1
|
ANRIL regulates multiple molecules of pathogenetic significance in diabetic nephropathy. PLoS One 2022; 17:e0270287. [PMID: 35984863 PMCID: PMC9390929 DOI: 10.1371/journal.pone.0270287] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 06/07/2022] [Indexed: 11/25/2022] Open
Abstract
Background Hyperglycemia-induced transcriptional alterations lead to aberrant synthesis of a large number of pathogenetic molecules leading to functional and structural damage to multiple end organs including the kidneys. Diabetic nephropathy (DN) remains a major cause of end stage renal disease. Multiple epigenetic mechanisms, including alteration of long non-coding RNAs (lncRNAs) may play a significant role mediating the cellular transcriptional activities. We have previously shown that lncRNA ANRIL may mediate diabetes associated molecular, functional and structural abnormalities in DN. Here we explored downstream mechanisms of ANRIL alteration in DN. Methods We used renal cortical tissues from ANRIL knockout (KO) mice and wild type (WT) mice, with or without streptozotocin (STZ) induced diabetes for RNA sequencing. The differentially expressed genes were identified using edgeR and DESeq2 computational methods. KEGG and Reactome pathway analyses and network analyses using STRING and IPA were subsequently performed. Results Diabetic animals showed hyperglycemia, reduced body weight gain, polyuria and increased urinary albumin. Both albuminuria and polyuria were corrected in the KO diabetic mice. RNA analyses showed Diabetes induced alterations of a large number of transcripts in the wild type (WT) animals. ANRIL knockout (KO) prevented a large number of such alterations. The altered transcripts include metabolic pathways, apoptosis, extracellular matrix protein synthesis and degradation, NFKB related pathways, AGE-RAGE interaction pathways etc. ANRIL KO prevented majority of these pathways. Conclusion These findings suggest that as ANRIL regulates a large number of molecules of pathogenetic significance, it may potentially be a drug target for DN and other chronic diabetic complications.
Collapse
|
2
|
Pinilla I, Maneu V, Campello L, Fernández-Sánchez L, Martínez-Gil N, Kutsyr O, Sánchez-Sáez X, Sánchez-Castillo C, Lax P, Cuenca N. Inherited Retinal Dystrophies: Role of Oxidative Stress and Inflammation in Their Physiopathology and Therapeutic Implications. Antioxidants (Basel) 2022; 11:antiox11061086. [PMID: 35739983 PMCID: PMC9219848 DOI: 10.3390/antiox11061086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/13/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a large group of genetically and clinically heterogeneous diseases characterized by the progressive degeneration of the retina, ultimately leading to loss of visual function. Oxidative stress and inflammation play fundamental roles in the physiopathology of these diseases. Photoreceptor cell death induces an inflammatory state in the retina. The activation of several molecular pathways triggers different cellular responses to injury, including the activation of microglia to eliminate debris and recruit inflammatory cells from circulation. Therapeutical options for IRDs are currently limited, although a small number of patients have been successfully treated by gene therapy. Many other therapeutic strategies are being pursued to mitigate the deleterious effects of IRDs associated with oxidative metabolism and/or inflammation, including inhibiting reactive oxygen species’ accumulation and inflammatory responses, and blocking autophagy. Several compounds are being tested in clinical trials, generating great expectations for their implementation. The present review discusses the main death mechanisms that occur in IRDs and the latest therapies that are under investigation.
Collapse
Affiliation(s)
- Isabel Pinilla
- Aragón Health Research Institute (IIS Aragón), 50009 Zaragoza, Spain
- Department of Ophthalmology, Lozano Blesa, University Hospital, 50009 Zaragoza, Spain
- Department of Surgery, University of Zaragoza, 50009 Zaragoza, Spain
- Correspondence: (I.P.); (V.M.)
| | - Victoria Maneu
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Correspondence: (I.P.); (V.M.)
| | - Laura Campello
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Laura Fernández-Sánchez
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain;
| | - Natalia Martínez-Gil
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Oksana Kutsyr
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Xavier Sánchez-Sáez
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Carla Sánchez-Castillo
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Pedro Lax
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| | - Nicolás Cuenca
- Alicante Institute for Health and Biomedical Research (ISABIAL), 03010 Alicante, Spain; (P.L.); (N.C.)
