1
|
Hao Y, Zhou Z, Liu R, Shen S, Liu H, Zhou Y, Sun Y, Mao Q, Zhang T, Li ST, Liu Z, Chu Y, Sun L, Gao P, Zhang H. Mitochondria-localized MBD2c facilitates mtDNA transcription and drug resistance. Nat Chem Biol 2024:10.1038/s41589-024-01776-1. [PMID: 39609546 DOI: 10.1038/s41589-024-01776-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/22/2024] [Indexed: 11/30/2024]
Abstract
Mitochondria contain a 16-kb double stranded DNA genome encoding 13 proteins essential for respiration, but the mechanisms regulating transcription and their potential role in cancer remain elusive. Although methyl-CpG-binding domain (MBD) proteins are essential for nuclear transcription, their role in mitochondrial DNA (mtDNA) transcription is unknown. Here we report that the MBD2c splicing variant translocates into mitochondria to mediate mtDNA transcription and increase mitochondrial respiration in triple-negative breast cancer (TNBC) cells. In particular, MBD2c binds the noncoding region in mtDNA and interacts with SIRT3, which in turn deacetylates and activates TFAM, a primary mitochondrial transcription factor, leading to enhanced mtDNA transcription. Furthermore, MBD2c recovered the decreased mitochondrial gene expression caused by the DNA synthesis inhibitor cisplatin, preserving mitochondrial respiration and consequently enhancing drug resistance and proliferation in TNBC cells. These data collectively demonstrate that MBD2c positively regulates mtDNA transcription, thus connecting epigenetic regulation by deacetylation with cancer cell metabolism, suggesting druggable targets to overcome resistance.
Collapse
Affiliation(s)
- Yijie Hao
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Zilong Zhou
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China
| | - Rui Liu
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Shengqi Shen
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haiying Liu
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yingli Zhou
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yuchen Sun
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Qiankun Mao
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Tong Zhang
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Ting Li
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhaoji Liu
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Yiyang Chu
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China
| | - Linchong Sun
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Ping Gao
- Medical Research Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China.
| | - Huafeng Zhang
- Department of General Surgery, Anhui Provincial Hospital, the First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China, Hefei, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
2
|
Kumar J, Kowluru RA. Mitochondrial DNA transcription and mitochondrial genome-encoded long noncoding RNA in diabetic retinopathy. Mitochondrion 2024; 78:101925. [PMID: 38944370 PMCID: PMC11390302 DOI: 10.1016/j.mito.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
In diabetic retinopathy, mitochondrial DNA (mtDNA) is damaged and mtDNA-encoded genes and long noncoding RNA cytochrome B (LncCytB) are downregulated. LncRNAs lack an open reading frame, but they can regulate gene expression by associating with DNA/RNA/protein. Double stranded mtDNA has promoters on both heavy (HSP) and light (LSP) strands with binding sites for mitochondrial transcription factor A (TFAM) between them. The aim was to investigate the role of LncCytB in mtDNA transcription in diabetic retinopathy. Using human retinal endothelial cells incubated in high glucose, the effect of regulation of LncCytB on TFAM binding at mtDNA promoters was investigated by Chromatin immunoprecipitation, and binding of LncCytB at TFAM by RNA immunoprecipitation and RNA fluorescence in situ hybridization. High glucose decreased TFAM binding at both HSP and LSP, and binding of LncCytB at TFAM. While LncCytB overexpression ameliorated decrease in TFAM binding and transcription of genes encoded by both H- and L- strands, LncCytB-siRNA further downregulated them. Maintenance of mitochondrial homeostasis by overexpressing mitochondrial superoxide dismutase or Sirtuin-1 protected diabetes-induced decrease in TFAM binding at mtDNA and LncCytB binding at TFAM, and mtDNA transcription. Similar results were obtained from mouse retinal microvessels from streptozotocin-induced diabetic mice. Thus, LncCytB facilitates recruitment of TFAM at HSP and LSP, and its downregulation in diabetes compromises the binding, resulting in the downregulation of polypeptides encoded by mtDNA. Regulation of LncCytB, in addition to protecting mitochondrial genomic stability, should also help in maintaining the transcription of mtDNA encoded genes and electron transport chain integrity in diabetic retinopathy.
Collapse
Affiliation(s)
- Jay Kumar
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Renu A Kowluru
- Ophthalmology, Visual and Anatomical Sciences, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA.
| |
Collapse
|
3
|
Carvalho C, Moreira PI. MitoTempo protects against nε-carboxymethyl lysine-induced mitochondrial dyshomeostasis and neuronal cells injury. Free Radic Biol Med 2024; 220:192-206. [PMID: 38734265 DOI: 10.1016/j.freeradbiomed.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Enhanced formation of advanced glycation end products (AGEs) is a pivotal factor in diabetes pathophysiology, increasing the risk of diabetic complications. Nε-carboxy-methyl-lysine (CML) is one of the most relevant AGEs found in several tissues including the peripheral blood of diabetic subjects. Despite recognizing diabetes as a risk factor for neurodegenerative diseases and the documented role of mitochondrial abnormalities in this connection, the impact of CML on neuronal mitochondria and its contribution to diabetes-related neurodegeneration remain uncertain. Here, we evaluated the effects of CML in differentiated SH-SY5Y human neuroblastoma cells. Due to the association between mitochondrial dysfunction and increased production of reactive oxygen species (ROS), the possible protective effects of MitoTempo, a mitochondria-targeted antioxidant, were also evaluated. Several parameters were assessed namely cells viability, mitochondrial respiration and membrane potential, ATP and ROS production, Ca2+ levels, mitochondrial biogenesis and dynamics, mito/autophagy, endoplasmic reticulum (ER) stress and amyloidogenic and synaptic integrity markers. CML caused pronounced mitochondrial defects characterized by a significant decrease in mitochondrial respiration, membrane potential, and ATP production and an increase in ROS production. An accumulation of individual mitochondria associated with disrupted mitochondrial networks was also observed. Furthermore, CML caused mitochondrial fusion and a decrease in mitochondrial mass and induced ER stress associated with altered unfolded protein response and Ca2+ dyshomeostasis. Moreover, CML increased the protein levels of β-secretase-1 and amyloid precursor protein, key proteins involved in Alzheimer's Disease pathophysiology. All these effects contributed to the decline in neuronal cells viability. Notable, MitoTempo was able to counteract most of CML-mediated mitochondrial defects and neuronal cells injury and death. Overall, these findings suggest that CML induces pronounced defects in neuronal mitochondria and ER stress, predisposing to neurodegenerative events. More, our observations suggest that MitoTempo holds therapeutic promise in mitigating CML-induced mitochondrial imbalance and neuronal damage and death.
Collapse
Affiliation(s)
- Cristina Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), Portugal; Institute for Interdisciplinary Research (III), University of Coimbra, Portugal.
| | - Paula I Moreira
- Center for Neuroscience and Cell Biology, University of Coimbra (CNC-UC), Portugal; Center for Innovation in Biomedicine and Biotechnology (CIBB), Portugal; Institute of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
4
|
Sheemar A, Bellala K, Sharma SV, Sharma S, Kaur I, Rani P, Sivaprasad S, Narayan KV, Das T, Takkar B. Metabolic memory and diabetic retinopathy: Legacy of glycemia and possible steps into future. Indian J Ophthalmol 2024; 72:796-808. [PMID: 38804800 PMCID: PMC11232859 DOI: 10.4103/ijo.ijo_2563_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 05/29/2024] Open
Abstract
The response of retinal pathology to interventions in diabetic retinopathy (DR) is often independent of the glycated hemoglobin (HbA1c) values at the point of care. This is despite glucose control being one of the strongest risk factors for the development and progression of DR. Previous preclinical and clinical research has indicated metabolic memory, whereby past cumulative glucose exposure may continue to impact DR for a prolonged period. Preclinical studies have evaluated punitive metabolic memory through poor initial control of DM, whereas clinical studies have evaluated protective metabolic memory through good initial control of DM. In this narrative review, we evaluate the preclinical and clinical evidence regarding metabolic memory and discuss how this may form the basis of preventive care for DR by inducing "metabolic amnesia" in people with a history of uncontrolled diabetes in the past. While our review suggested mitochondrial biology may be one such target, research is still far from a possible clinical trial. We discuss the challenges in such research.
