022-00399-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2022] [Indexed: 11/20/2022]
Abstract
Clinical staging is now recognized as a key tool for facilitating innovation in personalized and preventative mental health care. It places a strong emphasis on the salience of indicated prevention, early intervention, and secondary prevention of major mental disorders. By contrast to established models for major mood and psychotic syndromes that emerge after puberty, developments in clinical staging for childhood-onset disorders lags significantly behind. In this article, criteria for a transdiagnostic staging model for those internalizing and externalizing disorders that emerge in childhood is presented. This sits alongside three putative pathophysiological profiles (developmental, circadian, and anxious-arousal) that may underpin these common illness trajectories. Given available evidence, we argue that it is now timely to develop a transdiagnostic staging model for childhood-onset syndromes. It is further argued that a transdiagnostic staging model has the potential to capture more precisely the dimensional, fluctuating developmental patterns of illness progression of childhood psychopathology. Given potential improvements in modelling etiological processes, and delivering more personalized interventions, transdiagnostic clinical staging for childhood holds much promise for assisting to improve outcomes. We finish by presenting an agenda for research in developments of transdiagnostic clinical staging for childhood mental health.
Collapse
Affiliation(s)
- Vilas Sawrikar
- Centre of Applied Developmental Psychology, University of Edinburgh, Edinburgh, UK.
- Department of Clinical & Health Psychology, School of Health in Social Sciences, The University of Edinburgh, Medical School (Doorway 6), Room 1M.8, Teviot Place, Edinburgh, EH8 9AG, UK.
| | - Angus Macbeth
- Centre of Applied Developmental Psychology, University of Edinburgh, Edinburgh, UK
- Department of Clinical & Health Psychology, School of Health in Social Sciences, The University of Edinburgh, Medical School (Doorway 6), Room 1M.8, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Karri Gillespie-Smith
- Centre of Applied Developmental Psychology, University of Edinburgh, Edinburgh, UK
- Department of Clinical & Health Psychology, School of Health in Social Sciences, The University of Edinburgh, Medical School (Doorway 6), Room 1M.8, Teviot Place, Edinburgh, EH8 9AG, UK
| | - Megan Brown
- ADHD & Autism Psychological Services and Advocacy, Utica, NY, USA
| | | | - Kelsie Boulton
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Adam Guestella
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Ian Hickie
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| |
Collapse
|
13
|
Joseph JE, Bustos N, Crum K, Flanagan J, Baker NL, Hartwell K, Santa-Maria MM, Brady K, McRae-Clark A. Oxytocin moderates corticolimbic social stress reactivity in cocaine use disorder and healthy controls. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 11:100150. [PMID: 35967924 PMCID: PMC9363641 DOI: 10.1016/j.cpnec.2022.100150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/09/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022] Open
Abstract
Social stress can contribute to the development of substance use disorders (SUDs) and increase the likelihood of relapse. Oxytocin (OT) is a potential pharmacotherapy that may buffer the effects of social stress on arousal and reward neurocircuitry. However, more research is needed to understand how OT moderates the brain’s response to social stress in SUDs. The present study examined the effect of intransasal OT (24 IU) versus placebo (PBO) on corticolimbic functional connectivity associated with acute social stress in individuals with cocaine use disorder (CUD; n = 67) and healthy controls (HC; n = 52). Psychophysiological interaction modeling used the left and right amygdala as seed regions with the left and right orbitofrontal and anterior cingulate cortex as a priori regions of interest. Moderators of the OT response included childhood trauma history and biological sex, which were examined in independent analyses. The main finding was that OT normalized corticolimbic connectivity (left amygdala-orbitofrontal and left amygdala-anterior cingulate) as a function of childhood trauma such that connectivity was different between trauma-present and trauma-absent groups on PBO, but not between trauma groups on OT. Effects of OT on corticolimbic connectivity were not different as a function of diagnosis (CUD vs HC) or sex. However, OT reduced subjective anxiety during social stress for CUD participants who reported childhood trauma compared to PBO and normalized craving response as a function of sex in CUD. The present findings add to some prior findings of normalizing effects of OT on corticolimbic circuitry in individuals with trauma histories and provide some initial support that OT can normalize subjective anxiety and craving in CUD. Social stress-related corticolimbic connectivity was affected by childhood trauma under placebo. Under oxytocin, corticolimbic connectivity differences due to childhood trauma were absent. Oxytocin reduced subjective anxiety in cocaine users with childhood trauma. Oxytocin reduced subjective craving in male cocaine users.
Collapse
Affiliation(s)
- Jane E. Joseph
- Department of Neuroscience, Medical University of South Carolina, 135 Cannon Street, Charleston SC, 29425, USA
- Corresponding author.
| | - Nicholas Bustos
- Department of Neuroscience, Medical University of South Carolina, 135 Cannon Street, Charleston SC, 29425, USA
| | - Kathleen Crum
- Department of Neuroscience, Medical University of South Carolina, 135 Cannon Street, Charleston SC, 29425, USA
- Department of Psychiatry Indiana University School of Medicine, Indianapolis, IN, USA
| | - Julianne Flanagan
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Nathaniel L. Baker
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - Karen Hartwell
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Megan Moran Santa-Maria
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Boehringer Ingelheim, Athens, GA, USA
| | - Kathleen Brady
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - Aimee McRae-Clark
- Department of Psychiatry and Behavioral Sciences, Medical University of South Carolina, Charleston, SC, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| |
Collapse
|
14
|
Richard Y, Tazi N, Frydecka D, Hamid MS, Moustafa AA. A systematic review of neural, cognitive, and clinical studies of anger and aggression. CURRENT PSYCHOLOGY 2022; 42:1-13. [PMID: 35693838 PMCID: PMC9174026 DOI: 10.1007/s12144-022-03143-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 01/23/2023]
Abstract
Anger and aggression have large impact on people's safety and the society at large. In order to provide an intervention to minimise aggressive behaviours, it is important to understand the neural and cognitive aspects of anger and aggression. In this systematic review, we investigate the cognitive and neural aspects of anger-related processes, including anger-related behaviours and anger reduction. Using this information, we then review prior existing methods on the treatment of anger-related disorders as well as anger management, including mindfulness and cognitive behavioural therapy. At the cognitive level, our review that anger is associated with excessive attention to anger-related stimuli and impulsivity. At the neural level, anger is associated with abnormal functioning of the amygdala and ventromedial prefrontal cortex. In conclusions, based on cognitive and neural studies, we here argue that mindfulness based cognitive behavioural therapy may be better at reducing anger and aggression than other behavioural treatments, such as cognitive behavioural therapy or mindfulness alone. We provide key information on future research work and best ways to manage anger and reduce aggression. Importantly, future research should investigate how anger related behaviours is acquired and how stress impacts the development of anger.
Collapse
Affiliation(s)
| | - Nadia Tazi
- Arabian Gulf University, Manama, Bahrain
- Universite Med 5th, Rabat, Morocco
| | - Dorota Frydecka
- Department of Psychiatry, Wroclaw Medical University, Pasteur Street 10, 50-367 Wroclaw, Poland
| | | | - Ahmed A. Moustafa
- Department of Human Anatomy and Physiology, the Faculty of Health Sciences, University of Johannesburg, Johannesburg, 2193 South Africa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, QLD Australia
| |
Collapse
|
15
|
Alfieri V, Mattera A, Baldassarre G. Neural Circuits Underlying Social Fear in Rodents: An Integrative Computational Model. Front Syst Neurosci 2022; 16:841085. [PMID: 35350477 PMCID: PMC8957808 DOI: 10.3389/fnsys.2022.841085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Social avoidance in rodents arises from a complex interplay between the prefrontal cortex and subcortical structures, such as the ventromedial hypothalamus and the dorsal periaqueductal gray matter. Experimental studies are revealing the contribution of these areas, but an integrative view and model of how they interact to produce adaptive behavior are still lacking. Here, we present a computational model of social avoidance, proposing a set of integrated hypotheses on the possible macro organization of the brain system underlying this phenomenon. The model is validated by accounting for several different empirical findings and produces predictions to be tested in future experiments.
