1
|
Zhang F, Lin JJ, Tian HN, Wang J. Effect of exercise on improving myocardial mitochondrial function in decreasing diabetic cardiomyopathy. Exp Physiol 2024; 109:190-201. [PMID: 37845840 PMCID: PMC10988701 DOI: 10.1113/ep091309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/11/2023] [Indexed: 10/18/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a significant cause of heart failure in patients with diabetes, and its pathogenesis is closely related to myocardial mitochondrial injury and functional disability. Studies have shown that the development of diabetic cardiomyopathy is related to disorders in mitochondrial metabolic substrates, changes in mitochondrial dynamics, an imbalance in mitochondrial Ca2+ regulation, defects in the regulation of microRNAs, and mitochondrial oxidative stress. Physical activity may play a role in resistance to the development of diabetic cardiomyopathy by improving myocardial mitochondrial biogenesis, the level of autophagy and dynamic changes in fusion and division; enhancing the ability to cope with oxidative stress; and optimising the metabolic substrates of the myocardium. This paper puts forward a new idea for further understanding the specific mitochondrial mechanism of the occurrence and development of diabetic cardiomyopathy and clarifying the role of exercise-mediated myocardial mitochondrial changes in the prevention and treatment of diabetic cardiomyopathy. This is expected to provide a new theoretical basis for exercise to reduce diabetic cardiomyopathy symptoms.
Collapse
Affiliation(s)
- Feng Zhang
- Sports Physiology DepartmentBeijing Sport UniversityBeijingChina
| | - Jian jian Lin
- PE Teaching and Research OfficeUniversity of International RelationshipBeijingChina
| | - Hao nan Tian
- Sports Physiology DepartmentBeijing Sport UniversityBeijingChina
| | - Jun Wang
- Sports Physiology DepartmentBeijing Sport UniversityBeijingChina
| |
Collapse
|
2
|
Khan AR, Alnoud MAH, Ali H, Ali I, Ahmad S, Ul Hassan SS, Shaikh AL, Hussain T, Khan MU, Khan SU, Khan MS, Khan SU. Beyond the beat: A pioneering investigation into exercise modalities for alleviating diabetic cardiomyopathy and enhancing cardiac health. Curr Probl Cardiol 2024; 49:102222. [PMID: 38000567 DOI: 10.1016/j.cpcardiol.2023.102222] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/26/2023]
Abstract
Patients with preexisting cardiovascular disease or those at high risk for developing the condition are often offered exercise as a form of therapy. Patients with cancer who are at an increased risk for cardiovascular issues are increasingly encouraged to participate in exercise-based, interdisciplinary programs due to the positive correlation between these interventions and clinical outcomes following myocardial infarction. Diabetic cardiomyopathy (DC) is a cardiac disorder that arises due to disruptions in the homeostasis of individuals with diabetes. One of the primary reasons for mortality in individuals with diabetes is the presence of cardiac structural damage and functional abnormalities, which are the primary pathological features of DC. The aetiology of dilated cardiomyopathy is multifaceted and encompasses a range of processes, including metabolic abnormalities, impaired mitochondrial function, dysregulation of calcium ion homeostasis, excessive cardiomyocyte death, and fibrosis. In recent years, many empirical investigations have demonstrated that exercise training substantially impacts the prevention and management of diabetes. Exercise has been found to positively impact the recovery of diabetes and improve several metabolic problem characteristics associated with DC. One potential benefit of exercise is its ability to increase systolic activity, which can enhance cardiometabolic and facilitate the repair of structural damage to the heart caused by DC, leading to a direct improvement in cardiac health. In contrast, exercise has the potential to indirectly mitigate the pathological progression of DC through its ability to decrease circulating levels of sugar and fat while concurrently enhancing insulin sensitivity. A more comprehensive understanding of the molecular mechanism via exercise facilitates the restoration of DC disease must be understood. Our goal in this review was to provide helpful information and clues for developing new therapeutic techniques for motion alleviation DC by examining the molecular mechanisms involved.
Collapse
Affiliation(s)
- Ahsan Riaz Khan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Mohammed A H Alnoud
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road Tarlai Kalan, Islamabad 44000, Pakistan
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Hawally 32093, Kuwait
| | - Saleem Ahmad
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans 70112 LA, USA
| | - Syed Shams Ul Hassan
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou 310002, China
| | | | - Talib Hussain
- Women Dental College Abbottabad, KPK, 22020, Pakistan
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | - Muhammad Shehzad Khan
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Shatin city, (HKSAR), Hong Kong
| | - Shahid Ullah Khan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; Department of Biochemistry, Women Medical and Dental College, Khyber Medical University, Abbottabad, 22080, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
3
|
Forte M, Rodolico D, Ameri P, Catalucci D, Chimenti C, Crotti L, Schirone L, Pingitore A, Torella D, Iacovone G, Valenti V, Schiattarella GG, Perrino C, Sciarretta S. Molecular mechanisms underlying the beneficial effects of exercise and dietary interventions in the prevention of cardiometabolic diseases. J Cardiovasc Med (Hagerstown) 2022; 24:e3-e14. [PMID: 36729582 DOI: 10.2459/jcm.0000000000001397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cardiometabolic diseases still represent a major cause of mortality worldwide. In addition to pharmacological approaches, lifestyle interventions can also be adopted for the prevention of these morbid conditions. Lifestyle changes include exercise and dietary restriction protocols, such as calorie restriction and intermittent fasting, which were shown to delay cardiovascular ageing and elicit health-promoting effects in preclinical models of cardiometabolic diseases. Beneficial effects are mediated by the restoration of multiple molecular mechanisms in heart and vessels that are compromised by metabolic stress. Exercise and dietary restriction rescue mitochondrial dysfunction, oxidative stress and inflammation. They also improve autophagy. The result of these effects is a marked improvement of vascular and heart function. In this review, we provide a comprehensive overview of the molecular mechanisms involved in the beneficial effects of exercise and dietary restriction in models of diabetes and obesity. We also discuss clinical studies and gap in animal-to-human translation.
Collapse
Affiliation(s)
- Maurizio Forte
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli
| | - Daniele Rodolico
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico.,Department of Internal Medicine, University of Genova, Genova
| | - Daniele Catalucci
- Humanitas Research Hospital, IRCCS, Rozzano.,National Research Council, Institute of Genetic and Biomedical Research - UOS, Milan
| | - Cristina Chimenti
- Department of Clinical, Internal, Anesthesiological and Cardiovascular Sciences, Sapienza University of Rome, Rome
| | - Lia Crotti
- Istituto Auxologico Italiano, IRCCS, Department of Cardiovascular, Neural and Metabolic Sciences, San Luca Hospital.,Department of Medicine and Surgery, Università Milano-Bicocca, Milan
| | - Leonardo Schirone
- Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | - Annachiara Pingitore
- Department of General and Specialistic Surgery 'Paride Stefanini' Sapienza University of Rome
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro
| | | | | | - Gabriele G Schiattarella
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Cinzia Perrino
- Division of Cardiology, Department of Advanced Biomedical Sciences, Federico II University of Naples, Naples, Italy
| | - Sebastiano Sciarretta
- Department of AngioCardioNeurology, IRCCS Neuromed, Pozzilli.,Department of Medical and Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina
| | | |
Collapse
|
4
|
Eldesoqui M, Eldken ZH, Mostafa SA, Al-Serwi RH, El-Sherbiny M, Elsherbiny N, Mohammedsaleh ZM, Sakr NH. Exercise Augments the Effect of SGLT2 Inhibitor Dapagliflozin on Experimentally Induced Diabetic Cardiomyopathy, Possible Underlying Mechanisms. Metabolites 2022; 12:metabo12070635. [PMID: 35888760 PMCID: PMC9315877 DOI: 10.3390/metabo12070635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 02/04/2023] Open
Abstract
One of the most prevalent cardiovascular problems linked with type 2 diabetes mellitus (T2DM) is diabetic cardiomyopathy (DCM). DCM is associated with myocardial oxidative stress, inflammation, apoptosis, suppressed autophagy, extracellular matrix remodeling, and fibrosis. The current study aims to investigate the protective effect of sodium-glucose transport 2 inhibitor (SGLT2i) dapagliflozin and/or exercise on DCM. Thirty adult male Sprague Dawley rats are used. T2DM is induced by a 6-week high-fat diet (HFD) followed by a single intraperitoneal (IP) injection of 35 mg/kg streptozotocin (STZ). Rats are divided into five groups, control, diabetic (DM), DM + swimming, DM + dapagliflozin, and DM + dapagliflozin and swimming. Serum glucose, insulin, insulin resistance (HOMA-IR), and cardiac enzymes (CK-MB and lactate dehydrogenase (LDH) are measured. Heart specimens are used for evaluation of cellular oxidative stress markers malondialdehyde (MDA), antioxidant enzymes, glutathione (GSH), and catalase (CAT), as well as mRNA expression of TGF-β, MMP9, IL-1β, and TNF-α. Stained sections with haematoxylin and eosin (H & E) and Masson trichrome are used for histopathological evaluation and detection of fibrosis, respectively. Immunohistochemical staining for apoptosis (caspase-3), and autophagy (LC3) are also carried out. The combinations of SGLT2i and exercise exhibited the most significant cardioprotective effect. It improved diabetic-induced histopathological alterations in the myocardium and attenuated the elevation of serum blood glucose, CK-MB, LDH, myocardial MDA, and mRNA expression of TNF-α, IL-1β, TGF-β, MMP9, and the immune expression of caspase-3. Moreover, this combination increased the serum insulin, myocardial antioxidants GSH and CAT, and increase the immune expression of the LC-3. In conclusion, a combination of SGLT2i and exercise exerted a better antioxidant, anti-inflammatory, and antifibrotic effect in DCM. Moreover, the combination enhances the autophagic capacity of the heart.
Collapse
Affiliation(s)
- Mamdouh Eldesoqui
- Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Zienab Helmy Eldken
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Sally Abdallah Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Rasha Hamed Al-Serwi
- Department of Basic Dental Sciences, College of Dentistry, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia;
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 11597, Saudi Arabia;
| | - Nehal Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
- Correspondence:
| | - Zuhair M. Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Noha Hammad Sakr
- Department of Anatomy, Faculty of Medicine, Kafrelsheikh University, Kafr El-Shaikh 33511, Egypt;
| |
Collapse
|
5
|
Celik H, Dursun AD, Tatar Y, Omercioglu G, Bastug M. Irisin pathways in hearts of Type 1 diabetic adult male rats following 6 weeks of moderate and high-volume aerobic exercise on a treadmill. SPORT SCIENCES FOR HEALTH 2022. [DOI: 10.1007/s11332-022-00924-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Li S, Wang M, Ma J, Pang X, Yuan J, Pan Y, Fu Y, Laher I. MOTS-c and Exercise Restore Cardiac Function by Activating of NRG1-ErbB Signaling in Diabetic Rats. Front Endocrinol (Lausanne) 2022; 13:812032. [PMID: 35370955 PMCID: PMC8969227 DOI: 10.3389/fendo.2022.812032] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/16/2022] [Indexed: 12/13/2022] Open
Abstract
Pathologic cardiac remodeling and dysfunction are the most common complications of type 2 diabetes. Physical exercise is important in inhibiting myocardial pathologic remodeling and restoring cardiac function in diabetes. The mitochondrial-derived peptide MOTS-c has exercise-like effects by improving insulin resistance, combatting hyperglycemia, and reducing lipid accumulation. We investigated the effects and transcriptomic profiling of MOTS-c and aerobic exercise on cardiac properties in a rat model of type 2 diabetes which was induced by feeding a high fat high sugar diet combined with an injection of a low dose of streptozotocin. Both aerobic exercise and MOTS-c treatment reduced abnormalities in cardiac structure and function. Transcriptomic function enrichment analysis revealed that MOTS-c had exercise-like effects on inflammation, myocardial apoptosis, angiogenesis and endothelial cell proliferation and migration, and showed that the NRG1-ErbB4 pathway might be an important component in both MOTS-c and exercise induced attenuation of cardiac dysfunction in diabetes. Moreover, our findings suggest that MOTS-c activates NRG1-ErbB4 signaling and mimics exercise-induced cardio-protection in diabetes.