- Department of Physiology, Genetics and Microbiology, University of Alicante, 03690 Alicante, Spain; (L.C.); (N.M.-G.); (O.K.); (X.S.-S.); (C.S.-C.)
| |
Collapse
|
3
|
Allegrini D, Raimondi R, Borgia A, Sorrentino T, Montesano G, Tsoutsanis P, Cancian G, Verma Y, De Rosa FP, Romano MR. Curcumin in Retinal Diseases: A Comprehensive Review from Bench to Bedside. Int J Mol Sci 2022; 23:ijms23073557. [PMID: 35408920 PMCID: PMC8998602 DOI: 10.3390/ijms23073557] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Recent evidence in basic science is leading to a growing interest in the possible role of curcumin in treating retinal diseases. Curcumin has been demonstrated to be able to modulate gene transcription and reduce ganglion cell apoptosis, downgrade VEGF, modulate glucose levels and decrease vascular dysfunction. So far, the use of curcumin has been limited by poor bioavailability; to overcome this issue, different types of carriers have been used. Multiple recent studies disclosed the efficacy of using curcumin in treating different retinal conditions. The aim of this review is to comprehensively review and discuss the role of curcumin in retinal diseases from bench to bedside.
Collapse
Affiliation(s)
- Davide Allegrini
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Raffaele Raimondi
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
- Correspondence:
| | - Alfredo Borgia
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Tania Sorrentino
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Giovanni Montesano
- Optometry and Visual Sciences Department, University of London, London WC1E 7HU, UK;
| | - Panos Tsoutsanis
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
| | - Giuseppe Cancian
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Yash Verma
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Francesco Paolo De Rosa
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| | - Mario R. Romano
- Eye Center, Humanitas Gavazzeni-Castelli, 24128 Bergamo, Italy; (D.A.); (P.T.); (M.R.R.)
- Department of Biomedical Sciences, Humanitas University, 20100 Milano, Italy; (A.B.); (T.S.); (G.C.); (Y.V.); (F.P.D.R.)
| |
Collapse
|
4
|
Role of Curcumin in Retinal Diseases-A review. Graefes Arch Clin Exp Ophthalmol 2022; 260:1457-1473. [PMID: 35015114 PMCID: PMC8748528 DOI: 10.1007/s00417-021-05542-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To review the role of curcumin in retinal diseases, COVID era, modification of the molecule to improve bioavailability and its future scope. METHODS PubMed and MEDLINE searches were pertaining to curcumin, properties of curcumin, curcumin in retinal diseases, curcumin in diabetic retinopathy, curcumin in age-related macular degeneration, curcumin in retinal and choroidal diseases, curcumin in retinitis pigmentosa, curcumin in retinal ischemia reperfusion injury, curcumin in proliferative vitreoretinopathy and curcumin in current COVID era. RESULTS In experimental models, curcumin showed its pleiotropic effects in retinal diseases like diabetic retinopathy by increasing anti-oxidant enzymes, upregulating HO-1, nrf2 and reducing or inhibiting inflammatory mediators, growth factors and by inhibiting proliferation and migration of retinal endothelial cells in a dose-dependent manner in HRPC, HREC and ARPE-19 cells. In age-related macular degeneration, curcumin acts by reducing ROS and inhibiting apoptosis inducing proteins and cellular inflammatory genes and upregulating HO-1, thioredoxin and NQO1. In retinitis pigmentosa, curcumin has been shown to delay structural defects of P23H gene in P23H-rhodopsin transgenic rats. In proliferative vitreoretinopathy, curcumin inhibited the action of EGF in a dose- and time-dependent manner. In retinal ischemia reperfusion injury, curcumin downregulates IL-17, IL-23, NFKB, STAT-3, MCP-1 and JNK. In retinoblastoma, curcumin inhibits proliferation, migration and apoptosis of RBY79 and SO-RB50. Curcumin has already proven its efficacy in inhibiting viral replication, coagulation and cytokine storm in COVID era. CONCLUSION Curcumin is an easily available spice used traditionally in Indian cooking. The benefits of curcumin are manifold, and large randomized controlled trials are required to study its effects not only in treating retinal diseases in humans but in their prevention too.