Collapse
Affiliation(s)
| | - Keerthi Bellala
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Vishakhapatnam, Andhra Pradesh, India
| | | | - Sarmeela Sharma
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Padmaja Rani
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Sobha Sivaprasad
- NIHR Moorfields Clinical Research Facility, Moorfields Eye Hospital, London, UK
| | - Km Venkat Narayan
- Emory Global Diabetes Research Center, Emory University, Atlanta, USA
| | - Taraprasad Das
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
| | - Brijesh Takkar
- Anant Bajaj Retina Institute, LV Prasad Eye Institute, Hyderabad, Telangana, India
- Indian Health Outcomes, Public Health and Health Economics Research Centre (IHOPE), LVPEI, Hyderabad, Telangana, India
| |
Collapse
|
5
|
Fang X, Zhang Y, Wu H, Wang H, Miao R, Wei J, Zhang Y, Tian J, Tong X. Mitochondrial regulation of diabetic endothelial dysfunction: Pathophysiological links. Int J Biochem Cell Biol 2024; 170:106569. [PMID: 38556159 DOI: 10.1016/j.biocel.2024.106569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Micro- and macrovascular complications frequently occur in patients with diabetes, with endothelial dysfunction playing a key role in the development and progression of the complications. For the early diagnosis and optimal treatment of vascular complications associated with diabetes, it is imperative to comprehend the cellular and molecular mechanisms governing the function of diabetic endothelial cells. Mitochondria function as crucial sensors of environmental and cellular stress regulating endothelial cell viability, structural integrity and function. Impaired mitochondrial quality control mechanisms and mitochondrial dysfunction are the main features of endothelial damage. Hence, targeted mitochondrial therapy is considered promising novel therapeutic options in vascular complications of diabetes. In this review, we focus on the mitochondrial functions in the vascular endothelial cells and the pathophysiological role of mitochondria in diabetic endothelial dysfunction, aiming to provide a reference for related drug development and clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Haoran Wu
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Han Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; Graduate College, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Jilin 130117, China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Xiaolin Tong
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| |
Collapse
|
6
|
Ma L, Wang Y, Li X, Wang Z, Zhang B, Luo Y, Wu Y, Li Z, Niu W. Tom70-regulated mitochondrial biogenesis via TFAM improves hypoxia-induced dysfunction of pulmonary vascular endothelial cells and alleviates hypoxic pulmonary hypertension. Respir Res 2023; 24:310. [PMID: 38093274 PMCID: PMC10717060 DOI: 10.1186/s12931-023-02631-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Hypoxic pulmonary hypertension (HPH) is a common type of pulmonary hypertension and characterized by pulmonary vascular remodeling and constriction. A large number of studies have shown that pulmonary vascular endothelial cells (PVECs) dysfunction plays an important role in the initiation and development stages of HPH, but the mechanism of PVECs dysfunction after hypoxia remains unclear. In this study, we explored the exact mechanism of PVECs dysfunction after hypoxia. METHODS In vitro, we used primary cultured PVECs hypoxia model to mimic HPH injury. We detected the expressions of mitochondrial biogenesis markers, mitochondrial transcription factor A (TFAM) level inside mitochondria, mitochondrial quantity and function, and the components expressions of translocase of outer mitochondrial membrane (TOM) at 24 h after hypoxia. To explore the effects of Tom70 on mitochondrial biogenesis and functions of PVECs after hypoxia, Tom70 overexpression adenovirus was constructed, and the expressions of mitochondrial biogenesis markers, TFAM level inside mitochondria, mitochondrial quantity and function, and the functions of PVECs were detected. And in vivo, we used cre-dependent overexpression adenovirus of Tom70 in the Cdh5-CreERT2 mouse model of HPH to verify the role of upregulating PVECs Tom70 in improving HPH. RESULTS Hypoxia obviously increased the expressions of mitochondrial biogenesis markers for PGC-1α, NRF-1 and TFAM, but reduced the content of TFAM in mitochondria and the quantity and functions of mitochondria. In addition, only Tom70 expression among the TOM components was significantly decreased after hypoxia, and up-regulation of Tom70 significantly increased the content of TFAM in mitochondria of PVECs by transporting TFAM into mitochondria after hypoxia, enhanced the quantity and functions of mitochondria, improved the functions of PVECs, and ultimately alleviated HPH. CONCLUSION The findings of present study demonstrated that hypoxia induced the decreased expression of Tom70 in PVECs, reduced the mitochondrial biogenesis-associated TFAM protein transporting into mitochondria, inhibited mitochondrial biogenesis, caused PVECs injury, and prompted the formation of HPH. However, up-regulation of Tom70 abolished the hypoxia-induced injurious effects on PVECs and alleviated HPH.
Collapse
Affiliation(s)
- Lei Ma
- Department of Anesthesiology, Second Affiliated Hospital of Xi'an Jiaotong University, 157 Xiwu Street, Xi'an, 710004, People's Republic of China.
| | - Yanxia Wang
- Department of Pathology, Xijing Hospital and School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Xiaoqian Li
- Department of Cardiology, Second Medical Center and National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, People's Republic of China
| | - Zefang Wang
- Department of Basic Medicine, Graduate School, Chinese PLA General Hospital, 28 Fuxing Street, Beijing, 100853, People's Republic of China
| | - Bo Zhang
- Department of Physiology and Pathophysiology, School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Ying Luo
- Department of Physiology and Pathophysiology, School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Yousheng Wu
- National Demonstration Center for Experimental Preclinical Medicine Education, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China
| | - Zhichao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Street, Xi'an, 710069, People's Republic of China.
| | - Wen Niu
- Department of Physiology and Pathophysiology, School of Basic Medicine, Air Force Medical University, 169 Changle Western Street, Xi'an, 710032, People's Republic of China.
| |
Collapse
|
7
|
Lv T, Zhang Y, Ji X, Sun S, Xu L, Ma W, Liu Y, Wan Q. GCN5L1-mediated TFAM acetylation at K76 participates in mitochondrial biogenesis in acute kidney injury. J Transl Med 2022; 20:571. [PMID: 36474281 PMCID: PMC9724393 DOI: 10.1186/s12967-022-03782-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/19/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Mitochondrial dysfunction is an important pathogenic event in acute kidney injury (AKI). GCN5L1 is a specific acetyltransferase in mitochondria, which regulates glucose and fatty acid metabolism. However, the role of GCN5L1 in mitochondrial dysfunction and the pathogenesis of ischemic AKI are not fully understood. METHODS The protein level of GCN5L1 was detected by western blot assay. Acetylated proteomics was used to explore the level of acetylated TFAM. Duolink proximity ligation assay and co-immunoprecipitation were used to detect the interaction of TFAM and translocase of outer membrane 70 (TOM70). mtDNA copy number, the expression of mitochondrial electron transport chain complexes, the number and morphology of mitochondria were measured. The renal injury of AKI mice was reflected by the levels of creatinine and urea nitrogen and the pathological changes of renal tissue. RESULTS We showed that GCN5L1 was highly expressed in vivo and in vitro and renal tubules specific knockdown of GCN5L1 could effectively attenuate AKI-induced mitochondrial impairment. Besides, acetylated proteomics revealed that acetylated TFAM was significantly upregulated in AKI mice kidney, which reminded us that TFAM might be an acetylating substrate of GCN5L1. Mechanistically, we evidenced that GCN5L1 could acetylate TFAM at its K76 site and subsequently inhibited its binding to TOM70, thereby reducing TFAM import into mitochondria and mitochondrial biogenesis. Clinically, GCN5L1 and acetylated TFAM were positively correlated with disease severity (all p < 0.05). CONCLUSIONS In sum, these data demonstrated an unrecognized regulating mechanism of GCN5L1 on TFAM acetylation and its intracellular trafficking, and a potential intervening target for AKI associated mitochondrial disorders as well.
Collapse
Affiliation(s)
- Tingting Lv
- grid.460018.b0000 0004 1769 9639Department of Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China
| | - Yu Zhang
- grid.27255.370000 0004 1761 1174Department of Allergy, Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital, Shandong University, Jinan, 250021 Shandong China
| | - XingZhao Ji
- grid.460018.b0000 0004 1769 9639Department of Allergy, Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China ,grid.410587.fShandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Shengnan Sun
- grid.27255.370000 0004 1761 1174Center of Cell Metabolism and Disease, Jinan Central Hospital, Shandong University, Jinan, 250012 Shandong China
| | - Li Xu
- grid.460018.b0000 0004 1769 9639Department of Allergy, Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China ,grid.410587.fShandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Weixia Ma
- grid.460018.b0000 0004 1769 9639Department of Allergy, Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China ,grid.410587.fShandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Yi Liu
- grid.460018.b0000 0004 1769 9639Department of Allergy, Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021 Shandong China ,grid.410587.fShandong Key Laboratory of Infections Respiratory Disease, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong China
| | - Qiang Wan
- grid.27255.370000 0004 1761 1174Center of Cell Metabolism and Disease, Jinan Central Hospital, Shandong University, Jinan, 250012 Shandong China
| |
Collapse
|
8
|
Chen Q, Li ZH, Song WQ, Yao Y, Zhang YJ, Zhong WF, Zhang PD, Liu D, Zhang XR, Huang QM, Zhao XY, Shi XM, Mao C. Association between single nucleotide polymorphism of rs1937 in TFAM gene and longevity among the elderly Chinese population: based on the CLHLS study. BMC Geriatr 2022; 22:16. [PMID: 34979947 PMCID: PMC8722189 DOI: 10.1186/s12877-021-02655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 11/22/2021] [Indexed: 12/02/2022] Open
Abstract
Background To investigate whether the mitochondrial transcription factor A (TFAM) rs1937 single nucleotide polymorphism (SNP) is associated with longevity. Methods We conducted a case-control study among Chinese long-lived individuals (≥90 years). Data were obtained on 3294 participants who were able to voluntarily provided a saliva sample during 2008–2009 from the Chinese Longitudinal Healthy Longevity Survey (CLHLS). In this study, 1387 young elderly (65–74 years) were allocated to the control group, and 1907 long-lived individuals were recruited as the case group. SNP rs1937 on TFAM were genotyped. Logistic regression models were applied to evaluate the association between rs1937 SNP and longevity. Results The genotype frequency of the SNP of rs1937 in the two groups had a significant difference (p = 0.003). Binary logistic regression analysis showed that compared to younger elderly, the long-lived individuals with “CC genotype” of rs1937 were more closely related to increased longevity than those with “GG genotype” (OR: 1.989, 95% CI: 1.160–3.411). The positive association between rs1937 SNP and longevity was robust in stratified analyses and sensitivity analyses. Conclusions We found the SNP of rs1937 may be a potential biomarker for longer human life span. Further studies are necessary to elucidate the biological mechanism of rs1937 on TFAM with promoting longevity. Supplementary Information The online version contains supplementary material available at 10.1186/s12877-021-02655-3.
