1
|
Halladay LR, Herron SM. Lasting impact of postnatal maternal separation on the developing BNST: Lifelong socioemotional consequences. Neuropharmacology 2023; 225:109404. [PMID: 36572178 PMCID: PMC9926961 DOI: 10.1016/j.neuropharm.2022.109404] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
Nearly one percent of children in the US experience childhood neglect or abuse, which can incite lifelong emotional and behavioral disorders. Many studies investigating the neural underpinnings of maleffects inflicted by early life stress have largely focused on dysregulation of the hypothalamic-pituitary-adrenal (HPA) axis. Newer veins of evidence suggest that exposure to early life stressors can interrupt neural development in extrahypothalamic areas as well, including the bed nucleus of the stria terminalis (BNST). One widely used approach in this area is rodent maternal separation (MS), which typically consists of separating pups from the dam for extended periods of time, over several days during the first weeks of postnatal life - a time when pups are highly dependent on maternal care for survival. MS has been shown to incite myriad lasting effects not limited to increased anxiety-like behavior, hyper-responsiveness to stressors, and social behavior deficits. The behavioral effects of MS are widespread and thus unlikely to be limited to hypothalamic mechanisms. Recent work has highlighted the BNST as a critical arbiter of some of the consequences of MS, especially socioemotional behavioral deficits. The BNST is a well-documented modulator of anxiety, reward, and social behavior by way of its connections with hypothalamic and extra-hypothalamic systems. Moreover, during the postnatal period when MS is typically administered, the BNST undergoes critical neural developmental events. This review highlights evidence that MS interferes with neural development to permanently alter BNST circuitry, which may account for a variety of behavioral deficits seen following early life stress. This article is part of the Special Issue on 'Fear, Anxiety and PTSD'.
Collapse
Affiliation(s)
- Lindsay R Halladay
- Department of Psychology, Santa Clara University, 500 El Camino Real, Santa Clara, CA, 95053, USA.
| | - Steven M Herron
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| |
Collapse
|
2
|
Gegenhuber B, Wu MV, Bronstein R, Tollkuhn J. Gene regulation by gonadal hormone receptors underlies brain sex differences. Nature 2022; 606:153-159. [PMID: 35508660 PMCID: PMC9159952 DOI: 10.1038/s41586-022-04686-1] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/24/2022] [Indexed: 02/07/2023]
Abstract
Oestradiol establishes neural sex differences in many vertebrates1-3 and modulates mood, behaviour and energy balance in adulthood4-8. In the canonical pathway, oestradiol exerts its effects through the transcription factor oestrogen receptor-α (ERα)9. Although ERα has been extensively characterized in breast cancer, the neuronal targets of ERα, and their involvement in brain sex differences, remain largely unknown. Here we generate a comprehensive map of genomic ERα-binding sites in a sexually dimorphic neural circuit that mediates social behaviours. We conclude that ERα orchestrates sexual differentiation of the mouse brain through two mechanisms: establishing two male-biased neuron types and activating a sustained male-biased gene expression program. Collectively, our findings reveal that sex differences in gene expression are defined by hormonal activation of neuronal steroid receptors. The molecular targets we identify may underlie the effects of oestradiol on brain development, behaviour and disease.
Collapse
Affiliation(s)
- B Gegenhuber
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Cold Spring Harbor Laboratory School of Biological Sciences, Cold Spring Harbor, NY, USA
| | - M V Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - R Bronstein
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - J Tollkuhn
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
3
|
Bertho S, Neyroud AS, Brun T, Jaillard S, Bonnet F, Ravel C. Anti-Müllerian hormone: A function beyond the Müllerian structures. Morphologie 2021; 106:252-259. [PMID: 34924282 DOI: 10.1016/j.morpho.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 10/19/2022]
Abstract
The anti-Müllerian hormone (AMH) is a heterodimeric glycoprotein belonging to the TGFb superfamily implicated in human embryonic development. This hormone was first described as allowing regression of the epithelial embryonic Müllerian structures in males, which would otherwise differentiate into the uterus and fallopian tubes. It activates a signaling pathway mediated by two transmembrane receptors. Binding of AMH to its receptor induces morphological changes leading to the degeneration of Müllerian ducts. Recently, new data has shown the role played by this hormone on structures other than the genital tract. If testicular AMH expression decreases in humans over the course of a lifetime, synthesis may persist in other tissues in adulthood. The mechanisms underlying its production have been unveiled. The aim of this review is to describe the different pathways in which AMH has been identified and plays a pivotal role.
Collapse
Affiliation(s)
- S Bertho
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France.
| | - A S Neyroud
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - T Brun
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France
| | - S Jaillard
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| | - F Bonnet
- CHU Rennes, Service d'Endocrinologie, 35000 Rennes, France
| | - C Ravel
- CHU Rennes, Département de Gynécologie-Obstétrique-Reproduction-CECOS, 35000 Rennes, France; Univ Rennes, Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) - UMR_S 1085, 35000 Rennes, France
| |
Collapse
|
4
|
Tsukahara S, Morishita M. Sexually Dimorphic Formation of the Preoptic Area and the Bed Nucleus of the Stria Terminalis by Neuroestrogens. Front Neurosci 2020; 14:797. [PMID: 32848568 PMCID: PMC7403479 DOI: 10.3389/fnins.2020.00797] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/07/2020] [Indexed: 01/08/2023] Open
Abstract
Testicular androgens during the perinatal period play an important role in the sexual differentiation of the brain of rodents. Testicular androgens transported into the brain act via androgen receptors or are the substrate of aromatase, which synthesizes neuroestrogens that act via estrogen receptors. The latter that occurs in the perinatal period significantly contributes to the sexual differentiation of the brain. The preoptic area (POA) and the bed nucleus of the stria terminalis (BNST) are sexually dimorphic brain regions that are involved in the regulation of sex-specific social behaviors and the reproductive neuroendocrine system. Here, we discuss how neuroestrogens of testicular origin act in the perinatal period to organize the sexually dimorphic structures of the POA and BNST. Accumulating data from rodent studies suggest that neuroestrogens induce the sex differences in glial and immune cells, which play an important role in the sexually dimorphic formation of the dendritic synapse patterning in the POA, and induce the sex differences in the cell number of specific neuronal cell groups in the POA and BNST, which may be established by controlling the number of cells dying by apoptosis or the phenotypic organization of living cells. Testicular androgens in the peripubertal period also contribute to the sexual differentiation of the POA and BNST, and thus their aromatization to estrogens may be unnecessary. Additionally, we discuss the notion that testicular androgens that do not aromatize to estrogens can also induce significant effects on the sexually dimorphic formation of the POA and BNST.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| |
Collapse
|
5
|
VanRyzin JW, Marquardt AE, Pickett LA, McCarthy MM. Microglia and sexual differentiation of the developing brain: A focus on extrinsic factors. Glia 2019; 68:1100-1113. [PMID: 31691400 DOI: 10.1002/glia.23740] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/09/2019] [Accepted: 10/11/2019] [Indexed: 12/16/2022]
Abstract
Microglia, the innate immune cells of the brain, have recently been removed from the position of mere sentinels and promoted to the role of active sculptors of developing circuits and cells. Alongside their functions in normal brain development, microglia coordinate sexual differentiation of the brain, a set of processes which vary by region and endpoint like that of microglia function itself. In this review, we highlight the ways microglia are both targets and drivers of brain sexual differentiation. We examine the factors that may drive sex differences in microglia, with a special focus on how changing microenvironments in the developing brain dictate microglia phenotypes and discuss how their diverse functions sculpt lasting sex-specific changes in the brain. Finally, we consider how sex-specific early life environments contribute to epigenetic programming and lasting sex differences in microglia identity.
Collapse
Affiliation(s)
- Jonathan W VanRyzin
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Ashley E Marquardt
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Lindsay A Pickett
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| | - Margaret M McCarthy
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland.,Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
6
|
Keiser AA, Wood MA. Examining the contribution of histone modification to sex differences in learning and memory. Learn Mem 2019; 26:318-331. [PMID: 31416905 PMCID: PMC6699407 DOI: 10.1101/lm.048850.118] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
Abstract
The epigenome serves as a signal integration platform that encodes information from experience and environment that adds tremendous complexity to the regulation of transcription required for memory, beyond the directions encoded in the genome. To date, our understanding of how epigenetic mechanisms integrate information to regulate gene expression required for memory is primarily obtained from male derived data despite sex-specific life experiences and sex differences in consolidation and retrieval of memory, and in the molecular mechanisms that mediate these processes. In this review, we examine the contribution of chromatin modification to learning and memory in both sexes. We provide examples of how exposure to a number of internal and external factors influence the epigenome in sex-similar and sex-specific ways that may ultimately impact transcription required for memory processes. We also pose a number of key open questions and identify areas requiring further investigation as we seek to understand how histone modifying mechanisms shape memory in females.