Collapse
|
5
|
Acito M, Bartolini D, Ceccarini MR, Russo C, Vannini S, Dominici L, Codini M, Villarini M, Galli F, Beccari T, Moretti M. Imbalance in the antioxidant defence system and pro-genotoxic status induced by high glucose concentrations: In vitro testing in human liver cells. Toxicol In Vitro 2020; 69:105001. [PMID: 32942007 DOI: 10.1016/j.tiv.2020.105001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 08/18/2020] [Accepted: 09/12/2020] [Indexed: 12/19/2022]
Abstract
It has been hypothesized that high glucose concentrations might contribute to the overall intracellular oxidative stress either by the direct generation of reactive oxygen species (ROS) or by altering the redox balance. Moreover, it has also been suggested that high glucose concentration can increase the susceptibility of DNA to genotoxic effects of xenobiotics. The aim of this approach was to test high glucose concentrations for pro-genotoxicity in human liver cells by setting up an in vitro model for hyperglycaemia. The experimental design included performing of tests on both human HepG2 tumour cells and HepaRG immortalized cells. Increased cell susceptibility to genotoxic xenobiotics was tested by challenging cell cultures with 4-nitroquinoline-N-oxide (4NQO) and evaluating the extent of primary DNA damage by comet assay. Moreover, we evaluated the relationship between glucose concentration and intracellular ROS, as well as the effects of glucose concentration on the induction of Nrf2-dependent genes such as Glutathione S-transferases, Heme‑oxygenase-1, and Glutathione peroxidase-4. To investigate the involvement of ROS in the induced pro-genotoxic activity, parallel experimental sets were set up by considering co-treatment of cells with the model mutagen 4NQO and the antioxidant, glutathione precursor N-acetyl-L-cysteine. High glucose concentrations caused a significant increase in the levels of primary DNA damage, with a pro-genotoxic condition closely related to the concentration of glucose in the culture medium when cells were exposed to 4NQO. High glucose concentrations also stimulated the production of ROS and down-regulated genes involved in contrasting of the effects of oxidative stress. In conclusion, in the presence of high concentrations of glucose, the cells are in unfavourable conditions for the maintenance of genome integrity.
Collapse
Affiliation(s)
- Mattia Acito
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Desirée Bartolini
- Department of Pharmaceutical Sciences, Unit of Nutrition and Clinical Biochemistry, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Maria Rachele Ceccarini
- Department of Pharmaceutical Sciences, Unit of Food Chemistry, Biochemistry, Physiology and Nutrition, University of Perugia, Via San Costanzo, 06126 Perugia, Italy
| | - Carla Russo
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Samuele Vannini
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Luca Dominici
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Michela Codini
- Department of Pharmaceutical Sciences, Unit of Food Chemistry, Biochemistry, Physiology and Nutrition, University of Perugia, Via San Costanzo, 06126 Perugia, Italy
| | - Milena Villarini
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Francesco Galli
- Department of Pharmaceutical Sciences, Unit of Nutrition and Clinical Biochemistry, University of Perugia, Via del Giochetto, 06122 Perugia, Italy
| | - Tommaso Beccari
- Department of Pharmaceutical Sciences, Unit of Food Chemistry, Biochemistry, Physiology and Nutrition, University of Perugia, Via San Costanzo, 06126 Perugia, Italy
| | - Massimo Moretti
- Department of Pharmaceutical Sciences, Unit of Public Health, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| |
Collapse
|
6
|
Genetic Variants Associated with Chronic Kidney Disease in a Spanish Population. Sci Rep 2020; 10:144. [PMID: 31924810 PMCID: PMC6954113 DOI: 10.1038/s41598-019-56695-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) patients have many affected physiological pathways. Variations in the genes regulating these pathways might affect the incidence and predisposition to this disease. A total of 722 Spanish adults, including 548 patients and 174 controls, were genotyped to better understand the effects of genetic risk loci on the susceptibility to CKD. We analyzed 38 single nucleotide polymorphisms (SNPs) in candidate genes associated with the inflammatory response (interleukins IL-1A, IL-4, IL-6, IL-10, TNF-α, ICAM-1), fibrogenesis (TGFB1), homocysteine synthesis (MTHFR), DNA repair (OGG1, MUTYH, XRCC1, ERCC2, ERCC4), renin-angiotensin-aldosterone system (CYP11B2, AGT), phase-II metabolism (GSTP1, GSTO1, GSTO2), antioxidant capacity (SOD1, SOD2, CAT, GPX1, GPX3, GPX4), and some other genes previously reported to be associated with CKD (GLO1, SLC7A9, SHROOM3, UMOD, VEGFA, MGP, KL). The results showed associations of GPX1, GSTO1, GSTO2, UMOD, and MGP with CKD. Additionally, associations with CKD related pathologies, such as hypertension (GPX4, CYP11B2, ERCC4), cardiovascular disease, diabetes and cancer predisposition (ERCC2) were also observed. Different genes showed association with biochemical parameters characteristic for CKD, such as creatinine (GPX1, GSTO1, GSTO2, KL, MGP), glomerular filtration rate (GPX1, GSTO1, KL, ICAM-1, MGP), hemoglobin (ERCC2, SHROOM3), resistance index erythropoietin (SOD2, VEGFA, MTHFR, KL), albumin (SOD1, GSTO2, ERCC2, SOD2), phosphorus (IL-4, ERCC4 SOD1, GPX4, GPX1), parathyroid hormone (IL-1A, IL-6, SHROOM3, UMOD, ICAM-1), C-reactive protein (SOD2, TGFB1,GSTP1, XRCC1), and ferritin (SOD2, GSTP1, SLC7A9, GPX4). To our knowledge, this is the second comprehensive study carried out in Spanish patients linking genetic polymorphisms and CKD.