Collapse
Affiliation(s)
- Qing Chen
- Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Zhi-Hao Li
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wei-Qi Song
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Yao Yao
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China
| | - Yu-Jie Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Wen-Fang Zhong
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Pei-Dong Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Dan Liu
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xi-Ru Zhang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Qing-Mei Huang
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiao-Yang Zhao
- State Key Laboratory of Organ Failure Research, Department of Developmental Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China. .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, China.
| | - Xiao-Ming Shi
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Chen Mao
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, China.
| |
Collapse
|
9
|
Puthanmadhom Narayanan S, O'Brien D, Sharma M, Miller K, Adams P, Passos JF, Eirin A, Ordog T, Bharucha AE. Duodenal mucosal mitochondrial gene expression is associated with delayed gastric emptying in diabetic gastroenteropathy. JCI Insight 2021; 6:143596. [PMID: 33491664 PMCID: PMC7934845 DOI: 10.1172/jci.insight.143596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Hindered by a limited understanding of the mechanisms responsible for diabetic gastroenteropathy (DGE), management is symptomatic. We investigated the duodenal mucosal expression of protein-coding genes and microRNAs (miRNA) in DGE and related them to clinical features. The diabetic phenotype, gastric emptying, mRNA, and miRNA expression and ultrastructure of duodenal mucosal biopsies were compared in 39 DGE patients and 21 controls. Among 3175 differentially expressed genes (FDR < 0.05), several mitochondrial DNA–encoded (mtDNA-encoded) genes (12 of 13 protein coding genes involved in oxidative phosphorylation [OXPHOS], both rRNAs and 9 of 22 transfer RNAs) were downregulated; conversely, nuclear DNA–encoded (nDNA-encoded) mitochondrial genes (OXPHOS) were upregulated in DGE. The promoters of differentially expressed genes were enriched in motifs for transcription factors (e.g., NRF1), which regulate mitochondrial biogenesis. Seventeen of 30 differentially expressed miRNAs targeted differentially expressed mitochondrial genes. Mitochondrial density was reduced and correlated with expression of 9 mtDNA OXPHOS genes. Uncovered by principal component (PC) analysis of 70 OXPHOS genes, PC1 was associated with neuropathy (P = 0.01) and delayed gastric emptying (P < 0.05). In DGE, mtDNA- and nDNA-encoded mitochondrial genes are reduced and increased — associated with reduced mitochondrial density, neuropathy, and delayed gastric emptying — and correlated with cognate miRNAs. These findings suggest that mitochondrial disturbances may contribute to delayed gastric emptying in DGE.
Collapse
Affiliation(s)
| | - Daniel O'Brien
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Mayank Sharma
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Karl Miller
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California, USA
| | - Peter Adams
- Sanford Burnham Prebys Medical Discovery Institute, San Diego, California, USA
| | - João F Passos
- Department of Physiology and Biomedical Engineering and
| | - Alfonso Eirin
- Division of Nephrology & Hypertension Research, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Tamas Ordog
- Department of Physiology and Biomedical Engineering and
| | - Adil E Bharucha
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
10
|
Miller B, Silverstein A, Flores M, Cao K, Kumagai H, Mehta HH, Yen K, Kim SJ, Cohen P. Host mitochondrial transcriptome response to SARS-CoV-2 in multiple cell models and clinical samples. Sci Rep 2021; 11:3. [PMID: 33420163 PMCID: PMC7794290 DOI: 10.1038/s41598-020-79552-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
SARS-CoV-2 induces a muted innate immune response compared to other respiratory viruses. Mitochondrial dynamics might partially mediate this effect of SARS-CoV-2 on innate immunity. Polypeptides encoded by open reading frames of SARS-CoV and SARS-CoV-2 have been shown to localize to mitochondria and disrupt Mitochondrial Antiviral Signaling (MAVS) protein signaling. Therefore, we hypothesized that SARS-CoV-2 would distinctly regulate the mitochondrial transcriptome. We analyzed multiple publicly available RNASeq data derived from primary cells, cell lines, and clinical samples (i.e., BALF and lung). We report that SARS-CoV-2 did not dramatically regulate (1) mtDNA-encoded gene expression or (2) MAVS expression, and (3) SARS-CoV-2 downregulated nuclear-encoded mitochondrial (NEM) genes related to cellular respiration and Complex I.
Collapse
Affiliation(s)
- Brendan Miller
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Ana Silverstein
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Melanie Flores
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Kevin Cao
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Hiroshi Kumagai
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
- Graduate School of Health and Sports Science, Juntendo University, Chiba, Japan
| | - Hemal H Mehta
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Kelvin Yen
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Su- Jeong Kim
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA
| | - Pinchas Cohen
- Leonard Davis School of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, CA, 90089, USA.
| |
Collapse
|
11
|
Busik JV. Lipid metabolism dysregulation in diabetic retinopathy. J Lipid Res 2021; 62:100017. [PMID: 33581416 PMCID: PMC7892987 DOI: 10.1194/jlr.tr120000981] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022] Open
Abstract
Lipid metabolic abnormalities have emerged as potential risk factors for the development and progression of diabetic complications, including diabetic retinopathy (DR). This review article provides an overview of the results of clinical trials evaluating the potential benefits of lipid-lowering drugs, such as fibrates, omega-3 fatty acids, and statins, for the prevention and treatment of DR. Although several clinical trials demonstrated that treatment with fibrates leads to improvement of DR, there is a dissociation between the protective effects of fibrates in the retina, and the intended blood lipid classes, including plasma triglycerides, total cholesterol, or HDL:LDL cholesterol ratio. Guided by these findings, plasma lipid and lipoprotein-independent mechanisms are addressed based on clinical, cell culture, and animal model studies. Potential retinal-specific effects of fatty acid oxidation products, cholesterol, and ceramide, as well as lipid-independent effects of PPAR alpha activation, are summarized based on the current literature. Overall, this review highlights promising potential of lipid-based treatment strategies further enhanced by the new knowledge of intraretinal lipids and lipoproteins in DR.
Collapse
Affiliation(s)
- Julia V Busik
- Department of Physiology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
12
|
Radhakrishnan R, Kowluru RA. Long Noncoding RNA MALAT1 and Regulation of the Antioxidant Defense System in Diabetic Retinopathy. Diabetes 2021; 70:227-239. [PMID: 33051272 PMCID: PMC7881848 DOI: 10.2337/db20-0375] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 10/05/2020] [Indexed: 12/17/2022]
Abstract
The retina experiences increased oxidative stress in diabetes, and the transcriptional activity of Nrf2, which is critical in regulating many antioxidant genes, is decreased. The nuclear movement/transcriptional activity of Nrf2 is mediated by its intracellular inhibitor Keap1, and retinal Keap1 levels are increased in diabetes. Gene expression is also regulated by long noncoding RNAs (LncRNAs). Our aim was to investigate the role of LncRNA MALAT1 in the regulation of Keap1-Nrf2-antioxidant defense in diabetic retinopathy. LncRNA MALAT1 expression (quantitative real-time PCR, immunofluorescence, and RNA sequencing), its interactions with Keap1 (FACS), Keap1-Nrf2 interactions, and transcription of the antioxidant response genes (immunofluorescence and nuclear RNA sequencing) were investigated in retinal endothelial cells exposed to high glucose. Glucose increased LncRNA MALAT1 levels by increasing Sp1 transcription factor binding at its promoter. Downregulation of LncRNA MALAT1 by its siRNA prevented glucose-induced increase in Keap1 and facilitated Nrf2 nuclear translocation and antioxidant gene transcription. Retinal microvessels from streptozotocin-induced diabetic mice and human donors with diabetic retinopathy also presented similar increases in LncRNA MALAT1 and its interactions with Keap1 and decreases in Nrf2-mediated antioxidant defense genes. Thus, LncRNA MALAT1, via Keap1-Nrf2, regulates antioxidant defense in diabetic retinopathy. Inhibition of LncRNA MALAT1 has potential to protect the retina from oxidative damage and to prevent or slow down diabetic retinopathy.