Collapse
Affiliation(s)
- Ashley A Keiser
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| | - Marcelo A Wood
- Department of Neurobiology and Behavior, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California 92697, USA
| |
Collapse
|
7
|
Uchida K, Otsuka H, Morishita M, Tsukahara S, Sato T, Sakimura K, Itoi K. Female-biased sexual dimorphism of corticotropin-releasing factor neurons in the bed nucleus of the stria terminalis. Biol Sex Differ 2019; 10:6. [PMID: 30691514 PMCID: PMC6350317 DOI: 10.1186/s13293-019-0221-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 01/06/2019] [Indexed: 12/03/2022] Open
Abstract
Background The bed nucleus of the stria terminalis (BNST) contains the highest density of corticotropin-releasing factor (CRF)-producing neurons in the brain. CRF-immunoreactive neurons show a female-biased sexual dimorphism in the dorsolateral BNST in the rat. Since CRF neurons cannot be immunostained clearly with available CRF antibodies in the mouse, we used a mouse line, in which modified yellow fluorescent protein (Venus) was inserted to the CRF gene, and the Neo cassette was removed, to examine the morphological characteristics of CRF neurons in the dorsolateral BNST. Developmental changes of CRF neurons were examined from postnatal stages to adulthood. Gonadectomy (GDX) was carried out in adult male and female mice to examine the effects of sex steroids on the number of CRF neurons in the dorsolateral BNST. Methods The number of Venus-expressing neurons, stained by immunofluorescence, was compared between male and female mice over the course of development. GDX was carried out in adult mice. Immunohistochemistry, in combination with Nissl staining, was carried out, and the effects of sex or gonadal steroids were examined by estimating the number of Venus-expressing neurons, as well as the total number of neurons or glial cells, in each BNST subnucleus, using a stereological method. Results Most Venus-expressing neurons co-expressed Crf mRNA in the dorsolateral BNST. They constitute a group of neurons without calbindin immunoreactivity, which makes a contrast to the principal nucleus of the BNST that is characterized by calbindin immunostaining. In the dorsolateral BNST, the number of Venus-expressing neurons increased across developmental stages until adulthood. Sexual difference in the number of Venus-expressing neurons was not evident by postnatal day 5. In adulthood, however, there was a significant female predominance in the number of Venus expressing neurons in two subnuclei of the dorsolateral BNST, i.e., the oval nucleus of the BNST (ovBNST) and the anterolateral BNST (alBNST). The number of Venus-expressing neurons was smaller significantly in ovariectomized females compared with proestrous females in either ovBNST or alBNST, and greater significantly in orchiectomized males compared with gonadally intact males in ovBNST. The total number of neurons was also greater significantly in females than in males in ovBNST and alBNST, but it was not affected by GDX. Conclusion Venus-expressing CRF neurons showed female-biased sexual dimorphism in ovBNST and alBNST of the mouse. Expression of Venus in these subnuclei was controlled by gonadal steroids.
Collapse
Affiliation(s)
- Katsuya Uchida
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan.
| | - Hiroko Otsuka
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan
| | - Masahiro Morishita
- Department of Regulation Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Shinji Tsukahara
- Department of Regulation Biology, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan
| | - Tatsuya Sato
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan
| | - Kenji Sakimura
- Department of Cellular Neurobiology, Brain Research Institute, Niigata University, Niigata City, Japan
| | - Keiichi Itoi
- Laboratory of Information Biology, Graduate School of Information Sciences, Tohoku University, Sendai City, Japan.
| |
Collapse
|
8
|
The Neural Mechanisms of Sexually Dimorphic Aggressive Behaviors. Trends Genet 2018; 34:755-776. [PMID: 30173869 DOI: 10.1016/j.tig.2018.07.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/16/2018] [Accepted: 07/05/2018] [Indexed: 10/28/2022]
Abstract
Aggression is a fundamental social behavior that is essential for competing for resources and protecting oneself and families in both males and females. As a result of natural selection, aggression is often displayed differentially between the sexes, typically at a higher level in males than females. Here, we highlight the behavioral differences between male and female aggression in rodents. We further outline the aggression circuits in males and females, and compare their differences at each circuit node. Lastly, we summarize our current understanding regarding the generation of sexually dimorphic aggression circuits during development and their maintenance during adulthood. In both cases, gonadal steroid hormones appear to play crucial roles in differentiating the circuits by impacting on the survival, morphology, and intrinsic properties of relevant cells. Many other factors, such as environment and experience, may also contribute to sex differences in aggression and remain to be investigated in future studies.
Collapse
|
9
|
Impact of X/Y genes and sex hormones on mouse neuroanatomy. Neuroimage 2018; 173:551-563. [PMID: 29501873 DOI: 10.1016/j.neuroimage.2018.02.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 02/05/2018] [Accepted: 02/25/2018] [Indexed: 12/15/2022] Open
Abstract
Biological sex influences brain anatomy across many species. Sex differences in brain anatomy have classically been attributed to differences in sex chromosome complement (XX versus XY) and/or in levels of gonadal sex steroids released from ovaries and testes. Using the four core genotype (4CG) mouse model in which gonadal sex and sex chromosome complement are decoupled, we previously found that sex hormones and chromosomes influence the volume of distinct brain regions. However, recent studies suggest there may be more complex interactions between hormones and chromosomes, and that circulating steroids can compensate for and/or mask underlying chromosomal effects. Moreover, the impact of pre vs post-pubertal sex hormone exposure on this sex hormone/sex chromosome interplay is not well understood. Thus, we used whole brain high-resolution ex-vivo MRI of intact and pre-pubertally gonadectomized 4CG mice to investigate two questions: 1) Do circulating steroids mask sex differences in brain anatomy driven by sex chromosome complement? And 2) What is the contribution of pre- versus post-pubertal hormones to sex-hormone-dependent differences in brain anatomy? We found evidence of both cooperative and compensatory interactions between sex chromosomes and sex hormones in several brain regions, but the interaction effects were of low magnitude. Additionally, most brain regions affected by sex hormones were sensitive to both pre- and post-pubertal hormones. This data provides further insight into the biological origins of sex differences in brain anatomy.
Collapse
|
10
|
Forger NG. Past, present and future of epigenetics in brain sexual differentiation. J Neuroendocrinol 2018; 30. [PMID: 28585265 DOI: 10.1111/jne.12492] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/22/2017] [Accepted: 06/01/2017] [Indexed: 12/12/2022]
Abstract
Sexual differentiation has long been considered "epigenetic", although the meaning of that word has shifted over time. Here, we track the evolution of ideas about epigenetics in sexual differentiation, and identify principles that have emerged from recent studies. Experiments manipulating a particular epigenetic mechanism during neonatal life demonstrate a role for both histone acetylation and DNA methylation in the development of sex differences in the brain and behaviour of rodents. In addition, hormone-dependent sex differences in the number of neurones of a particular phenotype may be programmed by differences in DNA methylation early in life. Genome-wide studies suggest that many effects of neonatal testosterone on the brain methylome do not emerge until adulthood, and there may be sex biases in the use of epigenetic marks that do not correlate with differences in gene expression. In other words, even when the transcription of a gene does not differ between males and females, the epigenetic underpinnings of that expression may differ. Finally, recent evidence suggests that sex differences in epigenetic marks may primarily serve to make gene expression more similar in males and females. We discuss the implications of these findings for understanding sex differences in susceptibility to disease, and point to recent conceptual and technical advances likely to influence the field going forward.
Collapse
Affiliation(s)
- N G Forger
- Center for Behavioral Neuroscience, Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
11
|
Morishita M, Maejima S, Tsukahara S. Gonadal Hormone-Dependent Sexual Differentiation of a Female-Biased Sexually Dimorphic Cell Group in the Principal Nucleus of the Bed Nucleus of the Stria Terminalis in Mice. Endocrinology 2017; 158:3512-3525. [PMID: 28977609 DOI: 10.1210/en.2017-00240] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/27/2017] [Indexed: 11/19/2022]
Abstract
We recently reported a female-biased sexually dimorphic area in the mouse brain in the boundary region between the preoptic area and the bed nucleus of the stria terminalis (BNST). We reexamined this area and found that it is a ventral part of the principal nucleus of the BNST (BNSTp). The BNSTp is a male-biased sexually dimorphic nucleus, but the ventral part of the BNSTp (BNSTpv) exhibits female-biased sex differences in volume and neuron number. The volume and neuron number of the BNSTpv were increased in males by neonatal orchiectomy and decreased in females by treatment with testosterone, dihydrotestosterone, or estradiol within 5 days after birth. Sex differences in the volume and neuron number of the BNSTpv emerged before puberty. These sex differences became prominent in adulthood with increasing volume in females and loss of neurons in males during the pubertal/adolescent period. Prepubertal orchiectomy did not affect the BNSTpv, although prepubertal ovariectomy reduced the volume increase and induced loss of neurons in the female BNSTpv. In contrast, the volume and neuron number of male-biased sexually dimorphic nuclei that are composed of mainly calbindin neurons and are located in the preoptic area and BNST were decreased by prepubertal orchiectomy but not affected by prepubertal ovariectomy. Testicular testosterone during the postnatal period may defeminize the BNSTpv via binding directly to the androgen receptor and indirectly to the estrogen receptor after aromatization, although defeminization may proceed independently of testicular hormones in the pubertal/adolescent period. Ovarian hormones may act to feminize the BNSTpv during the pubertal/adolescent period.
Collapse
Affiliation(s)
- Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Sho Maejima
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
| |
Collapse
|
12
|
Zettergren A, Karlsson S, Studer E, Sarvimäki A, Kettunen P, Thorsell A, Sihlbom C, Westberg L. Proteomic analyses of limbic regions in neonatal male, female and androgen receptor knockout mice. BMC Neurosci 2017; 18:9. [PMID: 28056817 PMCID: PMC5217640 DOI: 10.1186/s12868-016-0332-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 12/28/2016] [Indexed: 11/10/2022] Open
Abstract
Background It is well-established that organizational effects of sex steroids during early development are fundamental for sex-typical displays of, for example, mating and aggressive behaviors in rodents and other species. Male and female brains are known to differ with respect to neuronal morphology in particular regions of the brain, including the number and size of neurons, and the density and length of dendrites in nuclei of hypothalamus and amygdala. The aim of the present study was to use global proteomics to identify proteins differentially expressed in hypothalamus/amygdala during early development (postnatal day 8) of male, female and conditional androgen receptor knockout (ARNesDel) male mice, lacking androgen receptors specifically in the brain. Furthermore, verification of selected sexually dimorphic proteins was performed using targeted proteomics. Results Our proteomic approach, iTRAQ, allowed us to investigate expression differences in the 2998 most abundantly expressed proteins in our dissected tissues. Approximately 170 proteins differed between the sexes, and 38 proteins between ARNesDel and control males (p < 0.05). In line with previous explorative studies of sexually dimorphic gene expression we mainly detected subtle protein expression differences (fold changes <1.3). The protein MARCKS (myristoylated alanine rich C kinase substrate), having the largest fold change of the proteins selected from the iTRAQ analyses and of known importance for synaptic transmission and dendritic branching, was confirmed by targeted proteomics as differentially expressed between the sexes. Conclusions Overall, our results provide solid evidence that a large number of proteins show sex differences in their brain expression and could potentially be involved in brain sexual differentiation. Furthermore, our finding of a sexually dimorphic expression of MARCKS in the brain during development warrants further investigation on the involvement in sexual differentiation of this protein. Electronic supplementary material The online version of this article (doi:10.1186/s12868-016-0332-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Zettergren
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Sara Karlsson
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Erik Studer
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Anna Sarvimäki
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden
| | - Petronella Kettunen
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden.,Department of Neuropathology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Annika Thorsell
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Carina Sihlbom
- The Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Lars Westberg
- Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, POB 431, 405 30, Göteborg, Sweden.
