1
|
Zhang Y, Zou L, Li X, Guo L, Hu B, Ye H, Liu Y. SLC40A1 in iron metabolism, ferroptosis, and disease: A review. WIREs Mech Dis 2024; 16:e1644. [PMID: 38508867 DOI: 10.1002/wsbm.1644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/26/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
Solute carrier family 40 member 1 (SLC40A1) plays an essential role in transporting iron from intracellular to extracellular environments. When SLC40A1 expression is abnormal, cellular iron metabolism becomes dysregulated, resulting in an overload of intracellular iron, which induces cell ferroptosis. Numerous studies have confirmed that ferroptosis is closely associated with the development of many diseases. Here, we review recent findings on SLC40A1 in ferroptosis and its association with various diseases, intending to explore new directions for research on disease pathogenesis and new therapeutic targets for prevention and treatment. This article is categorized under: Cancer > Genetics/Genomics/Epigenetics Metabolic Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Yan Zhang
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Liyi Zou
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong, China
| | - Xiaodan Li
- People's Hospital of Longhua District, Shenzhen, Guangdong, China
| | - Long Guo
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Baoguang Hu
- Department of Gastrointestinal Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China
| | - Hua Ye
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yi Liu
- Guangdong Key Laboratory for Research and Development of Natural Drugs, School of Pharmacy, Guangdong Medical University, Zhanjiang, Guangdong, China
| |
Collapse
|
2
|
Moreno-Navarrete JM, Fernández-Real JM. Iron: The silent culprit in your adipose tissue. Obes Rev 2024; 25:e13647. [PMID: 37789591 DOI: 10.1111/obr.13647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/27/2023] [Accepted: 09/09/2023] [Indexed: 10/05/2023]
Abstract
Iron plays a vital role in essential biological processes and requires precise regulation within the body. Dysregulation of iron homeostasis, characterized by increased serum ferritin levels and excessive accumulation of iron in the liver, adipose tissue, and skeletal muscle, is associated with obesity and insulin resistance. Notably, iron excess in adipose tissue promotes adipose tissue dysfunction. As optimal adipose tissue function is crucial for maintaining a healthy phenotype in obesity, a comprehensive understanding of iron homeostasis in adipose tissue is imperative for designing new therapeutic approaches to improve and prevent adipose tissue dysfunction. Here, we conducted a review of relevant studies, focusing on and providing valuable insights into the intricate interplay between iron and adipose tissue. It sheds light on the impact of iron on adipogenesis and the physiology of both white and brown adipose tissue. Furthermore, we highlight the critical role of key modulators, such as cytosolic aconitase, mitochondria, and macrophages, in maintaining iron homeostasis within adipose tissue.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), Girona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Medical Sciences, University of Girona, Girona, Spain
| |
Collapse
|
3
|
Mayneris-Perxachs J, Moreno-Navarrete JM, Fernández-Real JM. The role of iron in host-microbiota crosstalk and its effects on systemic glucose metabolism. Nat Rev Endocrinol 2022; 18:683-698. [PMID: 35986176 DOI: 10.1038/s41574-022-00721-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/09/2022]
Abstract
Iron is critical for the appearance and maintenance of life on Earth. Almost all organisms compete or cooperate for iron acquisition, demonstrating the importance of this essential element for the biological and physiological processes that are key for the preservation of metabolic homeostasis. In humans and other mammals, the bidirectional interactions between the bacterial component of the gut microbiota and the host for iron acquisition shape both host and microbiota metabolism. Bacterial functions influence host iron absorption, whereas the intake of iron, iron deficiency and iron excess in the host affect bacterial biodiversity, taxonomy and function, resulting in changes in bacterial virulence. These consequences of the host-microbial crosstalk affect systemic levels of iron, its storage in different tissues and host glucose metabolism. At the interface between the host and the microbiota, alterations in the host innate immune system and in circulating soluble factors that regulate iron (that is, hepcidin, lipocalin 2 and lactoferrin) are associated with metabolic disease. In fact, patients with obesity-associated metabolic dysfunction and insulin resistance exhibit dysregulation in iron homeostasis and alterations in their gut microbiota profile. From an evolutionary point of view, the pursuit of two important nutrients - glucose and iron - has probably driven human evolution towards the most efficient pathways and genes for human survival and health.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IDIBGI), Girona, Spain.
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Madrid, Spain.