Collapse
|
7
|
Radomska-Leśniewska DM, Osiecka-Iwan A, Hyc A, Góźdź A, Dąbrowska AM, Skopiński P. Therapeutic potential of curcumin in eye diseases. Cent Eur J Immunol 2019; 44:181-189. [PMID: 31530988 PMCID: PMC6745545 DOI: 10.5114/ceji.2019.87070] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023] Open
Abstract
Curcumin (diferuloylmethane) derived from the rhizome of Curcuma longa L. has been used for thousands of years in traditional Chinese medicine and Ayurvedic medicine in Asian countries to treat liver diseases, rheumatoid diseases, diabetes, atherosclerosis, infectious diseases and cancer. It exhibits a wide range of pharmacological properties, which include antioxidant, anti-inflammatory, antimutagenic, antimicrobial and anticancer activity. Herein the mechanisms of curcumin impact on oxidative stress, angiogenesis and inflammatory processes are described indicating that curcumin use may inhibit those pathological conditions and restore body homeostasis. Its effectiveness was also proved for major eye diseases. In this review, the influence of curcumin on eye diseases, such as glaucoma, cataract, age-related macular degeneration, diabetic retinopathy, corneal neovascularization, corneal wound healing, dry eye disease, conjunctivitis, pterygium, anterior uveitis are reported. The analysis of a number of clinical and preclinical investigations indicates that curcumin may be used as a therapeutic agent in the treatment of various eye disorders.
Collapse
Affiliation(s)
| | - Anna Osiecka-Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Agata Góźdź
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Anna M. Dąbrowska
- Department of Ophthalmology, Second Faculty of Medicine, Medical University of Warsaw, Poland
| | - Piotr Skopiński
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| |
Collapse
|
8
|
Farajipour H, Rahimian S, Taghizadeh M. Curcumin: A new candidate for retinal disease therapy? J Cell Biochem 2019; 120:6886-6893. [PMID: 30548307 DOI: 10.1002/jcb.28068] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 10/22/2018] [Indexed: 01/24/2023]
Abstract
The retina is the neural portion and light-sensitive layer of the eye, which has been observed in most of the vertebrates. The retina is composed of light-sensitive cells that absorb light and convert it into neural signals. These signals are sent to the brain for visual recognition. It has been shown that many pathogenesis conditions, including inflammation, angiogenesis, oxidative stress, and imbalanced histone modifications in the retina are associated with initiation and progression of retinal diseases (ie, glaucoma, diabetic retinopathy, and age-related macular degeneration). Currently available treatments include laser surgery, freezing, stem-cell therapy, shrinking abnormal blood vessels. It has some limitations, such as invasive methods, high costs, and many side effects. Hence, finding a new therapeutic platform for stopping or slowing of the disease progression is required. Curcumin is a natural product, which is associated with a wide range of properties, such as antioxidant, anti-inflammatory, antiangiogenic, and antitumor activates. It exerts therapeutic effects via activation/inhibition cellular and molecular targets involved in various diseases, such as retinal diseases. Increasing evidence revealed that curcumin can be used as a therapeutic option in the treatment of different retinal diseases. Here, we summarized various clinical and preclinical studies that used curcumin as a therapeutic agent in the treatment of retinal disorders.