| |
Collapse
|
13
|
Forger NG. Epigenetic mechanisms in sexual differentiation of the brain and behaviour. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150114. [PMID: 26833835 DOI: 10.1098/rstb.2015.0114] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2015] [Indexed: 11/12/2022] Open
Abstract
Circumstantial evidence alone argues that the establishment and maintenance of sex differences in the brain depend on epigenetic modifications of chromatin structure. More direct evidence has recently been obtained from two types of studies: those manipulating a particular epigenetic mechanism, and those examining the genome-wide distribution of specific epigenetic marks. The manipulation of histone acetylation or DNA methylation disrupts the development of several neural sex differences in rodents. Taken together, however, the evidence suggests there is unlikely to be a simple formula for masculine or feminine development of the brain and behaviour; instead, underlying epigenetic mechanisms may vary by brain region or even by dependent variable within a region. Whole-genome studies related to sex differences in the brain have only very recently been reported, but suggest that males and females may use different combinations of epigenetic modifications to control gene expression, even in cases where gene expression does not differ between the sexes. Finally, recent findings are discussed that are likely to direct future studies on the role of epigenetic mechanisms in sexual differentiation of the brain and behaviour.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30307, USA
| |
Collapse
|
14
|
Forger NG, Strahan JA, Castillo-Ruiz A. Cellular and molecular mechanisms of sexual differentiation in the mammalian nervous system. Front Neuroendocrinol 2016; 40:67-86. [PMID: 26790970 PMCID: PMC4897775 DOI: 10.1016/j.yfrne.2016.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/31/2015] [Accepted: 01/09/2016] [Indexed: 01/16/2023]
Abstract
Neuroscientists are likely to discover new sex differences in the coming years, spurred by the National Institutes of Health initiative to include both sexes in preclinical studies. This review summarizes the current state of knowledge of the cellular and molecular mechanisms underlying sex differences in the mammalian nervous system, based primarily on work in rodents. Cellular mechanisms examined include neurogenesis, migration, the differentiation of neurochemical and morphological cell phenotype, and cell death. At the molecular level we discuss evolving roles for epigenetics, sex chromosome complement, the immune system, and newly identified cell signaling pathways. We review recent findings on the role of the environment, as well as genome-wide studies with some surprising results, causing us to re-think often-used models of sexual differentiation. We end by pointing to future directions, including an increased awareness of the important contributions of tissues outside of the nervous system to sexual differentiation of the brain.
Collapse
Affiliation(s)
- Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | - J Alex Strahan
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, United States.
| | | |
Collapse
|
15
|
Kyi-Tha-Thu C, Okoshi K, Ito H, Matsuda KI, Kawata M, Tsukahara S. Sex differences in cells expressing green fluorescent protein under the control of the estrogen receptor-α promoter in the hypothalamus of mice. Neurosci Res 2015; 101:44-52. [DOI: 10.1016/j.neures.2015.07.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 06/26/2015] [Accepted: 07/08/2015] [Indexed: 01/06/2023]
|
16
|
Bergan JF. Neural Computation and Neuromodulation Underlying Social Behavior. Integr Comp Biol 2015; 55:268-80. [PMID: 26089436 DOI: 10.1093/icb/icv061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Social behaviors are as diverse as the animals that employ them, with some behaviors, like affiliation and aggression, expressed in nearly all social species. Whether discussing a "family" of beavers or a "murder" of crows, the elaborate language we use to describe social animals immediately hints at patterns of behavior typical of each species. Neuroscience has now revealed a core network of regions of the brain that are essential for the production of social behavior. Like the behaviors themselves, neuromodulation and hormonal changes regulate the underlying neural circuits on timescales ranging from momentary events to an animal's lifetime. Dynamic and heavily interconnected social circuits provide a distinct challenge for developing a mechanistic understanding of social behavior. However, advances in neuroscience continue to generate an explanation of social behavior based on the electrical activity and synaptic connections of neurons embedded in defined neural circuits.
Collapse
Affiliation(s)
- Joseph F Bergan
- Department of Psychology and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
17
|
Bayless DW, Daniel JM. Sex differences in myelin-associated protein levels within and density of projections between the orbital frontal cortex and dorsal striatum of adult rats: implications for inhibitory control. Neuroscience 2015; 300:286-96. [PMID: 26002313 DOI: 10.1016/j.neuroscience.2015.05.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/08/2015] [Accepted: 05/12/2015] [Indexed: 11/19/2022]
Abstract
Impulsive actions and decisions often lead to undesirable outcomes. Lesion and neuroimaging studies have revealed that the orbital frontal cortex (OFC) and dorsal striatum (dSTR) play key roles in inhibitory control. It has been proposed that greater OFC input into the dSTR reflects enhanced top-down cognitive control and less impulsive responding. We previously reported a sex difference in inhibitory control, such that female rats make fewer impulsive errors than do male rats. The goal of the present study was to investigate differences in the OFC and dSTR of young adult male and female rats. In Experiment 1, we measured levels of two myelin-associated proteins, myelin basic protein (MBP) and myelin proteolipid protein (PLP), in the OFC and dSTR. Western blot data revealed that females had significantly higher levels of both MBP and PLP in the OFC but similar levels in the dSTR as compared to males. In Experiment 2, we infused the anterograde tracer, biotinylated dextran amine (BDA), into the OFC and measured the density of BDA in the dSTR. BDA was visualized using histochemistry followed by light microscopy imaging and densitometry analysis. Density of BDA in the dSTR was significantly greater in females as compared to males indicating that the projections from the OFC to dSTR may be greater in females as compared to males. Our results suggest a potential neuroanatomical sex difference that may contribute to the reported differences in inhibitory control levels of male and female rats.
Collapse
Affiliation(s)
- D W Bayless
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA.
| | - J M Daniel
- Department of Psychology, Tulane University, New Orleans, LA 70118, USA; Neuroscience Program, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
18
|
Rilett KC, Friedel M, Ellegood J, MacKenzie RN, Lerch JP, Foster JA. Loss of T cells influences sex differences in behavior and brain structure. Brain Behav Immun 2015; 46:249-60. [PMID: 25725160 DOI: 10.1016/j.bbi.2015.02.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 02/10/2015] [Accepted: 02/18/2015] [Indexed: 12/13/2022] Open
Abstract
Clinical and animal studies demonstrate that immune-brain communication influences behavior and brain function. Mice lacking T cell receptor β and δ chains were tested in the elevated plus maze, open field, and light-dark test and showed reduced anxiety-like behavior compared to wild type. Interestingly sex differences were observed in the behavioural phenotype of TCRβ-/-δ- mice. Specifically, female TCRβ-/-δ- mice spent more time in the light chamber compared to wild type females, whereas male TCRβ-/-δ- spent more time in the center of the open field compared to wild type males. In addition, TCRβ-/-δ- mice did not show sex differences in activity-related behaviors observed in WT mice. Ex vivo brain imaging (7 Tesla MRI) revealed volume changes in hippocampus, hypothalamus, amygdala, periaqueductal gray, and dorsal raphe and other brain regions between wild type and T cell receptor knockout mice. There was also a loss of sexual dimorphism in brain volume in the bed nucleus of the stria terminalis, normally the most sexually dimorphic region in the brain, in immune compromised mice. These data demonstrate the presence of T cells is important in the development of sex differences in CNS circuitry and behavior.
Collapse
Affiliation(s)
- Kelly C Rilett
- Neurosci. Grad Program, McMaster Univ., Hamilton, ON, Canada
| | - Miriam Friedel
- Mouse Imaging Ctr., Hosp. for Sick Children, Toronto, ON, Canada
| | - Jacob Ellegood
- Mouse Imaging Ctr., Hosp. for Sick Children, Toronto, ON, Canada
| | - Robyn N MacKenzie
- Psychiatry & Behavioural Neurosciences, McMaster Univ., Hamilton, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Ctr., Hosp. for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Jane A Foster
- Psychiatry & Behavioural Neurosciences, McMaster Univ., Hamilton, ON, Canada; Brain-Body Institute, St. Joseph's Healthcare, Hamilton, ON, Canada.
| |
Collapse
|
19
|
|
20
|
Corre C, Friedel M, Vousden DA, Metcalf A, Spring S, Qiu LR, Lerch JP, Palmert MR. Separate effects of sex hormones and sex chromosomes on brain structure and function revealed by high-resolution magnetic resonance imaging and spatial navigation assessment of the Four Core Genotype mouse model. Brain Struct Funct 2014; 221:997-1016. [PMID: 25445841 DOI: 10.1007/s00429-014-0952-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/22/2014] [Indexed: 12/18/2022]
Abstract
Males and females exhibit several differences in brain structure and function. To examine the basis for these sex differences, we investigated the influences of sex hormones and sex chromosomes on brain structure and function in mice. We used the Four Core Genotype (4CG) mice, which can generate both male and female mice with XX or XY sex chromosome complement, allowing the decoupling of sex chromosomes from hormonal milieu. To examine whole brain structure, high-resolution ex vivo MRI was performed, and to assess differences in cognitive function, mice were trained on a radial arm maze. Voxel-wise and volumetric analyses of MRI data uncovered a striking independence of hormonal versus chromosomal influences in 30 sexually dimorphic brain regions. For example, the bed nucleus of the stria terminalis and the parieto-temporal lobe of the cerebral cortex displayed steroid-dependence while the cerebellar cortex, corpus callosum, and olfactory bulbs were influenced by sex chromosomes. Spatial learning and memory demonstrated strict hormone-dependency with no apparent influence of sex chromosomes. Understanding the influences of chromosomes and hormones on brain structure and function is important for understanding sex differences in brain structure and function, an endeavor that has eventual implications for understanding sex biases observed in the prevalence of psychiatric disorders.