Collapse
Affiliation(s)
- Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Manda Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jiacheng Ma
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Xiaoli Pang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jinghan Yuan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yanrong Pan
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Yu Fu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Ismail Laher,
| |
Collapse
|
7
|
Bowman PRT, Smith GL, Gould GW. Run for your life: can exercise be used to effectively target GLUT4 in diabetic cardiac disease? PeerJ 2021; 9:e11485. [PMID: 34113491 PMCID: PMC8162245 DOI: 10.7717/peerj.11485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 04/27/2021] [Indexed: 12/25/2022] Open
Abstract
The global incidence, associated mortality rates and economic burden of diabetes are now such that it is considered one of the most pressing worldwide public health challenges. Considerable research is now devoted to better understanding the mechanisms underlying the onset and progression of this disease, with an ultimate aim of improving the array of available preventive and therapeutic interventions. One area of particular unmet clinical need is the significantly elevated rate of cardiomyopathy in diabetic patients, which in part contributes to cardiovascular disease being the primary cause of premature death in this population. This review will first consider the role of metabolism and more specifically the insulin sensitive glucose transporter GLUT4 in diabetic cardiac disease, before addressing how we may use exercise to intervene in order to beneficially impact key functional clinical outcomes.
Collapse
Affiliation(s)
- Peter R T Bowman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
8
|
Saruta J, To M, Sakaguchi W, Kondo Y, Tsukinoki K. Brain-derived neurotrophic factor is related to stress and chewing in saliva and salivary glands. JAPANESE DENTAL SCIENCE REVIEW 2020; 56:43-49. [PMID: 31879531 PMCID: PMC6920199 DOI: 10.1016/j.jdsr.2019.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/07/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022] Open
Abstract
Chewing is one of the most important orofacial functions. During this process, food is reduced in size, while saliva moistens the food and binds it into a bolus that can be easily swallowed. Characteristics of the oral system, including the number of teeth, bite force, and salivary flow, influence the masticatory process. In addition, salivary glands produce several cell growth factors and play an important role in human health. The nerve growth factor (NGF) family consists of NGF, brain-derived neurotrophic factor (BDNF), and neurotrophins-3 to 7. BDNF is a well-studied neurotrophin involved in the neurogenesis, differentiation, and maintenance of select peripheral and central neuronal cell populations during development and adulthood. However, there has been no detailed description of the expression of neurotrophins other than NGF in the salivary gland. We previously studied the effect of immobilization stress + chewing on BDNF secretion and its receptor, tyrosine receptor kinase B, in rat submandibular glands and found increased BDNF expression in duct cells under these conditions. In this review, we describe recent advances in understanding the role of stress and chewing-related BDNF in the saliva and salivary glands.
Collapse
Affiliation(s)
- Juri Saruta
- Department of Oral Science, Division of Salivary Gland and Health Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Masahiro To
- Department of Oral Science, Division of Salivary Gland and Health Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Wakako Sakaguchi
- Department of Oral Science, Division of Salivary Gland and Health Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Yusuke Kondo
- Department of Pathology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Keiichi Tsukinoki
- Department of Oral Science, Division of Salivary Gland and Health Medicine, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
9
|
Exercise as A Potential Therapeutic Target for Diabetic Cardiomyopathy: Insight into the Underlying Mechanisms. Int J Mol Sci 2019; 20:ijms20246284. [PMID: 31842522 PMCID: PMC6940726 DOI: 10.3390/ijms20246284] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is associated with cardiovascular, ophthalmic, and renal comorbidities. Among these, diabetic cardiomyopathy (DCM) causes the most severe symptoms and is considered to be a major health problem worldwide. Exercise is widely known as an effective strategy for the prevention and treatment of many chronic diseases. Importantly, the onset of complications arising due to diabetes can be delayed or even prevented by exercise. Regular exercise is reported to have positive effects on diabetes mellitus and the development of DCM. The protective effects of exercise include prevention of cardiac apoptosis, fibrosis, oxidative stress, and microvascular diseases, as well as improvement in cardiac mitochondrial function and calcium regulation. This review summarizes the recent scientific findings to describe the potential mechanisms by which exercise may prevent DCM and heart failure.
Collapse
|
10
|
Zhong W, Shi X, Yuan H, Bu H, Wu L, Wang R. Effects of Exercise Training on the Autophagy-Related Muscular Proteins Expression in Ovariectomized Rats. Front Physiol 2019; 10:735. [PMID: 31263428 PMCID: PMC6585433 DOI: 10.3389/fphys.2019.00735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 05/27/2019] [Indexed: 12/25/2022] Open
Abstract
Ovariectomy disrupts estrogen production and homeostasis. However, whether exercise training (ET) could counteract the ovariectomy-induced effect on muscular autophagy has remained elusive. This study examined muscular autophagy in ovariectomized (OVX) rats following 8 weeks of swimming ET. Here, 40 6-month-old female Sprague-Dawley rats were randomly divided into five groups: sham-operated control (Sham), OVX control (OVX), OVX with 60-min ET (OVX-60ET), 90-min ET (OVX-90ET), and 120-min ET (OVX-120ET) for 6 days/week. According to the results of Western blotting, the expression levels of autophagy-related proteins in the OVX gastrocnemius muscle, including mammalian target of rapamycin, uncoordinated 51-like kinase 1, Beclin-1, autophagy-related gene (Atg-7), and microtubule-associated protein light chains 3 were significantly decreased (all P < 0.05), while there was an elevation on the p62 level. ET appreciably mitigated the OVX-induced negative effects on muscle quality and the autophagy pathway, which seemed to be dependent on ET volume. The most optimal outcomes were observed in the OVX-90ET group. The OVX-120 group had an adversely augmented catabolic process associated with gastrocnemius muscle atrophy. In conclusion, the expression levels of autophagy proteins are decreased in OVX rats, which can be appreciably mitigated following 8 weeks of swimming ET.
Collapse
Affiliation(s)
- Weiquan Zhong
- School of Kinesiology, Shanghai University of Sport, Shanghai, China.,School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Xiangrong Shi
- Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX, United States
| | - Honghua Yuan
- Research Facility Center for Morphology, Xuzhou Medical University, Xuzhou, China
| | - Huimin Bu
- Department of Physiology, Xuzhou Medical University, Xuzhou, China
| | - Lianlian Wu
- Laboratory Animal Center, Xuzhou Medical University, Xuzhou, China
| | - Renwei Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
11
|
Abstract
Physiologic and pathologic stressors promote changes in metabolism that are associated with cardiac remodeling. Metabolic alterations in the heart are a summation of responses of several organs and organ systems, which transform the milieu of circulating substrates and stimuli and prompt cardiac adaptation or remodeling. Nevertheless, the mechanisms by which metabolism causes cardiac remodeling remain unclear. Difficulties in delineating metabolic mechanisms of tissue remodeling are in part due to technical issues as well as to the lack of conceptual clarity with regard to causal entailment of metabolic processes. This review discusses some metabolic mechanisms by which stressors such as exercise, pregnancy, and pressure overload promote metabolism-mediated cardiac remodeling. Adopting conceptual frameworks based in relational biology and delineating hierarchies of metabolic causation could lend new insight into how metabolism coordinates cardiac remodeling.
Collapse
Affiliation(s)
- Bradford G Hill
- Envirome Institute, Diabetes and Obesity Center, Department of Medicine, University of Louisville, Louisville, KY
| |
Collapse
|
12
|
Abstract
Research has demonstrated that the high capacity requirements of the heart are satisfied by a preference for oxidation of fatty acids. However, it is well known that a stressed heart, as in pathological hypertrophy, deviates from its inherent profile and relies heavily on glucose metabolism, primarily achieved by an acceleration in glycolysis. Moreover, it has been suggested that the chronically lipid overloaded heart augments fatty acid oxidation and triglyceride synthesis to an even greater degree and, thus, develops a lipotoxic phenotype. In comparison, classic studies in exercise physiology have provided a basis for the acute metabolic changes that occur during physical activity. During an acute bout of exercise, whole body glucose metabolism increases proportionately to intensity while fatty acid metabolism gradually increases throughout the duration of activity, particularly during moderate intensity. However, the studies in chronic exercise training are primarily limited to metabolic adaptations in skeletal muscle or to the mechanisms that govern physiological signaling pathways in the heart. Therefore, the purpose of this review is to discuss the precise changes that chronic exercise training elicits on cardiac metabolism, particularly on substrate utilization. Although conflicting data exists, a pattern of enhanced fatty oxidation and normalization of glycolysis emerges, which may be a therapeutic strategy to prevent or regress the metabolic phenotype of the hypertrophied heart. This review also expands on the metabolic adaptations that chronic exercise training elicits in amino acid and ketone body metabolism, which have become of increased interest recently. Lastly, challenges with exercise training studies, which could relate to several variables including model, training modality, and metabolic parameter assessed, are examined.
Collapse
Affiliation(s)
- Stephen C. Kolwicz Jr.
- Heart and Muscle Metabolism Laboratory, Health and Exercise Physiology Department, Ursinus College, Collegeville, PA, United States
| |
Collapse
|
13
|
Shibu MA, Kuo CH, Chen BC, Ju DT, Chen RJ, Lai CH, Huang PJ, Viswanadha VP, Kuo WW, Huang CY. Oolong tea prevents cardiomyocyte loss against hypoxia by attenuating p-JNK mediated hypertrophy and enhancing P-IGF1R, p-akt, and p-Bad ser136 activity and by fortifying NRF2 antioxidation system. ENVIRONMENTAL TOXICOLOGY 2018; 33:220-233. [PMID: 29139225 DOI: 10.1002/tox.22510] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/24/2017] [Accepted: 10/25/2017] [Indexed: 06/07/2023]
Abstract
Tea, the most widely consumed natural beverage has been associated with reduced mortality risk from cardiovascular disease. Oolong tea is a partially fermented tea containing high levels of catechins, their degree of oxidation varies between 20%-80% causing differences in their active metabolites. In this study we examined the effect of oolong tea extract (OTE) obtained by oxidation at low-temperature for short-time against hypoxic injury and found that oolong tea provides cyto-protective effects by suppressing the JNK mediated hypertrophic effects and by enhancing the innate antioxidant mechanisms in neonatal cardiomyocytes and in H9c2 cells. OTE effectively attenuates 24 h hypoxia-triggered cardiomyocyte loss by suppressing caspase-3-cleavage and apoptosis in a dose-dependent manner. OTE also enhances the IGFIR/p-Akt associated survival-mechanism involving the elevation of p-Badser136 in a dose-dependent manner to aid cellular adaptations against hypoxic challenge. The results show the effects and mechanism of Oolong tea to provide cardio-protective benefits during hypoxic conditions.