- Department of Medicine, Universitat de Girona, Girona, Spain.
| |
Collapse
|
4
|
Kimita W, Bharmal SH, Ko J, Cho J, Petrov MS. Relationship between Energy Balance and Circulating Levels of Hepcidin and Ferritin in the Fasted and Postprandial States. Nutrients 2021; 13:3557. [PMID: 34684558 PMCID: PMC8539037 DOI: 10.3390/nu13103557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/09/2021] [Indexed: 02/07/2023] Open
Abstract
Markers of iron metabolism are altered in new-onset diabetes, but their relationship with metabolic signals involved in the maintenance of energy balance is poorly understood. The primary aim was to explore the associations between markers of iron metabolism (hepcidin and ferritin) and markers of energy balance (leptin, ghrelin, and the leptin/ghrelin ratio) in both the fasted and postprandial states. These associations were also studied in the sub-groups stratified by diabetes status. This was a cross-sectional study of individuals without disorders of iron metabolism who were investigated after an overnight fast and, in addition, some of these individuals underwent a mixed meal test to determine postprandial responses of metabolic signals. The associations between hepcidin, ferritin, and leptin, ghrelin, leptin/ghrelin ratio were studied using several multiple linear regression models. A total of 76 individuals in the fasted state and 34 individuals in the postprandial state were included. In the overall cohort, hepcidin was significantly inversely associated with leptin (in the most adjusted model, the β coefficient ± SE was -883.45 ± 400.94; p = 0.031) and the leptin/ghrelin ratio (in the most adjusted model, the β coefficient ± SE was -148.26 ± 61.20; p = 0.018) in the fasted state. The same associations were not statistically significant in the postprandial state. In individuals with new-onset prediabetes or diabetes (but not in those with normoglycaemia or longstanding prediabetes or diabetes), hepcidin was significantly inversely associated with leptin (in the most adjusted model, the β coefficient ± SE was -806.09 ± 395.44; p = 0.050) and the leptin/ghrelin ratio (in the most adjusted model, the β coefficient ± SE was -129.40 ± 59.14; p = 0.037). Leptin appears to be a mediator in the link between iron metabolism and new-onset diabetes mellitus. These findings add to the growing understanding of mechanisms underlying the derangements of glucose metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Maxim S. Petrov
- School of Medicine, University of Auckland, Auckland 1023, New Zealand; (W.K.); (S.H.B.); (J.K.); (J.C.)
| |
Collapse
|
5
|
Karamzad N, Eftekhari A, Ashrafi-Asgarabad A, Sullman MJM, Sahebkar A, Safiri S. Serum Hepcidin, the Hepcidin/Ferritin Ratio and the Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. Curr Med Chem 2021; 28:1224-1233. [PMID: 32031063 DOI: 10.2174/0929867327666200207120158] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/03/2020] [Accepted: 01/22/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES To perform a meta-analysis on the relationship type 2 diabetes has with serum hepcidin and the hepcidin/ferritin ratio. METHODS The following databases were searched using all relevant keywords: Web of Science, Medline, Scopus, Embase and Google Scholar. All studies that examined the relationship type 2 diabetes has with serum hepcidin or the hepcidin/ferritin ratio were included in this meta-analysis and systematic review provided, were published in English between 2011 and 2018. A random-effects model was used to pool the standardized mean difference (SMD). RESULTS The SMD of serum hepcidin among patients with type 2 diabetes and healthy controls were compared across eight studies (n cases=878; n controls=2306). The pooled SMD of serum hepcidin did not differ significantly between study groups (SMD: 0.04; 95% confidence interval (CI): -0.29 to 0.35). In contrast, the serum hepcidin/ferritin ratio was examined across five studies (n cases=229; n controls=1426) and was found to be negatively associated with the risk of type 2 diabetes (SMD: -0.52; 95% confidence interval (CI): -0.85 to -0.19). There was no publication bias found for the associations serum hepcidin (Egger´s test: P =0.97) or the hepcidin/ferritin ratio (Egger´s test: P =0.75) had with type 2 diabetes. CONCLUSION Although hepcidin has been proposed as a risk marker for type 2 diabetes, our metaanalysis found that the hepcidin/ferritin ratio was superior to hepcidin alone as a risk marker.