Collapse
|
16
|
Tseng WL, Abend R, Gold AL, Brotman MA. Neural correlates of extinguished threat recall underlying the commonality between pediatric anxiety and irritability. J Affect Disord 2021; 295:920-929. [PMID: 34706463 PMCID: PMC8554134 DOI: 10.1016/j.jad.2021.08.117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/28/2021] [Accepted: 08/28/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Anxiety and irritability frequently co-occur in youth and are mediated by aberrant threat responses. However, empirical evidence on neural mechanisms underlying this co-occurrence is limited. To address this, we apply data-driven latent phenotyping to data from a prior report of a well-validated threat extinction recall fMRI paradigm. METHODS Participants included 59 youth (28 anxiety disorder, 31 healthy volunteers; Mage=13.15 yrs) drawn from a transdiagnostic sample of 331 youth, in which bifactor analysis was conducted to derive latent factors representing shared vs. unique variance of dimensionally-assessed anxiety and irritability. Participants underwent threat conditioning and extinction. Approximately three weeks later, during extinction recall fMRI, participants made threat-safety discriminations under two task conditions: current threat appraisal and explicit recall of threat contingencies. Linear mixed-effects analyses examined associations of a "negative affectivity" factor reflecting shared anxiety and irritability variance with whole-brain activation and task-dependent amygdala connectivity. RESULTS During recall of threat-safety contingencies, higher negative affectivity was associated with greater prefrontal (ventrolateral/ventromedial, dorsolateral, orbitofrontal), motor, temporal, parietal, and occipital activation. During threat appraisal, higher negative affectivity was associated with greater amygdala-inferior parietal lobule connectivity to threat/safety ambiguity. LIMITATIONS Sample included only healthy youth and youth with anxiety disorders. Results may not generalize to other diagnoses for which anxiety and irritability are also common, and our negative affectivity factor should be interpreted as anxiety disorders with elevated irritability. Reliability of some subfactors was poor. CONCLUSIONS Aberrant amygdala-prefrontal-parietal circuitry during extinction recall of threat-safety stimuli may be a mechanism underlying the co-occurrence of pediatric anxiety and irritability.
Collapse
Affiliation(s)
- Wan-Ling Tseng
- Yale Child Study Center, Yale School of Medicine, Yale University, 230 S. Frontage Road, New Haven, CT 06519, USA.
| | - Rany Abend
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD 20854, USA
| | - Andrea L Gold
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI 02912, USA
| | - Melissa A Brotman
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD 20854, USA
| |
Collapse
|
17
|
Danon-Kraun S, Horovitz O, Frenkel T, Richter-Levin G, Pine DS, Shechner T. Return of fear following extinction in youth: An event-related potential study. Dev Psychobiol 2021; 63:e22189. [PMID: 34674235 DOI: 10.1002/dev.22189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 11/09/2022]
Abstract
The ability to learn to differentiate safety from danger matures gradually, particularly when such learning occurs over an extended time period. And yet, most research on fear learning examines the early phases of such learning and mainly in adults. The current study examined fear conditioning and extinction, as well as one form of extended learning, return of fear (ROF). Thirty-three typically developing children (age range: 7-14 years) completed fear conditioning and extinction; self-reports and psychophysiological indices were measured at this point. Two weeks later, children completed a ROF test (n = 23), and event-related potentials (ERPs) were recorded. Results indicated successful fear acquisition and extinction. Moreover, participants reported greater fear of the conditioned stimulus (CS+) than the safety stimulus (CS-) in the ROF test 2 weeks later. In electrophysiology data, ROF manifested as a larger late positive potential (LPP) response to the CS+ than the CS-. Finally, these differences in LPP responses were positively correlated with poorer extinction, as indicated by the GSR responses 2 weeks earlier. This is the first ERP study to demonstrate ROF in children. The LPP measure may index an interplay between inhibitory and excitatory brain-related processes underlying the long-term effects of fear learning.
Collapse
Affiliation(s)
- Shani Danon-Kraun
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Omer Horovitz
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel.,Psychology Department, Tel-Hai College, Tel-Hai, Israel
| | - Tahl Frenkel
- Ziama Arkin Infancy Institute, Baruch Ivcher School of Psychology, Interdisciplinary Center (IDC), Herzliya, Israel
| | - Gal Richter-Levin
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| | - Daniel S Pine
- Section on Development and Affective Neuroscience, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Tomer Shechner
- School of Psychological Sciences and the Integrated Brain and Behavior Research Center, University of Haifa, Haifa, Israel
| |
Collapse
|
18
|
Yang Y, Yang B, Zhang L, Peng G, Fang D. Dynamic Functional Connectivity Reveals Abnormal Variability in the Amygdala Subregions of Children With Attention-Deficit/Hyperactivity Disorder. Front Neurosci 2021; 15:648143. [PMID: 34658751 PMCID: PMC8514188 DOI: 10.3389/fnins.2021.648143] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 09/06/2021] [Indexed: 11/17/2022] Open
Abstract
Objective: This study investigates whether the dynamic functional connectivity (dFC) of the amygdala subregions is altered in children with attention-deficit/hyperactivity disorder (ADHD). Methods: The dFC of the amygdala subregions was systematically calculated using a sliding time window method, for 75 children with ADHD and 20 healthy control (HC) children. Results: Compared with the HC group, the right superficial amygdala exhibited significantly higher dFC with the right prefrontal cortex, the left precuneus, and the left post-central gyrus for children in the ADHD group. The dFC of the amygdala subregions showed a negative association with the cognitive functions of children in the ADHD group. Conclusion: Functional connectivity of the amygdala subregions is more unstable among children with ADHD. In demonstrating an association between the stability of functional connectivity of the amygdala and cognitive functions, this study may contribute by providing a new direction for investigating the internal mechanism of ADHD.
Collapse
Affiliation(s)
- Yue Yang
- Children's Healthcare & Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Binrang Yang
- Children's Healthcare & Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Linlin Zhang
- Children's Healthcare & Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Gang Peng
- Children's Healthcare & Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Diangang Fang
- Children's Healthcare & Mental Health Center, Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
19
|
Susman ES, Weissman DG, Sheridan MA, McLaughlin KA. High vagal tone and rapid extinction learning as potential transdiagnostic protective factors following childhood violence exposure. Dev Psychobiol 2021; 63:e22176. [PMID: 34423415 PMCID: PMC8410650 DOI: 10.1002/dev.22176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/07/2021] [Accepted: 07/16/2021] [Indexed: 01/19/2023]
Abstract
Childhood exposure to violence is strongly associated with psychopathology. High resting respiratory sinus arrhythmia (RSA) is associated with lower levels of psychopathology in children exposed to violence. High RSA may help to protect against psychopathology by facilitating fear extinction learning, allowing more flexible autonomic responses to learned threat and safety cues. In this study, 165 youth (79 female, aged 9-17; 86 exposed to violence) completed assessments of violence exposure, RSA, and psychopathology, and a fear extinction learning task; 134 participants returned and completed psychopathology assessments 2 years later. Resting RSA moderated the longitudinal association of violence exposure with post-traumatic stress disorder (PTSD) symptoms and externalizing psychopathology, such that the association was weaker among youths with higher RSA. Higher skin conductance responses (SCR) during extinction learning to the threat cue (CS+) was associated with higher internalizing symptoms at follow-up and greater SCR to the safety cue (CS-) was associated with higher PTSD, internalizing, and externalizing symptoms, as well as the p-factor, controlling for baseline symptoms. Findings suggest that higher RSA may protect against emergence of psychopathology among children exposed to violence. Moreover, difficulty extinguishing learned threat responses and elevated autonomic responses to safety cues may be associated with risk for future psychopathology.
Collapse
Affiliation(s)
- Eli S. Susman
- Department of Psychology, Harvard University, Cambridge, MA
| | | | - Margaret A. Sheridan
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | |
Collapse
|
20
|
Treanor M, Rosenberg BM, Craske MG. Pavlovian Learning Processes in Pediatric Anxiety Disorders: A Critical Review. Biol Psychiatry 2021; 89:690-696. [PMID: 33220917 PMCID: PMC9027721 DOI: 10.1016/j.biopsych.2020.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 12/31/2022]
Abstract
Deficits in associative and Pavlovian learning are thought to lie at the center of anxiety-related disorders. However, the majority of studies have been carried out in adult populations. The aim of this review was to critically examine the behavioral and neuroimaging literature on Pavlovian learning in pediatric anxiety disorders. We conclude that although there is evidence for deficits in Pavlovian processes (e.g., heightened reactivity to safety cues in anxious samples), the extant literature suffers from key methodological and theoretical issues. We conclude with theoretical and methodological recommendations for future research in order to further elucidate the role of Pavlovian learning in the etiology, maintenance, and treatment of pediatric anxiety disorders.