Collapse
Affiliation(s)
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Bih-Cheng Chen
- School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Da-Tong Ju
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Pei-Jane Huang
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
14
|
Russell J, Du Toit EF, Peart JN, Patel HH, Headrick JP. Myocyte membrane and microdomain modifications in diabetes: determinants of ischemic tolerance and cardioprotection. Cardiovasc Diabetol 2017; 16:155. [PMID: 29202762 PMCID: PMC5716308 DOI: 10.1186/s12933-017-0638-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease, predominantly ischemic heart disease (IHD), is the leading cause of death in diabetes mellitus (DM). In addition to eliciting cardiomyopathy, DM induces a ‘wicked triumvirate’: (i) increasing the risk and incidence of IHD and myocardial ischemia; (ii) decreasing myocardial tolerance to ischemia–reperfusion (I–R) injury; and (iii) inhibiting or eliminating responses to cardioprotective stimuli. Changes in ischemic tolerance and cardioprotective signaling may contribute to substantially higher mortality and morbidity following ischemic insult in DM patients. Among the diverse mechanisms implicated in diabetic impairment of ischemic tolerance and cardioprotection, changes in sarcolemmal makeup may play an overarching role and are considered in detail in the current review. Observations predominantly in animal models reveal DM-dependent changes in membrane lipid composition (cholesterol and triglyceride accumulation, fatty acid saturation vs. reduced desaturation, phospholipid remodeling) that contribute to modulation of caveolar domains, gap junctions and T-tubules. These modifications influence sarcolemmal biophysical properties, receptor and phospholipid signaling, ion channel and transporter functions, contributing to contractile and electrophysiological dysfunction, cardiomyopathy, ischemic intolerance and suppression of protective signaling. A better understanding of these sarcolemmal abnormalities in types I and II DM (T1DM, T2DM) can inform approaches to limiting cardiomyopathy, associated IHD and their consequences. Key knowledge gaps include details of sarcolemmal changes in models of T2DM, temporal patterns of lipid, microdomain and T-tubule changes during disease development, and the precise impacts of these diverse sarcolemmal modifications. Importantly, exercise, dietary, pharmacological and gene approaches have potential for improving sarcolemmal makeup, and thus myocyte function and stress-resistance in this ubiquitous metabolic disorder.
Collapse
Affiliation(s)
- Jake Russell
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Eugene F Du Toit
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Jason N Peart
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia
| | - Hemal H Patel
- VA San Diego Healthcare System and Department of Anesthesiology, University of California San Diego, San Diego, USA
| | - John P Headrick
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia. .,School of Medical Science, Griffith University, Southport, QLD, 4217, Australia.
| |
Collapse
|
15
|
Huang PC, Wang GJ, Fan MJ, Asokan Shibu M, Liu YT, Padma Viswanadha V, Lin YL, Lai CH, Chen YF, Liao HE, Huang CY. Cellular apoptosis and cardiac dysfunction in STZ-induced diabetic rats attenuated by anthocyanins via activation of IGFI-R/PI3K/Akt survival signaling. ENVIRONMENTAL TOXICOLOGY 2017; 32:2471-2480. [PMID: 28856781 DOI: 10.1002/tox.22460] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 08/02/2017] [Accepted: 08/06/2017] [Indexed: 06/07/2023]
Abstract
Anthocyanins are known cyto-protective agents against various stress conditions. In this study cardio-protective effect of anthocyanins from black rice against diabetic mellitus (DM) was evaluated using a streptozotocin (STZ)-induced DM rat model. Five-week-old male Wistar rats were administered with STZ (55 mg kg-1 , IP) to induce DM; rats in the treatment group received 250 mg oral anthocyanin/kg/day during the 4-week treatment period. DM and the control rats received normal saline through oral gavage. The results reveal that STZ-induced DM elevates myocardial apoptosis and associated proapoptotic proteins but down-regulates the proteins of IGF1R mediated survival signaling mechanism. Furthermore, the functional parameters such as the ejection-fraction and fraction-shortening in the DM rat hearts declined considerably. However, the rats treated with anthocyanins significantly reduced apoptosis and the associated proapoptotic proteins and further increased the survival signals to restore the cardiac functions in DM rats. Anthocyanin supplementation enhances cardiomyocyte survival and restores cardiac function.
Collapse
Affiliation(s)
- Pei-Chen Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Obstetrics and Gynecology, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Guei-Jane Wang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
| | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | | | - Yin-Tso Liu
- Department of cardiology, Asia University and Asia University Hospital, Taichung, Taiwan
| | | | - Yi-Lin Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Yu-Feng Chen
- Division of Cardiology, Department of Internal Medicine, Taichung Armed Force General Hospital, Taichung, Taiwan
| | - Hung-En Liao
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Asia University, Taichung, Taiwan
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, 700000, Vietnam
| |
Collapse
|
16
|
Boardman NT, Hafstad AD, Lund J, Rossvoll L, Aasum E. Exercise of obese mice induces cardioprotection and oxygen sparing in hearts exposed to high-fat load. Am J Physiol Heart Circ Physiol 2017; 313:H1054-H1062. [DOI: 10.1152/ajpheart.00382.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/03/2017] [Accepted: 08/08/2017] [Indexed: 02/03/2023]
Abstract
Exercise training is a potent therapeutic approach in obesity and diabetes that exerts protective effects against the development of diabetic cardiomyopathy and ischemic injury. Acute increases in circulating fatty acids (FAs) during an ischemic insult can challenge the heart, since high FA load is considered to have adverse cardiac effects. In the present study, we tested the hypothesis that exercise-induced cardiac effects in diet-induced obese mice are abrogated by an acute high FA load. Diet-induced obese mice were fed a high-fat diet (HFD) for 20 wk. They were exercised using moderate- and/or high-intensity exercise training (MIT and HIT, respectively) for 10 or 3 wk, and isolated perfused hearts from these mice were exposed to a high FA load. Sedentary HFD mice served as controls. Ventricular function and myocardial O2 consumption were assessed after 10 wk of HIT and MIT, and postischemic functional recovery and infarct size were examined after 3 wk of HIT. In addition to improving aerobic capacity and reducing obesity and insulin resistance, long-term exercise ameliorated the development of diet-induced cardiac dysfunction. This was associated with improved mechanical efficiency because of reduced myocardial oxygen consumption. Although to a lesser extent, 3-wk HIT also increased aerobic capacity and decreased obesity and insulin resistance. HIT also improved postischemic functional recovery and reduced infarct size. Event upon the exposure to a high FA load, short-term exercise induced an oxygen-sparing effect. This study therefore shows that exercise-induced cardioprotective effects are present under hyperlipidemic conditions and highlights the important role of myocardial energetics during ischemic stress. NEW & NOTEWORTHY The exercise-induced cardioprotective effects in obese hearts are present under hyperlipidemic conditions, comparable to circulating levels of FA occurring with an ischemic insult. Myocardial oxygen sparing is associated with this effect, despite the general notion that high fat can decrease cardiac efficiency. This highlights the role of myocardial energetics during ischemic stress.
Collapse
Affiliation(s)
- Neoma T. Boardman
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Anne D. Hafstad
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jim Lund
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Line Rossvoll
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Faculty of Health Sciences, Department of Medical Biology, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
17
|
Mahmoud AM. Exercise Amaliorates Metabolic Disturbances and Oxidative Stress in Diabetic Cardiomyopathy: Possible Underlying Mechanisms. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 999:207-230. [DOI: 10.1007/978-981-10-4307-9_12] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
High-Intensity Exercise Reduces Cardiac Fibrosis and Hypertrophy but Does Not Restore the Nitroso-Redox Imbalance in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:7921363. [PMID: 28698769 PMCID: PMC5494101 DOI: 10.1155/2017/7921363] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/18/2017] [Accepted: 04/27/2017] [Indexed: 01/25/2023]
Abstract
Diabetic cardiomyopathy refers to the manifestations in the heart as a result of altered glucose homeostasis, reflected as fibrosis, cellular hypertrophy, increased oxidative stress, and apoptosis, leading to ventricular dysfunction. Since physical exercise has been indicated as cardioprotective, we tested the hypothesis that high-intensity exercise training could reverse the cardiac maladaptations produced by diabetes. For this, diabetes was induced in rats by a single dose of alloxan. Diabetic rats were randomly assigned to a sedentary group or submitted to a program of exercise on a treadmill for 4 weeks at 80% of maximal performance. Another group of normoglycemic rats was used as control. Diabetic rat hearts presented cardiomyocyte hypertrophy and interstitial fibrosis. Chronic exercise reduced both parameters but increased apoptosis. Diabetes increased the myocardial levels of the mRNA and proteins of NADPH oxidases NOX2 and NOX4. These altered levels were not reduced by exercise. Diabetes also increased the level of uncoupled endothelial nitric oxide synthase (eNOS) that was not reversed by exercise. Finally, diabetic rats showed a lower degree of phosphorylated phospholamban and reduced levels of SERCA2 that were not restored by high-intensity exercise. These results suggest that high-intensity chronic exercise was able to reverse remodeling in the diabetic heart but was unable to restore the nitroso-redox imbalance imposed by diabetes.
Collapse
|
19
|
Lew JKS, Pearson JT, Schwenke DO, Katare R. Exercise mediated protection of diabetic heart through modulation of microRNA mediated molecular pathways. Cardiovasc Diabetol 2017; 16:10. [PMID: 28086863 PMCID: PMC5237289 DOI: 10.1186/s12933-016-0484-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 12/17/2016] [Indexed: 12/18/2022] Open
Abstract
Hyperglycaemia, hypertension, dyslipidemia and insulin resistance collectively impact on the myocardium of people with diabetes, triggering molecular, structural and myocardial abnormalities. These have been suggested to aggravate oxidative stress, systemic inflammation, myocardial lipotoxicity and impaired myocardial substrate utilization. As a consequence, this leads to the development of a spectrum of cardiovascular diseases, which may include but not limited to coronary endothelial dysfunction, and left ventricular remodelling and dysfunction. Diabetic heart disease (DHD) is the term used to describe the presence of heart disease specifically in diabetic patients. Despite significant advances in medical research and long clinical history of anti-diabetic medications, the risk of heart failure in people with diabetes never declines. Interestingly, sustainable and long-term exercise regimen has emerged as an effective synergistic therapy to combat the cardiovascular complications in people with diabetes, although the precise molecular mechanism(s) underlying this protection remain unclear. This review provides an overview of the underlying mechanisms of hyperglycaemia- and insulin resistance-mediated DHD with a detailed discussion on the role of different intensities of exercise in mitigating these molecular alterations in diabetic heart. In particular, we provide the possible role of exercise on microRNAs, the key molecular regulators of several pathophysiological processes.