Collapse
Affiliation(s)
- Nahid Karamzad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Eftekhari
- Department of Pharmacology and Toxicology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Ahad Ashrafi-Asgarabad
- Department of Epidemiology, School of Health, Bam University of Medical Sciences, Bam, Iran
| | - Mark J M Sullman
- School of Humanities and Social Sciences, University of Nicosia, Nicosia, Cyprus
| | | | - Saeid Safiri
- Social Determinants of Health Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Bek SG, Üstüner B, Eren N, Sentürk Z, Gönüllü BK. The effect of hepcidin on components of metabolic syndrome in chronic kidney disease: a cross-sectional study. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2020; 66:1100-1107. [PMID: 32935805 DOI: 10.1590/1806-9282.66.8.1100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Hepcidin is an important regulator of iron homeostasis. OBJECTIVES This cross-sectional study was conducted to evaluate the association between hepcidin and components of metabolic syndrome in patients with chronic kidney disease (CKD). DESIGN AND SETTING 103 CKD patients and 59 healthy volunteers were included in the study from the University Hospital. METHODS Serum hepcidin levels were measured by enyzme-linked immunosorbent assay (ELISA) test. As for the study parameters, age, sex, body mass index, renal diseases, serum biochemistry, complete blood count, iron and total iron-binding capacity, ferritin, high-sensitive C-reactive protein (hsCRP), C- reactive protein (CRP), and erythrocyte sedimentation rate (ESR) were evaluated. RESULTS The mean age of the patients was 58.63 ± 11.8 years. Hepcidin level was significantly associated with hypertension and higher uric acid levels (P < 0.05). There was a positive correlation between hepcidin and urea, uric acid, creatinine, ferritin, CRP, ESR, phosphorus, triglyceride, low-density lipoprotein (LDL), proteinuria and albuminuria in 24-hour urine collection. A negative correlation was found between hepcidin and estimated glomerular filtration rate (eGFR), hemoglobin, hematocrit, calcium, 25 OH vitamin D, pH, and bicarbonate levels. CONCLUSION Hepcidin, a well-known hormone regulator of iron metabolism, may play an important role in the pathogenesis of metabolic syndrome in patients with CKD, and further studies might delineate in-depth its potential as a promising early marker in these patients.
Collapse
Affiliation(s)
- Sibel Gökçay Bek
- . Assistant Professor, Nephrology Department, Kocaeli University Hospital, Internal Medicine, İzmit/Kocaeli, Turkey
| | - Berna Üstüner
- . Resident in Internal Medicine, Kocaeli University Hospital, Internal Medicine, İzmit/Kocaeli, Turkey
| | - Necmi Eren
- . Assistant Professor, Nephrology Department, Kocaeli University Hospital, Internal Medicine, İzmit/Kocaeli, Turkey
| | - Zeynep Sentürk
- . Resident in Internal Medicine, Kocaeli University Hospital, Internal Medicine, İzmit/Kocaeli, Turkey
| | - Betül Kalender Gönüllü
- . Assistant Professor, Nephrology Department, Kocaeli University Hospital, Internal Medicine, İzmit/Kocaeli, Turkey
| |
Collapse
|
7
|
Hayder ZS, Kareem ZS. Resistin hormone in diabetic kidney disease and its relation to iron status and hepcidin. Int Urol Nephrol 2020; 52:749-756. [PMID: 32173772 DOI: 10.1007/s11255-020-02434-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 02/03/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Resistin, a potent adipocyte-secreted hormone, may contribute to and modulate iron status and hepcidin level in patients with non-insulin-dependent diabetes mellitus (NIDDM) and end-stage renal disease (ESRD). CONTEXT The cross-sectional study aimed to determine the possible role of resistin in the iron status pathway in patients with NIDDM and ESRD events are sparse with conflicting results. METHODS A total of 130 patients and 42 healthy subjects were included in the study and grouped into four none obese groups with normal C-reactive protein (CRP) level: Group 1 (control), Group 2 (NIDDM), Group 3 (ESRD on hemodialysis), and Group 4 (NIDDM + ESRD on hemodialysis). Resistin hormone, ferritin, hepcidin, serum iron, TIBC, and TS% were estimated. RESULTS Resistin, hepcidin, and ferritin were significantly increased in all groups when compared to control. TIBC significantly increased in ESRD and NIDDM + ESRD when compared to controls. Serum iron and TS% significantly decreased in all groups when compared to controls. Resistin showed a significant positive correlation with hepcidin and ferritin. CONCLUSION It was determined that serum resistin elevated in patients and correlated directly with hepcidin and ferritin levels. The present finding regarding receiver-operating characteristic curve (ROC curve) analysis of resistin hormone proposed that resistin could be represented as a biomarker for iron dysfunction in NIDDM and ESRD.