Collapse
Affiliation(s)
- Michael Treanor
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Benjamin M Rosenberg
- Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Michelle G Craske
- Department of Psychology, University of California, Los Angeles, Los Angeles, California; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
21
|
Emerging Evidence for Putative Neural Networks and Antecedents of Pediatric Anxiety in the Fetal, Neonatal, and Infant Periods. Biol Psychiatry 2021; 89:672-680. [PMID: 33518264 PMCID: PMC8087150 DOI: 10.1016/j.biopsych.2020.11.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/12/2020] [Accepted: 11/22/2020] [Indexed: 12/20/2022]
Abstract
Anxiety disorders are the most prevalent psychiatric disorders in youth and are associated with profound individual impairment and public health costs. Research shows that clinically significant anxiety symptoms manifest in preschool-aged children, and correlates of anxiety symptoms are observable in infancy. Yet, predicting who is at risk for developing anxiety remains an enduring challenge. Predictive biomarkers of anxiety are needed before school age when anxiety symptoms typically consolidate into diagnostic profiles. Increasing evidence indicates that early neural measures implicated in anxiety and anxious temperament may be incorporated with traditional measures of behavioral risk (i.e., behavioral inhibition) to provide more robust classification of pediatric anxiety problems. This review examines the phenomenology of anxiety disorders in early life, highlighting developmental research that interrogates the putative neurocircuitry of pediatric anxiety. First, we discuss enduring challenges in identifying and predicting risk for pediatric anxiety. Second, we summarize emerging evidence for putative neural antecedents and networks underlying risk for pediatric anxiety in the fetal, neonatal, and infant periods that represent novel potential avenues for risk identification and prediction. We focus on evidence examining the importance of early amygdala and extended amygdala circuitry development to the emergence of anxiety. Finally, we discuss the utility of integrating developmental psychopathology and neuroscience to facilitate future research and clinical work.
Collapse
|
22
|
Odriozola P, Gee DG. Learning About Safety: Conditioned Inhibition as a Novel Approach to Fear Reduction Targeting the Developing Brain. Am J Psychiatry 2021; 178:136-155. [PMID: 33167673 PMCID: PMC7951569 DOI: 10.1176/appi.ajp.2020.20020232] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adolescence is a peak time for the onset of psychiatric disorders, with anxiety disorders being the most common and affecting as many as 30% of youths. A core feature of anxiety disorders is difficulty regulating fear, with evidence suggesting deficits in extinction learning and corresponding alterations in frontolimbic circuitry. Despite marked changes in this neural circuitry and extinction learning throughout development, interventions for anxious youths are largely based on principles of extinction learning studied in adulthood. Safety signal learning, based on conditioned inhibition of fear in the presence of a cue that indicates safety, has been shown to effectively reduce anxiety-like behavior in animal models and attenuate fear responses in healthy adults. Cross-species evidence suggests that safety signal learning involves connections between the ventral hippocampus and the prelimbic cortex in rodents or the dorsal anterior cingulate cortex in humans. Particularly because this pathway follows a different developmental trajectory than fronto-amygdala circuitry involved in traditional extinction learning, safety cues may provide a novel approach to reducing fear in youths. In this review, the authors leverage a translational framework to bring together findings from studies in animal models and humans and to bridge the gap between research on basic neuroscience and clinical treatment. The authors consider the potential application of safety signal learning for optimizing interventions for anxious youths by targeting the biological state of the developing brain. Based on the existing cross-species literature on safety signal learning, they propose that the judicious use of safety cues may be an effective and neurodevelopmentally optimized approach to enhancing treatment outcomes for youths with anxiety disorders.
Collapse
Affiliation(s)
| | - Dylan G. Gee
- Department of Psychology, Yale University, New Haven, Conn
| |
Collapse
|
23
|
Wang M, Cao L, Li H, Xiao H, Ma Y, Liu S, Zhu H, Yuan M, Qiu C, Huang X. Dysfunction of Resting-State Functional Connectivity of Amygdala Subregions in Drug-Naïve Patients With Generalized Anxiety Disorder. Front Psychiatry 2021; 12:758978. [PMID: 34721119 PMCID: PMC8548605 DOI: 10.3389/fpsyt.2021.758978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 09/03/2021] [Indexed: 02/05/2023] Open
Abstract
Objective: Although previous studies have reported on disrupted amygdala subregional functional connectivity in generalized anxiety disorder (GAD), most of these studies were conducted in GAD patients with comorbidities or with drug treatment. Besides, whether/how the amygdala subregional functional networks were associated with state and trait anxiety is still largely unknown. Methods: Resting-state functional connectivity of amygdala subregions, including basolateral amygdala (BLA) and centromedial amygdala (CMA) as seed, were mapped and compared between 37 drug-naïve, non-comorbidity GAD patients and 31 age- and sex-matched healthy controls (HCs). Relationships between amygdala subregional network dysfunctions and state/trait anxiety were examined using partial correlation analyses. Results: Relative to HCs, GAD patients showed weaker functional connectivity of the left BLA with anterior cingulate/medial prefrontal cortices. Significantly increased functional connectivity of right BLA and CMA with superior temporal gyrus and insula were also identified in GAD patients. Furthermore, these functional connectivities showed correlations with state and trait anxiety scores. Conclusions: These findings revealed abnormal functional coupling of amygdala subregions in GAD patients with regions involved in fear processing and emotion regulation, including anterior cingulate/medial prefrontal cortex and superior temporal gyrus, which provide the unique biological markers for GAD and facilitating the future accurate clinical diagnosis and target treatment.
Collapse
Affiliation(s)
- Mei Wang
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Lingxiao Cao
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Hailong Li
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| | - Hongqi Xiao
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Yao Ma
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Shiyu Liu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Changjian Qiu
- Mental Health Center and Psychiatric Laboratory, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaoqi Huang
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.,Psychoradiology Research Unit of the Chinese Academy of Medical Sciences, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
24
|
Hennessy MB, Willen RM, Schiml PA. Psychological Stress, Its Reduction, and Long-Term Consequences: What Studies with Laboratory Animals Might Teach Us about Life in the Dog Shelter. Animals (Basel) 2020; 10:E2061. [PMID: 33171805 PMCID: PMC7694980 DOI: 10.3390/ani10112061] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022] Open
Abstract
There is a long history of laboratory studies of the physiological and behavioral effects of stress, its reduction, and the later psychological and behavioral consequences of unmitigated stress responses. Many of the stressors employed in these studies approximate the experience of dogs confined in an animal shelter. We review how the laboratory literature has guided our own work in describing the reactions of dogs to shelter housing and in helping formulate means of reducing their stress responses. Consistent with the social buffering literature in other species, human interaction has emerged as a key ingredient in moderating glucocorticoid stress responses of shelter dogs. We discuss variables that appear critical for effective use of human interaction procedures in the shelter as well as potential neural mechanisms underlying the glucocorticoid-reducing effect. We also describe recent studies in which enrichment centered on human interaction has been found to reduce aggressive responses in a temperament test used to determine suitability for adoption. Finally, we suggest that a critical aspect of the laboratory stress literature that has been underappreciated in studying shelter dogs is evidence for long-term behavioral consequences-often mediated by glucocorticoids-that may not become apparent until well after initial stress exposure.