Collapse
Affiliation(s)
- Jason Kar Sheng Lew
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand
| | - James T Pearson
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Biomedicine Discovery Institute and Department of Physiology, Monash University, Clayton, Australia
| | - Daryl O Schwenke
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.
| | - Rajesh Katare
- Department of Physiology, HeartOtago, University of Otago, 270, Great King Street, Dunedin, 9010, New Zealand.
| |
Collapse
|
20
|
Kolwicz SC. Lipid partitioning during cardiac stress. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1861:1472-80. [PMID: 27040509 DOI: 10.1016/j.bbalip.2016.03.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/18/2016] [Accepted: 03/18/2016] [Indexed: 01/11/2023]
Abstract
It is well documented that fatty acids serve as the primary fuel substrate for the contracting myocardium. However, extensive research has identified significant changes in the myocardial oxidation of fatty acids during acute or chronic cardiac stress. As a result, the redistribution or partitioning of fatty acids due to metabolic derangements could have biological implications. Fatty acids can be stored as triacylglycerols, serve as critical components for biosynthesis of phospholipid membranes, and form the potent signaling molecules, diacylglycerol and ceramides. Therefore, the contribution of lipid metabolism to health and disease is more intricate than a balance of uptake and oxidation. In this review, the available data regarding alterations that occur in endogenous cardiac lipid pathways during the pathological stressors of ischemia-reperfusion and pathological hypertrophy/heart failure are highlighted. In addition, changes in endogenous lipids observed in exercise training models are presented for comparison. This article is part of a Special Issue entitled: Heart Lipid Metabolism edited by G.D. Lopaschuk.
Collapse
Affiliation(s)
- Stephen C Kolwicz
- Mitochondria and Metabolism Center, University of Washington, School of Medicine, 850 Republican St., Seattle, WA 98109, United States.
| |
Collapse
|
21
|
Liao HE, Shibu MA, Kuo WW, Pai PY, Ho TJ, Kuo CH, Lin JY, Wen SY, Viswanadha VP, Huang CY. Deep sea minerals prolong life span of streptozotocin-induced diabetic rats by compensatory augmentation of the IGF-I-survival signaling and inhibition of apoptosis. ENVIRONMENTAL TOXICOLOGY 2016; 31:769-781. [PMID: 25727812 DOI: 10.1002/tox.22086] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 11/19/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
Consumption of deep sea minerals (DSM), such as magnesium, calcium, and potassium, is known to reduce hypercholesterolemia-induced myocardial hypertrophy and cardiac-apoptosis and provide protection against cardiovascular diseases. Heart diseases develop as a lethal complication among diabetic patients usually due to hyperglycemia-induced cardiac-apoptosis that causes severe cardiac-damages, heart failure, and reduced life expectancy. In this study, we investigated the potential of DSM and its related cardio-protection to increase the life expectancy in diabetic rats. In this study, a heart failure rat model was developed by using streptozotocin (65 mg kg(-1) ) IP injection. Different doses of DSM-1× (37 mg kg(-1) day(-1) ), 2× (74 mg kg(-1) day(-1) ) and 3× (111 mg kg(-1) day(-1) ), were administered to the rats through gavages for 4 weeks. The positive effects of DSM on the survival rate of diabetes rats were determined with respect to the corresponding effects of MgSO4 . Further, to understand the mechanism by which DSM enhances the survival of diabetic rats, their potential to regulate cardiac-apoptosis and control cardiac-dysfunction were examined. Echocardiogram, tissue staining, TUNEL assay, and Western blotting assay were used to investigate modulations in the myocardial contractile function and related signaling protein expression. The results showed that DSM regulate apoptosis and complement the cardiomyocyte proliferation by enhancing survival mechanisms. Moreover DSM significantly reduced the mortality rate and enhanced the survival rate of diabetic rats. Experimental results show that DSM administration can be an effective strategy to improve the life expectancy of diabetic subjects by improving cardiac-cell proliferation and by controlling cardiac-apoptosis and associated cardiac-dysfunction. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 769-781, 2016.
Collapse
Affiliation(s)
- Hung-En Liao
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Marthandam Asokan Shibu
- College of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Pei-Ying Pai
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine Department, China Medical University Beigang Hospital, Taichung, Taiwan
| | - Chia-Hua Kuo
- Department of Sports Sciences, University of Taipei, Taipei, Taiwan
| | - Jing-Ying Lin
- Department of Nursing, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Su-Ying Wen
- Division of Cardiology, China Medical University Hospital, Taichung, Taiwan
| | | | - Chih-Yang Huang
- College of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Biotechnology, Bharathiar University, Coimbatore, India
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
22
|
Chen YF, Shibu MA, Fan MJ, Chen MC, Viswanadha VP, Lin YL, Lai CH, Lin KH, Ho TJ, Kuo WW, Huang CY. Purple rice anthocyanin extract protects cardiac function in STZ-induced diabetes rat hearts by inhibiting cardiac hypertrophy and fibrosis. J Nutr Biochem 2016; 31:98-105. [PMID: 27133428 DOI: 10.1016/j.jnutbio.2015.12.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 12/30/2015] [Accepted: 12/31/2015] [Indexed: 11/29/2022]
Abstract
Diabetes mellitus (DM) often causes chronic inflammation, hypertrophy, apoptosis and fibrosis in the heart and subsequently leads to myocardial remodeling, deteriorated cardiac function and heart failure. Anthocyanins are strong antioxidants that show effective cardioprotective properties. Our aim was to determine whether anthocyanin extracted from purple rice provides protective effects in DM hearts. Five-week-old male Wistar rats were administered with streptozotocin (STZ) to induce type 1 diabetes. Animals were randomly divided into normal group, DM group (induced by 55mg/kg STZ, i.p.) and DM with anthocyanin group (250mg/kg/day, feeding 4 weeks). After treatment, the left ventricular tissues were collected to observe the relevant changes in the heart and the associated molecular events were determined by Western blotting assay. STZ-induced DM increased the proinflammatory signaling proteins in the heart and triggered the development of cardiac hypertrophy and fibrosis. Significant reduction in the heart function index such as left ventricular end-diastolic dimension and left ventricular end-systolic dimension was observed in the STZ-induced DM rat hearts, suggesting myocardial tissue damage and loss of heart function. Treatment with anthocyanin from purple rice extract, however, reduced the effect of DM and showed significant reduction in cardiac hypertrophy and fibrosis. Anthocyanin therefore restores the deteriorating cardiac functions in DM rats as evident from their heart functional parameters.
Collapse
Affiliation(s)
- Yu-Feng Chen
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Section of Cardiology, Yuan Rung Hospital, Yuanlin, Taiwan
| | | | - Ming-Jen Fan
- Department of Biotechnology, Asia University, Taichung, Taiwan
| | - Ming-Cheng Chen
- Division of Colorectal Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | | | - Yi-Lin Lin
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chao-Hung Lai
- Division of Cardiology, Department of Internal Medicine, Armed Force Taichung General Hospital, Taichung, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Jung Ho
- Chinese Medicine Department, China Medical University Beigang Hospital, Taichung, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan; Department of Biotechnology, Asia University, Taichung, Taiwan; Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.
| |
Collapse
|
23
|
Grisé KN, Olver TD, McDonald MW, Dey A, Jiang M, Lacefield JC, Shoemaker JK, Noble EG, Melling CWJ. High Intensity Aerobic Exercise Training Improves Deficits of Cardiovascular Autonomic Function in a Rat Model of Type 1 Diabetes Mellitus with Moderate Hyperglycemia. J Diabetes Res 2016; 2016:8164518. [PMID: 26885531 PMCID: PMC4739461 DOI: 10.1155/2016/8164518] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 12/11/2015] [Accepted: 12/15/2015] [Indexed: 02/07/2023] Open
Abstract
Indices of cardiovascular autonomic neuropathy (CAN) in experimental models of Type 1 diabetes mellitus (T1DM) are often contrary to clinical data. Here, we investigated whether a relatable insulin-treated model of T1DM would induce deficits in cardiovascular (CV) autonomic function more reflective of clinical results and if exercise training could prevent those deficits. Sixty-four rats were divided into four groups: sedentary control (C), sedentary T1DM (D), control exercise (CX), or T1DM exercise (DX). Diabetes was induced via multiple low-dose injections of streptozotocin and blood glucose was maintained at moderate hyperglycemia (9-17 mM) through insulin supplementation. Exercise training consisted of daily treadmill running for 10 weeks. Compared to C, D had blunted baroreflex sensitivity, increased vascular sympathetic tone, increased serum neuropeptide Y (NPY), and decreased intrinsic heart rate. In contrast, DX differed from D in all measures of CAN (except NPY), including heart rate variability. These findings demonstrate that this T1DM model elicits deficits and exercise-mediated improvements to CV autonomic function which are reflective of clinical T1DM.
Collapse
Affiliation(s)
- Kenneth N. Grisé
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
| | - T. Dylan Olver
- Neurovascular Research Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
| | - Matthew W. McDonald
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
| | - Adwitia Dey
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
| | - Mao Jiang
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
| | - James C. Lacefield
- Department of Electrical and Computer Engineering, Department of Medical Biophysics and Robarts Research Institute, Western University, London, ON, Canada N6A 3K7
| | - J. Kevin Shoemaker
- Neurovascular Research Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
- Department of Physiology and Pharmacology, Western University, London, ON, Canada N6A 3K7
- Lawson Health Research Institute, London, ON, Canada N6C 2R5
| | - Earl G. Noble
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
- Lawson Health Research Institute, London, ON, Canada N6C 2R5
| | - C. W. James Melling
- Exercise Biochemistry Laboratory, School of Kinesiology, Faculty of Health Sciences, Western University, London, ON, Canada N6A 3K7
- *C. W. James Melling:
| |
Collapse
|
24
|
Hafstad AD, Boardman N, Aasum E. How exercise may amend metabolic disturbances in diabetic cardiomyopathy. Antioxid Redox Signal 2015; 22:1587-605. [PMID: 25738326 PMCID: PMC4449627 DOI: 10.1089/ars.2015.6304] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Over-nutrition and sedentary lifestyle has led to a worldwide increase in obesity, insulin resistance, and type 2 diabetes (T2D) associated with an increased risk of development of cardiovascular disorders. Diabetic cardiomyopathy, independent of hypertension or coronary disease, is induced by a range of systemic changes and may through multiple processes result in functional and structural cardiac derangements. The pathogenesis of this cardiomyopathy is complex and multifactorial, and it will eventually lead to reduced cardiac working capacity and increased susceptibility to ischemic injury. RECENT ADVANCES Metabolic disturbances such as altered lipid handling and substrate utilization, decreased mechanical efficiency, mitochondrial dysfunction, disturbances in nonoxidative glucose pathways, and increased oxidative stress are hallmarks of diabetic cardiomyopathy. Interestingly, several of these disturbances are found to precede the development of cardiac dysfunction. CRITICAL ISSUES Exercise training is effective in the prevention and treatment of obesity and T2D. In addition to its beneficial influence on diabetes/obesity-related systemic changes, it may also amend many of the metabolic disturbances characterizing the diabetic myocardium. These changes are due to both indirect effects, exercise-mediated systemic changes, and direct effects originating from the high contractile activity of the heart during physical training. FUTURE DIRECTIONS Revealing the molecular mechanisms behind the beneficial effects of exercise training is of considerable scientific value to generate evidence-based therapy and in the development of new treatment strategies.