Collapse
Affiliation(s)
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI
| |
Collapse
|
13
|
Monir DM, Mahmoud ME, Ahmed OG, Rehan IF, Abdelrahman A. Forced exercise activates the NrF2 pathway in the striatum and ameliorates motor and behavioral manifestations of Parkinson's disease in rotenone-treated rats. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2020; 16:9. [PMID: 33158454 PMCID: PMC7646065 DOI: 10.1186/s12993-020-00171-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/16/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Parkinson's disease (PD) is a common neurodegenerative disorder characterized by progressive loss of nigrostriatal dopaminergic neurons leading to dopamine depletion and problems of movement, emotions, and cognition. While the pathogenesis of PD is not clear, damage of dopaminergic neurons by oxygen-derived free radicals is considered an important contributing mechanism. This study aimed to evaluate the role of treadmill exercise in male Wister rats as a single treatment and as an aid-therapy with L-dopa for rotenone-induced PD. To study the role of the Nrf2- ARE pathway as a mechanism involved in exercise-associated improvement in rotenone-induced PD in rats. METHOD Animals were divided into 5 groups, (Control, rotenone, rotenone\exercise, rotenone\L-dopa, and rotenone\exercise\L-dopa (combination)groups). After the PD induction, rats in the rotenone\exercise and combination groups were daily treadmill exercised for 4 weeks. RESULTS Treadmill exercise significantly improved behavioral and motor aspects of rotenone-induced PD. When treadmill exercise was introduced as a single intervention, it amended most behavioral aspects of PD, gait fully corrected, short-term memory, and motor coordination. Where L-dopa corrected locomotor activity and motor coordination but failed to improve short-term memory and only partially corrected the gait of rotenone-treated rats. When treadmill exercise was combined with L-dopa, all features of PD were corrected. It was found that exercise upregulated some of its associative genes to Nrf2 pathways such as TFAM, Nrf2 and NQO.1 mRNA expression. CONCLUSION This study suggests that forced exercise improved parkinsonian like features by activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Dina M Monir
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt
| | - Motamed E Mahmoud
- Department of Animal Behavior and Husbandry (Genetics, Breeding, and Production), Faculty of Veterinary Medicine, Sohag University, Sohag, 82524, Egypt.
| | - Omyma G Ahmed
- Department of Physiology, Faculty of Medicine, Assiut University, Assiut, 71526, Egypt
| | - Ibrahim F Rehan
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Menofia University, Shebin Alkom, Menofia, 32511, Egypt
| | - Amany Abdelrahman
- Department of Physiology, Faculty of Medicine, Sohag University, Sohag, 82524, Egypt.
| |
Collapse
|
14
|
Diabetic Retinopathy: The Role of Mitochondria in the Neural Retina and Microvascular Disease. Antioxidants (Basel) 2020; 9:antiox9100905. [PMID: 32977483 PMCID: PMC7598160 DOI: 10.3390/antiox9100905] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetic retinopathy (DR), a common chronic complication of diabetes mellitus and the leading cause of vision loss in the working-age population, is clinically defined as a microvascular disease that involves damage of the retinal capillaries with secondary visual impairment. While its clinical diagnosis is based on vascular pathology, DR is associated with early abnormalities in the electroretinogram, indicating alterations of the neural retina and impaired visual signaling. The pathogenesis of DR is complex and likely involves the simultaneous dysregulation of multiple metabolic and signaling pathways through the retinal neurovascular unit. There is evidence that microvascular disease in DR is caused in part by altered energetic metabolism in the neural retina and specifically from signals originating in the photoreceptors. In this review, we discuss the main pathogenic mechanisms that link alterations in neural retina bioenergetics with vascular regression in DR. We focus specifically on the recent developments related to alterations in mitochondrial metabolism including energetic substrate selection, mitochondrial function, oxidation-reduction (redox) imbalance, and oxidative stress, and critically discuss the mechanisms of these changes and their consequences on retinal function. We also acknowledge implications for emerging therapeutic approaches and future research directions to find novel mitochondria-targeted therapeutic strategies to correct bioenergetics in diabetes. We conclude that retinal bioenergetics is affected in the early stages of diabetes with consequences beyond changes in ATP content, and that maintaining mitochondrial integrity may alleviate retinal disease.
Collapse
|
15
|
Tom70 protects against diabetic cardiomyopathy through its antioxidant and antiapoptotic properties. Hypertens Res 2020; 43:1047-1056. [PMID: 32724135 DOI: 10.1038/s41440-020-0518-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 03/05/2020] [Accepted: 03/16/2020] [Indexed: 01/18/2023]
Abstract
Mitochondrial dysfunction plays a critical role in the pathogenesis of diabetic cardiomyopathy. Translocase of mitochondrial outer membrane 70 (Tom70) primarily facilitates the import of mitochondrial preproteins that may be involved in the regulation of oxidative stress and mitochondrial function. This study aimed to investigate the role of Tom70 in the development of myocardial injury in leptin receptor-deficient (db/db) diabetic mice. Tom70 siRNA or an overexpressing lentivirus was intramuscularly injected into mouse hearts or used to treat cultured neonatal cardiomyocytes. We found that Tom70 was downregulated in the diabetic hearts compared with the level in the wild-type hearts and that knocking down Tom70 exacerbated cardiac hypertrophy, fibrosis, and ventricular dysfunction in the db/db mice. Similarly, the in vitro data demonstrated that silencing Tom70 enhanced high-glucose and high-fat (HGHF) medium treatment-induced mitochondrial superoxide production, decreased ATP production and the mitochondrial membrane potential, and enhanced cell apoptosis in neonatal cardiomyocytes. Importantly, overexpression of Tom70 alleviated HGHF medium-induced oxidative stress, mitochondrial dysfunction, and cell apoptosis. Furthermore, in vivo data confirmed that reconstitution of Tom70 ameliorated cardiac hypertrophy, interstitial fibrosis, and ventricular dysfunction in the db/db mice. In addition, Tom70 overexpression mitigated mitochondrial fragmentation and dysfunction in the hearts of the db/db mice. Taken together, these findings suggest that downregulation of Tom70 contributes to the development of diabetic cardiomyopathy and that reconstitution of Tom70 may be a new therapeutic strategy for the prevention and treatment of diabetic cardiomyopathy.
Collapse
|
16
|
Kowluru RA, Mohammad G. Epigenetics and Mitochondrial Stability in the Metabolic Memory Phenomenon Associated with Continued Progression of Diabetic Retinopathy. Sci Rep 2020; 10:6655. [PMID: 32313015 PMCID: PMC7171070 DOI: 10.1038/s41598-020-63527-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
Retinopathy continues to progress even when diabetic patients try to control their blood sugar, but the molecular mechanism of this 'metabolic memory' phenomenon remains elusive. Retinal mitochondria remain damaged and vicious cycle of free radicals continues to self-propagate. DNA methylation suppresses gene expression, and diabetes activates DNA methylation machinery. Our aim was to investigate the role of DNA methylation in continued compromised mitochondrial dynamics and genomic stability in diabetic retinopathy. Using retinal endothelial cells, incubated in 20 mM glucose for four days, followed by 5 mM glucose for four days, and retinal microvessels from streptozotocin-induced diabetic rats in poor glycemia for four months, followed by normal glycemia for four additional months, DNA methylation of mitochondrial fusion and mismatch repair proteins, Mfn2 and Mlh1 respectively, was determined. Retinopathy was detected in trypsin-digested microvasculature. Re-institution of good glycemia had no beneficial effect on hypermethylation of Mfn2 and Mlh1 and retinal function (electroretinogram), and the retinopathy continued to progress. However, intervention of good glycemia directly with DNA methylation inhibitors (Azacytidine or Dnmt1-siRNA), prevented Mfn2 and Mlh1 hypermethylation, and ameliorated retinal dysfunction and diabetic retinopathy. Thus, direct regulation of DNA methylation can prevent/reverse diabetic retinopathy by maintaining mitochondrial dynamics and DNA stability, and prevent retinal functional damage.
Collapse
MESH Headings
- Animals
- Azacitidine/pharmacology
- Cell Line
- DNA (Cytosine-5-)-Methyltransferase 1/antagonists & inhibitors
- DNA (Cytosine-5-)-Methyltransferase 1/genetics
- DNA (Cytosine-5-)-Methyltransferase 1/metabolism
- DNA Methylation
- DNA, Mitochondrial/genetics
- DNA, Mitochondrial/metabolism
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/therapy
- Diabetic Retinopathy/chemically induced
- Diabetic Retinopathy/genetics
- Diabetic Retinopathy/pathology
- Diabetic Retinopathy/therapy
- Disease Progression
- Electroretinography
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelial Cells/pathology
- Epigenesis, Genetic
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Glucose/adverse effects
- Humans
- Hyperglycemia/chemically induced
- Hyperglycemia/genetics
- Hyperglycemia/pathology
- Hyperglycemia/therapy
- Male
- Mitochondria/drug effects
- Mitochondria/genetics
- Mitochondria/metabolism
- Mitochondria/pathology
- MutL Protein Homolog 1/genetics
- MutL Protein Homolog 1/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Wistar
- Retina/drug effects
- Retina/metabolism
- Retina/pathology
- Signal Transduction
- Streptozocin/administration & dosage
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA.
| | - Ghulam Mohammad
- Kresge Eye Institute, Wayne State University, Detroit, MI, USA
| |
Collapse
|
17
|
Mohana Devi S, Mahalaxmi I, Kaavya J, Chinnkulandhai V, Balachandar V. Does epigenetics have a role in age related macular degeneration and diabetic retinopathy? Genes Dis 2020; 8:279-286. [PMID: 33997175 PMCID: PMC8093576 DOI: 10.1016/j.gendis.2020.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/06/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms play an important part in the regulation of gene expression and these alterations may induce long-term changes in gene function and metabolism. They have received extensive attention in bridging the gap between environmental exposures and disease development via their influence on gene expression. DNA methylation is the earliest discovered epigenetic alteration. In this review, we try to examine the role of DNA methylation and histone modification in Age related macular degeneration (AMD) and Diabetic Retinopathy (DR), its vascular complications and recent progress. Given the complex nature of AMD and DR, it is crucial to improve therapeutics which will greatly enhance the quality of life and reduce the burden for millions of patients living with these potentially blinding conditions.