Collapse
Affiliation(s)
| | | | - Patricia A. Schiml
- Department of Psychology, Wright State University, Dayton, OH 45435, USA;
| |
Collapse
|
25
|
Training negative connectivity patterns between the dorsolateral prefrontal cortex and amygdala through fMRI-based neurofeedback to target adolescent socially-avoidant behaviour. Behav Res Ther 2020; 135:103760. [PMID: 33137695 DOI: 10.1016/j.brat.2020.103760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/06/2020] [Accepted: 10/23/2020] [Indexed: 12/28/2022]
Abstract
Social anxiety is prevalent in adolescence. Given its role in maintaining fears, reducing social avoidance through cognitive reappraisal may help attenuate social anxiety. We used fMRI-based neurofeedback (NF) to increase 'adaptive' patterns of negative connectivity between the dorsolateral prefrontal cortex (DLPFC) and the amygdala to change reappraisal ability, and alter social avoidance and approach behaviours in adolescents. Twenty-seven female participants aged 13-17 years with varying social anxiety levels completed a fMRI-based NF training task where they practiced cognitive reappraisal strategies, whilst receiving real-time feedback of DLPFC-amygdala connectivity. All participants completed measures of cognitive reappraisal and social approach-avoidance behaviour before and after NF training. Avoidance of happy faces was associated with greater social anxiety pre-training. Participants who were unable to acquire a more negative pattern of connectivity through NF training displayed significantly greater avoidance of happy faces at post-training compared to pre-training. These 'maladaptive' participants also reported significant decreases in re-appraisal ability from pre to post-training. In contrast, those who were able to acquire a more 'adaptive' connectivity pattern did not show these changes in social avoidance and re-appraisal. Future research could consider using strategies to improve the capacity of NF training to boost youth social-approach behaviour.
Collapse
|
26
|
Smith AR, Haller SP, Haas SA, Pagliaccio D, Behrens B, Swetlitz C, Bezek JL, Brotman MA, Leibenluft E, Fox NA, Pine DS. Emotional distractors and attentional control in anxious youth: eye tracking and fMRI data. Cogn Emot 2020; 35:110-128. [PMID: 32954946 DOI: 10.1080/02699931.2020.1816911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Attentional control theory suggests that high cognitive demands impair the flexible deployment of attention control in anxious adults, particularly when paired with external threats. Extending this work to pediatric anxiety, we report two studies utilising eye tracking (Study 1) and functional magnetic resonance imaging (Study 2). Both studies use a visual search paradigm to examine anxiety-related differences in the impact of threat on attentional control at varying levels of task difficulty. In Study 1, youth ages 8-18 years (N = 109), completed the paradigm during eye tracking. Results indicated that youth with more severe anxiety took longer to fixate on and identify the target, specifically on difficult trials, compared to youth with less anxiety. However, no anxiety-related effects of emotional distraction (faces) emerged. In Study 2, a separate cohort of 8-18-year-olds (N = 72) completed a similar paradigm during fMRI. Behaviourally, youth with more severe anxiety were slower to respond on searches following non-threatening, compared to threatening, distractors, but this effect did not vary by task difficulty. The same interaction emerged in the neuroimaging analysis in the superior parietal lobule and precentral gyrus-more severe anxiety was associated with greater brain response following non-threatening distractors. Theoretical implications of these inconsistent findings are discussed.
Collapse
Affiliation(s)
- Ashley R Smith
- Emotion and Development Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Simone P Haller
- Emotion and Development Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Sara A Haas
- Uppsala Child and Baby Lab, Department of Psychology, Uppsala University, Uppsala, Sweden
| | - David Pagliaccio
- Division of Child and Adolescent Psychiatry, New York State Psychiatric Institute, Columbia University, New York, NY, USA
| | - Brigid Behrens
- Department of Psychology, University of Notre Dame, Notre Dame, IN, USA
| | - Caroline Swetlitz
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Jessica L Bezek
- Emotion and Development Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Melissa A Brotman
- Emotion and Development Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Ellen Leibenluft
- Emotion and Development Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Nathan A Fox
- College of Education, University of Maryland, College Park, MD, USA
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| |
Collapse
|
27
|
Goldwaser EL, Miller CWT. The Genetic and Neural Circuitry Predictors of Benefit From Manualized or Open-Ended Psychotherapy. Am J Psychother 2020; 73:72-84. [DOI: 10.1176/appi.psychotherapy.20190041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Eric Luria Goldwaser
- Department of Psychiatry, University of Maryland Medical Center and Sheppard Pratt Health System, Baltimore
| | - Christopher W. T. Miller
- Department of Psychiatry, University of Maryland Medical Center and Sheppard Pratt Health System, Baltimore
| |
Collapse
|
28
|
Tymofiyeva O, Zhou VX, Lee CM, Xu D, Hess CP, Yang TT. MRI Insights Into Adolescent Neurocircuitry-A Vision for the Future. Front Hum Neurosci 2020; 14:237. [PMID: 32733218 PMCID: PMC7359264 DOI: 10.3389/fnhum.2020.00237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/29/2020] [Indexed: 11/13/2022] Open
Abstract
Adolescence is the time of onset of many psychiatric disorders. Half of pediatric patients present with comorbid psychiatric disorders that complicate both their medical and psychiatric care. Currently, diagnosis and treatment decisions are based on symptoms. The field urgently needs brain-based diagnosis and personalized care. Neuroimaging can shed light on how aberrations in brain circuits might underlie psychiatric disorders and their development in adolescents. In this perspective article, we summarize recent MRI literature that provides insights into development of psychiatric disorders in adolescents. We specifically focus on studies of brain structural and functional connectivity. Ninety-six included studies demonstrate the potential of MRI to assess psychiatrically relevant constructs, diagnose psychiatric disorders, predict their development or predict response to treatment. Limitations of the included studies are discussed, and recommendations for future research are offered. We also present a vision for the role that neuroimaging may play in pediatrics and primary care in the future: a routine neuropsychological and neuropsychiatric imaging (NPPI) protocol for adolescent patients, which would include a 30-min brain scan, a quality control and safety read of the scan, followed by computer-based calculation of the structural and functional brain network metrics that can be compared to the normative data by the pediatrician. We also perform a cost-benefit analysis to support this vision and provide a roadmap of the steps required for this vision to be implemented.
Collapse
Affiliation(s)
- Olga Tymofiyeva
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Vivian X Zhou
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| | - Chuan-Mei Lee
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States.,Clinical Excellence Research Center, Stanford University, Stanford, CA, United States
| | - Duan Xu
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Christopher P Hess
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States
| | - Tony T Yang
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
29
|
Haines N, Beauchaine TP. Moving beyond Ordinary Factor Analysis in Studies of Personality and Personality Disorder: A Computational Modeling Perspective. Psychopathology 2020; 53:157-167. [PMID: 32663821 PMCID: PMC7529707 DOI: 10.1159/000508539] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 05/06/2020] [Indexed: 01/03/2023]
Abstract
Almost all forms of psychopathology, including personality disorders, are arrived at through complex interactions among neurobiological vulnerabilities and environmental risk factors across development. Yet despite increasing recognition of etiological complexity, psychopathology research is still dominated by searches for large main effects causes. This derives in part from reliance on traditional inferential methods, including ordinary factor analysis, regression, ANCOVA, and other techniques that use statistical partialing to isolate unique effects. In principle, some of these methods can accommodate etiological complexity, yet as typically applied they are insensitive to interactive functional dependencies (modulating effects) among etiological influences. Here, we use our developmental model of antisocial and borderline traits to illustrate challenges faced when modeling complex etiological mechanisms of psychopathology. We then consider how computational models, which are rarely used in the personality disorders literature, remedy some of these challenges when combined with hierarchical Bayesian analysis.
Collapse
Affiliation(s)
- Nathaniel Haines
- Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | | |
Collapse
|
30
|
Silvers JA. Extinction Learning and Cognitive Reappraisal: Windows Into the Neurodevelopment of Emotion Regulation. CHILD DEVELOPMENT PERSPECTIVES 2020. [DOI: 10.1111/cdep.12372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
31
|
Gold AL, Abend R, Britton JC, Behrens B, Farber M, Ronkin E, Chen G, Leibenluft E, Pine DS. Age Differences in the Neural Correlates of Anxiety Disorders: An fMRI Study of Response to Learned Threat. Am J Psychiatry 2020; 177:454-463. [PMID: 32252541 PMCID: PMC9078083 DOI: 10.1176/appi.ajp.2019.19060650] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Although both pediatric and adult patients with anxiety disorders exhibit similar neural responding to threats, age-related differences have been found in some functional MRI (fMRI) studies. To reconcile disparate findings, the authors compared brain function in youths and adults with and without anxiety disorders while rating fear and memory of ambiguous threats. METHODS Two hundred medication-free individuals ages 8-50 were assessed, including 93 participants with an anxiety disorder. Participants underwent discriminative threat conditioning and extinction in the clinic. Approximately 3 weeks later, they completed an fMRI paradigm involving extinction recall, in which they rated their levels of fear evoked by, and their explicit memory for, morph stimuli with varying degrees of similarity to the extinguished threat cues. RESULTS Age moderated two sets of anxiety disorder findings. First, as age increased, healthy subjects compared with participants with anxiety disorders exhibited greater amygdala-ventromedial prefrontal cortex (vmPFC) connectivity when processing threat-related cues. Second, age moderated diagnostic differences in activation in ways that varied with attention and brain regions. When rating fear, activation in the vmPFC differed between the anxiety and healthy groups at relatively older ages. In contrast, when rating memory for task stimuli, activation in the inferior temporal cortex differed between the anxiety and healthy groups at relatively younger ages. CONCLUSIONS In contrast to previous studies that demonstrated age-related similarities in the biological correlates of anxiety disorders, this study identified age differences. These findings may reflect this study's focus on relatively late-maturing psychological processes, particularly the appraisal and explicit memory of ambiguous threat, and inform neurodevelopmental perspectives on anxiety.