Collapse
Affiliation(s)
- Zhian Sherzad Hayder
- Department of Basic Science, College of Dentistry, Hawler Medical University, Erbil, Iraq. .,Department of Biology, Faculty of Science and Health, Koya University, KOY45, Kurdistan Region-F.R., Koya, Iraq.
| | - Zrar Saleem Kareem
- Department of Biology, Faculty of Science and Health, Koya University, KOY45, Kurdistan Region-F.R., Koya, Iraq
| |
Collapse
|
8
|
Shu T, Lv Z, Xie Y, Tang J, Mao X. Hepcidin as a key iron regulator mediates glucotoxicity-induced pancreatic β-cell dysfunction. Endocr Connect 2019; 8:150-161. [PMID: 30776286 PMCID: PMC6391907 DOI: 10.1530/ec-18-0516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Accepted: 01/21/2019] [Indexed: 02/06/2023]
Abstract
It has been well established that glucotoxicity induces pancreatic β-cells dysfunction; however, the precise mechanism remains unclear. Our previous studies demonstrated that high glucose concentrations are associated with decreased hepcidin expression, which inhibits insulin synthesis. In this study, we focused on the role of low hepcidin level-induced increased iron deposition in β-cells and the relationship between abnormal iron metabolism and β-cell dysfunction. Decreased hepcidin expression increased iron absorption by upregulating transferrin receptor 1 (TfR1) and divalent metal transporter 1 (DMT1) expression, resulting in iron accumulation within cells. Prussia blue stain and calcein-AM assays revealed greater iron accumulation in the cytoplasm of pancreatic tissue isolated from db/db mice, cultured islets and Min6 cells in response to high glucose stimulation. Increased cytosolic iron deposition was associated with greater Fe2+ influx into the mitochondria, which depolarized the mitochondria membrane potential, inhibited ATP synthesis, generated excessive ROS and induced oxidative stress. The toxic effect of excessive iron on mitochondrial function eventually resulted in impaired insulin secretion. The restricted iron content in db/db mice via reduced iron intake or accelerated iron clearance improved blood glucose levels with decreased fasting blood glucose (FBG), fasting blood insulin (FIns), HbA1c level, as well as improved intraperitoneal glucose tolerance test (IPGTT) results. Thus, our study may reveal the mechanism involved in the role of hepcidin in the glucotoxcity impaired pancreatic β cell function pathway.
Collapse
Affiliation(s)
- Tingting Shu
- Department of Central Laboratory, Jiangsu Province Official Hospital, Nanjing, Jiangsu, China
| | - Zhigang Lv
- Department of Central Laboratory, Jiangsu Province Official Hospital, Nanjing, Jiangsu, China
| | - Yuchun Xie
- Department of Central Laboratory, Jiangsu Province Official Hospital, Nanjing, Jiangsu, China
| | - Junming Tang
- Department of Clinical Laboratory, Yixing People Hospital, Affiliated Jiangsu University, Yixing, Wuxi, Jiangsu, China
| | - Xuhua Mao
- Department of Clinical Laboratory, Yixing People Hospital, Affiliated Jiangsu University, Yixing, Wuxi, Jiangsu, China
- Correspondence should be addressed to X Mao:
| |
Collapse
|
9
|
Saprina TV, Zima AP, Musina NN, Prokhorenko TS, Latypova AV, Shakhmanova NS, Budeeva SV. Pathogenetic aspects of hepcidin metabolism and ferrocinetics dysregulation in carbohydrate metabolism disorders. DIABETES MELLITUS 2019. [DOI: 10.14341/dm9378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Hepcidin, a hormone regulating iron metabolism, has received attention for its role in the pathogenesis of dysregulations in carbohydrate metabolism. Hepcidin disorders in patients with diabetes mellitus are bi-directional: manifesting as iron overload syndrome in cases of decreased hepcidin production and as anaemia of chronic disease in cases of hepcidin hypersecretion. However, till date, detailed analyses of mechanisms underlying hepcidin dysregulation have not been conducted nor have the interactions of ferrocinetic and carbohydrate-metabolic disorders been examined. An association between diabetes mellitus and neurodegenerative diseases as well as the role of iron metabolism in Alzheimer or Parkinson diseases is a subject of ongoing research. This review provides a summary of the current understanding of hepcidin regulation and its disorders in various diseases, including diabetes mellitus and neurodegenerative diseases. In addition, we provide an overview of the available therapies that address ferrocinetic disorders resulting from the dysregulation of hepcidin.