Collapse
Affiliation(s)
- S Mohana Devi
- SN ONGC Department of Genetics and Molecular Biology, Vision Research Foundation, Sankara Nethralaya, 41/18, College Road, Chennai, 600006, India
| | - I Mahalaxmi
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, Tamil Nadu, 641046, India
| | - J Kaavya
- Department of Zoology, Avinashilingam Institute for Home Science and Higher Education for Women, Avinashilingam University for Women, Coimbatore, Tamil Nadu, 641046, India
| | - V Chinnkulandhai
- Department of Biochemistry, Dr.N.G.P Arts and Science College, Coimbatore, Tamil Nadu, 641046, India
| | - V Balachandar
- Human Molecular Genetics and Stem Cells Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, Tamil Nadu, 641046, India
| |
Collapse
|
18
|
Ferrington DA, Fisher CR, Kowluru RA. Mitochondrial Defects Drive Degenerative Retinal Diseases. Trends Mol Med 2020; 26:105-118. [PMID: 31771932 PMCID: PMC6938541 DOI: 10.1016/j.molmed.2019.10.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/16/2019] [Accepted: 10/23/2019] [Indexed: 01/08/2023]
Abstract
Mitochondrial dysfunction is involved in the pathology of two major blinding retinal diseases, diabetic retinopathy (DR) and age-related macular degeneration (AMD). These diseases accumulate mitochondrial defects in distinct retinal subcellular structures, the vascular/neural network in DR and the retinal pigment epithelium (RPE) in AMD. These mitochondrial defects cause a metabolic crisis that drives disease. With no treatments to stop these diseases, coupled with an increasing population suffering from AMD and DR, there is an urgent need to develop new therapeutics targeting the mitochondria to prevent or reverse disease-specific pathology.
Collapse
Affiliation(s)
- Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences and Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA.
| | - Cody R Fisher
- Department of Ophthalmology and Visual Neurosciences and Graduate Program in Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Renu A Kowluru
- Ophthalmology, Vision, and Anatomical Sciences, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
19
|
Gao J, Ailifeire M, Wang C, Luo L, Zhang J, Yuan L, Zhang L, Li X, Wang M. miR-320/VEGFA axis affects high glucose-induced metabolic memory during human umbilical vein endothelial cell dysfunction in diabetes pathology. Microvasc Res 2019; 127:103913. [PMID: 31449822 DOI: 10.1016/j.mvr.2019.103913] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023]
Abstract
The "metabolic memory", a phenomenon that the target cell remembers the early hyperglycemia, has been reported to be a critical issue in diabetes pathogenesis. Here, we confirmed the inducible effects of high glucose (HG) and HG followed by normal glucose (HN) upon the proliferation and the tube formation capacity of human umbilical vein endothelial cells (HUVECs), as well as the suppressive effects of HG and HN on HUVEC apoptosis. In the meantime, the miR-320 expression could be dramatically downregulated (** and ## P < 0.01), whereas VEGFA expression (** and ## P < 0.01) and VEGFA, PKC, and RAGE protein levels could be remarkably induced via HG and HN stimulation. More importantly, the effects of HG and HN were not significantly different, suggesting the existence of high glucose-induced metabolic memory and the involvement of miR-320 and VEGFA in high glucose-induced metabolic memory in HUVECs. Consistently, miR-320 overexpression significantly reversed the effects of HG and HN on HUVECs (* and # P < 0.05, ** and ## P < 0.01). miR-320 suppressed the expression of VEGFA via direct binding to the 3'-UTR of VEGFA mRNA, therefore suppressing high glucose-induced metabolic memory (** P < 0.01); the effects of miR-320 overexpression on HUVECs could be reversed by VEGFA overexpression (# P < 0.05, ## P < 0.01), indicating that miR-320/VEGFA axis modulates the proliferation, apoptosis, and the angiogenesis capacity of HUVECs. In conclusion, we demonstrate that miR-320/VEGFA axis is crucial to high glucose-induced metabolic memory during HUVEC dysfunction and may be involved in the pathology of diabetes.
Collapse
Affiliation(s)
- Jing Gao
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, PR China
| | - Maimaiti Ailifeire
- Department of Cardiology, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, PR China
| | - Chenfei Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, PR China
| | - Li Luo
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, PR China
| | - Jie Zhang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, PR China
| | - Li Yuan
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, PR China
| | - Li Zhang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, PR China
| | - Xiaolan Li
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, PR China
| | - Minzhe Wang
- Department of Endocrinology, Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, PR China.
| |
Collapse
|
20
|
Prado NJ, Ferder L, Manucha W, Diez ER. Anti-Inflammatory Effects of Melatonin in Obesity and Hypertension. Curr Hypertens Rep 2018; 20:45. [PMID: 29744660 DOI: 10.1007/s11906-018-0842-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Here, we review the known relations between hypertension and obesity to inflammation and postulate the endogenous protective effect of melatonin and its potential as a therapeutic agent. We will describe the multiple effects of melatonin on blood pressure, adiposity, body weight, and focus on mitochondrial-related anti-inflammatory and antioxidant protective effects. RECENT FINDINGS Hypertension and obesity are usually associated with systemic and tissular inflammation. The progressive affection of target-organs involves multiple mediators of inflammation, most of them redundant, which make anti-inflammatory strategies ineffective. Melatonin reduces blood pressure, body weight, and inflammation. The mechanisms of action of this ancient molecule of protection involve multiple levels of action, from subcellular to intercellular. Mitochondria is a key inflammatory element in vascular and adipose tissue and a potential pharmacological target. Melatonin protects against mitochondrial dysfunction. Melatonin reduces blood pressure and adipose tissue dysfunction by multiple anti-inflammatory/antioxidant actions and provides potent protection against mitochondria-mediated injury in hypertension and obesity. This inexpensive and multitarget molecule has great therapeutic potential against both epidemic diseases.
Collapse
Affiliation(s)
- Natalia Jorgelina Prado
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina
| | - León Ferder
- Pediatric Department Nephrology Division, Miller School of Medicine, University of Miami, Florida, USA
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina.,Área de Farmacología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Emiliano Raúl Diez
- Instituto de Medicina y Biología Experimental de Cuyo (IMBECU), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mendoza, Argentina. .,Instituto de Fisiología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP 5500, Mendoza, Argentina.
| |
Collapse
|
21
|
Malek G, Busik J, Grant MB, Choudhary M. Models of retinal diseases and their applicability in drug discovery. Expert Opin Drug Discov 2018; 13:359-377. [PMID: 29382242 DOI: 10.1080/17460441.2018.1430136] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The impact of vision debilitating diseases is a global public health concern, which will continue until effective preventative and management protocols are developed. Two retinal diseases responsible for the majority of vision loss in the working age adults and elderly populations are diabetic retinopathy (DR) and age-related macular degeneration (AMD), respectively. Model systems, which recapitulate aspects of human pathology, are valid experimental modalities that have contributed to the identification of signaling pathways involved in disease development and consequently potential therapies. Areas covered: The pathology of DR and AMD, which serve as the basis for designing appropriate models of disease, is discussed. The authors also review in vitro and in vivo models of DR and AMD and evaluate the utility of these models in exploratory and pre-clinical studies. Expert opinion: The complex nature of non-Mendelian diseases such as DR and AMD has made identification of effective therapeutic treatments challenging. However, the authors believe that while in vivo models are often criticized for not being a 'perfect' recapitulation of disease, they have been valuable experimentally when used with consideration of the strengths and limitations of the experimental model selected and have a place in the drug discovery process.