Collapse
Affiliation(s)
- Christina Corre
- Division of Endocrinology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.
| | - Miriam Friedel
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - Dulcie A Vousden
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
| | - Ariane Metcalf
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - Shoshana Spring
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada
| | - Lily R Qiu
- Division of Endocrinology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada.,Institute of Medical Science, The University of Toronto, Toronto, ON, Canada
| | - Jason P Lerch
- Mouse Imaging Centre and Program in Neuroscience and Mental Health, The Hospital for Sick Children, 25 Orde Street, Toronto, ON, M5T 3H7, Canada.,Department of Medical Biophysics, The University of Toronto, Toronto, ON, Canada
| | - Mark R Palmert
- Division of Endocrinology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON, M5G 1X8, Canada. .,Institute of Medical Science, The University of Toronto, Toronto, ON, Canada. .,Departments of Paediatrics and Physiology, The University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Zuloaga DG, Zuloaga KL, Hinds LR, Carbone DL, Handa RJ. Estrogen receptor β expression in the mouse forebrain: age and sex differences. J Comp Neurol 2014; 522:358-71. [PMID: 23818057 DOI: 10.1002/cne.23400] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/15/2012] [Accepted: 06/19/2012] [Indexed: 12/11/2022]
Abstract
Estrogen receptors regulate multiple brain functions, including stress, sexual, and memory-associated behaviors as well as controlling neuroendocrine and autonomic function. During development, estrogen signaling is involved in programming adult sex differences in physiology and behavior. Expression of estrogen receptor α changes across development in a region-specific fashion. By contrast, estrogen receptor β (ERβ) is expressed in many brain regions, yet few studies have explored sex and developmental differences in its expression, largely because of the absence of selective reagents for anatomical localization of the protein. This study utilized bacterial artificial chromosome transgenic mice expressing ERβ identified by enhanced green fluorescent protein (EGFP) to compare expression levels and distribution of ERβ in the male and female mouse forebrain on the day of birth (P0), on postnatal day 4 (P4), and on P21. By using qualitative analysis, we mapped the distribution of ERβ-EGFP and found developmental alterations in ERβ expression within the cortex, hippocampus, and hypothalamic regions including the arcuate, ventromedial, and paraventricular nuclei. We also report a sex difference in ERβ in the bed nucleus of the stria terminalis, with males showing greater expression at P4 and P21. Another sex difference was found in the anteroventral periventricular nucleus of P21, but not P0 or P4, mice, in which ERβ-EGFP-immunoreactive cells were densely clustered near the third ventricle in females but not males. These developmental changes and sex differences in ERβ indicate a mechanism through which estrogens might differentially affect brain functions or program adult physiology at select times during development.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, 85004-2157
| | | | | | | | | |
Collapse
|
22
|
Ghahramani NM, Ngun TC, Chen PY, Tian Y, Krishnan S, Muir S, Rubbi L, Arnold AP, de Vries GJ, Forger NG, Pellegrini M, Vilain E. The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging. Biol Sex Differ 2014; 5:8. [PMID: 24976947 PMCID: PMC4074311 DOI: 10.1186/2042-6410-5-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/22/2014] [Indexed: 02/07/2023] Open
Abstract
Background The biological basis for sex differences in brain function and disease susceptibility is poorly understood. Examining the role of gonadal hormones in brain sexual differentiation may provide important information about sex differences in neural health and development. Permanent masculinization of brain structure, function, and disease is induced by testosterone prenatally in males, but the possible mediation of these effects by long-term changes in the epigenome is poorly understood. Methods We investigated the organizational effects of testosterone on the DNA methylome and transcriptome in two sexually dimorphic forebrain regions—the bed nucleus of the stria terminalis/preoptic area and the striatum. To study the contribution of testosterone to both the establishment and persistence of sex differences in DNA methylation, we performed genome-wide surveys in male, female, and female mice given testosterone on the day of birth. Methylation was assessed during the perinatal window for testosterone's organizational effects and in adulthood. Results The short-term effect of testosterone exposure was relatively modest. However, in adult animals the number of genes whose methylation was altered had increased by 20-fold. Furthermore, we found that in adulthood, methylation at a substantial number of sexually dimorphic CpG sites was masculinized in response to neonatal testosterone exposure. Consistent with this, testosterone's effect on gene expression in the striatum was more apparent in adulthood. Conclusion Taken together, our data imply that the organizational effects of testosterone on the brain methylome and transcriptome are dramatic and late-emerging. Our findings offer important insights into the long-term molecular effects of early-life hormonal exposure.
Collapse
Affiliation(s)
- Negar M Ghahramani
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Tuck C Ngun
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yuan Tian
- Interdepartmental PhD Program in Bioinformatics, UCLA, Los Angeles, CA 90095, USA
| | - Sangitha Krishnan
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Stephanie Muir
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
| | - Liudmilla Rubbi
- Department of Molecular, Cellular, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Arthur P Arnold
- Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA.,Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA 90095, USA
| | - Geert J de Vries
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Matteo Pellegrini
- Department of Molecular, Cellular, and Developmental Biology, UCLA, Los Angeles, CA 90095, USA
| | - Eric Vilain
- Department of Human Genetics, David Geffen School of Medicine at University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.,Laboratory of Neuroendocrinology of the Brain Research Institute, UCLA, Los Angeles, CA 90095, USA.,Department of Human Genetics, UCLA, 695 Charles Young Drive South, Gonda Room 5506, Los Angeles, CA 90095-7088, USA
| |
Collapse
|
23
|
Stanić D, Dubois S, Chua HK, Tonge B, Rinehart N, Horne MK, Boon WC. Characterization of aromatase expression in the adult male and female mouse brain. I. Coexistence with oestrogen receptors α and β, and androgen receptors. PLoS One 2014; 9:e90451. [PMID: 24646567 PMCID: PMC3960106 DOI: 10.1371/journal.pone.0090451] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 01/30/2014] [Indexed: 01/13/2023] Open
Abstract
Aromatase catalyses the last step of oestrogen synthesis. There is growing evidence that local oestrogens influence many brain regions to modulate brain development and behaviour. We examined, by immunohistochemistry, the expression of aromatase in the adult male and female mouse brain, using mice in which enhanced green fluorescent protein (EGFP) is transcribed following the physiological activation of the Cyp19A1 gene. EGFP-immunoreactive processes were distributed in many brain regions, including the bed nucleus of the stria terminalis, olfactory tubercle, medial amygdaloid nucleus and medial preoptic area, with the densest distributions of EGFP-positive cell bodies in the bed nucleus and medial amygdala. Differences between male and female mice were apparent, with the density of EGFP-positive cell bodies and fibres being lower in some brain regions of female mice, including the bed nucleus and medial amygdala. EGFP-positive cell bodies in the bed nucleus, lateral septum, medial amygdala and hypothalamus co-expressed oestrogen receptor (ER) α and β, or the androgen receptor (AR), although single-labelled EGFP-positive cells were also identified. Additionally, single-labelled ERα-, ERβ- or AR-positive cell bodies often appeared to be surrounded by EGFP-immunoreactive nerve fibres/terminals. The widespread distribution of EGFP-positive cell bodies and fibres suggests that aromatase signalling is common in the mouse brain, and that locally synthesised brain oestrogens could mediate biological effects by activating pre- and post-synaptic oestrogen α and β receptors, and androgen receptors. The higher number of EGFP-positive cells in male mice may indicate that the autocrine and paracrine effects of oestrogens are more prominent in males than females.
Collapse
Affiliation(s)
- Davor Stanić
- Systems Neurophysiology, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Florey Neuroscience, University of Melbourne, Parkville, Victoria, Australia
| | - Sydney Dubois
- Neurodegeneration, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Départment de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Hui Kheng Chua
- Neurodegeneration, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Bruce Tonge
- Centre for Developmental Psychiatry & Psychology, Monash University, Clayton, Victoria, Australia
| | - Nicole Rinehart
- Centre for Developmental Psychiatry & Psychology, Monash University, Clayton, Victoria, Australia
| | - Malcolm K. Horne
- Neurodegeneration, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Florey Neuroscience, University of Melbourne, Parkville, Victoria, Australia
- Neurology Department, St Vincent's Hospital, Fitzroy, Victoria, Australia
| | - Wah Chin Boon
- Neurodegeneration, The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Florey Neuroscience, University of Melbourne, Parkville, Victoria, Australia
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
24
|
Jašarević E, Geary DC, Rosenfeld CS. Sexually selected traits: a fundamental framework for studies on behavioral epigenetics. ILAR J 2014; 53:253-69. [PMID: 23744965 DOI: 10.1093/ilar.53.3-4.253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Emerging evidence suggests that epigenetic-based mechanisms contribute to various aspects of sex differences in brain and behavior. The major obstacle in establishing and fully understanding this linkage is identifying the traits that are most susceptible to epigenetic modification. We have proposed that sexual selection provides a conceptual framework for identifying such traits. These are traits involved in intrasexual competition for mates and intersexual choice of mating partners and generally entail a combination of male-male competition and female choice. These behaviors are programmed during early embryonic and postnatal development, particularly during the transition from the juvenile to adult periods, by exposure of the brain to steroid hormones, including estradiol and testosterone. We evaluate the evidence that endocrine-disrupting compounds, including bisphenol A, can interfere with the vital epigenetic and gene expression pathways and with the elaboration of sexually selected traits with epigenetic mechanisms presumably governing the expression of these traits. Finally, we review the evidence to suggest that these steroid hormones can induce a variety of epigenetic changes in the brain, including the extent of DNA methylation, histone protein alterations, and even alterations of noncoding RNA, and that many of the changes differ between males and females. Although much previous attention has focused on primary sex differences in reproductive behaviors, such as male mounting and female lordosis, we outline why secondary sex differences related to competition and mate choice might also trace their origins back to steroid-induced epigenetic programming in disparate regions of the brain.