Collapse
Affiliation(s)
- Anne D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Neoma Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Ellen Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
25
|
Lu K, Wang L, Wang C, Yang Y, Hu D, Ding R. Effects of high-intensity interval versus continuous moderate-intensity aerobic exercise on apoptosis, oxidative stress and metabolism of the infarcted myocardium in a rat model. Mol Med Rep 2015; 12:2374-82. [PMID: 25936391 DOI: 10.3892/mmr.2015.3669] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 03/10/2015] [Indexed: 11/06/2022] Open
Abstract
The optimal aerobic exercise training (AET) protocol for patients following myocardial infarction (MI) has remained under debate. The present study therefore aimed to compare the effects of continuous moderate-intensity training (CMT) and high-intensity interval training (HIT) on cardiac functional recovery, and to investigate the potential associated mechanisms in a post-MI rat model. Female Sprague Dawley rats (8-10 weeks old) undergoing MI or sham surgery were subsequently submitted to CMT or HIT, or kept sedentary for eight weeks. Prior to and following AET, echocardiographic parameters and exercise capacity of the rats were measured. Western blotting was used to evaluate the levels of apoptosis and associated signaling pathway protein expression. The concentrations of biomarkers of oxidative stress were also determined by ELISA assay. Messenger (m)RNA levels and activity of the key enzymes for glycolysis and fatty acid oxidation, as well as the rate of adenosine triphosphate (ATP) synthesis, were also measured. Compared with the MI group, exercise capacity and cardiac function were significantly improved following AET, particularly following HIT. Left ventricular ejection fraction and fraction shortening were further improved in the MI-HIT group in comparison to that of the MI-CMT group. The two forms of AET almost equally attenuated apoptosis of the post-infarction myocardium. CMT and HIT also alleviated oxidative stress by decreasing the concentration of malondialdehyde and increasing the concentration of superoxide dismutase and glutathione peroxidase (GPx). In particular, HIT induced a greater increase in the concentration of GPx than that of CMT. AET, and HIT in particular, significantly increased the levels of mRNA and the maximal activity of phosphofructokinase-1 and carnitine palmitoyl transferase-1, as well as the maximal ratio of ATP synthesis. In addition, compared with the MI group, the expression of signaling proteins PI3K, Akt, p38mapk and AMPK was significantly altered in the MI-CMT and MI-HIT groups. HIT was superior to CMT in its ability to improve cardiac function and exercise capability in a post-MI rat model. HIT was also superior to CMT with regard to attenuating oxidative stress and improving glucolipid metabolism of the post-MI myocardium.
Collapse
Affiliation(s)
- Kai Lu
- Heart Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Li Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Changying Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Yuan Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R. China
| | - Dayi Hu
- Heart Center, Peking University People's Hospital, Beijing 100044, P.R. China
| | - Rongjing Ding
- Heart Center, Peking University People's Hospital, Beijing 100044, P.R. China
| |
Collapse
|
26
|
Kesherwani V, Chavali V, Hackfort BT, Tyagi SC, Mishra PK. Exercise ameliorates high fat diet induced cardiac dysfunction by increasing interleukin 10. Front Physiol 2015; 6:124. [PMID: 25954207 PMCID: PMC4406063 DOI: 10.3389/fphys.2015.00124] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/06/2015] [Indexed: 12/21/2022] Open
Abstract
Increasing evidence suggests that a sedentary lifestyle and a high fat diet (HFD) leads to cardiomyopathy. Moderate exercise ameliorates cardiac dysfunction, however underlying molecular mechanisms are poorly understood. Increased inflammation due to induction of pro-inflammatory cytokine such as tumor necrosis factor-alpha (TNF-α) and attenuation of anti-inflammatory cytokine such as interleukin 10 (IL-10) contributes to cardiac dysfunction in obese and diabetics. We hypothesized that exercise training ameliorates HFD- induced cardiac dysfunction by mitigating obesity and inflammation through upregulation of IL-10 and downregulation of TNF-α. To test this hypothesis, 8 week old, female C57BL/6J mice were fed with HFD and exercised (swimming 1 h/day for 5 days/week for 8 weeks). The four treatment groups: normal diet (ND), HFD, HFD + exercise (HFD + Ex) and ND + Ex were analyzed for mean body weight, blood glucose level, TNF-α, IL-10, cardiac fibrosis by Masson Trichrome, and cardiac dysfunction by echocardiography. Mean body weights were increased in HFD but comparatively less in HFD + Ex. The level of TNF-α was elevated and IL-10 was downregulated in HFD but ameliorated in HFD + Ex. Cardiac fibrosis increased in HFD and was attenuated by exercise in the HFD + Ex group. The percentage ejection fraction and fractional shortening were decreased in HFD but comparatively increased in HFD + Ex. There was no difference between ND and ND + Ex for the above parameters except an increase in IL-10 level following exercise. Based on these results, we conclude that exercise mitigates HFD- induced cardiomyopathy by decreasing obesity, inducing IL-10, and reducing TNF-α in mice.
Collapse
Affiliation(s)
- Varun Kesherwani
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | - Vishalakshi Chavali
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | - Bryan T Hackfort
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | - Suresh C Tyagi
- Department of Physiology and Biophysics, University of Louisville Louisville, KY, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA ; Department of Anesthesiology, University of Nebraska Medical Center Omaha, NE, USA
| |
Collapse
|
27
|
Johnson EJ, Dieter BP, Marsh SA. Evidence for distinct effects of exercise in different cardiac hypertrophic disorders. Life Sci 2015; 123:100-6. [PMID: 25632833 PMCID: PMC4339313 DOI: 10.1016/j.lfs.2015.01.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/05/2014] [Accepted: 01/02/2015] [Indexed: 02/08/2023]
Abstract
Aerobic exercise training (AET) attenuates or reverses pathological cardiac remodeling after insults such as chronic hypertension and myocardial infarction. The phenotype of the pathologically hypertrophied heart depends on the insult; therefore, it is likely that distinct types of pathological hypertrophy require different exercise regimens. However, the mechanisms by which AET improves the structure and function of the pathologically hypertrophied heart are not well understood, and exercise research uses highly inconsistent exercise regimens in diverse patient populations. There is a clear need for systematic research to identify precise exercise prescriptions for different conditions of pathological hypertrophy. Therefore, this review synthesizes existing evidence for the distinct mechanisms by which AET benefits the heart in different pathological hypertrophy conditions, suggests strategic exercise prescriptions for these conditions, and highlights areas for future research.
Collapse
Affiliation(s)
- Emily J Johnson
- Graduate Program in Pharmaceutical Sciences, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Brad P Dieter
- Graduate Program in Movement Sciences, College of Education, University of Idaho, Moscow, ID, USA; Section of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA
| | - Susan A Marsh
- Section of Experimental and Systems Pharmacology, College of Pharmacy, Washington State University, Spokane, WA, USA.
| |
Collapse
|
28
|
Lund J, Hafstad AD, Boardman NT, Rossvoll L, Rolim NP, Ahmed MS, Florholmen G, Attramadal H, Wisløff U, Larsen TS, Aasum E. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice. Am J Physiol Heart Circ Physiol 2015; 308:H823-9. [PMID: 25637547 DOI: 10.1152/ajpheart.00734.2014] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/28/2015] [Indexed: 11/22/2022]
Abstract
Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress.
Collapse
Affiliation(s)
- J Lund
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway;
| | - A D Hafstad
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - N T Boardman
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - L Rossvoll
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - N P Rolim
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology and Saint Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; and
| | - M S Ahmed
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - G Florholmen
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - H Attramadal
- Institute for Surgical Research, Department of Cardiology, Center for Heart Failure Research, Oslo University Hospital-Rikshospitalet, University of Oslo, Oslo, Norway
| | - U Wisløff
- K. G. Jebsen Center of Exercise in Medicine, Department of Circulation and Medical Imaging, Faculty of Medicine, Norwegian University of Science and Technology and Saint Olavs Hospital, Trondheim University Hospital, Trondheim, Norway; and
| | - T S Larsen
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| | - E Aasum
- Cardiovascular Research Group, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
29
|
Gimenes C, Gimenes R, Rosa CM, Xavier NP, Campos DHS, Fernandes AAH, Cezar MDM, Guirado GN, Cicogna AC, Takamoto AHR, Okoshi MP, Okoshi K. Low Intensity Physical Exercise Attenuates Cardiac Remodeling and Myocardial Oxidative Stress and Dysfunction in Diabetic Rats. J Diabetes Res 2015; 2015:457848. [PMID: 26509175 PMCID: PMC4609864 DOI: 10.1155/2015/457848] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/04/2015] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED We evaluated the effects of a low intensity aerobic exercise protocol on cardiac remodeling and myocardial function in diabetic rats. Wistar rats were assigned into four groups: sedentary control (C-Sed), exercised control (C-Ex), sedentary diabetes (DM-Sed), and exercised diabetes (DM-Ex). Diabetes was induced by intraperitoneal injection of streptozotocin. Rats exercised for 9 weeks in treadmill at 11 m/min, 18 min/day. Myocardial function was evaluated in left ventricular (LV) papillary muscles and oxidative stress in LV tissue. Statistical analysis was given by ANOVA or Kruskal-Wallis. Echocardiogram showed diabetic groups with higher LV diastolic diameter-to-body weight ratio and lower posterior wall shortening velocity than controls. Left atrium diameter was lower in DM-Ex than DM-Sed (C-Sed: 5.73 ± 0.49; C-Ex: 5.67 ± 0.53; DM-Sed: 6.41 ± 0.54; DM-Ex: 5.81 ± 0.50 mm; P < 0.05 DM-Sed vs C-Sed and DM-Ex). Papillary muscle function was depressed in DM-Sed compared to C-Sed. Exercise attenuated this change in DM-Ex. Lipid hydroperoxide concentration was higher in DM-Sed than C-Sed and DM-Ex. Catalase and superoxide dismutase activities were lower in diabetics than controls and higher in DM-Ex than DM-Sed. Glutathione peroxidase activity was lower in DM-Sed than C-Sed and DM-Ex. CONCLUSION Low intensity exercise attenuates left atrium dilation and myocardial oxidative stress and dysfunction in type 1 diabetic rats.
Collapse
Affiliation(s)
- C. Gimenes
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
- Sagrado Coração University, Bauru, SP, Brazil
| | - R. Gimenes
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - C. M. Rosa
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - N. P. Xavier
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - D. H. S. Campos
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - A. A. H. Fernandes
- Department of Chemistry and Biochemistry, Institute of Biosciences, São Paulo State University (UNESP), Brazil
| | - M. D. M. Cezar
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - G. N. Guirado
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - A. C. Cicogna
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - A. H. R. Takamoto
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - M. P. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
| | - K. Okoshi
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (UNESP), S/N, Rubião Junior District, 18618 970 Botucatu, SP, Brazil
- *K. Okoshi:
| |
Collapse
|
30
|
Monleon D, Garcia-Valles R, Morales JM, Brioche T, Olaso-Gonzalez G, Lopez-Grueso R, Gomez-Cabrera MC, Viña J. Metabolomic analysis of long-term spontaneous exercise in mice suggests increased lipolysis and altered glucose metabolism when animals are at rest. J Appl Physiol (1985) 2014; 117:1110-9. [PMID: 25190738 DOI: 10.1152/japplphysiol.00585.2014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Exercise has been associated with several beneficial effects and is one of the major modulators of metabolism. The working muscle produces and releases substances during exercise that mediate the adaptation of the muscle but also improve the metabolic flexibility of the complete organism, leading to adjustable substrate utilization. Metabolomic studies on physical exercise are scarce and most of them have been focused on the effects of intense exercise in professional sportsmen. The aim of our study was to determine plasma metabolomic adaptations in mice after a long-term spontaneous exercise intervention study (18 mo). The metabolic changes induced by long-term spontaneous exercise were sufficient to achieve complete discrimination between groups in the principal component analysis scores plot. We identified plasma indicators of an increase in lipolysis (elevated unsaturated fatty acids and glycerol), a decrease in glucose and insulin plasma levels and in heart glucose consumption (by PET), and altered glucose metabolism (decreased alanine and lactate) in the wheel running group. Collectively these data are compatible with an increase in skeletal muscle insulin sensitivity in the active mice. We also found an increase in amino acids involved in catecholamine synthesis (tyrosine and phenylalanine), in the skeletal muscle pool of creatine phosphate and taurine, and changes in phospholipid metabolism (phosphocholine and choline in lipids) between the sedentary and the active mice. In conclusion, long-term spontaneous wheel running induces significant plasma and tissue (heart) metabolic responses that remain even when the animal is at rest.