Collapse
|
10
|
Mehta KJ, Farnaud SJ, Sharp PA. Iron and liver fibrosis: Mechanistic and clinical aspects. World J Gastroenterol 2019; 25:521-538. [PMID: 30774269 PMCID: PMC6371002 DOI: 10.3748/wjg.v25.i5.521] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is characterised by excessive deposition of extracellular matrix that interrupts normal liver functionality. It is a pathological stage in several untreated chronic liver diseases such as the iron overload syndrome hereditary haemochromatosis, viral hepatitis, alcoholic liver disease, non-alcoholic fatty liver disease, non-alcoholic steatohepatitis and diabetes. Interestingly, regardless of the aetiology, iron-loading is frequently observed in chronic liver diseases. Excess iron can feed the Fenton reaction to generate unquenchable amounts of free radicals that cause grave cellular and tissue damage and thereby contribute to fibrosis. Moreover, excess iron can induce fibrosis-promoting signals in the parenchymal and non-parenchymal cells, which accelerate disease progression and exacerbate liver pathology. Fibrosis regression is achievable following treatment, but if untreated or unsuccessful, it can progress to the irreversible cirrhotic stage leading to organ failure and hepatocellular carcinoma, where resection or transplantation remain the only curative options. Therefore, understanding the role of iron in liver fibrosis is extremely essential as it can help in formulating iron-related diagnostic, prognostic and treatment strategies. These can be implemented in isolation or in combination with the current approaches to prepone detection, and halt or decelerate fibrosis progression before it reaches the irreparable stage. Thus, this review narrates the role of iron in liver fibrosis. It examines the underlying mechanisms by which excess iron can facilitate fibrotic responses. It describes the role of iron in various clinical pathologies and lastly, highlights the significance and potential of iron-related proteins in the diagnosis and therapeutics of liver fibrosis.
Collapse
Affiliation(s)
- Kosha J Mehta
- School of Population Health and Environmental Sciences, Faculty of Life Sciences and Medicine, King’s College London, London SE1 1UL, United Kingdom
- Division of Human Sciences, School of Applied Sciences, London South Bank University, London SE1 0AA, United Kingdom
| | - Sebastien Je Farnaud
- Faculty Research Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry CV1 2DS, United Kingdom
| | - Paul A Sharp
- Department of Nutritional Sciences, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London SE1 9NH, United Kingdom
| |
Collapse
|
11
|
Chand SK, Singh RG, Pendharkar SA, Petrov MS. Iron: a Strong Element in the Pathogenesis of Chronic Hyperglycaemia After Acute Pancreatitis. Biol Trace Elem Res 2018; 183:71-79. [PMID: 28836100 DOI: 10.1007/s12011-017-1131-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/11/2017] [Indexed: 12/12/2022]
Abstract
Evidence shows an association between markers of iron metabolism and glucose metabolism in type 2 diabetes mellitus. Acute pancreatitis is the largest contributor to diabetes of the exocrine pancreas. However, the pathogenesis of new-onset pre-diabetes or diabetes after pancreatitis remains unclear. This study aimed to investigate associations between markers of iron metabolism and glucose metabolism following acute pancreatitis. Fasting blood samples were collected to analyse markers of glucose metabolism (haemoglobin A1c) and iron metabolism (hepcidin, ferritin, and soluble transferrin receptor). Participants were categorised into two groups: normoglycaemia after acute pancreatitis and chronic hyperglycaemia after acute pancreatitis. Binary logistic and linear regression analyses were conducted, and potential confounders were adjusted for in multivariable analyses. A total of 83 individuals following an episode of acute pancreatitis were included, of whom 19 developed chronic hyperglycaemia. Hepcidin was significantly increased in individuals with chronic hyperglycaemia after acute pancreatitis in two adjusted models (p = 0.045 and p = 0.048). Ferritin was significantly decreased in individuals with chronic hyperglycaemia after acute pancreatitis in three adjusted models (p = 0.016, p = 0.009, and p = 0.011). Soluble transferrin receptor was not significantly associated with chronic hyperglycaemia after acute pancreatitis. These findings suggest that iron metabolism is significantly altered in individuals with chronic hyperglycaemia after acute pancreatitis and may provide better insights into the pathogenesis of new-onset diabetes after pancreatitis.