Collapse
Affiliation(s)
| | - Susan Rahimian
- Oral and Maxillofacial Radiology Department, School of Dentistry, Kashan University of Medical Sciences, Kashan, Iran
| | - Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
9
|
Semeraro F, Morescalchi F, Cancarini A, Russo A, Rezzola S, Costagliola C. Diabetic retinopathy, a vascular and inflammatory disease: Therapeutic implications. DIABETES & METABOLISM 2019; 45:517-527. [PMID: 31005756 DOI: 10.1016/j.diabet.2019.04.002] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 04/04/2019] [Accepted: 04/07/2019] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and the leading cause of visual impairment in the working-age population in the Western world. Diabetic macular oedema (DME) is one of the major complications of DR. Therapy with intravitreal injections of anti-vascular endothelial growth factor (anti-VEGF) drugs has become the gold standard treatment for DR and its complications. However, these drugs have no effect on the pathogenesis of DR and must be administered frequently via invasive intravitreal injections over many years. Thus, there is a pressing need to develop new therapeutic strategies to improve the treatment of this devastating disease. Indeed, an increasing volume of data supports the role of the inflammatory process in the pathogenesis of DR itself and its complications, including both increased retinal vascular permeability and neovascularization. Inflammation may also contribute to retinal neurodegeneration. Evidence that low-grade inflammation plays a critical role in the pathogenesis of DME has opened up new pathways and targets for the development of improved treatments. Anti-inflammatory compounds such as intravitreal glucocorticoids, topical non-steroidal anti-inflammatory drugs (NSAIDs), antioxidants, inflammatory molecule inhibitors, renin-angiotensin system (RAS) blockers and natural anti-inflammatory therapies may all be considered to reduce the rate of administration of antineovascularization agents in the treatment of DR. This report describes the current state of knowledge of the potential role of anti-inflammatory drugs in controlling the onset and evolution of DR and DME.
Collapse
Affiliation(s)
- F Semeraro
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - F Morescalchi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - A Cancarini
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - A Russo
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - S Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | - C Costagliola
- Department of Medicine and Health Sciences 'V. Tiberio', University of Molise, Via Francesco De Sanctis 1, 86100 Campobasso, Italy.
| |
Collapse
|
10
|
Li C, Menoret A, Farragher C, Ouyang Z, Bonin C, Holvoet P, Vella AT, Zhou B. Single cell transcriptomics based-MacSpectrum reveals novel macrophage activation signatures in diseases. JCI Insight 2019; 5:126453. [PMID: 30990466 DOI: 10.1172/jci.insight.126453] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Adipose tissue macrophages (ATM) are crucial for maintaining adipose tissue homeostasis and mediating obesity-induced metabolic abnormalities, including prediabetic conditions and type 2 diabetes mellitus. Despite their key functions in regulating adipose tissue metabolic and immunologic homeostasis under normal and obese conditions, a high-resolution transcriptome annotation system that can capture ATM multifaceted activation profiles has not yet been developed. This is primarily attributed to the complexity of their differentiation/activation process in adipose tissue and their diverse activation profiles in response to microenvironmental cues. Although the concept of multifaceted macrophage action is well-accepted, no current model precisely depicts their dynamically regulated in vivo features. To address this knowledge gap, we generated single-cell transcriptome data from primary bone marrow-derived macrophages under polarizing and non-polarizing conditions to develop new high-resolution algorithms. The outcome was creation of a two-index platform, MacSpectrum (https://macspectrum.uconn.edu), that enables comprehensive high-resolution mapping of macrophage activation states from diverse mixed cell populations. MacSpectrum captured dynamic transitions of macrophage subpopulations under both in vitro and in vivo conditions. Importantly, MacSpectrum revealed unique "signature" gene sets in ATMs and circulating monocytes that displayed significant correlation with BMI and homeostasis model assessment of insulin resistance (HOMA-IR) in obese human patients. Thus, MacSpectrum provides unprecedented resolution to decode macrophage heterogeneity and will open new areas of clinical translation.