Collapse
Affiliation(s)
- Daniel Monleon
- Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | | | - Jose Manuel Morales
- Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Thomas Brioche
- Laboratory "Movement Sport and Health Sciences," University Rennes, France; and
| | | | - Raul Lopez-Grueso
- Sports Research Centre, Miguel Hernandez University of Elche, Elche, Spain
| | | | - Jose Viña
- Department of Physiology, University of Valencia, Valencia, Spain;
| |
Collapse
|
31
|
Asrar Ul Haq M, Wong C, Levinger I, Srivastava PM, Sbaraglia M, Toia D, Jerums G, Selig S, Hare DL. Effect of exercise training on left ventricular remodeling in diabetic patients with diastolic dysfunction: rationale and design. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2014; 8:23-8. [PMID: 24653649 PMCID: PMC3956808 DOI: 10.4137/cmc.s14089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 01/27/2014] [Accepted: 01/28/2014] [Indexed: 01/14/2023]
Abstract
INTRODUCTION This study will examine the effects of combined aerobic and resistance training on left ventricular remodeling in diabetic patients with diastolic dysfunction. This is the first randomized controlled trial to look for effects of combined strength training and aerobic exercise on myocardial function as well as other clinical, functional, or psychological parameters in diabetic patients with isolated diastolic dysfunction, and will provide important insights into the potential management strategies for heart failure with preserved ejection fraction. METHODS AND ANALYSIS This is a prospective, randomized controlled investigator initiated single center trial. Diabetic patients with LV diastolic dysfunction suitable for exercise training intervention will be randomized to three months of a supervised combination of aerobic and strength training exercises, or supervised light stretching (control arm). Pre and post intervention assessment will include stress echocardiography, peak aerobic power with 12-lead ECG, dual-energy X-ray absorptiometry, muscle strength, the capacity to perform activities of daily living (ADLs), and questionnaires to assess self-perceived quality of life and symptoms of depression. The primary endpoint is to compare any change in tissue Doppler-derived LV systolic and early diastolic velocities. ETHICS AND DISSEMINATION The current trial protocol has been approved by the Human Research Ethics Committee of Austin Health and the University of Melbourne, Melbourne. The study will be performed in accordance with the Declaration of Helsinki. The investigator, regardless of the outcome, will publish the results of the study. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry: ACTRN12610000943044.
Collapse
Affiliation(s)
- Muhammad Asrar Ul Haq
- Department of Cardiology, The Northern Hospital, Melbourne, Australia. ; Austin Health, Melbourne, Australia. ; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Chiew Wong
- Department of Cardiology, The Northern Hospital, Melbourne, Australia. ; Department of Medicine, University of Melbourne, Melbourne, Australia. ; Western Health, Melbourne, Australia
| | - Itamar Levinger
- Institute for Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Piyush M Srivastava
- Austin Health, Melbourne, Australia. ; Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Melissa Sbaraglia
- Institute for Sport, Exercise and Active Living (ISEAL), College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | | | - George Jerums
- Austin Health, Melbourne, Australia. ; Department of Medicine, University of Melbourne, Melbourne, Australia
| | | | - David L Hare
- Austin Health, Melbourne, Australia. ; Department of Medicine, University of Melbourne, Melbourne, Australia
| |
Collapse
|
32
|
Cox EJ, Marsh SA. Exercise and diabetes have opposite effects on the assembly and O-GlcNAc modification of the mSin3A/HDAC1/2 complex in the heart. Cardiovasc Diabetol 2013; 12:101. [PMID: 23835259 PMCID: PMC3708830 DOI: 10.1186/1475-2840-12-101] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 06/30/2013] [Indexed: 01/08/2023] Open
Abstract
Background Exercise causes physiological cardiac hypertrophy and benefits the diabetic heart. Mammalian switch-independent 3A (mSin3A) and histone deacetylases (HDACs) 1 and 2 regulate hypertrophic genes through associations with the DNA binding proteins repressor element-1 silencing transcription factor (REST) and O-linked β-N-acetylglucosamine transferase (OGT). O-linked β-N-acetylglucosamine (O-GlcNAc) is a glucose derivative that is chronically elevated in diabetic hearts, and a previous study showed that exercise reduces cardiac O-GlcNAc. We hypothesized that O-GlcNAc and OGT would physically associate with mSin3A/HDAC1/2 in the heart, and that this interaction would be altered by diabetes and exercise. Methods 8-week-old type 2 diabetic db/db (db) and non-diabetic C57 mice were randomized to treadmill exercise or sedentary groups for 1 or 4 weeks. Results O-GlcNAc was significantly higher in db hearts and increased with exercise. Db hearts showed lower levels of mSin3A, HDAC1, and HDAC2 protein, but higher levels of HDAC2 mRNA and HDAC1/2 deacetylase activity. Elevated HDAC activity was associated with significantly blunted expression of α-actin and brain natriuretic peptide in db hearts. In sedentary db hearts, co-immunoprecipitation assays showed that mSin3A and OGT were less associated with HDAC1 and HDAC2, respectively, compared to sedentary C57 controls; however, exercise removed these differences. Conclusions These data indicate that diabetes and exercise oppositely affect interactions between pro-hypertrophic transcription factors, and suggest that an increase in total cardiac O-GlcNAc is a mechanism by which exercise benefits type 2 diabetic hearts.
Collapse
|
33
|
Stehno-Bittel L. Organ-based response to exercise in type 1 diabetes. ISRN ENDOCRINOLOGY 2012; 2012:318194. [PMID: 23251813 PMCID: PMC3518066 DOI: 10.5402/2012/318194] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 11/14/2012] [Indexed: 12/16/2022]
Abstract
While significant research has clearly identified sedentary behavior as a risk factor for type 2 diabetes and its subsequent complications, the concept that inactivity could be linked to the complications associated with type 1 diabetes (T1D) remains underappreciated. This paper summarizes the known effects of exercise on T1D at the tissue level and focuses on the pancreas, bone, the cardiovascular system, the kidneys, skeletal muscle, and nerves. When possible, the molecular mechanisms underlying the benefits of exercise for T1D are elucidated. The general benefits of increased activity on health and the barriers to increased exercise specific to people with T1D are discussed.
Collapse
Affiliation(s)
- Lisa Stehno-Bittel
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
34
|
Bennett CE, Johnsen VL, Shearer J, Belke DD. Exercise training mitigates aberrant cardiac protein O-GlcNAcylation in streptozotocin-induced diabetic mice. Life Sci 2012; 92:657-63. [PMID: 23000101 DOI: 10.1016/j.lfs.2012.09.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 08/23/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
Abstract
AIMS Increased protein O-GlcNAcylation occurs in response to increased availability of glucose and fatty acids and is a hallmark of diabetes. Previous studies have demonstrated an improvement in heart function associated with decreased protein O-GlcNAcylation. Our group has recently demonstrated a capacity for exercise to decrease protein O-GlcNAcylation in the heart of normal mice; however, the impact of such training under diabetic conditions has not been examined. MAIN METHODS Diabetes was induced in mice through injection of streptozotocin. Animals either remained sedentary or were subjected to 6 weeks of swim training protocol. At the end of 6 weeks in vivo cardiac function was assessed and the hearts were harvested for gene expression and Western blotting in relation to O-GlcNAcylation KEY FINDINGS Diabetes resulted in elevated blood glucose relative to non-diabetic mice. Relative to the sedentary diabetic group, the rate of relaxation (Tau) was significantly improved in the exercised group. Western blot analysis revealed an increase in protein O-GlcNAcylation in the diabetic group which was reversed through exercise despite persistent hyperglycemia. No change in the expression of O-GlcNAc transferase (OGT) was noted between sedentary and exercised diabetic mice; however an increase in the expression and activity of O-GlcNAcase (OGA) was apparent in the exercised group. SIGNIFICANCE This study demonstrates the potential for exercise training to decrease intracellular protein O-GlcNAcylation in the heart even under conditions of persistent hyperglycemia associated with diabetes. Our results suggest the beneficial effects of regular aerobic exercise extend beyond simple regulation of blood glucose levels.
Collapse
Affiliation(s)
- Catherine E Bennett
- Faculty of Kinesiology, University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4
| | | | | | | |
Collapse
|
35
|
Lee Y, Kim JH, Hong Y, Lee SR, Chang KT, Hong Y. Prophylactic effects of swimming exercise on autophagy-induced muscle atrophy in diabetic rats. Lab Anim Res 2012; 28:171-9. [PMID: 23091517 PMCID: PMC3469845 DOI: 10.5625/lar.2012.28.3.171] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/01/2012] [Accepted: 09/08/2012] [Indexed: 11/30/2022] Open
Abstract
Diabetes decreases skeletal muscle mass and induces atrophy. However, the mechanisms by which hyperglycemia and insulin deficiency modify muscle mass are not well defined. In this study, we evaluated the effects of swimming exercise on muscle mass and intracellular protein degradation in diabetic rats, and proposed that autophagy inhibition induced by swimming exercise serves as a hypercatabolic mechanism in the skeletal muscles of diabetic rats, supporting a notion that swimming exercise could efficiently reverse the reduced skeletal muscle mass caused by diabetes. Adult male Sprague-Dawley rats were injected intraperitoneally with streptozotocin (60 mg/kg body weight) to induce diabetes and then submitted to 1 hr per day of forced swimming exercise, 5 days per week for 4 weeks. We conducted an intraperitoneal glucose tolerance test on the animals and measured body weight, skeletal muscle mass, and protein degradation and examined the level of autophagy in the isolated extensor digitorum longus, plantaris, and soleus muscles. Body weight and muscle tissue mass were higher in the exercising diabetic rats than in control diabetic rats that remained sedentary. Compared to control rats, exercising diabetic rats had lower blood glucose levels, increased intracellular contractile protein expression, and decreased autophagic protein expression. We conclude that swimming exercise improves muscle mass in diabetes-induced skeletal muscle atrophy, suggesting the activation of autophagy in diabetes contributes to muscle atrophy through hypercatabolic metabolism and that aerobic exercise, by suppressing autophagy, may modify or reverse skeletal muscle wasting in diabetic patients.