Collapse
Affiliation(s)
- Shayal K Chand
- Department of Surgery, University of Auckland, Room 12.085A, Level 12, Auckland City Hospital, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Ruma G Singh
- Department of Surgery, University of Auckland, Room 12.085A, Level 12, Auckland City Hospital, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Sayali A Pendharkar
- Department of Surgery, University of Auckland, Room 12.085A, Level 12, Auckland City Hospital, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand
| | - Maxim S Petrov
- Department of Surgery, University of Auckland, Room 12.085A, Level 12, Auckland City Hospital, Private Bag 92019, Victoria Street West, Auckland, 1142, New Zealand.
| |
Collapse
|
12
|
Vela D, Sopi RB, Mladenov M. Low Hepcidin in Type 2 Diabetes Mellitus: Examining the Molecular Links and Their Clinical Implications. Can J Diabetes 2018; 42:179-187. [DOI: 10.1016/j.jcjd.2017.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 01/14/2023]
|
13
|
Differential regulation of hepcidin in cancer and non-cancer tissues and its clinical implications. Exp Mol Med 2018; 50:e436. [PMID: 29391539 PMCID: PMC5903825 DOI: 10.1038/emm.2017.273] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/29/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
Hepcidin is a crucial peptide for regulating cellular iron efflux. Because iron is essential for cell survival, especially for highly active cells, such as tumor cells, it is imperative to understand how tumor cells manipulate hepcidin expression for their own metabolic needs. Studies suggest that hepcidin expression and regulation in tumor cells show important differences in comparison with those in non-tumorous cells. These differences should be investigated to develop new strategies to fight cancer cells. Manipulating hepcidin expression to starve cancer cells for iron may prove to be a new therapy in the anticancer arsenal.
Collapse
|
14
|
Moreno-Navarrete JM, Rodríguez A, Becerril S, Valentí V, Salvador J, Frühbeck G, Fernández-Real JM. Increased Small Intestine Expression of Non-Heme Iron Transporters in Morbidly Obese Patients With Newly Diagnosed Type 2 Diabetes. Mol Nutr Food Res 2017; 62. [PMID: 29082606 DOI: 10.1002/mnfr.201700301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 08/04/2017] [Indexed: 01/01/2023]
Abstract
SCOPE To investigate intestinal markers of iron absorption in morbidly obese subjects according to glucose tolerance. METHODS AND RESULTS Gene expression of both non-heme (SLC40A1 (ferroportin), SLC11A2) and heme iron (SLC46A1 (HCP1), HMOX1) transporters is analyzed in 38 small intestine tissue samples [11 with normal glucose tolerance, 14 with glucose intolerance (GI), and 13 with newly diagnosed type 2 diabetes (T2D)]. SLC40A1 (r = 0.43, p = 0.008) and SLC11A2 (r = 0.35, p = 0.03) mRNA levels are positively correlated with ferritin-to-hepcidin ratio and with fasting glucose, being significantly increased in patients with T2D. Only ferroportin is negatively associated with serum hepcidin (r = -0.617, p < 0.0001). In multivariate regression analysis, fasting glucose contributes independently to intestinal SLC40A1 (p = 0.009) and SLC11A2 (p = 0.04) variance after controlling for age, sex, and BMI. When circulating hepcidin is incorporated into the model, fasting glucose contributes significantly and independently to intestinal SLC40A1 (p = 0.02), but not to SLC11A2 (p = 0.07) variance. SLC46A1 and HMOX1 are similar in all groups. CONCLUSION The expression of ferroportin and SLC11A2 is increased in the intestine of patients with T2D in association with iron stores and serum hepcidin levels. Increased intestinal iron absorption is a potential mechanism that could explain the increased body iron stores frequently observed in patients with T2D.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| | - Amaia Rodríguez
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain
| | - Sara Becerril
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain
| | - Víctor Valentí
- Department of Surgery, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain
| | - Javier Salvador
- Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain
| | - Gema Frühbeck
- Metabolic Research Laboratory, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain.,Department of Endocrinology & Nutrition, Clínica Universidad de Navarra, CIBEROBN, IdiSNA, Pamplona, Spain
| | - José Manuel Fernández-Real
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBEROBN (CB06/03/010) and Instituto de Salud Carlos III (ISCIII), Girona, Spain
| |
Collapse
|
15
|
Fernández Real JM, Moreno-Navarrete JM, Manco M. Iron influences on the Gut-Brain axis and development of type 2 diabetes. Crit Rev Food Sci Nutr 2017; 59:443-449. [DOI: 10.1080/10408398.2017.1376616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- José Manuel Fernández Real