Collapse
Affiliation(s)
- Andrea L. Gold
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, and Pediatric Anxiety Research Center, Bradley Hospital, Riverside, R.I
| | - Rany Abend
- Emotion and Development Branch, NIMH, Bethesda, Md
| | | | | | | | - Emily Ronkin
- Emotion and Development Branch, NIMH, Bethesda, Md
| | - Gang Chen
- Scientific and Statistical Computing Core, NIMH, Bethesda, Md
| | | | | |
Collapse
|
32
|
Gee DG, Kribakaran S. Developmental Differences in Neural Responding to Threat and Safety: Implications for Treating Youths With Anxiety. Am J Psychiatry 2020; 177:378-380. [PMID: 32354263 DOI: 10.1176/appi.ajp.2020.20020225] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Dylan G Gee
- Department of Psychology, Yale University, New Haven, Conn
| | | |
Collapse
|
33
|
Moustafa AA, Porter A, Megreya AM. Mathematics anxiety and cognition: an integrated neural network model. Rev Neurosci 2020; 31:287-296. [PMID: 31730536 DOI: 10.1515/revneuro-2019-0068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/07/2019] [Indexed: 01/06/2023]
Abstract
Many students suffer from anxiety when performing numerical calculations. Mathematics anxiety is a condition that has a negative effect on educational outcomes and future employment prospects. While there are a multitude of behavioral studies on mathematics anxiety, its underlying cognitive and neural mechanism remain unclear. This article provides a systematic review of cognitive studies that investigated mathematics anxiety. As there are no prior neural network models of mathematics anxiety, this article discusses how previous neural network models of mathematical cognition could be adapted to simulate the neural and behavioral studies of mathematics anxiety. In other words, here we provide a novel integrative network theory on the links between mathematics anxiety, cognition, and brain substrates. This theoretical framework may explain the impact of mathematics anxiety on a range of cognitive and neuropsychological tests. Therefore, it could improve our understanding of the cognitive and neurological mechanisms underlying mathematics anxiety and also has important applications. Indeed, a better understanding of mathematics anxiety could inform more effective therapeutic techniques that in turn could lead to significant improvements in educational outcomes.
Collapse
Affiliation(s)
- Ahmed A Moustafa
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia.,Marcs Institute for Brain and Behaviour, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| | - Angela Porter
- School of Social Sciences and Psychology, Western Sydney University, 2 Bullecourt Ave, Milperra, 2214 Sydney, New South Wales, Australia
| | - Ahmed M Megreya
- College of Education, Qatar University, 1 Al Jamiaa St, 1021 Doha, Qatar
| |
Collapse
|
34
|
Porta-Casteràs D, Fullana MA, Tinoco D, Martínez-Zalacaín I, Pujol J, Palao DJ, Soriano-Mas C, Harrison BJ, Via E, Cardoner N. Prefrontal-amygdala connectivity in trait anxiety and generalized anxiety disorder: Testing the boundaries between healthy and pathological worries. J Affect Disord 2020; 267:211-219. [PMID: 32217221 DOI: 10.1016/j.jad.2020.02.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 01/17/2020] [Accepted: 02/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Current brain-based theoretical models of generalized anxiety disorder (GAD) suggest a dysfunction of amygdala-ventromedial prefrontal cortex emotional regulatory mechanisms. These alterations might be reflected by an altered resting state functional connectivity between both areas and could extend to vulnerable non-clinical samples such as high worriers without a GAD diagnosis. However, there is a lack of information in this regard. METHODS We investigated differences in resting state functional connectivity between the basolateral amygdala and the ventromedial prefrontal cortex (amygdala-vmPFC) in 28 unmedicated participants with GAD, 28 high-worriers and 28 low-worriers. We additionally explored selected clinical variables as predictors of amygdala-vmPFC connectivity, including anxiety sensitivity. RESULTS GAD participants presented higher left amygdala-vmPFC connectivity compared to both groups of non-GAD participants, and there were no differences between the latter two groups. In our exploratory analyses, concerns about the cognitive consequences of anxiety (the cognitive dimension of anxiety sensitivity) were found to be a significant predictor of the left amygdala-vmPFC connectivity. LIMITATIONS The cross-sectional nature of our study preclude us from assessing if functional connectivity measures and anxiety sensitivity scores entail an increased risk of GAD. CONCLUSIONS These results suggest a neurobiological qualitative distinction at the level of the amygdala-vmPFC emotional-regulatory system in GAD compared to non-GAD participants, either high- or low-worriers. At this neural level, they question previous hypotheses of continuity between high worries and GAD development. Instead, other anxiety traits such as anxiety sensitivity might confer a greater proneness to the amygdala-vmPFC connectivity alterations observed in GAD.
Collapse
Affiliation(s)
- D Porta-Casteràs
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Taulí University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M A Fullana
- Institute of Neurosciences, Hospital Clinic, CIBERSAM, Barcelona, Spain
| | - D Tinoco
- Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - I Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital -IDIBELL, CIBERSAM, Carlos III Health Institute, Barcelona, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - J Pujol
- MRI Research Unit,Hospital del Mar, CIBERSAM G21, Barcelona,Spain
| | - D J Palao
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Taulí University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - C Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital -IDIBELL, CIBERSAM, Carlos III Health Institute, Barcelona, Spain; Department of Psychobiology and Methodology of Health Sciences. Universitat Autònoma de Barcelona, Barcelona, Spain
| | - B J Harrison
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Victoria, Australia
| | - E Via
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Taulí University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Child and Adolescent Psychiatry and Psychology Department, Hospital Sant Joan de Déu of Barcelona, Barcelona, Spain; Child and Adolescent Mental Health Research Group, Institut de Recerca Sant Joan de Déu, Barcelona, Spain.
| | - N Cardoner
- Mental Health Department, Unitat de Neurociència Traslacional. Parc Taulí University Hospital, Institut d'Investigació i Innovació Sanitària Parc Taulí (I3PT), Universitat Autònoma de Barcelona, CIBERSAM, Carlos III Health Institute, Bellaterra, Spain; Department of Psychiatry and Forensic Medicine, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| |
Collapse
|
35
|
Beauchaine TP, Tackett JL. Irritability as a Transdiagnostic Vulnerability Trait:Current Issues and Future Directions. Behav Ther 2020; 51:350-364. [PMID: 32138943 DOI: 10.1016/j.beth.2019.10.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 10/21/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022]
Abstract
In recent years, irritability has received increasing attention among mental health professionals given its transdiagnostic associations with diverse forms of psychopathology. In contrast to other emotional states and traits, however, literature addressing associations between irritability and related temperament and personality constructs is limited. In addition, those who study irritability have diverse perspectives on its neurobiological substrates. In this comment, we situate irritability in the literatures on child temperament and adult personality, and describe a model in which irritability derives from low tonic dopamine (DA) levels and low phasic DA reactivity in subcortical neural structures implicated in appetitive responding. We note that different findings often emerge in neuroimaging studies when irritability is assessed in circumscribed diagnostic groups versus representative samples. We conclude with directions for future research, and propose that more authors use hierarchical Bayesian modeling, which captures functional dependencies between irritability and other dispositional traits (e.g., trait anxiety) that standard regression models are insensitive too. Treatment implications are also considered.