Collapse
Affiliation(s)
- Eldin Jašarević
- Department of Psychological Sciences, the Interdisciplinary Neuroscience Program, and the Bond Life Sciences Center, University of Missouri, Columbia 65211, USA
| | | | | |
Collapse
|
25
|
Kelly DA, Varnum MM, Krentzel AA, Krug S, Forger NG. Differential control of sex differences in estrogen receptor α in the bed nucleus of the stria terminalis and anteroventral periventricular nucleus. Endocrinology 2013; 154:3836-46. [PMID: 24025225 PMCID: PMC3776875 DOI: 10.1210/en.2013-1239] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The principal nucleus of the bed nucleus of the stria terminalis (BNSTp) and anteroventral periventricular nucleus of the hypothalamus (AVPV) are sexually dimorphic, hormone-sensitive forebrain regions. Here we report a profound sex difference in estrogen receptor-α (ERα) immunoreactivity (IR) in the BNSTp, with robust ERα IR in females and the near absence of labeling in males. This sex difference is due to the suppression of ERα IR by testicular hormones in adulthood: it was not present at birth and was not altered by neonatal treatment of females with estradiol; gonadectomy of adult males increased ERα IR to that of females, whereas gonadectomy of adult females had no effect. Treating gonadally intact males with an aromatase inhibitor partially feminized ERα IR in the BNSTp, suggesting that testicular suppression required aromatization. By contrast, in AVPV we found a modest sex difference in ERα IR that was relatively insensitive to steroid manipulations in adulthood. ERα IR in AVPV was, however, masculinized in females treated with estradiol at birth, suggesting that the sex difference is due to organizational effects of estrogens. The difference in ERα IR in the BNSTp of males and females appears to be at least in part due to greater expression of mRNA of the ERα gene (Esr1) in females. The sex difference in message is smaller than the difference in immunoreactivity, however, suggesting that posttranscriptional mechanisms also contribute to the pronounced suppression of ERα IR and presumably to functions mediated by ERα in the male BNSTp.
Collapse
Affiliation(s)
- D A Kelly
- PhD, Department of Psychology, University of Massachusetts, Amherst, Massachusetts 01003.
| | | | | | | | | |
Collapse
|
26
|
Wittmann W, McLennan IS. The bed nucleus of the stria terminalis has developmental and adult forms in mice, with the male bias in the developmental form being dependent on testicular AMH. Horm Behav 2013; 64:605-10. [PMID: 24012942 DOI: 10.1016/j.yhbeh.2013.08.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/26/2013] [Accepted: 08/27/2013] [Indexed: 12/15/2022]
Abstract
Canonically, the sexual dimorphism in the brain develops perinatally, with adult sexuality emerging due to the activating effects of pubescent sexual hormones. This concept does not readily explain why children have a gender identity and exhibit sex-stereotypic behaviours. These phenomena could be explained if some aspects of the sexual brain networks have childhood forms, which are transformed at puberty to generate adult sexuality. The bed nucleus of stria terminalis (BNST) is a dimorphic nucleus that is sex-reversed in transsexuals but not homosexuals. We report here that the principal nucleus of the BNST (BNSTp) of mice has developmental and adult forms that are differentially regulated. In 20-day-old prepubescent mice, the male bias in the principal nucleus of the BNST (BNSTp) was moderate (360 ± 6 vs 288 ± 12 calbindin(+ve) neurons, p < 0.0001), and absent in mice that lacked a gonadal hormone, AMH. After 20 days, the number of BNSTp neurons increased in the male mice by 25% (p < 0.0001) and decreased in female mice by 15% (p = 0.0012), independent of AMH. Adult male AMH-deficient mice had a normal preference for sniffing female pheromones (soiled bedding), but exhibited a relative disinterest in both male and female pheromones. This suggests that male mice require AMH to undergo normal social development. The reported observations provide a rationale for examining AMH levels in children with gender identity disorders and disorders of socialization that involve a male bias.
Collapse
Affiliation(s)
- Walter Wittmann
- Department of Anatomy, Brain Health Research Centre, University of Otago, PO Box 913, Dunedin, New Zealand; Umeå Center for Molecular Medicine, Umeå University, Sweden
| | | |
Collapse
|
27
|
Ahern TH, Krug S, Carr AV, Murray EK, Fitzpatrick E, Bengston L, McCutcheon J, De Vries GJ, Forger NG. Cell death atlas of the postnatal mouse ventral forebrain and hypothalamus: effects of age and sex. J Comp Neurol 2013; 521:2551-69. [PMID: 23296992 PMCID: PMC4968939 DOI: 10.1002/cne.23298] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 11/28/2012] [Accepted: 12/26/2012] [Indexed: 01/21/2023]
Abstract
Naturally occurring cell death is essential to the development of the mammalian nervous system. Although the importance of developmental cell death has been appreciated for decades, there is no comprehensive account of cell death across brain areas in the mouse. Moreover, several regional sex differences in cell death have been described for the ventral forebrain and hypothalamus, but it is not known how widespread the phenomenon is. We used immunohistochemical detection of activated caspase-3 to identify dying cells in the brains of male and female mice from postnatal day (P) 1 to P11. Cell death density, total number of dying cells, and regional volume were determined in 16 regions of the hypothalamus and ventral forebrain (the anterior hypothalamus, arcuate nucleus, anteroventral periventricular nucleus, medial preoptic nucleus, paraventricular nucleus, suprachiasmatic nucleus, and ventromedial nucleus of the hypothalamus; the basolateral, central, and medial amygdala; the lateral and principal nuclei of the bed nuclei of the stria terminalis; the caudate-putamen; the globus pallidus; the lateral septum; and the islands of Calleja). All regions showed a significant effect of age on cell death. The timing of peak cell death varied between P1 to P7, and the average rate of cell death varied tenfold among regions. Several significant sex differences in cell death and/or regional volume were detected. These data address large gaps in the developmental literature and suggest interesting region-specific differences in the prevalence and timing of cell death in the hypothalamus and ventral forebrain.
Collapse
Affiliation(s)
- Todd H. Ahern
- Center for Behavioral Neuroscience, Department of Psychology, Quinnipiac University, Hamden, Connecticut 06518
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Stefanie Krug
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Audrey V. Carr
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Elaine K. Murray
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Emmett Fitzpatrick
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Lynn Bengston
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Jill McCutcheon
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
| | - Geert J. De Vries
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| | - Nancy G. Forger
- Department of Psychology, Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003
- Neuroscience Institute, Georgia State University, Atlanta, Georgia 30303
| |
Collapse
|
28
|
Semaan SJ, Kauffman AS. Emerging concepts on the epigenetic and transcriptional regulation of the Kiss1 gene. Int J Dev Neurosci 2013; 31:452-62. [PMID: 23510953 DOI: 10.1016/j.ijdevneu.2013.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Revised: 03/09/2013] [Accepted: 03/10/2013] [Indexed: 12/23/2022] Open
Abstract
Kisspeptin and its receptor have been implicated as critical regulators of reproductive physiology, with humans and mice without functioning kisspeptin systems displaying severe pubertal and reproductive defects. Alterations in the expression of Kiss1 (the gene encoding kisspeptin) over development, along with differences in Kiss1 expression between the sexes in adulthood, may be critical for the maturation and functioning of the neuroendocrine reproductive system and could possibly contribute to pubertal progression, sex differences in luteinizing hormone secretion, and other facets of reproductive physiology. It is therefore essential to understand how Kiss1 gene expression develops and what possible regulatory mechanisms govern the modulation of its expression. A number of recent studies, primarily in rodent or cell line models, have focused on the contributions of epigenetic mechanisms to the regulation of Kiss1 gene expression; thus far, mechanisms such as DNA methylation, histone acetylation, and histone methylation have been investigated. This review discusses the most recent findings on the epigenetic control of Kiss1 expression in adulthood, the evidence for epigenetic factors affecting Kiss1 expression during puberty and development, and findings regarding the contribution of epigenetics to the sexually dimorphic expression of Kiss1 in the hypothalamus.
Collapse
Affiliation(s)
- Sheila J Semaan
- University of California San Diego, Department of Reproductive Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
29
|
The development of kisspeptin circuits in the Mammalian brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 784:221-52. [PMID: 23550009 DOI: 10.1007/978-1-4614-6199-9_11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The neuropeptide kisspeptin, encoded by the Kiss1 gene, is required for mammalian puberty and fertility. Examining the development of the kisspeptin system contributes to our understanding of pubertal progression and adult reproduction and sheds light on possible mechanisms underlying the development of reproductive disorders, such as precocious puberty or hypogonadotropic hypogonadism. Recent work, primarily in rodent models, has begun to study the development of kisspeptin neurons and their regulation by sex steroids and other factors at early life stages. In the brain, kisspeptin is predominantly expressed in two areas of the hypothalamus, the anteroventral periventricular nucleus and neighboring periventricular nucleus (pre-optic area in some species) and the arcuate nucleus. Kisspeptin neurons in these two hypothalamic regions are differentially regulated by testosterone and estradiol, both in development and in adulthood, and also display differences in their degree of sexual dimorphism. In this chapter, we discuss what is currently known and not known about the ontogeny, maturation, and sexual differentiation of kisspeptin neurons, as well as their regulation by sex steroids and other factors during development.