Collapse
Affiliation(s)
- Youngjeon Lee
- Department of Rehabilitation Science in Interdisciplinary PhD Program, Inje University, Gimhae, Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Joo-Heon Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju, Korea
| | - Yunkyung Hong
- Department of Rehabilitation Science in Interdisciplinary PhD Program, Inje University, Gimhae, Korea
| | - Sang-Rae Lee
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Kyu-Tae Chang
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
| | - Yonggeun Hong
- Department of Rehabilitation Science in Interdisciplinary PhD Program, Inje University, Gimhae, Korea
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Ochang, Korea
- Cardiovascular & Metabolic Disease Center, College of Biomedical Science & Engineering, Inje University, Gimhae, Korea
| |
Collapse
|
36
|
Loganathan R, Novikova L, Boulatnikov IG, Smirnova IV. Exercise-induced cardiac performance in autoimmune (type 1) diabetes is associated with a decrease in myocardial diacylglycerol. J Appl Physiol (1985) 2012; 113:817-26. [PMID: 22797313 DOI: 10.1152/japplphysiol.01626.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
One of the fundamental biochemical defects underlying the complications of diabetic cardiovascular system is elevation of diacylglycerol (DAG) and its effects on protein kinase C (PKC) signaling. It has been noted that exercise training attenuates poor cardiac performance in Type 1 diabetes. However, the role of PKC signaling in exercise-induced alleviation of cardiac abnormalities in diabetes is not clear. We investigated the possibility that exercise training modulates PKC-βII signaling to elicit its beneficial effects on the diabetic heart. bio-breeding diabetic resistant rats, a model reminiscent of Type 1 diabetes in humans, were randomly assigned to four groups: 1) nonexercised nondiabetic (NN); 2) nonexercised diabetic (ND); 3) exercised nondiabetic; and 4) exercised diabetic. Treadmill training was initiated upon the onset of diabetes. At the end of 8 wk, left ventricular (LV) hemodynamic assessment revealed compromised function in ND compared with the NN group. LV myocardial histology revealed increased collagen deposition in ND compared with the NN group, while electron microscopy showed a reduction in the viable mitochondrial fraction. Although the PKC-βII levels and activity were unchanged in the diabetic heart, the DAG levels were increased. With exercise training, the deterioration of LV structure and function in diabetes was attenuated. Notably, improved cardiac performance in training was associated with a decrease in myocardial DAG levels in diabetes. Exercise-induced benefits on cardiac performance in diabetes may be mediated by prevention of an increase in myocardial DAG levels.
Collapse
Affiliation(s)
- Rajprasad Loganathan
- Department of Physical Therapy and Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas 66160-7601, USA
| | | | | | | |
Collapse
|
37
|
Le Douairon Lahaye S, Gratas-Delamarche A, Malardé L, Zguira S, Vincent S, Lemoine Morel S, Carré F, Rannou Bekono F. Combined insulin treatment and intense exercise training improved basal cardiac function and Ca2+-cycling proteins expression in type 1 diabetic rats. Appl Physiol Nutr Metab 2012; 37:53-62. [DOI: 10.1139/h11-127] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study investigated the effects of 8 weeks of intense exercise training combined with insulin treatment on the Ca2+-cycling protein complex expression and their functional consequences on cardiac function in type 1 diabetic rat hearts. Diabetic Wistar rats were randomly assigned into the following groups: received no treatment, insulin-treated diabetic, trained diabetic, and trained insulin-treated diabetic. A control group was also included. Insulin treatment and (or) treadmill intense exercise training were conducted over 8 weeks. Basal cardiac function was evaluated by Langendorff technique. Cardiac expression of the main Ca2+-cycling proteins (RyR2, FKBP 12.6, SERCA2, PLB, NCX1) was assessed by Western blot. Diabetes altered basal cardiac function (±dP/dt) and decrease the expression of the main Ca2+-cycling proteins expression: RyR2, SERCA2, and NCX1 (p < 0.05). Whereas combined treatment was not able to normalize –dP/dt, it succeeded to normalize +dP/dt of diabetic rats (p < 0.05). Moreover, both insulin and intense exercise training, applied solely, increased the expression of the Ca2+-cycling proteins: RyR2, SERCA2, PLB. and NCX1 (p < 0.05). But this effect was higher when the 2 treatments were combined. These data are the first to show that combined insulin treatment and intense exercise training during diabetes synergistically act on the expression of the main Ca2+-cycling proteins, providing insights into mechanisms by which the dual treatment during diabetes improves cardiac function.
Collapse
Affiliation(s)
- Solène Le Douairon Lahaye
- Laboratory Movement and health Sciences, UFR APS, University of Rennes 2 Avenue Charles Tillon, 35044 Rennes cedex, France
| | - Arlette Gratas-Delamarche
- Laboratory Movement and health Sciences, UFR APS, University of Rennes 2 Avenue Charles Tillon, 35044 Rennes cedex, France
| | - Ludivine Malardé
- Laboratory Movement and health Sciences, UFR APS, University of Rennes 2 Avenue Charles Tillon, 35044 Rennes cedex, France
| | - Sami Zguira
- Laboratory Movement and health Sciences, UFR APS, University of Rennes 2 Avenue Charles Tillon, 35044 Rennes cedex, France
| | - Sophie Vincent
- Laboratory Movement and health Sciences, UFR APS, University of Rennes 2 Avenue Charles Tillon, 35044 Rennes cedex, France
| | - Sophie Lemoine Morel
- Laboratory Movement and health Sciences, UFR APS, University of Rennes 2 Avenue Charles Tillon, 35044 Rennes cedex, France
| | - François Carré
- INSERM, U642; University of Rennes 1, LTSI; INSERM – CIC-IT 804; CHU Rennes, Department of Biology and Sports Medicine service of functional explorations, Rennes, France
| | - Françoise Rannou Bekono
- Laboratory Movement and health Sciences, UFR APS, University of Rennes 2 Avenue Charles Tillon, 35044 Rennes cedex, France
| |
Collapse
|
38
|
Hafstad AD, Boardman NT, Lund J, Hagve M, Khalid AM, Wisløff U, Larsen TS, Aasum E. High intensity interval training alters substrate utilization and reduces oxygen consumption in the heart. J Appl Physiol (1985) 2011; 111:1235-41. [PMID: 21836050 DOI: 10.1152/japplphysiol.00594.2011] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
AIMS although exercise training induces hypertrophy with improved contractile function, the effect of exercise on myocardial substrate metabolism and cardiac efficiency is less clear. High intensity training has been shown to produce more profound effects on cardiovascular function and aerobic capacity than isocaloric low and moderate intensity training. The aim of the present study was to explore metabolic and mechanoenergetic changes in the heart following endurance exercise training of both high and moderate intensity. METHODS AND RESULTS C57BL/6J mice were subjected to 10 wk treadmill running, either high intensity interval training (HIT) or distance-matched moderate intensity training (MIT), where HIT led to a pronounced increase in maximal oxygen uptake. Although both modes of exercise were associated with a 10% increase in heart weight-to-body weight ratio, only HIT altered cardiac substrate utilization, as revealed by a 36% increase in glucose oxidation and a concomitant reduction in fatty acid oxidation. HIT also improved cardiac efficiency by decreasing work-independent myocardial oxygen consumption. In addition, it increased cardiac maximal mitochondrial respiratory capacity. CONCLUSION This study shows that high intensity training is required for induction of changes in cardiac substrate utilization and energetics, which may contribute to the superior effects of high compared with moderate intensity training in terms of increasing aerobic capacity.
Collapse
Affiliation(s)
- A D Hafstad
- Cardiovascular Research Group, Institute of Medical Biology, Faculty of Health Sciences, Univ. of Tromsø, N-9037 Tromsø, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Duclos M, Virally ML, Dejager S. Exercise in the management of type 2 diabetes mellitus: what are the benefits and how does it work? PHYSICIAN SPORTSMED 2011; 39:98-106. [PMID: 21673489 DOI: 10.3810/psm.2011.05.1899] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
In this article, we examine the results from meta-analyses of studies that have focused on the effects of supervised exercise in patients with established type 2 diabetes mellitus. Exercise has been clearly demonstrated to have benefits on blood glucose control (average reduction of glycated hemoglobin, 0.6%) and cardiovascular risk factors. These benefits are observed independently of any change in body mass index and fat mass, and are also seen in older populations. Multiple mechanisms are involved, and the improved insulin-sensitizing effect of exercise training is not restricted to muscle but extends to hepatic and adipose tissue. However, while the benefits of exercise in type 2 diabetes management are undisputable, it is not as easy to draw correlations between clinical benefit and the amount of physical activity included in daily life. Recent studies have shown encouraging results with moderate increases in physical activity, which are feasible for most patients and are sufficient to induce sustained positive changes for 2 years. Thus, the benefits of structured and supervised exercise in patients with type 2 diabetes have been consistently demonstrated. Currently, the primary challenge is to determine how long-term increased physical activity can be durably implemented in a patient's daily life.
Collapse
Affiliation(s)
- Martine Duclos
- Department of Sports Medicine and Functional Explorations, University-Hospital, Hopital Gabriel Montpied, Clermont-Ferrand, France
| | | | | |
Collapse
|
40
|
Lahaye SLD, Gratas-Delamarche A, Malardé L, Vincent S, Zguira MS, Morel SL, Delamarche P, Zouhal H, Carré F, Bekono FR. Intense exercise training induces adaptation in expression and responsiveness of cardiac β-adrenoceptors in diabetic rats. Cardiovasc Diabetol 2010; 9:72. [PMID: 21054861 PMCID: PMC2992048 DOI: 10.1186/1475-2840-9-72] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Accepted: 11/05/2010] [Indexed: 12/03/2022] Open
Abstract
Background Informations about the effects of intense exercise training on diabetes-induced myocardial dysfunctions are lacking. We have examined the effects of intense exercise training on the cardiac function of diabetic rats, especially focusing on the Langendorff β-adrenergic responsiveness and on the β-adrenoceptors protein expression. Methods Control or Streptozotocin induced-diabetic male Wistar rats were randomly assigned to sedentary or trained groups. The training program consisted of 8 weeks running on a treadmill (10° incline, up to 25 m/min, 60 min/day) and was considered to be intense for diabetic rats. Results This intense exercise training amplified the in vivo diabetes-induced bradycardia. It had no effect on Langendorff basal cardiac contraction and relaxation performances in control and diabetic rats. In diabetic rats, it accentuated the Langendorff reduced responsiveness to β-adrenergic stimulation. It did not blunt the diabetes-induced decrease of β1-adrenoceptors protein expression, displayed a significant decrease in the β2-adrenoceptors protein expression and normalized the β3-adrenoceptors protein expression. Conclusions Intense exercise training accentuated the decrease in the myocardial responsiveness to β-adrenergic stimulation induced by diabetes. This defect stems principally from the β2-adrenoceptors protein expression reduction. Thus, these results demonstrate that intense exercise training induces specific effects on the β-adrenergic system in diabetes.
Collapse
|
41
|
Le Douairon Lahaye S, Rebillard A, Zguira MS, Malardé L, Saïag B, Gratas-Delamarche A, Carré F, Bekono FR. Effects of exercise training combined with insulin treatment on cardiac NOS1 signaling pathways in type 1 diabetic rats. Mol Cell Biochem 2010; 347:53-62. [PMID: 20936328 DOI: 10.1007/s11010-010-0611-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/28/2010] [Indexed: 10/19/2022]
Abstract
This study examined the effects of a dual treatment combining insulin treatment and exercise training on basal cardiac function and signaling pathways involving β3-AR, NOS1, and RyR2 in type 1 diabetic rats. Male Wistar rats were assigned into a diabetic group receiving no treatment (D), an insulin-treated diabetic (Ins), a trained diabetic (TD), and a trained insulin-treated diabetic (TIns) group. Control group (C) was included in order to confirm the deleterious effects of diabetes. Insulin treatment and/or treadmill exercise training were conducted for 8 weeks. Basal cardiac function was evaluated by Langendorff technique. Cardiac protein expression of β3-AR, NOS1, and RyR2 was assessed using Western blots. Diabetes induced a decrease of both basal diastolic and systolic (±dP/dt) cardiac function (P < 0.05). Moreover, diabetes was associated with an increase of β3-AR and NOS1 and a decrease of RyR2 expression (P < 0.05). Although combined treatment was not able to normalize -dP/dt, it succeeded to normalize +dP/dt of diabetic rats. Combined treatment led to an overexpression of RyR2. Effects of this combined treatment on +dP/dt and RyR2 were greater than the effects of insulin and exercise training, applied solely. Treatments, applied solely or in combination, resulted in a complete normalization of β3-AR and in a down-regulation of NOS1 because this protein expression in all treated diabetic rats became lower than control values (P < 0.01). Our study shows that unlike single treatments, dual treatment combining insulin treatment and exercise training was able to normalize basal systolic function of diabetic rats by a specific regulation of β3-AR-NOS1-RyR2 signaling pathways.