Collapse
|
36
|
Jenks SK, Zhang S, Li CSR, Hu S. Threat bias and resting state functional connectivity of the amygdala and bed nucleus stria terminalis. J Psychiatr Res 2020; 122:54-63. [PMID: 31927266 PMCID: PMC7010552 DOI: 10.1016/j.jpsychires.2019.12.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/23/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Previous research has distinguished the activations of the amygdala and bed nucleus of stria terminalis (BNST) during threat-related contingencies. However, how intrinsic connectivities of the amygdala and BNST relate to threat bias remains unclear. Here, we investigated how resting state functional connectivity (rsFC) of the amygdala and BNST in healthy controls (HC) and patients with anxiety-related disorders (PAD) associate with threat bias in a dot-probe task. METHODS Imaging and behavioral data of 30 PAD and 83 HC were obtained from the Nathan Kline Institute - Rockland sample and processed according to published routines. All imaging results were evaluated at voxel p < 0.001 and cluster p < 0.05, FWE corrected in SPM. RESULTS PAD and HC did not show differences in whole brain rsFC with either the amygdala or BNST. In linear regressions threat bias was positively correlated with amygdala-thalamus/anterior cingulate cortex (ACC) rsFC in HC but not PAD, and with BNST-caudate rsFC in PAD but not HC. Slope tests confirmed group differences in the correlations between threat bias and amygdala-thalamus/ACC as well as BNST-caudate rsFC. LIMITATIONS As only half of the patients included were diagnosed with comorbid anxiety, the current findings need to be considered with the clinical heterogeneity and require replication in populations specifically with anxiety disorders. CONCLUSIONS Together, these results suggest amygdala and BNST connectivities as new neural markers of anxiety disorders. Whereas amygdala-thalamus/ACC rsFC support adaptive regulation of threat response in the HC, BNST-caudate rsFC may reflect maladaptive neural processes that are dominated by anticipatory anxiety.
Collapse
Affiliation(s)
- Samantha K. Jenks
- Department of Psychology, State University of New York at Oswego, Oswego, NY 13126
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519
| | - Chiang-shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06519,Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06520,Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| | - Sien Hu
- Department of Psychology, State University of New York at Oswego, Oswego, NY, 13126, USA.
| |
Collapse
|
37
|
Ichijo Y, Kono S, Yoshihisa A, Misaka T, Kaneshiro T, Oikawa M, Miura I, Yabe H, Takeishi Y. Impaired Frontal Brain Activity in Patients With Heart Failure Assessed by Near-Infrared Spectroscopy. J Am Heart Assoc 2020; 9:e014564. [PMID: 31973606 PMCID: PMC7033895 DOI: 10.1161/jaha.119.014564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Background The prevalence of depression and/or anxiety disorders is reported to be higher in patients with heart failure (HF) than in the general population, and patients with HF also have coexisting cognitive problems. Recently, the development of near-infrared spectroscopy (NIRS) has enabled noninvasive measurements of regional cerebral blood volume and brain activity, in terms of cerebral oxyhemoglobin in the cerebral cortex, with a high time resolution. The aim of the current study was to determine the associations between frontal brain activity and depressive symptoms, anxiety status, and cognitive function in patients with HF. Methods and Results We measured and compared frontal brain activity determined by NIRS during a verbal fluency task in patients with HF (n=35) and control subjects (n=28). The Center for Epidemiologic Studies Depression Scale for assessment of depressive symptoms, State-Trait Anxiety Inventory for assessment of anxiety status, Mini-Mental State Examination for assessment of cognitive function, and NIRS were simultaneously conducted. NIRS showed that frontal brain activity was significantly lower in the HF group than in the control subjects (28.5 versus 88.0 mM·mm; P<0.001). Next, we examined the associations between frontal brain activity and the findings of Center for Epidemiologic Studies Depression Scale, State-Trait Anxiety Inventory, Mini-Mental State Examination, and verbal fluency task. There were significant correlations between frontal brain activity and State-Trait Anxiety Inventory (R=-0.228, P=0.046), Mini-Mental State Examination (R=0.414, P=0.017), and verbal fluency task (R=0.338, P=0.007), but not with Center for Epidemiologic Studies Depression Scale (R=-0.160, P=0.233). Conclusions Frontal brain activity assessed by NIRS is reduced and is associated with high anxiety status and low cognitive function in patients with HF.
Collapse
Affiliation(s)
- Yasuhiro Ichijo
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| | - Soichi Kono
- Department of Neuropsychiatry Fukushima Medical University Fukushima Japan
| | - Akiomi Yoshihisa
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| | - Tomofumi Misaka
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| | - Takashi Kaneshiro
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| | - Masayoshi Oikawa
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| | - Itaru Miura
- Department of Neuropsychiatry Fukushima Medical University Fukushima Japan
| | - Hirooki Yabe
- Department of Neuropsychiatry Fukushima Medical University Fukushima Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine Fukushima Medical University Fukushima Japan
| |
Collapse
|
38
|
Task MRI-Based Functional Brain Network of Anxiety. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1191:3-20. [PMID: 32002919 DOI: 10.1007/978-981-32-9705-0_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnetic resonance imaging (MRI) is a good tool for researchers to understand the biological mechanisms and pathophysiology of the brain due to the translational characteristics of MRI methods. For the psychiatric illness, this kind of mental disorders usually have minor alterations when compared to traditional neurological disorders. Therefore the functional study, such as functional connectivity, would play a significant role for understanding the pathophysiology of mental disorders. This chapter would focus on the discussion of task MRI-based functional network studies in anxiety. For social anxiety disorder, the limbic system, such as the temporal lobe, amygdala, and hippocampus, would show alterations in the functional connectivity with frontal regions, such as anterior cingulate, prefrontal, and orbitofrontal cortices. PD has anterior cingulate cortex-amygdala alterations in fear conditioning, frontoparietal alterations in attention network task, and limbic-prefrontal alterations in emotional task. A similar amygdala-based aberrant functional connectivity in specific phobia is observed. The mesocorticolimbic and limbic-prefrontal functional alterations are found in generalized anxiety disorder. The major components of task MRI-based functional connectivity in anxiety include limbic and frontal regions which might play a vital role for the origination of anxiety under different scenarios and tasks.
Collapse
|
39
|
Indices of association between anxiety and mindfulness: a guide for future mindfulness studies. PERSONALITY NEUROSCIENCE 2019; 2:e9. [PMID: 32435744 PMCID: PMC7219893 DOI: 10.1017/pen.2019.12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 09/03/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
Abstract
Mindfulness and anxiety are often linked as inversely related traits and there have been several theoretical and mediational models proposed suggesting such a relationship between these two traits. The current review report offers an account of self-report measures, behavioral, electrophysiological, hemodynamic, and biological studies, which provide converging evidence for an inverse relationship between mindfulness and anxiety. To our knowledge, there are no comprehensive accounts of empirical evidence that investigate this relationship. After reviewing several empirical studies, we propose a schematic model, where a stressor can trigger the activation of amygdala which activates the hypothalamic-pituitary-adrenal (HPA) pathway. This hyperactive HPA axis leads to a cascade of psychological, behavioral, electrophysiological, immunological, endocrine, and genetic reactions in the body, primarily mediated by a sympathetic pathway. Conversely, mindfulness protects from deleterious effects of these triggered reactions by downregulating the HPA axis activity via a parasympathetic pathway. Finally, we propose a model suggesting a comprehensive scheme through which mindfulness and anxiety may interact through emotion regulation. It is recommended that future mindfulness intervention studies should examine a broad spectrum of measurement indices where possible, keeping logistic feasibility in mind and look at mindfulness in conjunction with anxiety rather than independently.