Collapse
Affiliation(s)
- Goldis Malek
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA.,b Department of Pathology , Duke University School of Medicine , Durham , NC , USA
| | - Julia Busik
- c Department of Physiology , Michigan State University , East Lansing , MI , USA
| | - Maria B Grant
- d Department of Ophthalmology , University of Alabama at Birmingham , Birmingham , Al , USA
| | - Mayur Choudhary
- a Department of Ophthalmology , Duke University School of Medicine , Durham , NC , USA
| |
Collapse
|
22
|
Kowluru RA. Diabetic retinopathy, metabolic memory and epigenetic modifications. Vision Res 2017; 139:30-38. [PMID: 28700951 DOI: 10.1016/j.visres.2017.02.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 02/22/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
Retinopathy, a sight-threatening disease, remains one of the most feared complications of diabetes. Although hyperglycemia is the main initiator, progression of diabetic retinopathy continues even after re-institution of normal glycemic control in diabetic patients, and the deleterious effects of prior hyperglycemic insult depend on the duration and the severity of this insult, suggesting a 'metabolic memory' phenomenon. Metabolic memory phenomenon is successfully duplicated in the experimental models of diabetic retinopathy. Hyperglycemia, in addition to initiating many other biochemical and functional abnormalities and altering expression of genes associated with them, also increases oxidative stress. Increased production of cytosolic reactive oxygen species dysfunctions the mitochondria, and a compromised antioxidant defense system becomes overwhelmed to neutralize free radicals. With the duration of diabetes extending, mitochondrial DNA (mtDNA) is also damaged, and transcription of mtDNA-encoded genes, important for function of the electron transport chain, is compromised. This fuels into a 'self-propagating' vicious cycle of free radicals, and retinopathy continues to progress. Hyperglycemic insult also affects the enzymatic machinery responsible for epigenetic modifications; these modifications alter gene expression without affecting the DNA sequence. Histones and/or DNA modifications of many enzymes, important in mitochondrial homeostasis, affect their activities and disturb mitochondrial homeostasis. Experimental models have shown that these epigenetic modifications have potential to halt only if normal glycemia is maintained from the day of induction of diabetes (streptozotocin) in rats, but if hyperglycemia is allowed to proceed even for couple months before initiation of normal glycemia, these epigenetic modification resist reversal. Supplementation of a therapy targeted to prevent increased oxidative stress or epigenetic modifications, during the normal glucose phase, which has followed high glucose insult, however, helps ameliorate these abnormalities and prevents the progression of diabetic retinopathy. Thus, without undermining the importance of tight glycemic control for a diabetic patient, supplementation of their 'best possible' glycemic control with such targeted therapies has potential to retard further progression of this blinding disease.
Collapse
Affiliation(s)
- Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
23
|
Mishra M, Kowluru RA. The Role of DNA Methylation in the Metabolic Memory Phenomenon Associated With the Continued Progression of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2017; 57:5748-5757. [PMID: 27787562 PMCID: PMC5089211 DOI: 10.1167/iovs.16-19759] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Clinical and experimental studies have shown that diabetic retinopathy progression does not halt after termination of hyperglycemia, suggesting a “metabolic memory” phenomenon. DNA is highly dynamic, and cytosine methylation changes can last for several years. In diabetes, DNA methylation regulates expression of many genes associated with retinal mitochondrial homeostasis. Our aim was to investigate the role of DNA methylation in the metabolic memory. Methods Reversal of 4 days of 20 mM glucose by 4 to 8 days of 5 mM glucose, in the presence/absence of Dnmt inhibitor (5-aza-2′-deoxycytidine), was investigated on DNA methylation and its machinery in human retinal endothelial cells. The key parameters were confirmed in the retina from diabetic rats maintained in good glycemic control (glycated hemoglobin ∼6%) for 3 months after 3 months of poor control (glycated hemoglobin >10%). Results DNA methyltransferase 1 (Dnmt 1) remained active after 4 days of normal glucose that followed 4 days of high glucose, and mtDNA stayed hypermethylated with impaired transcription. Hydroxymethylating enzyme Tet2, and matrix metalloproteinase-9 (regulated by hydroxymethylation) also remained upregulated. But, 8 days of normal glucose after 4 days of high glucose ameliorated mtDNA methylation and MMP-9 hydroxymethylation. Direct Dnmt targeting by Aza during the reversal period benefited methylation status of mtDNA and MMP-9 DNA. Similarly, reinstitution of good control after 3 months of poor control in rats did not reverse diabetes-induced increase in retinal Dnmt1 and Tet2, and alter the methylation status of mtDNA and MMP-9. Conclusions Retinal DNA methylation-hydroxymethylation machinery does not benefit immediately from reversal of hyperglycemia. Maintenance of good glycemic control for longer duration, and/or direct targeting DNA methylation ameliorates continuous mitochondrial damage, and could retard/halt diabetic retinopathy progression.
Collapse
Affiliation(s)
- Manish Mishra
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
24
|
Theilen NT, Kunkel GH, Tyagi SC. The Role of Exercise and TFAM in Preventing Skeletal Muscle Atrophy. J Cell Physiol 2017; 232:2348-2358. [PMID: 27966783 DOI: 10.1002/jcp.25737] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 12/31/2022]
Abstract
Skeletal muscle atrophy is the consequence of protein degradation exceeding protein synthesis. This arises for a multitude of reasons including the unloading of muscle during microgravity, post-surgery bedrest, immobilization of a limb after injury, and overall disuse of the musculature. The development of therapies prior to skeletal muscle atrophy settings to diminish protein degradation is scarce. Mitochondrial dysfunction is associated with skeletal muscle atrophy and contributes to the induction of protein degradation and cell apoptosis through increased levels of ROS observed with the loss of organelle function. ROS binds mtDNA, leading to its degradation and decreasing functionality. Mitochondrial transcription factor A (TFAM) will bind and coat mtDNA, protecting it from ROS and degradation while increasing mitochondrial function. Exercise stimulates cell signaling pathways that converge on and increase PGC-1α, a well-known activator of the transcription of TFAM and mitochondrial biogenesis. Therefore, in the present review we are proposing, separately, exercise and TFAM treatments prior to atrophic settings (muscle unloading or disuse) alleviate skeletal muscle atrophy through enhanced mitochondrial adaptations and function. Additionally, we hypothesize the combination of exercise and TFAM leads to a synergistic effect in targeting mitochondrial function to prevent skeletal muscle atrophy. J. Cell. Physiol. 232: 2348-2358, 2017. © 2016 The Authors. Journal of Cellular Physiology Published by © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Nicholas T Theilen
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - George H Kunkel
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
25
|
Liu X, Tang L, Chen B, Jiang W. Role of sodium nitroprusside in regulating retinal ganglion cell damage through mitochondrial transcription factor A. Neurosci Lett 2016; 635:90-96. [PMID: 27789248 DOI: 10.1016/j.neulet.2016.10.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/09/2016] [Accepted: 10/23/2016] [Indexed: 11/29/2022]
Abstract
Accumulating evidence has reported that nitric oxide (NO) can be cytotoxic and induce apoptosis. NO can also be genotoxic and cause DNA damage and mutations. It has been shown that NO damages mitochondrial DNA (mtDNA) to a greater extent than nuclear DNA. Sodium Nitroprusside (SNP), a NO donor, could efficiently promote NO formation. The viability of retinal ganglion cells (RGC) and the mtDNA copy numbers could also be altered by SNP conduction. Mitochondrial transcription factor A (TFAM), an mtDNA transcription factor, plays an essential role in the maintenance of mtDNA and mitochondrial homeostasis. The expression of TFAM was up-regulated by low dose SNP while down-regulated by high dose SNP. TFAM overexpression attenuated the regulatory effect of SNP on RGC viability and mtDNA numbers, while TFAM inhibition even amplified the regulatory effect of SNP. Moreover, the expression of apoptosis-related proteins in the mitochondria, Bcl-2 and Bax, were both altered by SNP treatment. These results suggested that TFAM impacted in SNP regulation of RGC viability and mtDNA numbers through the mitochondria-dependent pathway mediated by Bcl-2 and Bax subfamily.
Collapse
Affiliation(s)
- Xiao Liu
- Department of Ophthalmology, The Second Xiangya hospital of Central South University, No. 139, Ren Min Zhong Road, Changsha 410008, China
| | - Luosheng Tang
- Department of Ophthalmology, The Second Xiangya hospital of Central South University, No. 139, Ren Min Zhong Road, Changsha 410008, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya hospital of Central South University, No. 139, Ren Min Zhong Road, Changsha 410008, China
| | - Wenmin Jiang
- Department of Ophthalmology, The Second Xiangya hospital of Central South University, No. 139, Ren Min Zhong Road, Changsha 410008, China.
| |
Collapse
|
26
|
Mishra M, Flaga J, Kowluru RA. Molecular Mechanism of Transcriptional Regulation of Matrix Metalloproteinase-9 in Diabetic Retinopathy. J Cell Physiol 2015; 231:1709-18. [DOI: 10.1002/jcp.25268] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/23/2015] [Indexed: 12/18/2022]
Affiliation(s)
- Manish Mishra
- Department of Ophthalmology; Kresge Eye Institute; Wayne State University; Detroit Michigan
| | - Jadwiga Flaga
- Department of Ophthalmology; Kresge Eye Institute; Wayne State University; Detroit Michigan
| | - Renu A. Kowluru
- Department of Ophthalmology; Kresge Eye Institute; Wayne State University; Detroit Michigan
| |
Collapse
|
27
|
Dos Santos JM, Moreli ML, Tewari S, Benite-Ribeiro SA. The effect of exercise on skeletal muscle glucose uptake in type 2 diabetes: An epigenetic perspective. Metabolism 2015; 64:1619-28. [PMID: 26481513 DOI: 10.1016/j.metabol.2015.09.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 09/09/2015] [Accepted: 09/19/2015] [Indexed: 02/08/2023]
Abstract
Changes in eating habits and sedentary lifestyle are main contributors to type 2 diabetes (T2D) development, and studies suggest that epigenetic modifications are involved with the growing incidence of this disease. Regular exercise modulates many intracellular pathways improving insulin resistance and glucose uptake in skeletal muscle, both early abnormalities of T2D. Mitochondria dysfunction and decreased expression of glucose transporter (GLUT4) were identified as main factors of insulin resistance. Moreover, it has been suggested that skeletal muscle of T2D subjects have a different pattern of epigenetic marks on the promoter of GLUT4 and PGC1, main regulator of mitochondrial function, compared with nondiabetic individuals. Recent studies have proposed that regular exercise could improve glucose uptake by the attenuation of such epigenetic modification induced at GLUT4, PGC1 and its downstream regulators; however, the exact mechanism is still to be understood. Herein we review the known epigenetic modifications on GLUT4 and mitochondrial proteins that lead to impairment of skeletal muscle glucose uptake and T2D development, and the effect of physical exercise at these modifications.