Collapse
Affiliation(s)
- Chuan Li
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Antoine Menoret
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, Connecticut, USA
| | - Cullen Farragher
- College of Liberal Arts and Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Zhengqing Ouyang
- Institute for Systems Genomics, University of Connecticut, Farmington, Connecticut, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,Department of Biomedical Engineering, University of Connecticut, Storrs, Connecticut, USA.,Department of Genetics and Genome Sciences, University of Connecticut, Farmington, Connecticut, USA
| | - Christopher Bonin
- School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Paul Holvoet
- Experimental Cardiology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven, Leuven, Belgium
| | - Anthony T Vella
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, Connecticut, USA
| | - Beiyan Zhou
- Department of Immunology, School of Medicine, University of Connecticut, Farmington, Connecticut, USA.,Institute for Systems Genomics, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
11
|
Therapeutic potential of curcumin in diabetic complications. Pharmacol Res 2018; 136:181-193. [DOI: 10.1016/j.phrs.2018.09.012] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/19/2018] [Indexed: 12/22/2022]
|
12
|
Peddada KV, Brown A, Verma V, Nebbioso M. Therapeutic potential of curcumin in major retinal pathologies. Int Ophthalmol 2018; 39:725-734. [DOI: 10.1007/s10792-018-0845-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 01/29/2018] [Indexed: 02/07/2023]
|
13
|
Zhang R, Garrett Q, Zhou H, Wu X, Mao Y, Cui X, Xie B, Liu Z, Cui D, Jiang L, Zhang Q, Xu S. Upregulation of miR-195 accelerates oxidative stress-induced retinal endothelial cell injury by targeting mitofusin 2 in diabetic rats. Mol Cell Endocrinol 2017; 452:33-43. [PMID: 28487236 DOI: 10.1016/j.mce.2017.05.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 03/24/2017] [Accepted: 05/05/2017] [Indexed: 10/19/2022]
Abstract
This study was performed to investigate the oxidative stress-induced miRNA changes in relation to pathogenesis of diabetic retinopathy (DR) and to establish a functional link between miRNAs and oxidative stress-induced retinal endothelial cell injury. Our results demonstrated that oxidative stress could induce alterations of miRNA expression profile, including up-regulation of miR-195 in the diabetic retina or cultured HMRECs after exposed to H2O2 or HG (P < 0.05). Oxidative stress also resulted in a significant reduction of MFN2 expression in diabetic retina or HMRECs (P < 0.05). Overexpression of miR-195 reduced MFN2 protein levels, and induced tube formation and increased permeability of diabetic retinal vasculature. The luciferase reporter assay confirmed that miR-195 binds to the 3' -untranslated region (3'-UTR) of MFN2 mRNA. This study suggested that miR-195 played a critical role in oxidative stress-induced retinal endothelial cell injury by targeting MFN2 in diabetic rats.
Collapse
Affiliation(s)
- Rui Zhang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China
| | - Qian Garrett
- The University of New South Wales, Sydney, NSW 2052, Australia; The University of Notre Dame Australia, NSW 2008, Australia
| | - Huimin Zhou
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China.
| | - Xiaoxi Wu
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Yueran Mao
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Ximing Cui
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Bing Xie
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China
| | - Zanchao Liu
- Department of Endocrinology, The Second Hospital of Shijiazhuang City, Shijiazhuang, PR China
| | - Dongsheng Cui
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Lei Jiang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China
| | - Qingfu Zhang
- Burn Engineering Center of Hebei Province, Shijiazhuang, PR China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, PR China; Burn Engineering Center of Hebei Province, Shijiazhuang, PR China.
| |
Collapse
|
14
|
Li J, Wang P, Zhu Y, Chen Z, Shi T, Lei W, Yu S. Curcumin Inhibits Neuronal Loss in the Retina and Elevates Ca²⁺/Calmodulin-Dependent Protein Kinase II Activity in Diabetic Rats. J Ocul Pharmacol Ther 2015. [PMID: 26207889 DOI: 10.1089/jop.2015.0006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
PURPOSE To determine whether curcumin offers neuroprotection to minimize the apoptosis of neural cells in the retina of diabetic rats. METHODS Streptozotocin (STZ)-induced diabetic rats and control rats were used in this study. A subgroup of STZ-induced diabetic rats were treated with curcumin for 12 weeks. Retinal histology, apoptosis of neural cells in the retina, electroretinograms, and retinal glutamate content were evaluated after 12 weeks. Retinal levels of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII), phospho-CaMKII (p-CaMKII), and cleaved caspase-3 were determined by Western blot analysis. RESULTS The amplitudes a-wave, b-wave, and oscillatory potential were reduced by diabetes, but curcumin treatment suppressed this reduction of amplitudes. Curcumin also prevented cell loss from the outer nuclear, inner nuclear, and ganglion cell layers. Apoptosis of retinal neurons was detected in diabetic rats. The concentration of glutamate in the retina was higher in diabetic rats, but was significantly reduced in the curcumin-treated group. Furthermore, p-CaMKII and cleaved caspase-3 expression were upregulated in the diabetic retina, but reduced in curcumin-treated rats. CONCLUSIONS Curcumin attenuated diabetes-induced apoptosis in retinal neurons by reducing the glutamate level and downregulating CaMKII. Thus, curcumin might be used to prevent neuronal damage in the retina of patients with diabetes mellitus.