Collapse
Affiliation(s)
- Solène Le Douairon Lahaye
- Laboratory Movement Sport and Health Sciences, UFR APS, University of Rennes 2, Avenue Charles Tillon, 35044, Rennes cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Howarth FC, Almugaddum FA, Qureshi MA, Ljubisavljevic M. The effects of heavy long-term exercise on ventricular myocyte shortening and intracellular Ca2+ in streptozotocin-induced diabetic rat. J Diabetes Complications 2010; 24:278-85. [PMID: 19395278 DOI: 10.1016/j.jdiacomp.2009.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2008] [Revised: 02/09/2009] [Accepted: 03/11/2009] [Indexed: 11/24/2022]
Abstract
OBJECTIVE This study investigated whether exercise training, initiated at the onset of diabetes, could preserve the contractile properties of ventricular myocytes. RESEARCH DESIGN AND METHODS The effects of a heavy exercise training program on shortening and intracellular Ca(2+) in unloaded ventricular myocytes from streptozotocin (STZ)-induced diabetic rats were examined. Animals were divided into four groups: control sedentary (CS), diabetic sedentary (DS), control heavy exercise (CHE), and diabetic heavy exercise (DHE). Exercise protocol: 5x60 min/week, 18 m/min, 5% gradient. Exercise training began 1 week after STZ treatment and continued for 12-23 (mean 17.5) weeks. RESULTS Diabetes induced prolongation of time-to-peak (TPK) shortening (124+/-2 ms in DS compared to 97+/-2 ms in CS rats), which was further increased by exercise (133+/-3 ms in DHE and 112+/-2 ms in CHE myocytes). Diabetes had no significant effects on time-to-half (THALF) relaxation of shortening (61+/-2 ms in DS compared to 56+/-2 ms in CS myocytes). Exercise induced significant prolongation of THALF in control (66+/-3 ms) but not in diabetic (69+/-3 ms) myocytes. Diabetes, though not exercise, significantly prolonged TPK (76+/-3 ms in DS compared to 64+/-2 ms in CS) and THALF recovery (160+/-5 ms in DS compared to 118+/-4 ms in CS) of the Ca(2+) transient. Neither diabetes nor exercise had significant effects on the amplitude of myocyte shortening and the Ca(2+) transient. CONCLUSIONS Heavy long-term exercise alters the dynamics but not the amplitude of unloaded myocyte contraction in the STZ-induced diabetic rat.
Collapse
MESH Headings
- Animals
- Calcium/metabolism
- Cell Size
- Diabetes Mellitus, Experimental/chemically induced
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Experimental/physiopathology
- Heart Ventricles/metabolism
- Heart Ventricles/pathology
- Heart Ventricles/physiopathology
- Intracellular Space/metabolism
- Male
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/physiology
- Physical Conditioning, Animal/adverse effects
- Physical Conditioning, Animal/physiology
- Physical Exertion/physiology
- Rats
- Rats, Wistar
- Streptozocin
- Time Factors
Collapse
Affiliation(s)
- Frank Christopher Howarth
- Department of Physiology, Faculty of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, UAE.
| | | | | | | |
Collapse
|
43
|
Saruta J, Kondo Y, Sato C, Shiiki N, Tsukinoki K, Sato S. Salivary glands as the source of plasma brain-derived neurotrophic factor in stressed rats engaged in biting behavior. Stress 2010; 13:238-47. [PMID: 20392195 DOI: 10.3109/10253890903296728] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is crucial for the survival and differentiation of the central and peripheral nervous systems. Recently, BDNF has been reported to exert broader biological activity on non-neural cells. A previous study examined the effect of immobilization stress on BDNF and its receptor tyrosine receptor kinase B in male rat submandibular glands. In the present study, we found that the rat submandibular gland is the major source of plasma BDNF during acute immobilization stress. Biting modulates the mRNA and protein levels of BDNF in the rat hippocampus, so we also investigated whether the plasma BDNF concentration is influenced by biting. Two hours of acute immobilization stress significantly increased the amount of BDNF mRNA within the rat submandibular glands. Moreover, allowing biting behavior for the second half of the 2-h stress exposure significantly increased the amount of salivary gland BDNF mRNA relative to stress alone. Similar results were found with plasma BDNF concentrations under the same conditions. We confirmed that biting during stress attenuates the increases in plasma adrenocorticotropic hormone and corticosterone concentrations, but this was not dependent on the submandibular glands. Increased BDNF, mRNA and protein expressions were observed in salivary duct cells as a result of immobilization stress and biting behavior, as demonstrated by real-time polymerase chain reaction, immunohistochemistry, western blotting, and enzyme-linked immunosorbent assay. Taken together, the findings indicate that the submandibular glands evidently contribute to the increase in plasma BDNF upon biting.
Collapse
Affiliation(s)
- Juri Saruta
- Department of Craniofacial Growth and Development Dentistry, Division of Orthodontics, Kanagawa Dental College, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Marwick TH, Hordern MD, Miller T, Chyun DA, Bertoni AG, Blumenthal RS, Philippides G, Rocchini A. Exercise Training for Type 2 Diabetes Mellitus. Circulation 2009; 119:3244-62. [DOI: 10.1161/circulationaha.109.192521] [Citation(s) in RCA: 261] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Diabetes alters contraction-induced mitogen activated protein kinase activation in the rat soleus and plantaris. EXPERIMENTAL DIABETES RESEARCH 2008; 2008:738101. [PMID: 18551177 PMCID: PMC2409431 DOI: 10.1155/2008/738101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2007] [Revised: 07/01/2007] [Accepted: 02/24/2008] [Indexed: 11/24/2022]
Abstract
The prescription of anaerobic exercise has recently been advocated for the management of diabetes; however exercise-induced signaling in diabetic muscle remains largely unexplored. Evidence from exercise studies in nondiabetics suggests that the extracellular-signal-regulated kinases (Erk1/2), p38, and c-JUN NH2-terminal kinase (Jnk) mitogen-activated protein kinases (MAPKs) are important regulators of muscle adaptation. Here, we compare the basal and the in situ contraction-induced phosphorylation of Erk1/2- p38- and Jnk-MAPK and their downstream targets (p90rsk and MAPKAP-K2) in the plantaris and soleus muscles of normal and obese (fa/fa) Zucker rats. Compared to lean animals, the time course and magnitude of Erk1/2, p90rsk and p38 phosphorylation to a single bout of contractile stimuli were greater in the plantaris of obese animals. Jnk phosphorylation in response to contractile stimuli was muscle-type dependent with greater increases in the plantaris than the soleus. These results suggest that diabetes alters intramuscular signaling processes in response to a contractile stimulus.
Collapse
|
46
|
Effects of varying intensity exercise on shortening and intracellular calcium in ventricular myocytes from streptozotocin (STZ)-induced diabetic rats. Mol Cell Biochem 2008; 317:161-7. [PMID: 18553174 DOI: 10.1007/s11010-008-9844-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2008] [Accepted: 06/05/2008] [Indexed: 10/21/2022]
Abstract
This study examined the influence of two intensities of exercise on ventricular myocyte shortening and intracellular calcium in the streptozotocin (STZ)-induced diabetic rat. Animals were divided into four groups: control sedentary (CS), diabetic sedentary (DS), diabetic light exercise (DLE; 5 x 30 min/week, 9 m/min) and diabetic moderate exercise (DME; 5 x 30 min/week, 18 m/min) and the exercise programme started 2 months after STZ treatment. Time to peak (TPK) shortening was prolonged in myocytes from DS (112.1 +/- 2.5 ms) compared to CS (98.1 +/- 2.1 ms) rats and was not additionally altered by either light (117.0 +/- 2.1 ms) or moderate (115.4 +/- 2.0 ms) exercise. TPK of the Ca(2+) transient was not significantly altered by STZ treatment (69.4 +/- 2.4 ms) but was prolonged by light (79.8 +/- 3.5 ms) and moderate (76.6 +/- 2.9 ms) exercise compared to CS (65.5 +/- 2.7 ms). Data from this study suggest that the chosen intensities of exercise were ineffective in modulating the dynamics of cardiac muscle contraction and reversing the deleterious effects of diabetes on heart-muscle contraction.
Collapse
|
47
|
Broderick TL. ATP production and TCA activity are stimulated by propionyl-L-carnitine in the diabetic rat heart. Drugs R D 2008; 9:83-91. [PMID: 18298127 DOI: 10.2165/00126839-200809020-00003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND AND OBJECTIVE The beneficial effect of propionyl-L-carnitine (PLC) on cardiac function in diabetes mellitus is well documented. This study was designed to determine whether the improvement in cardiac function mediated by PLC in the diabetic rat heart is associated with an increase in ATP production and tricarboxylic acid (TCA) cycle activity. METHODS Diabetes was induced by an intravenous injection of streptozotocin (60 mg/kg). Following diagnosis of diabetes, treatment was initiated by supplementing the drinking water with PLC at a concentration of 1 g/L for a period of 6 weeks. ATP production and TCA cycle activity were determined from oxidative rates of glucose and palmitate measured in isolated working hearts from control and diabetic animals. RESULTS The effect of diabetes was associated with a decrease in heart function, expressed as rate-pressure product (RPP), and in rates of myocardial glucose oxidation. Rates of palmitate oxidation in diabetic hearts were similar to those of control hearts. In PLC-treated diabetic hearts, rates of both glucose and palmitate oxidation were increased and a significant improvement in RPP was observed. As a result, overall ATP production and TCA cycle activity from glucose and palmitate oxidation were increased in diabetic hearts. CONCLUSION Our results indicate that the depression in RPP in the diabetic rat heart can be prevented with chronic PLC treatment. Increases in glucose and palmitate utilization with resultant increases in ATP production and TCA cycle activity may explain the benefit of PLC on diabetic rat heart function.
Collapse
Affiliation(s)
- Tom L Broderick
- Department of Physiology, Midwestern University, Glendale, AZ 85308, USA.
| |
Collapse
|
48
|
Loganathan R, Searls YM, Smirnova IV, Stehno-Bittel L. Exercise-induced benefits in individuals with type 1 diabetes. PHYSICAL THERAPY REVIEWS 2006. [DOI: 10.1179/108331906x99056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
49
|
Broderick TL. Interpreting the overall metabolic consequences of exercise in diabetes. Am J Physiol Endocrinol Metab 2005; 289:E515. [PMID: 16091392 DOI: 10.1152/ajpendo.00515.2005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|