Collapse
Affiliation(s)
| | | | - Shikha Tewari
- Dr. Ram Manohar Lohia, Institute of Medical Science, Lucknow, India
| | | |
Collapse
|
28
|
Mishra M, Kowluru RA. Epigenetic Modification of Mitochondrial DNA in the Development of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2015; 56:5133-42. [PMID: 26241401 DOI: 10.1167/iovs.15-16937] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
PURPOSE Retinal mitochondria are dysfunctional in diabetes, and mitochondrial DNA (mtDNA) is damaged and its transcription is compromised. Our aim was to investigate the role of mtDNA methylation in the development of diabetic retinopathy. METHODS Effect of high glucose (20 mM) on mtDNA methylation was analyzed in retinal endothelial cells by methylation-specific PCR and by quantifying 5-methylcytosine (5mC). Dnmt1 binding at the D-loop and Cytb regions of mtDNA was analyzed by chromatin immunoprecipitation. The role of mtDNA methylation in transcription and cell death was confirmed by quantifying transcripts of mtDNA-encoded genes (Cytb, ND6, and CoxII) and apoptosis, using cells transfected with Dnmt1-small interfering RNA (siRNA), or incubated with a Dnmt inhibitor. The key parameters were validated in the retinal microvasculature from human donors with diabetic retinopathy. RESULTS High glucose increased mtDNA methylation, and methylation was significantly higher at the D-loop than at the Cytb and CoxII regions. Mitochondrial accumulation of Dnmt1 and its binding at the D-loop were also significantly increased. Inhibition of Dnmt by its siRNA or pharmacologic inhibitor ameliorated glucose-induced increase in 5mC levels and cell apoptosis. Retinal microvasculature from human donors with diabetic retinopathy presented similar increase in D-loop methylation and decrease in mtDNA transcription. CONCLUSIONS Hypermethylation of mtDNA in diabetes impairs its transcription, resulting in dysfunctional mitochondria and accelerated capillary cell apoptosis. Regulation of mtDNA methylation has potential to restore mitochondrial homeostasis and inhibit/retard the development of diabetic retinopathy.
Collapse
|
29
|
Li S, Zeng XY, Zhou X, Wang H, Jo E, Robinson SR, Xu A, Ye JM. Dietary cholesterol induces hepatic inflammation and blunts mitochondrial function in the liver of high-fat-fed mice. J Nutr Biochem 2015; 27:96-103. [PMID: 26391864 DOI: 10.1016/j.jnutbio.2015.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 12/15/2022]
Abstract
The present study investigated the role of dietary cholesterol and fat in the development of nonalcoholic fatty liver disease, a common liver disease in metabolic disorders. Mice were fed a diet of regular chow (CH), chow supplemented with 0.2% w/w cholesterol (CHC), high fat (HF, 45kcal%) or HF with cholesterol (HFC) for 17weeks. While both HF and HFC groups displayed hepatic steatosis and metabolic syndrome, only HFC group developed the phenotype of liver injury, as indicated by an increase in plasma level of alanine transaminase (ALT, by 50-80%). There were ~2-fold increases in mRNA expression of tumor necrosis factor α, interleukin 1β and monocyte chemotactic protein 1 in the liver of HFC-fed mice (vs. HF) but no endoplasmic reticulum stress or oxidative stress was observed. Furthermore, cholesterol suppressed HF-induced increase of peroxisome proliferator-activated receptor γ coactivator 1α and mitochondrial transcription factor A expression and blunted fatty acid oxidation. Interestingly, after switching HFC to HF diet for 5weeks, the increases in plasma ALT and liver inflammatory markers were abolished but the blunted of mitochondrial function remained. These findings suggest that cholesterol plays a critical role in the conversion of a simple fatty liver toward nonalcoholic steatohepatitis possibly by activation of inflammatory pathways together with retarded mitochondrial function.
Collapse
Affiliation(s)
- Songpei Li
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiao-Yi Zeng
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiu Zhou
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hao Wang
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Eunjung Jo
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stephen R Robinson
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Medicine, the University of Hong Kong, Hong Kong, China
| | - Ji-Ming Ye
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
30
|
Oxidative stress and epigenetic modifications in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2015; 48:40-61. [PMID: 25975734 DOI: 10.1016/j.preteyeres.2015.05.001] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/29/2015] [Accepted: 05/01/2015] [Indexed: 12/21/2022]
Abstract
Diabetic retinopathy remains the major cause of blindness among working age adults. Although a number of metabolic abnormalities have been associated with its development, due to complex nature of this multi-factorial disease, a link between any specific abnormality and diabetic retinopathy remains largely speculative. Diabetes increases oxidative stress in the retina and its capillary cells, and overwhelming evidence suggests a bidirectional relationship between oxidative stress and other major metabolic abnormalities implicated in the development of diabetic retinopathy. Due to increased production of cytosolic reactive oxygen species, mitochondrial membranes are damaged and their membrane potentials are impaired, and complex III of the electron transport system is compromised. Suboptimal enzymatic and nonenzymatic antioxidant defense system further aids in the accumulation of free radicals. As the duration of the disease progresses, mitochondrial DNA (mtDNA) is damaged and the DNA repair system is compromised, and due to impaired transcription of mtDNA-encoded proteins, the integrity of the electron transport system is encumbered. Due to decreased mtDNA biogenesis and impaired transcription, superoxide accumulation is further increased, and the vicious cycle of free radicals continues to self-propagate. Diabetic milieu also alters enzymes responsible for DNA and histone modifications, and various genes important for mitochondrial homeostasis, including mitochondrial biosynthesis, damage and antioxidant defense, undergo epigenetic modifications. Although antioxidant administration in animal models has yielded encouraging results in preventing diabetic retinopathy, controlled longitudinal human studies remain to be conducted. Furthermore, the role of epigenetic in mitochondrial homeostasis suggests that regulation of such modifications also has potential to inhibit/retard the development of diabetic retinopathy.
Collapse
|
31
|
Carvalho C, Santos MS, Oliveira CR, Moreira PI. Alzheimer's disease and type 2 diabetes-related alterations in brain mitochondria, autophagy and synaptic markers. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1665-75. [PMID: 25960150 DOI: 10.1016/j.bbadis.2015.05.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 04/13/2015] [Accepted: 05/02/2015] [Indexed: 01/01/2023]
Abstract
We aimed to investigate mitochondrial function, biogenesis and autophagy in the brain of type 2 diabetes (T2D) and Alzheimer's disease (AD) mice. Isolated brain mitochondria and homogenates from cerebral cortex and hippocampus of wild-type (WT), triple transgenic AD (3xTg-AD) and T2D mice were used to evaluate mitochondrial functional parameters and protein levels of mitochondrial biogenesis, autophagy and synaptic integrity markers, respectively. A significant decrease in mitochondrial respiration, membrane potential and energy levels was observed in T2D and 3xTg-AD mice. Also, a significant decrease in the levels of autophagy-related protein 7 (ATG7) and glycosylated lysosomal membrane protein 1 (LAMP1) was observed in cerebral cortex and hippocampus of T2D and 3xTg-AD mice. Moreover, both brain regions of 3xTg-AD mice present lower levels of nuclear respiratory factor (NRF) 1 while the levels of NRF2 are lower in both brain regions of T2D and 3xTg-AD mice. A decrease in mitochondrial encoded, nicotinamide adenine dinucleotide dehydrogenase subunit 1 (ND1) was also observed in T2D and 3xTg-AD mice although only statistically significant in T2D cortex. Furthermore, a decrease in the levels of postsynaptic density protein 95 (PSD95) in the cerebral cortex of 3xTg-AD mice and in hippocampus of T2D and 3xTg-AD mice and a decrease in the levels of synaptosomal-associated protein 25 (SNAP 25) in the hippocampus of T2D and 3xTg-AD mice were observed suggesting synaptic integrity loss. These results support the idea that alterations in mitochondrial function, biogenesis and autophagy cause synaptic damage in AD and T2D.