Collapse
Affiliation(s)
- Jun Li
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Peipei Wang
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Yanxia Zhu
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Zhen Chen
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Tianyan Shi
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Wensheng Lei
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| | - Songping Yu
- Department of Ophthalmology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical University , Lishui, Zhejiang Province, People's Republic of China
| |
Collapse
|
15
|
Jeenger MK, Shrivastava S, Yerra VG, Naidu VGM, Ramakrishna S, Kumar A. Curcumin: a pleiotropic phytonutrient in diabetic complications. Nutrition 2014; 31:276-82. [PMID: 25441584 DOI: 10.1016/j.nut.2014.06.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 02/06/2023]
Abstract
Curcumin is the major polyphenolic constituent of an indigenous herb, Curcuma longa, found to have a wide range of applications right from its kitchen use as a spicy ingredient to therapeutic and medicinal applications in various diseases. Curcumin has been identified to have a plethora of biologic and pharmacologic properties owing to its antioxidant and anti-inflammatory activities. This pleiotropic regulation of redox balance of cell and inflammation might be the basis of curcumin's beneficial activities in various pathologic conditions including diabetic complications. This review summarizes various in vitro, in vivo studies done on curcumin and its therapeutic utility in diabetic micro-vascular complications. This review also emphasizes the importance of curcumin in addition to the existing therapeutic modalities in diabetic complications.
Collapse
Affiliation(s)
- Manish Kumar Jeenger
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, India
| | - Shweta Shrivastava
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, India
| | - Veera Ganesh Yerra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, India
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, India
| | - Sistla Ramakrishna
- Medicinal Chemistry and Pharmacology Division, Indian Institute of Chemical Technology, Hyderabad, India
| | - Ashutosh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Bala Nagar, India.
| |
Collapse
|
16
|
Curcumin and diabetes: a systematic review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:636053. [PMID: 24348712 PMCID: PMC3857752 DOI: 10.1155/2013/636053] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 08/30/2013] [Accepted: 09/12/2013] [Indexed: 12/20/2022]
Abstract
Turmeric (Curcuma longa), a rhizomatous herbaceous perennial plant of the ginger family, has been used for the treatment of diabetes in Ayurvedic and traditional Chinese medicine. The active component of turmeric, curcumin, has caught attention as a potential treatment for diabetes and its complications primarily because it is a relatively safe and inexpensive drug that reduces glycemia and hyperlipidemia in rodent models of diabetes. Here, we review the recent literature on the applications of curcumin for glycemia and diabetes-related liver disorders, adipocyte dysfunction, neuropathy, nephropathy, vascular diseases, pancreatic disorders, and other complications, and we also discuss its antioxidant and anti-inflammatory properties. The applications of additional curcuminoid compounds for diabetes prevention and treatment are also included in this paper. Finally, we mention the approaches that are currently being sought to generate a "super curcumin" through improvement of the bioavailability to bring this promising natural product to the forefront of diabetes therapeutics.