Collapse
|
30
|
Poling MC, Kauffman AS. Organizational and activational effects of sex steroids on kisspeptin neuron development. Front Neuroendocrinol 2013; 34:3-17. [PMID: 22728025 PMCID: PMC3725275 DOI: 10.1016/j.yfrne.2012.06.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 05/17/2012] [Accepted: 06/07/2012] [Indexed: 11/29/2022]
Abstract
Kisspeptin, encoded by the Kiss1 gene, is a neuropeptide required for puberty and adult reproductive function. Understanding the regulation and development of the kisspeptin system provides valuable knowledge about the physiology of puberty and adult fertility, and may provide insights into human pubertal or reproductive disorders. Recent studies, particularly in rodent models, have assessed how kisspeptin neurons develop and how hormonal and non-hormonal factors regulate this developmental process. Exposure to sex steroids (testosterone and estradiol) during critical periods of development can induce organizational (permanent) effects on kisspeptin neuron development, with respect to both sexually dimorphic and non-sexually dimorphic aspects of kisspeptin biology. In addition, sex steroids can also impart activational (temporary) effects on kisspeptin neurons and Kiss1 gene expression at various times during neonatal and peripubertal development, as they do in adulthood. Here, we discuss the current knowledge--and in some cases, lack thereof--of the influence of hormones and other factors on kisspeptin neuronal development.
Collapse
Affiliation(s)
- Matthew C Poling
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
31
|
Altered anxiety and defensive behaviors in Bax knockout mice. Behav Brain Res 2012; 239:115-20. [PMID: 23142367 DOI: 10.1016/j.bbr.2012.10.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 01/23/2023]
Abstract
Developmental neuronal cell death is critically regulated by the pro-death protein Bax. Bax-/- mice exhibit increased neuron number, the elimination of several neural sex differences, and altered socio-sexual behaviors. Here we examined the effects of Bax gene deletion on anxiety and defensive behaviors by comparing the responses of male and female wildtype and Bax-/- mice to two different tests. On the elevated plus maze, Bax-/- mice of both sexes made more entries into and spent more time in the outer portion of open arms, indicating decreased anxiety compared to wildtype animals. Next, we exposed mice to two odors: trimethylthiazoline (TMT), an olfactory component of fox feces that rodents find aversive, and butyric acid (BA), an aversive odor without ecological significance. Each odor was presented individually and all animals were tested with both odors in a counterbalanced design. TMT was consistently more aversive than BA across a variety of behaviors (e.g., mice spent less time close to the odor source). Overall, Bax -/- mice showed fewer stretch approaches to both TMT and BA than wildtypes, but they avoided the odor source more (e.g., fewer contacts and less time spent in proximity). Finally, no effect of genotype was seen in baseline olfactory behavior; all mice were able to locate a buried food item, demonstrating that Bax-/- mice do not have impaired olfaction per se. Collectively, these data suggest a change in strategy with anxiety and defensive behaviors in Bax-/- mice, indicating that alterations in cell number affect more general mechanisms of fear and anxiety in addition to behaviors directly related to reproduction.
Collapse
|
32
|
Holmes MM, Niel L, Anyan JJ, Griffith AT, Monks DA, Forger NG. Effects of Bax gene deletion on social behaviors and neural response to olfactory cues in mice. Eur J Neurosci 2012; 34:1492-9. [PMID: 22034980 DOI: 10.1111/j.1460-9568.2011.07881.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bax is a pro-death protein that plays a crucial role in developmental neuronal cell death. Bax(-/-) mice exhibit increased neuron number and lack several neural sex differences. Here we examined the effects of Bax gene deletion on social behaviors (olfactory preference, social recognition, social approach and aggression) and the neural processing of olfactory cues. Bax deletion eliminated the normal sex difference in olfactory preference behavior. In the social recognition test, both genotypes discriminated a novel conspecific, but wild-type males and Bax(-/-) animals of both sexes spent much more time than wild-type females investigating stimulus animals. Similarly, Bax(-/-) mice were more sociable than wild-type mice in a social approach test. Bax deletion had no effect on aggression in a resident/intruder paradigm where males, regardless of genotype, exhibited a shorter latency to attack. Thus, the prevention of neuronal cell death by Bax gene deletion results in greater sociability as well as the elimination of sex differences in some social behaviors. To examine olfactory processing of socially relevant cues, we counted c-Fos-immunoreactive (Fos-ir) cells in several nodes of the accessory olfactory pathway after exposure to male-soiled or control bedding. In both genotypes, exposure to male-soiled bedding increased Fos-ir cells in the posterodorsal medial amygdala, principal nucleus of the bed nucleus of the stria terminalis and medial preoptic nucleus (MPN), and the response in the MPN was greater in females than in males. However, a reduction in Fos-ir cells was seen in the anteroventral periventricular nucleus of Bax(-/-) mice.
Collapse
Affiliation(s)
- Melissa M Holmes
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada.
| | | | | | | | | | | |
Collapse
|
33
|
Waddell J, McCarthy MM. Sexual differentiation of the brain and ADHD: what is a sex difference in prevalence telling us? Curr Top Behav Neurosci 2012; 9:341-60. [PMID: 21120649 PMCID: PMC4841632 DOI: 10.1007/7854_2010_114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Sexual differentiation of the brain is a function of various processes that prepare the organism for successful reproduction in adulthood. Release of gonadal steroids during both the perinatal and the pubertal stages of development organizes many sex differences, producing changes in brain excitability and morphology that endure across the lifespan. To achieve these sexual dimorphisms, gonadal steroids capitalize on a number of distinct mechanisms across brain regions. Comparison of the developing male and female brain provides insight into the mechanisms through which synaptic connections are made, and circuits are organized that mediate sexually dimorphic behaviors. The prevalence of most psychiatric and neurological disorders differ in males versus females, including disorders of attention, activity and impulse control. While there is a strong male bias in incidence of attention deficit and hyperactivity disorders, the source of that bias remains controversial. By elucidating the biological underpinnings of male versus female brain development, we gain a greater understanding of how hormones and genes do and do not contribute to the differential vulnerability in one sex versus the other.
Collapse
Affiliation(s)
- Jaylyn Waddell
- Department of Physiology, School of Medicine, University of Maryland, Baltimore, MD, 21201, USA,
| | | |
Collapse
|
34
|
Tsukahara S, Tsuda MC, Kurihara R, Kato Y, Kuroda Y, Nakata M, Xiao K, Nagata K, Toda K, Ogawa S. Effects of aromatase or estrogen receptor gene deletion on masculinization of the principal nucleus of the bed nucleus of the stria terminalis of mice. Neuroendocrinology 2011; 94:137-47. [PMID: 21525731 DOI: 10.1159/000327541] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 03/15/2011] [Indexed: 11/19/2022]
Abstract
The principal nucleus of the bed nucleus of the stria terminalis (BNSTp) is a sexually dimorphic nucleus, and the male BNSTp is larger and has more neurons than the female BNSTp. To assess the roles of neuroestrogen synthesized from testicular androgen by brain aromatase in masculinization of the BNSTp, we performed morphometrical analyses of the adult BNSTp in aromatase knockout (ArKO), estrogen receptor-α knockout (αERKO), and estrogen receptor-β knockout (βERKO) mice and their respective wild-type littermates. In wild-type littermates, the BNSTp of males had a larger volume and greater numbers of neuronal and glial cells than did that of females. The volume and neuron number of the BNSTp in ArKO and αERKO males and glial cell number of the BNSTp in αERKO males were significantly smaller than those of wild-type male littermates, and they were not significantly different from those in female mice with either gene knockout. In contrast, there was no significant morphological difference in the BNSTp between βERKO and wild-type mice. Next, we examined the BNSTp of ArKO males subcutaneously injected with estradiol benzoate (EB) on postnatal days 1, 2, and 3 (1.5 μg/day). EB-treated ArKO males had a significantly greater number of BNSTp neurons than did oil-treated ArKO males. The number of BNSTp neurons in EB-treated ArKO males was comparable to that in wild-type males. These findings suggested that masculinization of the BNSTp in mice involves the actions of neuroestrogen that was synthesized by aromatase and that this estrogen mostly binds to ERα during the postnatal period.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama City, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Semaan SJ, Murray EK, Poling MC, Dhamija S, Forger NG, Kauffman AS. BAX-dependent and BAX-independent regulation of Kiss1 neuron development in mice. Endocrinology 2010; 151:5807-17. [PMID: 20926580 PMCID: PMC2999490 DOI: 10.1210/en.2010-0783] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Kiss1 gene and its product kisspeptin are important regulators of reproduction. In rodents, Kiss1 is expressed in the hypothalamic arcuate (ARC) and anteroventral periventricular (AVPV)/rostral periventricular (PeN) nuclei. In the AVPV/PeN, females have more Kiss1 and tyrosine hydroxylase (TH) neurons than males. We explored the ontogeny of the Kiss1 sex difference, and the role of cell death in establishing Kiss1 and TH cell number. We also determined whether Kiss1 cells in AVPV/PeN coexpress TH. AVPV/PeN Kiss1 neurons were first detected in both sexes on postnatal d 10, but the Kiss1 sex difference did not emerge until postnatal d 12. The role of BAX-mediated apoptosis in generating this sex difference was tested in adult Bax knockout (KO) and wild-type mice. Deletion of Bax did not diminish the sex difference in Kiss1 expression in the AVPV/PeN. TH expression was sexually dimorphic in the AVPV of both wild-type and Bax KO mice but, unlike Kiss1, was not sexually dimorphic in the PeN of either genotype. Double-label analysis determined that most Kiss1 neurons coexpress TH mRNA, but many TH neurons do not coexpress Kiss1, especially in the PeN. These findings suggest that several subpopulations of TH cells reside within the AVPV/PeN, only one of which coexpresses Kiss1. In the ARC, Kiss1 cell number was markedly increased in Bax KO mice of both sexes, indicating that although BAX-dependent apoptosis does not generate the sex difference in either Kiss1 or TH expression in AVPV/PeN, BAX does importantly regulate Kiss1 cell number in the ARC.