Collapse
|
40
|
Emotion dysregulation and emerging psychopathology: A transdiagnostic, transdisciplinary perspective. Dev Psychopathol 2019; 31:799-804. [DOI: 10.1017/s0954579419000671] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
41
|
Trait neuroticism and emotion neurocircuitry: Functional magnetic resonance imaging evidence for a failure in emotion regulation. Dev Psychopathol 2019; 31:1085-1099. [PMID: 31156078 DOI: 10.1017/s0954579419000610] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Though theory suggests that individual differences in neuroticism (a tendency to experience negative emotions) would be associated with altered functioning of the amygdala (which has been linked with emotionality and emotion dysregulation in childhood, adolescence, and adulthood), results of functional neuroimaging studies have been contradictory and inconclusive. We aimed to clarify the relationship between neuroticism and three hypothesized neural markers derived from functional magnetic resonance imaging during negative emotion face processing: amygdala activation, amygdala habituation, and amygdala-prefrontal connectivity, each of which plays an important role in the experience and regulation of emotions. We used general linear models to examine the relationship between trait neuroticism and the hypothesized neural markers in a large sample of over 500 young adults. Although neuroticism was not significantly associated with magnitude of amygdala activation or amygdala habituation, it was associated with amygdala-ventromedial prefrontal cortex connectivity, which has been implicated in emotion regulation. Results suggest that trait neuroticism may represent a failure in top-down control and regulation of emotional reactions, rather than overactive emotion generation processes, per se. These findings suggest that neuroticism, which has been associated with increased rates of transdiagnostic psychopathology, may represent a failure in the inhibitory neurocircuitry associated with emotion regulation.
Collapse
|
42
|
Morriss J, Christakou A, van Reekum CM. Multimodal evidence for delayed threat extinction learning in adolescence and young adulthood. Sci Rep 2019; 9:7748. [PMID: 31123292 PMCID: PMC6533253 DOI: 10.1038/s41598-019-44150-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/07/2019] [Indexed: 01/20/2023] Open
Abstract
Previous research in rodents and humans points to an evolutionarily conserved profile of blunted threat extinction learning during adolescence, underpinned by brain structures such as the amygdala and medial prefrontal cortex (mPFC). In this study, we examine age-related effects on the function and structural connectivity of this system in threat extinction learning in adolescence and young adulthood. Younger age was associated with greater amygdala activity and later engagement of the mPFC to learned threat cues as compared to safety cues. Furthermore, greater structural integrity of the uncinate fasciculus, a white matter tract that connects the amygdala and mPFC, mediated the relationship between age and mPFC engagement during extinction learning. These findings suggest that age-related changes in the structure and function of amygdala-mPFC circuitry may underlie the protracted maturation of threat regulatory processes.
Collapse
Affiliation(s)
- Jayne Morriss
- Centre for Integrative Neuroscience and Neurodynamics School of Psychology and Clinical Language Sciences University of Reading, Reading, UK.
| | - Anastasia Christakou
- Centre for Integrative Neuroscience and Neurodynamics School of Psychology and Clinical Language Sciences University of Reading, Reading, UK
| | - Carien M van Reekum
- Centre for Integrative Neuroscience and Neurodynamics School of Psychology and Clinical Language Sciences University of Reading, Reading, UK
| |
Collapse
|
43
|
Resting state coupling between the amygdala and ventromedial prefrontal cortex is related to household income in childhood and indexes future psychological vulnerability to stress. Dev Psychopathol 2019; 31:1053-1066. [PMID: 31084654 DOI: 10.1017/s0954579419000592] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
While child poverty is a significant risk factor for poor mental health, the developmental pathways involved with these associations are poorly understood. To advance knowledge about these important linkages, the present study examined the developmental sequelae of childhood exposure to poverty in a multiyear longitudinal study. Here, we focused on exposure to poverty, neurobiological circuitry connected to emotion dysregulation, later exposure to stressful life events, and symptoms of psychopathology. We grounded our work in a biopsychosocial perspective, with a specific interest in "stress sensitization" and emotion dysregulation. Motivated by past work, we first tested whether exposure to poverty was related to changes in the resting-state coupling between two brain structures centrally involved with emotion processing and regulation (the amygdala and the ventromedial prefrontal cortex; vmPFC). As predicted, we found lower household income at age 10 was related to lower resting-state coupling between these areas at age 15. We then tested if variations in amygdala-vmPFC connectivity interacted with more contemporaneous stressors to predict challenges with mental health at age 16. In line with past reports showing risk for poor mental health is greatest in those exposed to early and then later, more contemporaneous stress, we predicted and found that lower vmPFC-amygdala coupling in the context of greater contemporaneous stress was related to higher levels of internalizing and externalizing symptoms. We believe these important interactions between neurobiology and life history are an additional vantage point for understanding risk and resiliency, and suggest avenues for prediction of psychopathology related to early life challenge.
Collapse
|
44
|
Abstract
While emotional dysregulation is a broad construct, the current paper adopts a narrow approach to facilitate translational neuroscience research on pediatric anxiety. The paper first presents data on an adapted version of the antisaccade task and then integrates these data into a research framework. Data on an adapted version of the antisaccade task were collected in 57 youth, including 35 seeking treatment for an anxiety disorder. Associations were examined between performance on the antisaccade task and (a) age, (b) performance on other cognitive-control tasks (i.e., the stop-signal delay and flanker tasks), and (c) level of anxiety symptoms. Better performance on the antisaccade task occurred in older relative to younger subjects and correlated with better performance on the flanker task. Across the 57 youth, higher levels of anxiety correlated with shorter latency for correct antisaccades. These data can be placed within a three-step framework for translational neuroscience research. In the first step, a narrow index of emotion dysregulation is targeted. In the second step, this narrow index is linked to other correlated indicators of the same underlying narrow latent construct. In the third and final step, associations are examined with clinical outcomes and response to treatment.
Collapse
|
45
|
Wang Y, Wang X, Ye L, Yang Q, Cui Q, He Z, Li L, Yang X, Zou Q, Yang P, Liu D, Chen H. Spatial complexity of brain signal is altered in patients with generalized anxiety disorder. J Affect Disord 2019; 246:387-393. [PMID: 30597300 DOI: 10.1016/j.jad.2018.12.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/19/2018] [Accepted: 12/24/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Is it healthy to be chaotic? Recent studies have argued that mental disorders are associated with more orderly neural activities, corresponding to a less flexible functional system. These conclusions were derived from altered temporal complexity. However, the relationship between spatial complexity and health is unknown, although spatial configuration is of importance for normal brain function. METHODS Based on resting-state functional magnetic resonance imaging data, we used Sample entropy (SampEn) to evaluate the altered spatial complexity in patients with generalized anxiety disorder (GAD; n = 47) compared to healthy controls (HCs; n = 38) and the relationship between spatial complexity and anxiety level. RESULTS Converging results showed increased spatial complexity in patients with GAD, indicating more chaotic spatial configuration. Interestingly, inverted-U relationship was revealed between spatial complexity and anxiety level, suggesting complex relationship between health and the chaos of human brain. LIMITATIONS Anxiety-related alteration of spatial complexity should be verified at voxel level in a larger sample and compared with results of other indices to clarify the mechanism of spatial chaotic of anxiety. CONCLUSIONS Altered spatial complexity in the brain of GAD patients mirrors inverted-U relationship between anxiety and behavioral performance, which may reflect an important characteristic of anxiety. These results indicate that SampEn is a good reflection of human health or trait mental characteristic.
Collapse
Affiliation(s)
- Yifeng Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinqi Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liangkai Ye
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qian Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Public Affairs and Administration, University of Electronic Science and Technology of China, Chengdu, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Liyuan Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuezhi Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qijun Zou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Pu Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Dongfeng Liu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu 611731, China; School of Life Science and Technology, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
46
|
Michalska KJ, Davis EL. The psychobiology of emotional development: The case for examining sociocultural processes. Dev Psychobiol 2018; 61:416-429. [PMID: 30592032 DOI: 10.1002/dev.21795] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 07/26/2018] [Accepted: 09/05/2018] [Indexed: 01/03/2023]
Abstract
Psychobiological techniques to assess emotional responding have revolutionized the field of emotional development in recent decades by equipping researchers with the tools to quantify children's emotional reactivity and regulation more directly than behavioral approaches allow. Knowledge gained from the incorporation of methods spanning levels of analysis has been substantial, yet many open questions remain. In this prospective review, we (a) describe the major conceptual and empirical advances that have resulted from this methodological innovation, and (b) lay out a case for what we view as the most pressing challenge for the next decades of research into the psychobiology of emotional development: focusing empirical efforts toward understanding the implications of the broader sociocultural contexts in which children develop that shape the psychobiology of emotion. Thus, this review integrates previous knowledge about the psychobiology of emotion with a forward-looking set of recommendations for incorporating sociocultural processes into future investigations.