Collapse
|
17
|
Feng B, Ruiz MA, Chakrabarti S. Oxidative-stress-induced epigenetic changes in chronic diabetic complications. Can J Physiol Pharmacol 2013; 91:213-20. [DOI: 10.1139/cjpp-2012-0251] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Oxidative stress plays an important role in the development and progression of chronic diabetic complications. Diabetes causes mitochondrial superoxide overproduction in the endothelial cells of both large and small vessels. This increased superoxide production causes the activation of several signal pathways involved in the pathogenesis of chronic complications. In particular, endothelial cells are major targets of glucose-induced oxidative damage in the target organs. Oxidative stress activates cellular signaling pathways and transcription factors in endothelial cells including protein kinase C (PKC), c-Jun-N-terminal kinase (JNK), p38 mitogen-activated protein kinase (MAPK), forkhead box O (FOXO), and nuclear factor kappa-B (NF-κB). Oxidative stress also causes DNA damage and activates DNA nucleotide excision repair enzymes including the excision repair cross complimenting 1(ERCC1), ERCC4, and poly(ADP-ribose) polymerase (PARP). Augmented production of histone acetyltransferase p300, and alterations of histone deacetylases, including class III deacetylases sirtuins, are also involved in this process. Recent research has found that small noncoding RNAs, like microRNA, are a new kind of regulator associated with chronic diabetic complications. There are extensive and complicated interactions and among these molecules. The purpose of this review is to demonstrate the role of oxidative stress in the development of diabetic complications in relation to epigenetic changes such as acetylation and microRNA alterations.
Collapse
Affiliation(s)
- Biao Feng
- Department of Pathology, Western University, London, ON N6A 5C1, Canada
| | | | | |
Collapse
|
18
|
|
19
|
Wang LL, Sun Y, Huang K, Zheng L. Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res 2013; 57:1557-68. [DOI: 10.1002/mnfr.201200718] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/15/2012] [Accepted: 12/17/2012] [Indexed: 01/27/2023]
Affiliation(s)
- Lei-Lei Wang
- College of Life Sciences; Wuhan University; Wuhan; P. R. China
| | - Yue Sun
- College of Life Sciences; Wuhan University; Wuhan; P. R. China
| | | | - Ling Zheng
- College of Life Sciences; Wuhan University; Wuhan; P. R. China
| |
Collapse
|
20
|
Lai AKW, Lo ACY. Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res 2013; 2013:106594. [PMID: 24286086 PMCID: PMC3826427 DOI: 10.1155/2013/106594] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication associated with chronic exposure to hyperglycemia and is a major cause of blindness worldwide. Although clinical assessment and retinal autopsy of diabetic patients provide information on the features and progression of DR, its underlying pathophysiological mechanism cannot be deduced. In order to have a better understanding of the development of DR at the molecular and cellular levels, a variety of animal models have been developed. They include pharmacological induction of hyperglycemia and spontaneous diabetic rodents as well as models of angiogenesis without diabetes (to compensate for the absence of proliferative DR symptoms). In this review, we summarize the existing protocols to induce diabetes using STZ. We also describe and compare the pathological presentations, in both morphological and functional aspects, of the currently available DR animal models. The advantages and disadvantages of using different animals, ranging from zebrafish, rodents to other higher-order mammals, are also discussed. Until now, there is no single model that displays all the clinical features of DR as seen in human. Yet, with the understanding of the pathological findings in these animal models, researchers can select the most suitable models for mechanistic studies or drug screening.
Collapse
Affiliation(s)
- Angela Ka Wai Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- *Amy C. Y. Lo:
| |
Collapse
|
21
|
Feng B, Chakrabarti S. miR-320 Regulates Glucose-Induced Gene Expression in Diabetes. ISRN ENDOCRINOLOGY 2012; 2012:549875. [PMID: 22900199 PMCID: PMC3415085 DOI: 10.5402/2012/549875] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 06/22/2012] [Indexed: 11/29/2022]
Abstract
miRNAs play an important role in several biological processes. Here, we investigated miR-320 in glucose-induced augmented production of vasoactive factors and extracellular matrix (ECM) proteins. High glucose exposure decreased the expression of microRNA 320 (miR-320) but increased the expression of endothelin 1 (ET-1), vascular endothelial growth factor (VEGF), and fibronectin (FN) in human umbilical vein endothelial cells (HUVECs). Transfection of miR-320 mimics restored ET-1, VEGF and FN mRNA, and protein expression in HUVECs treated with high glucose. Furthermore, miR-320 mimic transfection reduced glucose-induced augmented production of ERK1/2. Data from this study indicates that miR-320 negatively regulates expression of ET-1, VEGF, and FN through ERK 1/2. Identification of such novel glucose-induced mechanism regulating gene expression may offer a new strategy for the treatment of diabetic complications.
Collapse
Affiliation(s)
- Biao Feng
- Department of Pathology, Western University, London, ON, Canada N6A 5C1
| | | |
Collapse
|