Collapse
Affiliation(s)
- Cristina Carvalho
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal.
| | - Maria S Santos
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Portugal
| | - Catarina R Oliveira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Laboratory of Biochemistry, Faculty of Medicine, University of Coimbra, Portugal
| | - Paula I Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Laboratory of Physiology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
32
|
Alam NM, Mills WC, Wong AA, Douglas RM, Szeto HH, Prusky GT. A mitochondrial therapeutic reverses visual decline in mouse models of diabetes. Dis Model Mech 2015; 8:701-10. [PMID: 26035391 PMCID: PMC4486862 DOI: 10.1242/dmm.020248] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/19/2015] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy is characterized by progressive vision loss and the advancement of retinal micoraneurysms, edema and angiogenesis. Unfortunately, managing glycemia or targeting vascular complications with anti-vascular endothelial growth factor agents has shown only limited efficacy in treating the deterioration of vision in diabetic retinopathy. In light of growing evidence that mitochondrial dysfunction is an independent pathophysiology of diabetes and diabetic retinopathy, we investigated whether selectively targeting and improving mitochondrial dysfunction is a viable treatment for visual decline in diabetes. Measures of spatial visual behavior, blood glucose, bodyweight and optical clarity were made in mouse models of diabetes. Treatment groups were administered MTP-131, a water-soluble tetrapeptide that selectively targets mitochondrial cardiolipin and promotes efficient electron transfer, either systemically or in eye drops. Progressive visual decline emerged in untreated animals before the overt symptoms of metabolic and ophthalmic abnormalities were manifest, but with time, visual dysfunction was accompanied by compromised glucose clearance, and elevated blood glucose and bodyweight. MTP-131 treatment reversed the visual decline without improving glycemic control or reducing bodyweight. These data provide evidence that visuomotor decline is an early complication of diabetes. They also indicate that selectively treating mitochondrial dysfunction with MTP-131 has the potential to remediate the visual dysfunction and to complement existing treatments for diabetic retinopathy. Summary: Visual decline in mouse models of diabetes is reversed, independently of treating other disease symptoms, by treatment with MTP-131, a water-soluble peptide that selectively targets cardiolipin and improves mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Nazia M Alam
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA Burke Medical Research Institute, White Plains, NY, USA
| | - William C Mills
- Research Program in Mitochondrial Therapeutics, Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Aimee A Wong
- Burke Medical Research Institute, White Plains, NY, USA
| | - Robert M Douglas
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Hazel H Szeto
- Research Program in Mitochondrial Therapeutics, Department of Pharmacology, Weill Cornell Medical College, New York, NY, USA
| | - Glen T Prusky
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY, USA Burke Medical Research Institute, White Plains, NY, USA
| |
Collapse
|
33
|
Mishra M, Kowluru RA. Retinal mitochondrial DNA mismatch repair in the development of diabetic retinopathy, and its continued progression after termination of hyperglycemia. Invest Ophthalmol Vis Sci 2014; 55:6960-7. [PMID: 25249609 DOI: 10.1167/iovs.14-15020] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Mitochondrial DNA (mtDNA) is damaged in the retina in diabetes, and mitochondria copy numbers are decreased. The displacement-loop (D-loop) of the mtDNA, the region with transcription/replication elements, experiences more damage than other regions of mtDNA. Our aim was to examine the role of DNA mismatch repair (MMR) in mitochondria homeostasis in diabetic retinopathy, and in its continued progression after cessation of hyperglycemia. METHODS Effect of hyperglycemia on sequence variants in the D-loop region was investigated in retinal endothelial cells and in the retina from streptozotocin-induced diabetic rats using mismatch-specific surveyor nuclease. The role of MMR machinery in mtDNA damage and mitochondrial respiration was investigated in retinal endothelial cells overexpressing Mlh1, an MMR enzyme mainly associated with mtDNA polymerase gamma, or Msh2 (associated with nuclear polymerase beta). RESULTS Hyperglycemia increased sequence variants in the D-loop region. While overexpression of Mlh1 in endothelial cells ameliorated glucose-induced increase in D-loop sequence variants, decrease in respiration rate and increase in apoptosis, overexpression of Msh2 did not protect the mitochondria damage. Termination of hyperglycemia failed to reverse decrease in MMR enzymes and increase in D-loop sequence variants. CONCLUSIONS Due to a compromised MMR system, the sequence variants in the D-loop region were not repaired, and that resulted in impaired mtDNA transcription. Mitochondria become dysfunctional, and they continued to be dysfunctional even after hyperglycemia was terminated, contributing to the development, and progression of diabetic retinopathy. Thus, strategies targeting mitochondrial MMR machinery could help maintain mitochondria homeostasis, and inhibit the development of diabetic retinopathy and its continued progression.
Collapse
Affiliation(s)
- Manish Mishra
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
34
|
Metabolic memory: mechanisms and implications for diabetic vasculopathies. SCIENCE CHINA-LIFE SCIENCES 2014; 57:845-51. [DOI: 10.1007/s11427-014-4710-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022]
|
35
|
Santos JM, Tewari S, Benite-Ribeiro SA. The effect of exercise on epigenetic modifications of PGC1: The impact on type 2 diabetes. Med Hypotheses 2014; 82:748-53. [DOI: 10.1016/j.mehy.2014.03.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 03/10/2014] [Indexed: 12/16/2022]
|
36
|
Santos JM, Mishra M, Kowluru RA. Posttranslational modification of mitochondrial transcription factor A in impaired mitochondria biogenesis: implications in diabetic retinopathy and metabolic memory phenomenon. Exp Eye Res 2014; 121:168-77. [PMID: 24607487 DOI: 10.1016/j.exer.2014.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/17/2014] [Accepted: 02/07/2014] [Indexed: 10/25/2022]
Abstract
Mitochondrial transcription factor A (TFAM) is one of the key regulators of the transcription of mtDNA. In diabetes, despite increase in gene transcripts of TFAM, its protein levels in the mitochondria are decreased and mitochondria copy numbers become subnormal. The aim of this study is to investigate the mechanism(s) responsible for decreased mitochondrial TFAM in diabetes. Using retinal endothelial cells, we have investigated the effect of overexpression of cytosolic chaperone, Hsp70, and TFAM on glucose-induced decrease in mitochondrial TFAM levels, and the transcription of mtDNA-encoded genes, NADH dehydrogenase subunit 6 (ND6) and cytochrome b (Cytb). To investigate the role of posttranslational modifications in subnormal mitochondrial TFAM, ubiquitination of TFAM was assessed, and the results were confirmed in the retina from streptozotocin-induced diabetic rats. While overexpression of Hsp70 failed to prevent glucose-induced decrease in mitochondrial TFAM and transcripts of ND6 and Cytb, overexpression of TFAM ameliorated decrease in its mitochondrial protein levels and transcriptional activity. TFAM was ubiquitinated by high glucose, and PYR-41, an inhibitor of ubiquitination, prevented TFAM ubiquitination and restored the transcriptional activity. Similarly, TFAM was ubiquitinated in the retina from diabetic rats, and it continued to be modified after reinstitution of normal glycemia. Our results clearly imply that the ubiquitination of TFAM impedes its transport to the mitochondria resulting in subnormal mtDNA transcription and mitochondria dysfunction, and inhibition of ubiquitination restores mitochondrial homeostasis. Reversal of hyperglycemia does not provide any benefit to TFAM ubiquitination. Thus, strategies targeting posttranslational modification could provide an avenue to preserve mitochondrial homeostasis, and inhibit the development/progression of diabetic retinopathy.
Collapse
Affiliation(s)
- Julia M Santos
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Manish Mishra
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, 4717 St. Antoine, Detroit, MI 48201, USA.
| |
Collapse
|
37
|
|
38
|
Epigenetic modifications and diabetic retinopathy. BIOMED RESEARCH INTERNATIONAL 2013; 2013:635284. [PMID: 24286082 PMCID: PMC3826295 DOI: 10.1155/2013/635284] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2013] [Accepted: 07/15/2013] [Indexed: 12/20/2022]
Abstract
Diabetic retinopathy remains one of the most debilitating chronic complications, but despite extensive research in the field, the exact mechanism(s) responsible for how retina is damaged in diabetes remains ambiguous. Many metabolic pathways have been implicated in its development, and genes associated with these pathways are altered. Diabetic environment also facilitates epigenetics modifications, which can alter the gene expression without permanent changes in DNA sequence. The role of epigenetics in diabetic retinopathy is now an emerging area, and recent work has shown that genes encoding mitochondrial superoxide dismutase (Sod2) and matrix metalloproteinase-9 (MMP-9) are epigenetically modified, activates of epigenetic modification enzymes, histone lysine demethylase 1 (LSD1), and DNA methyltransferase are increased, and the micro RNAs responsible for regulating nuclear transcriptional factor and VEGF are upregulated. With the growing evidence of epigenetic modifications in diabetic retinopathy, better understanding of these modifications has potential to identify novel targets to inhibit this devastating disease. Fortunately, the inhibitors and mimics targeted towards histone modification, DNA methylation, and miRNAs are now being tried for cancer and other chronic diseases, and better understanding of the role of epigenetics in diabetic retinopathy will open the door for their possible use in combating this blinding disease.
Collapse
|