Collapse
Affiliation(s)
- Kalina J Michalska
- Department of Psychology, University of California, Riverside, Riverside, California
| | - Elizabeth L Davis
- Department of Psychology, University of California, Riverside, Riverside, California
| |
Collapse
|
47
|
Selleck RA, Zhang W, Mercier HD, Padival M, Rosenkranz JA. Limited prefrontal cortical regulation over the basolateral amygdala in adolescent rats. Sci Rep 2018; 8:17171. [PMID: 30464293 PMCID: PMC6249319 DOI: 10.1038/s41598-018-35649-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 11/09/2018] [Indexed: 01/17/2023] Open
Abstract
Cognitive regulation of emotion develops from childhood into adulthood. This occurs in parallel with maturation of prefrontal cortical (PFC) regulation over the amygdala. The cellular substrates for this regulation may include PFC activation of inhibitory GABAergic elements in the amygdala. The purpose of this study was to determine whether PFC regulation over basolateral amygdala area (BLA) in vivo is immature in adolescence, and if this is due to immaturity of GABAergic elements or PFC excitatory inputs. Using in vivo extracellular electrophysiological recordings from anesthetized male rats we found that in vivo summation of PFC inputs to the BLA was less regulated by GABAergic inhibition in adolescents (postnatal day 39) than adults (postnatal day 72-75). In addition, stimulation of either prelimbic or infralimbic PFC evokes weaker inhibition over basal (BA) and lateral (LAT) nuclei of the BLA in adolescents. This was dictated by both weak recruitment of inhibition in LAT and weak excitatory effects of PFC in BA. The current results may contribute to differences in adolescent cognitive regulation of emotion. These findings identify specific elements that undergo adolescent maturation and may therefore be sensitive to environmental disruptions that increase risk for psychiatric disorders.
Collapse
Affiliation(s)
- Ryan A. Selleck
- 0000 0004 0388 7807grid.262641.5Cellular and Molecular Pharmacology, Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| | - Wei Zhang
- 0000 0004 0388 7807grid.262641.5Cellular and Molecular Pharmacology, Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| | - Hannah D. Mercier
- 0000 0004 0388 7807grid.262641.5Cellular and Molecular Pharmacology, Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| | - Mallika Padival
- 0000 0004 0388 7807grid.262641.5Cellular and Molecular Pharmacology, Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| | - J. Amiel Rosenkranz
- 0000 0004 0388 7807grid.262641.5Cellular and Molecular Pharmacology, Center for Neurobiology of Stress Resilience and Psychiatric Disorders, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064 USA
| |
Collapse
|
48
|
Sevenster D, Visser RM, D'Hooge R. A translational perspective on neural circuits of fear extinction: Current promises and challenges. Neurobiol Learn Mem 2018; 155:113-126. [PMID: 29981423 PMCID: PMC6805216 DOI: 10.1016/j.nlm.2018.07.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 06/20/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Fear extinction is the well-known process of fear reduction through repeated re-exposure to a feared stimulus without the aversive outcome. The last two decades have witnessed a surge of interest in extinction learning. First, extinction learning is observed across species, and especially research on rodents has made great strides in characterising the physical substrate underlying extinction learning. Second, extinction learning is considered of great clinical significance since it constitutes a crucial component of exposure treatment. While effective in reducing fear responding in the short term, extinction learning can lose its grip, resulting in a return of fear (i.e., laboratory model for relapse of anxiety symptoms in patients). Optimization of extinction learning is, therefore, the subject of intense investigation. It is thought that the success of extinction learning is, at least partly, determined by the mismatch between what is expected and what actually happens (prediction error). However, while much of our knowledge about the neural circuitry of extinction learning and factors that contribute to successful extinction learning comes from animal models, translating these findings to humans has been challenging for a number of reasons. Here, we present an overview of what is known about the animal circuitry underlying extinction of fear, and the role of prediction error. In addition, we conducted a systematic literature search to evaluate the degree to which state-of-the-art neuroimaging methods have contributed to translating these findings to humans. Results show substantial overlap between networks in animals and humans at a macroscale, but current imaging techniques preclude comparisons at a smaller scale, especially in sub-cortical areas that are functionally heterogeneous. Moreover, human neuroimaging shows the involvement of numerous areas that are not typically studied in animals. Results obtained in research aimed to map the extinction circuit are largely dependent on the methods employed, not only across species, but also across human neuroimaging studies. Directions for future research are discussed.
Collapse
Affiliation(s)
- Dieuwke Sevenster
- Laboratory of Biological Psychology, Department of Psychology, KU Leuven, Tiensestraat 102, B-3000 Leuven, Belgium; Clinical Psychology, Utrecht University, Heidelberglaan 1, 3584 CS Utrecht, The Netherlands.
| | - Renée M Visser
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge CB2 7EF, United Kingdom
| | - Rudi D'Hooge
- Laboratory of Biological Psychology, Department of Psychology, KU Leuven, Tiensestraat 102, B-3000 Leuven, Belgium
| |
Collapse
|
49
|
Beauchaine TP, Constantino JN, Hayden EP. Psychiatry and developmental psychopathology: Unifying themes and future directions. Compr Psychiatry 2018; 87:143-152. [PMID: 30415196 PMCID: PMC6296473 DOI: 10.1016/j.comppsych.2018.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 10/30/2018] [Indexed: 02/06/2023] Open
Abstract
In the past 35 years, developmental psychopathology has grown into a flourishing discipline that shares a scientific agenda with contemporary psychiatry. In this editorial, which introduces the special issue, we describe the history of developmental psychopathology, including core principles that bridge allied disciplines. These include (1) emphasis on interdisciplinary research, (2) elucidation of multicausal pathways to seemingly single disorders (phenocopies), (3) description of divergent multifinal outcomes from common etiological start points (pathoplasticity), and (4) research conducted across multiple levels of analysis spanning genes to environments. Next, we discuss neurodevelopmental models of psychopathology, and provide selected examples. We emphasize differential neuromaturation of subcortical and cortical neural networks and connectivity, and how both acute and protracted environmental insults can compromise neural structure and function. To date, developmental psychopathology has placed greater emphasis than psychiatry on neuromaturational models of mental illness. However, this gap is closing rapidly as advances in technology render etiopathophysiologies of psychopathology more interrogable. We end with suggestions for future interdisciplinary research, including the need to evaluate measurement invariance across development, and to construct more valid assessment methods where indicated.
Collapse
Affiliation(s)
- Theodore P Beauchaine
- Department of Psychology, Nisonger Center for Excellence in Developmental Disabilities, The Ohio State University, United States of America.
| | - John N Constantino
- Departments of Psychiatry and Pediatrics, Washington University School of Medicine, United States of America
| | - Elizabeth P Hayden
- Department of Psychology, Brain and Mind Institute, Western University, Canada
| |
Collapse
|
50
|
Haller SPW, Mills KL, Hartwright CE, David AS, Cohen Kadosh K. When change is the only constant: The promise of longitudinal neuroimaging in understanding social anxiety disorder. Dev Cogn Neurosci 2018; 33:73-82. [PMID: 29960860 PMCID: PMC6969264 DOI: 10.1016/j.dcn.2018.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 05/21/2018] [Accepted: 05/23/2018] [Indexed: 12/27/2022] Open
Abstract
Longitudinal studies offer a unique window into developmental change. Yet, most of what we know about the pathophysiology of psychiatric disorders is based on cross-sectional work. Here, we highlight the importance of adopting a longitudinal approach in order to make progress towards identifying the neurobiological mechanisms of social anxiety disorder (SAD). Using examples, we illustrate how longitudinal data can uniquely inform SAD etiology and timing of interventions. The brain's inherently adaptive quality requires that we model risk correlates of disorders as dynamic in their expression. Developmental theories regarding timing of environmental events, cascading effects and (mal)adaptations of the developing brain will be crucial components of comprehensive, integrative models of SAD. We close by discussing analytical considerations when working with longitudinal, developmental data.
Collapse
Affiliation(s)
| | | | - Charlotte E Hartwright
- Department of Experimental Psychology, University of Oxford, UK; Aston Brain Center, Aston University, UK
| | - Anthony S David
- Institute of Psychiatry, Psychology and Neuroscience, King's College London, UK
| | - Kathrin Cohen Kadosh
- Department of Experimental Psychology, University of Oxford, UK; School of Psychology, University of Surrey, UK.
| |
Collapse
|