Collapse
Affiliation(s)
- Sheila J Semaan
- Department of Reproductive Medicine, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
36
|
Gagnidze K, Weil ZM, Pfaff DW. Histone modifications proposed to regulate sexual differentiation of brain and behavior. Bioessays 2010; 32:932-9. [DOI: 10.1002/bies.201000064] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
37
|
Abstract
The brains of males and females differ anatomically and physiologically, including sex differences in neurone size or number, synapse morphology and specific patterns of gene expression. Brain sex differences may underlie critical sex differences in physiology or behaviour, including several aspects of reproduction, such as the timing of sexual maturation (earlier in females than males) and the ability to generate a preovulatory gonadotrophin surge (in females only). The reproductive axis is controlled by afferent pathways that converge upon forebrain gonadotrophin-releasing hormone (GnRH) neurones, but GnRH neurones are not sexually dimorphic. Although most reproductive sex differences probably reflect sex differences in the upstream circuits and factors that regulate GnRH secretion, the key sexually-dimorphic factors that influence reproductive status have remained poorly defined. The recently-identified neuropeptide kisspeptin, encoded by the Kiss1 gene, is an important regulator of GnRH secretion, and Kiss1 neurones in rodents are sexually dimorphic in specific hypothalamic populations, including the anteroventral periventricular nucleus-periventricular nucleus continuum (AVPV/PeN) and the arcuate nucleus (ARC). In the adult AVPV/PeN, Kiss1 neurones are more abundant in females than males, representing a sex difference that is regulated by oestradiol signalling during critical periods of postnatal and pubertal development. By contrast, Kiss1 neurones in the ARC are not sexually differentiated in adult rodents but, in mice, the regulation of ARC Kiss1 cells by gonadal hormone-independent factors is sexually dimorphic during prepubertal development. These various sex differences in hypothalamic Kiss1 neurones may relate to known sex differences in reproductive physiology, such as puberty onset and positive feedback.
Collapse
Affiliation(s)
- A S Kauffman
- Department of Reproductive Medicine, Center for Chronobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
38
|
Semaan SJ, Kauffman AS. Sexual differentiation and development of forebrain reproductive circuits. Curr Opin Neurobiol 2010; 20:424-31. [PMID: 20471241 DOI: 10.1016/j.conb.2010.04.004] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 04/08/2010] [Accepted: 04/09/2010] [Indexed: 11/19/2022]
Abstract
Males and females exhibit numerous anatomical and physiological differences in the brain that often underlie important sex differences in physiology or behavior, including aspects relating to reproduction. Neural sex differences are both region-specific and trait-specific and may consist of divergences in synapse morphology, neuron size and number, and specific gene expression levels. In most cases, sex differences are induced by the sex steroid hormonal milieu during early perinatal development. In rodents, the hypothalamic anteroventral periventricular nucleus (AVPV) is sexually differentiated as a result of postnatal sex steroids, and also specific neuronal populations in this nucleus are sexually dimorphic, with females possessing more kisspeptin, dopaminergic, and GABA/glutamate neurons than males. The ability of female rodents, but not males, to display an estrogen-induced luteinizing hormone (LH) surge is consistent with the higher levels of these neuropeptides in the AVPV of females. Of these AVPV populations, the recently identified kisspeptin system has been most strongly implicated as a crucial component of the sexually dimorphic LH surge mechanism, though GABA and glutamate have also received some attention. New findings have suggested that the sexual differentiation and development of kisspeptin neurons in the AVPV is mediated by developmental estradiol signaling. Although apoptosis is the most common process implicated in neuronal sexual differentiation, it is currently unknown how developmental estradiol acts to differentiate specific neuronal populations in the AVPV, such as kisspeptin or dopaminergic neurons.
Collapse
Affiliation(s)
- Sheila J Semaan
- Department of Reproductive Medicine, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
39
|
Hisasue SI, Seney ML, Immerman E, Forger NG. Control of cell number in the bed nucleus of the stria terminalis of mice: role of testosterone metabolites and estrogen receptor subtypes. J Sex Med 2010; 7:1401-9. [PMID: 20102443 DOI: 10.1111/j.1743-6109.2009.01669.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
INTRODUCTION The bed nucleus of the stria terminalis (BNST) exhibits several sex differences that may be related to male sexual behavior and gender identity. In mice and rats, sex differences in the principal nucleus of the BNST (BNSTp) are due to sexually dimorphic cell death during perinatal life. Although testosterone treatment of newborn female rats increases BNSTp cell number, the relevant hormone metabolite(s) are not known, and the effect of testosterone on the development of BNSTp cell number in mice has not been examined. AIM To identify the sex hormone metabolites and receptors controlling cell number, volume, and cell size in the BNSTp of mice. METHODS In the first experiment, C57BL/6J male mice were injected on the day of birth with peanut oil; females were injected with testosterone propionate (TP), estradiol benzoate (EB), dihydrotestosterone propionate (DHTP), or oil alone, and the BNSTp of all animals was examined in adulthood. In the second experiment, to compare effects of EB to the effects of estrogen receptor subtype specific agonists, newborn female mice were injected with EB, propyl-pyrazole-triol (PPT, a selective estrogen receptor alpha [ERalpha] agonist), or diarylpropionitrile (DPN, a selective estrogen receptor beta [ERbeta] agonist). MAIN OUTCOME MEASURES Nuclear volume measurements and stereological cell counts in the BNSTp in adulthood. RESULTS TP treatment of newborn females completely masculinized both BNSTp volume and cell number. EB masculinized neuron number, whereas DHTP had no effect on volume or cell number. In the second experiment, EB again fully masculinized neuron number in the BNSTp and in this study also masculinized BNSTp volume. PPT and DPN each significantly increased cell number, but neither completely mimicked the effects of EB. CONCLUSIONS We conclude that estrogenic metabolites of testosterone control sexually dimorphic cell survival in the BNSTp and that activation of both ERalpha and ERbeta may be required for complete masculinization of this brain region.
Collapse
Affiliation(s)
- Shin-ichi Hisasue
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA, USA.
| | | | | | | |
Collapse
|
40
|
Abstract
Epigenetic changes in the nervous system are emerging as a critical component of enduring effects induced by early life experience, hormonal exposure, trauma and injury, or learning and memory. Sex differences in the brain are largely determined by steroid hormone exposure during a perinatal sensitive period that alters subsequent hormonal and nonhormonal responses throughout the lifespan. Steroid receptors are members of a nuclear receptor transcription factor superfamily and recruit multiple proteins that possess enzymatic activity relevant to epigenetic changes such as acetylation and methylation. Thus steroid hormones are uniquely poised to exert epigenetic effects on the developing nervous system to dictate adult sex differences in brain and behavior. Sex differences in the methylation pattern in the promoter of estrogen and progesterone receptor genes are evident in newborns and persist in adults but with a different pattern. Changes in response to injury and in methyl-binding proteins and steroid receptor coregulatory proteins are also reported. Many steroid-induced epigenetic changes are opportunistic and restricted to a single lifespan, but new evidence suggests endocrine-disrupting compounds can exert multigenerational effects. Similarly, maternal diet also induces transgenerational effects, but the impact is sex specific. The study of epigenetics of sex differences is in its earliest stages, with needed advances in understanding of the hormonal regulation of enzymes controlling acetylation and methylation, coregulatory proteins, transient versus stable DNA methylation patterns, and sex differences across the epigenome to fully understand sex differences in brain and behavior.
Collapse
|
41
|
Wu MV, Manoli DS, Fraser EJ, Coats JK, Tollkuhn J, Honda SI, Harada N, Shah NM. Estrogen masculinizes neural pathways and sex-specific behaviors. Cell 2009; 139:61-72. [PMID: 19804754 DOI: 10.1016/j.cell.2009.07.036] [Citation(s) in RCA: 301] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Revised: 05/18/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
Abstract
Sex hormones are essential for neural circuit development and sex-specific behaviors. Male behaviors require both testosterone and estrogen, but it is unclear how the two hormonal pathways intersect. Circulating testosterone activates the androgen receptor (AR) and is also converted into estrogen in the brain via aromatase. We demonstrate extensive sexual dimorphism in the number and projections of aromatase-expressing neurons. The masculinization of these cells is independent of AR but can be induced in females by either testosterone or estrogen, indicating a role for aromatase in sexual differentiation of these neurons. We provide evidence suggesting that aromatase is also important in activating male-specific aggression and urine marking because these behaviors can be elicited by testosterone in males mutant for AR and in females subjected to neonatal estrogen exposure. Our results suggest that aromatization of testosterone into estrogen is important for the development and activation of neural circuits that control male territorial behaviors.
Collapse
Affiliation(s)
- Melody V Wu
- Program in Neuroscience, University of California-San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Murray EK, Hien A, de Vries GJ, Forger NG. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology 2009; 150:4241-7. [PMID: 19497973 PMCID: PMC2736071 DOI: 10.1210/en.2009-0458] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The principal nucleus of the bed nucleus of the stria terminalis (BNSTp) is larger in volume and contains more cells in male than female mice. These sex differences depend on testosterone and arise from a higher rate of cell death during early postnatal life in females. There is a delay of several days between the testosterone surge at birth and sexually dimorphic cell death in the BNSTp, suggesting that epigenetic mechanisms may be involved. We tested the hypothesis that chromatin remodeling plays a role in sexual differentiation of the BNSTp by manipulating the balance between histone acetylation and deacetylation using a histone deacetylase inhibitor. In the first experiment, a single injection of valproic acid (VPA) on the day of birth increased acetylation of histone H3 in the brain 24 h later. Next, males, females, and females treated neonatally with testosterone were administered VPA or saline on postnatal d 1 and 2 and killed at 21 d of age. VPA treatment did not influence volume or cell number of the BNSTp in control females but significantly reduced both parameters in males and testosterone-treated females. As a result, the sex differences were eliminated. VPA did not affect volume or cell number in the suprachiasmatic nucleus or the anterodorsal nucleus of the thalamus, which also did not differ between males and females. These findings suggest that a disruption in histone deacetylation may lead to long-term alterations in gene expression that block the masculinizing actions of testosterone in the BNSTp.