- University Hospital of Girona ‘Dr JosepTrueta’, Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona IdibGi
- CIBER Fisiopatología de la Obesidad y Nutrición, Girona, Spain
| | - José Maria Moreno-Navarrete
- University Hospital of Girona ‘Dr JosepTrueta’, Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona IdibGi
- CIBER Fisiopatología de la Obesidad y Nutrición, Girona, Spain
| | - Melania Manco
- Research Area for multifactorial diseases, Bambino Gesù Children's Hospital and Research Institute, Research Unit for Multifactorial Disease, Rome, Italy
| |
Collapse
|
16
|
Vela D, Leshoski J, Vela Z, Jakupaj M, Mladenov M, Sopi RB. Insulin treatment corrects hepcidin but not YKL-40 levels in persons with type 2 diabetes mellitus matched by body mass index, waist-to-height ratio, C-reactive protein and Creatinine. BMC Endocr Disord 2017; 17:53. [PMID: 28841871 PMCID: PMC5574085 DOI: 10.1186/s12902-017-0204-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/21/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND It has been shown that hepcidin and YKL-40 levels change in persons with insulin resistance in different circumstances. However, variations of the levels of these parameters through the stages of prediabetes and type 2 diabetes mellitus are unclear. We hypothesized that hepcidin levels will decrease in persons with prediabetes, while these levels will tend to correct when persons with diabetes are treated with insulin. Finally we sought to determine the levels of YKL-40 in all groups of participants included in the study. METHODS Serum hepcidin levels and YKL-40 levels were measured in control group (n = 20), persons with prediabetes (n = 30) and persons with diabetes on insulin therapy (n = 30) using ELISA method. Patients in all three groups were matched by Body Mass Index, Waist-to-Height Ratio, C-Reactive Protein and creatinine levels. RESULTS Hepcidin levels were lower in persons with prediabetes compared to control, while persons with diabetes on insulin therapy had higher values than those with prediabetes (p = 0,00001). YKL-40 levels showed no significant changes. CONCLUSIONS Serum hepcidin levels in matched persons with prediabetes are a stronger marker of early changes in glucose metabolism compared to YKL-40 levels. Also, treatment with insulin corrects hepcidin levels, but not YKL-40 levels. Correcting levels of hepcidin is important for reducing iron-overload, which is a risk factor for diabetes.
Collapse
Affiliation(s)
- Driton Vela
- Faculty of Medicine, University of Prishtina, Martyr’s Boulevard n.n, 10000 Prishtina, Kosovo
| | - Jovica Leshoski
- Institute of Biology, Faculty of Natural Sciences, “Sts. Cyril and Methodius” University, Skopje, 1000 Macedonia
| | - Zana Vela
- Faculty of Medicine, University of Prishtina, Martyr’s Boulevard n.n, 10000 Prishtina, Kosovo
| | - Muharrem Jakupaj
- Faculty of Medicine, University of Prishtina, Martyr’s Boulevard n.n, 10000 Prishtina, Kosovo
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences, “Sts. Cyril and Methodius” University, Skopje, 1000 Macedonia
| | - Ramadan B. Sopi
- Faculty of Medicine, University of Prishtina, Martyr’s Boulevard n.n, 10000 Prishtina, Kosovo
| |
Collapse
|
17
|
Reichert CO, da Cunha J, Levy D, Maselli LMF, Bydlowski SP, Spada C. Hepcidin: Homeostasis and Diseases Related to Iron Metabolism. Acta Haematol 2017; 137:220-236. [PMID: 28514781 DOI: 10.1159/000471838] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 03/20/2017] [Indexed: 12/14/2022]
Abstract
Iron is an essential metal for cell survival that is regulated by the peptide hormone hepcidin. However, its influence on certain diseases is directly related to iron metabolism or secondary to underlying diseases. Genetic alterations influence the serum hepcidin concentration, which can lead to an iron overload in tissues, as observed in haemochromatosis, in which serum hepcidin or defective hepcidin synthesis is observed. Another genetic imbalance of iron is iron-refractory anaemia, in which serum concentrations of hepcidin are increased, precluding the flow and efflux of extra- and intracellular iron. During the pathogenesis of certain diseases, the resulting oxidative stress, as well as the increase in inflammatory cytokines, influences the transcription of the HAMP gene to generate a secondary anaemia due to the increase in the serum concentration of hepcidin. To date, there is no available drug to inhibit or enhance hepcidin transcription, mostly due to the cytotoxicity described in the in vitro models. The proposed therapeutic targets are still in the early stages of clinical trials. Some candidates are promising, such as heparin derivatives and minihepcidins. This review describes the main pathways of systemic and genetic regulation of hepcidin, as well as its influence on the disorders related to iron metabolism.