Collapse
Affiliation(s)
- Elaine K Murray
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | |
Collapse
|
43
|
Tsukahara S. Sex differences and the roles of sex steroids in apoptosis of sexually dimorphic nuclei of the preoptic area in postnatal rats. J Neuroendocrinol 2009; 21:370-6. [PMID: 19226350 DOI: 10.1111/j.1365-2826.2009.01855.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The brain contains several sexually dimorphic nuclei that exhibit sex differences with respect to cell number. It is likely that the control of cell number by apoptotic cell death in the developing brain contributes to creating sex differences in cell number in sexually dimorphic nuclei, although the mechanisms responsible for this have not been determined completely. The milieu of sex steroids in the developing brain affects sexual differentiation in the brain. The preoptic region of rats has two sexually dimorphic nuclei. The sexually dimorphic nucleus of the preoptic area (SDN-POA) has more neurones in males, whereas the anteroventral periventricular nucleus (AVPV) has a higher cell density in females. Sex differences in apoptotic cell number arise in the SDN-POA and AVPV of rats in the early postnatal period, and an inverse correlation exists between sex differences in apoptotic cell number and the number of living cells in the mature period. The SDN-POA of postnatal male rats exhibits a higher expression of anti-apoptotic Bcl-2 and lower expression of pro-apoptotic Bax compared to that in females and, as a potential result, apoptotic cell death via caspase-3 activation more frequently occurs in the SDN-POA of females. The patterns of expression of Bcl-2 and Bax in the SDN-POA of postnatal female rats are changed to male-typical ones by treatment with oestrogen, which is normally synthesised from testicular androgen and affects the developing brain in males. In the AVPV of postnatal rats, apoptotic regulation also differs between the sexes, although Bcl-2 expression is increased and Bax expression and caspase-3 activity are decreased in females. The mechanisms of apoptosis possibly contributing to the creation of sex differences in cell number and the roles of sex steroids in apoptosis are discussed.
Collapse
Affiliation(s)
- S Tsukahara
- Research Centre for Environmental Risk, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
44
|
Abstract
The hormonal control of cell death is currently the best-established mechanism for creating sex differences in cell number in the brain and spinal cord. For example, males have more cells than do females in the principal nucleus of the bed nucleus of the stria terminalis (BNSTp) and spinal nucleus of the bulbocavernosus (SNB), whereas females have a cell number advantage in the anteroventral periventricular nucleus (AVPV). In each case, the difference in cell number in adulthood correlates with a sex difference in the number of dying cells at some point in development. Mice with over- or under-expression of cell death genes have been used to test more directly the contribution of cell death to neural sex differences, to identify molecular mechanisms involved, and to determine the behavioural consequences of suppressing developmental cell death. Bax is a pro-death gene of the Bcl-2 family that is singularly important for apoptosis in neural development. In mice lacking bax, the number of cells in the BNSTp, SNB and AVPV are significantly increased, and sex differences in total cell number in each of these regions are eliminated. Cells rescued by bax gene deletion in the BNSTp express markers of differentiated neurones and the androgen receptor. On the other hand, sex differences in other phenotypically identified populations, such as vasopressin-expressing neurones in the BNSTp or dopaminergic neurones in AVPV, are not affected by either bax deletion or bcl-2 over-expression. Possible mechanisms by which testosterone may regulate cell death in the nervous system are discussed, as are the behavioural effects of eliminating sex differences in neuronal cell number.
Collapse
Affiliation(s)
- N G Forger
- Department of Psychology and Center for Neuroendocrine Studies, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
45
|
de Vries GJ, Jardon M, Reza M, Rosen GJ, Immerman E, Forger NG. Sexual differentiation of vasopressin innervation of the brain: cell death versus phenotypic differentiation. Endocrinology 2008; 149:4632-7. [PMID: 18499746 PMCID: PMC2553370 DOI: 10.1210/en.2008-0448] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In most vertebrates studied, males have more vasopressin (VP) cells in the bed nucleus of the stria terminalis, or homologous vasotocin cells in nonmammalian species, than females. Previous research excluded differential cell birth and migration as likely mechanisms underlying this difference, leaving just differential cell death and phenotypic differentiation of existing cells. To differentiate between these remaining possibilities, we compared VP cell number in wild-type mice vs. mice overexpressing the anti-cell death factor, Bcl-2. All animals were gonadectomized in adulthood and given testosterone capsules. Three weeks later, brains were processed for in situ hybridization to identify VP cells. Bcl-2 overexpression increased VP cell number in both sexes but did not reduce the sex difference. We repeated this experiment in mice with a null mutation of the pro-cell death gene, Bax, and obtained similar results; cell number was increased in Bax(-/-) mice of both sexes, but males had about 40% more VP cells, regardless of Bax gene status. Taken together, cell death is unlikely to account for the sex difference in VP cell number, leaving differentiation of cell phenotype as the most likely underlying mechanism. We also used immunocytochemistry to examine VP projections in Bcl-2-overexpressing mice. As expected, males showed denser VP-immunoreactive fibers than females in the lateral septum, a projection area of the bed nucleus of the stria terminalis. However, even though Bcl-2 overexpression increased VP cell number, it did not affect fiber density. Thus, a compensatory mechanism may control total septal innervation regardless of the number of contributing cells.
Collapse
Affiliation(s)
- Geert J de Vries
- Center for Neuroendocrine Studies, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Schwarz JM, McCarthy MM. Steroid-induced sexual differentiation of the developing brain: multiple pathways, one goal. J Neurochem 2008; 105:1561-72. [PMID: 18384643 PMCID: PMC2565863 DOI: 10.1111/j.1471-4159.2008.05384.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hormone exposure, including testosterone and its metabolite estradiol, induces a myriad of effects during a critical period of brain development that are necessary for brain sexual differentiation. Nuclear volume, neuronal morphology, and astrocyte complexity are examples of the wide range of effects by which testosterone and estradiol can induce permanent changes in the function of neurons for the purpose of reproduction in adulthood. This review will examine the multitude of mechanisms by which steroid hormones induce these permanent changes in brain structure and function. Elucidating how steroids alter brain development sheds light on how individual variation in neuronal phenotype is established during a critical period.
Collapse
Affiliation(s)
- Jaclyn M Schwarz
- Program in Neuroscience, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA.
| | | |
Collapse
|
47
|
Santos EM, Kille P, Workman VL, Paull GC, Tyler CR. Sexually dimorphic gene expression in the brains of mature zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2008; 149:314-24. [PMID: 18289901 DOI: 10.1016/j.cbpa.2008.01.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 01/09/2008] [Accepted: 01/11/2008] [Indexed: 10/22/2022]
Abstract
The molecular signalling pathways mediating sexual dimorphism have principally been investigated in the gonads, and to a lesser extent in other organs. The brain plays a central role in coordinating sexual function, including the regulation of reproductive development, maturation and sexual behaviour in both sexes. In this study, we investigated sex-related differences in gene expression in the brains of breeding zebrafish (Danio rerio) to establish a greater understanding of the sex-specific physiology of the brain in lower vertebrates. The brain transcriptomic profiles of males and females were interrogated to identify the genes showing sexually dimorphic gene expression. 42 genes were differentially expressed between the sexes, from which 18 genes were over-expressed in males and 24 genes were over-expressed in females. In males, these included deiodinase, iodothyronine, type II and ribosomal protein S8, and in females, superoxide dismutase [Cu-Zn], sprouty-4, frizzled 10 and testis enhanced gene transcript. Estrogen responsive elements were found in the regulatory regions for 3 genes over-expressed in males and 7 genes over-expressed in females. We have demonstrated the existence of dimorphic patterns of gene expression in the brain of a sexually mature, non-mammalian, vertebrate model, with implications for studies into reproduction and chemical disruption of brain function.
Collapse
Affiliation(s)
- Eduarda M Santos
- School of Biosciences, University of Exeter, Prince of Wales Road, Exeter, EX4 4PS, UK
| | | | | | | | | |
Collapse
|
48
|
Tsukahara S, Hojo R, Kuroda Y, Fujimaki H. Estrogen modulates Bcl-2 family protein expression in the sexually dimorphic nucleus of the preoptic area of postnatal rats. Neurosci Lett 2007; 432:58-63. [PMID: 18164816 DOI: 10.1016/j.neulet.2007.12.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 12/02/2007] [Accepted: 12/04/2007] [Indexed: 11/15/2022]
Abstract
In the sexually dimorphic nucleus of the preoptic area (SDN-POA) of postnatal rats, apoptotic cells are detected more frequently in females than males. This sex difference is under the influence of aromatized androgen. We have reported that there are sex differences in the levels of Bcl-2 (female<male) and Bax (female>male) in the central division of the medial preoptic nucleus (MPNc), a significant component of the SDN-POA, followed by a sex difference in induction of apoptosis via caspase-3 activation (female>male). In the present study, we examined effects of estradiol benzoate (EB) on expression of Bcl-2 and Bax in the MPNc. Female rats were subcutaneously injected with EB (25 or 50 microg per head) on postnatal day 5. MPNc and caudate putamen (CP) tissues were obtained from EB-treated female and male rats on postnatal day 6. Protein levels of Bcl-2 and Bax were determined by Western blotting. In the MPNc of female rats, EB at a dose of 50 microg/head but not 25 microg/head significantly increased Bcl-2 protein level and decreased Bax protein level. The levels of Bcl-2 and Bax of female rats treated with 50 microg of EB were comparable to those of male rats. However, the protein levels of Bcl-2 and Bax in the CP did not change with EB treatment. These results suggest that estrogen up-regulates Bcl-2 expression and down-regulates Bax expression in the MPNc of postnatal rats. Effects of estrogen on the Bcl-2 family are presumably responsible for sex difference in postnatal apoptosis of the SDN-POA.
Collapse
Affiliation(s)
- Shinji Tsukahara
- Research Center for Environmental Risk, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki 305-8506, Japan.
| | | | | | | |
Collapse
|