Collapse
Affiliation(s)
- Cadiele Oliana Reichert
- Clinical Analysis Department, Health Sciences Center, Federal University of Santa Catarina (UFSC), Florianópolis, Brazil
| | | | | | | | | | | |
Collapse
|
18
|
Vela D, Leshoski J, Gjorgievska ES, Hadzi-Petrushev N, Jakupaj M, Sopi RB, Mladenov M. The Role of Insulin Therapy in Correcting Hepcidin Levels in Patients with Type 2 Diabetes Mellitus. Oman Med J 2017; 32:195-200. [PMID: 28584599 DOI: 10.5001/omj.2017.37] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES Iron overload can cause or contribute to the pathogenesis of type 2 diabetes mellitus (T2DM), but how the major parameters of iron metabolism change in different settings of diabetes are still unclear. The aim of this study was to determine the relationship between iron, ferritin, and hepcidin levels in diabetic patients and the effect of insulin treatment. METHODS The study included 80 subjects, 60 with T2DM and 20 without (control group). Serum hepcidin, insulin, ferritin, and iron levels were determined as well as other clinical parameters. The associations between these parameters were analyzed between both groups. RESULTS Hepcidin levels expressed as mean± standard deviation between groups showed no significant changes (14.4±6.7 ng/mL for the control group, and 18.4±7.9 ng/mL for patients with diabetes, p = 0.069). Parameters of iron metabolism showed modest correlation with the parameters of glucose metabolism. However, the correlation between ferritin and insulin in both groups was statistically significant (p = 0.032; ρ = 0.480 vs. p = 0.011; ρ = 0.328). CONCLUSIONS Our study showed that hepcidin levels in patients with T2DM on insulin therapy do not change, which might be a result of treatment with insulin. In this context, insulin treatment can be used as a novel method for correction of hepcidin levels. By correcting hepcidin levels, we can prevent cellular iron overload and reduce the risk of diabetes.
Collapse
Affiliation(s)
- Driton Vela
- Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Jovica Leshoski
- Institute of Biology, Faculty of Natural Sciences, Saints Cyril and Methodius University of Skopje, Skopje, Macedonia
| | - Elizabeta S Gjorgievska
- Faculty of Dental Medicine, Saints Cyril and Methodius University of Skopje, Skopje, Macedonia
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences, Saints Cyril and Methodius University of Skopje, Skopje, Macedonia
| | | | - Ramadan B Sopi
- Faculty of Medicine, University of Prishtina, Prishtina, Kosovo
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences, Saints Cyril and Methodius University of Skopje, Skopje, Macedonia
| |
Collapse
|
19
|
Barton JC, Acton RT. Diabetes in HFE Hemochromatosis. J Diabetes Res 2017; 2017:9826930. [PMID: 28331855 PMCID: PMC5346371 DOI: 10.1155/2017/9826930] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 12/12/2016] [Accepted: 01/04/2017] [Indexed: 02/08/2023] Open
Abstract
Diabetes in whites of European descent with hemochromatosis was first attributed to pancreatic siderosis. Later observations revealed that the pathogenesis of diabetes in HFE hemochromatosis is multifactorial and its clinical manifestations are heterogeneous. Increased type 2 diabetes risk in HFE hemochromatosis is associated with one or more factors, including abnormal iron homeostasis and iron overload, decreased insulin secretion, cirrhosis, diabetes in first-degree relatives, increased body mass index, insulin resistance, and metabolic syndrome. In p.C282Y homozygotes, serum ferritin, usually elevated at hemochromatosis diagnosis, largely reflects body iron stores but not diabetes risk. In persons with diabetes type 2 without hemochromatosis diagnoses, serum ferritin levels are higher than those of persons without diabetes, but most values are within the reference range. Phlebotomy therapy to achieve iron depletion does not improve diabetes control in all persons with HFE hemochromatosis. The prevalence of type 2 diabetes diagnosed today in whites of European descent with and without HFE hemochromatosis is similar. Routine iron phenotyping or HFE genotyping of patients with type 2 diabetes is not recommended. Herein, we review diabetes in HFE hemochromatosis and the role of iron in diabetes pathogenesis in whites of European descent with and without HFE hemochromatosis.
Collapse
Affiliation(s)
- James C. Barton
- Southern Iron Disorders Center, Birmingham, AL 35209, USA
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ronald T. Acton
- Southern Iron Disorders Center, Birmingham, AL 35209, USA
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|