1
|
Barbosa Spinola CM, Boutet de Monvel J, Safieddine S, Lahlou G, Etournay R. In utero adeno-associated virus (AAV)-mediated gene delivery targeting sensory and supporting cells in the embryonic mouse inner ear. PLoS One 2024; 19:e0305742. [PMID: 39028743 PMCID: PMC11259301 DOI: 10.1371/journal.pone.0305742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 06/03/2024] [Indexed: 07/21/2024] Open
Abstract
In vivo gene delivery to tissues using adeno-associated vector (AAVs) has revolutionized the field of gene therapy. Yet, while sensorineural hearing loss is one of the most common sensory disorders worldwide, gene therapy applied to the human inner ear is still in its infancy. Recent advances in the development recombinant AAVs have significantly improved their cell tropism and transduction efficiency across diverse inner ear cell types to a level that renders this tool valuable for conditionally manipulating gene expression in the context of developmental biology studies of the mouse inner ear. Here, we describe a protocol for in utero micro-injection of AAVs into the embryonic inner ear, using the AAV-PHP.eB and AAV-DJ serotypes that respectively target the sensory hair cells and the supporting cells of the auditory sensory epithelium. We also aimed to standardize procedures for imaging acquisition and image analysis to foster research reproducibility and allow accurate comparisons between studies. We find that AAV-PHP.eB and AAV-DJ provide efficient and reliable tools for conditional gene expression targeting cochlear sensory and supporting cells in the mouse inner ear, from late embryonic stages on.
Collapse
Affiliation(s)
- Carla Maria Barbosa Spinola
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| | - Jacques Boutet de Monvel
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
| | - Saaid Safieddine
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
- Centre National de la Recherche Scientifique, Paris, France
| | - Ghizlène Lahlou
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
- APHP Sorbonne Université, Département d’Oto-Rhino-Laryngologie, Unité Fonctionnelle Implants Auditifs,Groupe Hospitalo-Universitaire Pitié-Salpêtrière, Paris, France
| | - Raphaël Etournay
- Université Paris Cité, Institut Pasteur, AP-HP, Inserm, Fondation pour l’Audition, Institut de l’Audition, IHU reConnect, F-75012 Paris, France
- Sorbonne Université, Collège Doctoral, Paris, France
| |
Collapse
|
2
|
Maunsell HR, Ellis K, Kelley MW, Driver EC. Lrrn1 Regulates Medial Boundary Formation in the Developing Mouse Organ of Corti. J Neurosci 2023; 43:5305-5318. [PMID: 37369584 PMCID: PMC10359035 DOI: 10.1523/jneurosci.2141-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/12/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
One of the most striking aspects of the sensory epithelium of the mammalian cochlea, the organ of Corti (OC), is the presence of precise boundaries between sensory and nonsensory cells at its medial and lateral edges. A particular example of this precision is the single row of inner hair cells (IHCs) and associated supporting cells along the medial (neural) boundary. Despite the regularity of this boundary, the developmental processes and genetic factors that contribute to its specification are poorly understood. In this study we demonstrate that Leucine Rich Repeat Neuronal 1 (Lrrn1), which codes for a single-pass, transmembrane protein, is expressed before the development of the mouse organ of Corti in the row of cells that will form its medial border. Deletion of Lrrn1 in mice of mixed sex leads to disruptions in boundary formation that manifest as ectopic inner hair cells and supporting cells. Genetic and pharmacological manipulations demonstrate that Lrrn1 interacts with the Notch signaling pathway and strongly suggest that Lrrn1 normally acts to enhance Notch signaling across the medial boundary. This interaction is required to promote formation of the row of inner hair cells and suppress the conversion of adjacent nonsensory cells into hair cells and supporting cells. These results identify Lrrn1 as an important regulator of boundary formation and cellular patterning during development of the organ of Corti.SIGNIFICANCE STATEMENT Patterning of the developing mammalian cochlea into distinct sensory and nonsensory regions and the specification of multiple different cell fates within those regions are critical for proper auditory function. Here, we report that the transmembrane protein Leucine Rich Repeat Neuronal 1 (LRRN1) is expressed along the sharp medial boundary between the single row of mechanosensory inner hair cells (IHCs) and adjacent nonsensory cells. Formation of this boundary is mediated in part by Notch signaling, and loss of Lrrn1 leads to disruptions in boundary formation similar to those caused by a reduction in Notch activity, suggesting that LRRN1 likely acts to enhance Notch signaling. Greater understanding of sensory/nonsensory cell fate decisions in the cochlea will help inform the development of regenerative strategies aimed at restoring auditory function.
Collapse
Affiliation(s)
- Helen R Maunsell
- Porter Neuroscience Research Center, Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Kathryn Ellis
- Porter Neuroscience Research Center, Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Matthew W Kelley
- Porter Neuroscience Research Center, Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| | - Elizabeth Carroll Driver
- Porter Neuroscience Research Center, Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892
| |
Collapse
|
3
|
Wang Y, Lyu J, Qian X, Chen B, Sun H, Luo W, Chi F, Li H, Ren D. Involvement of Dmp1 in the Precise Regulation of Hair Bundle Formation in the Developing Cochlea. BIOLOGY 2023; 12:biology12040625. [PMID: 37106825 PMCID: PMC10135853 DOI: 10.3390/biology12040625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/02/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023]
Abstract
Dentin matrix protein 1 (Dmp1) is a highly phosphorylated, extracellular matrix protein that is extensively expressed in bone and teeth but also found in soft tissues, including brain and muscle. However, the functions of Dmp1 in the mice cochlea are unknown. Our study showed that Dmp1 was expressed in auditory hair cells (HCs), with the role of Dmp1 in those cells identified using Dmp1 cKD mice. Immunostaining and scanning electron microscopy of the cochlea at P1 revealed that Dmp1 deficiency in mice resulted in an abnormal stereociliary bundle morphology and the mispositioning of the kinocilium. The following experiments further demonstrated that the cell-intrinsic polarity of HCs was affected without apparent effect on the tissue planer polarity, based on the observation that the asymmetric distribution of Vangl2 was unchanged whereas the Gαi3 expression domain was enlarged and Par6b expression was slightly altered. Then, the possible molecular mechanisms of Dmp1 involvement in inner ear development were explored via RNA-seq analysis. The study suggested that the Fgf23-Klotho endocrine axis may play a novel role in the inner ear and Dmp1 may regulate the kinocilium-stereocilia interaction via Fgf23-Klotho signaling. Together, our results proved the critical role of Dmp1 in the precise regulation of hair bundle morphogenesis in the early development of HCs.
Collapse
Affiliation(s)
- Yanmei Wang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Jihan Lyu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Xiaoqing Qian
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Binjun Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Haojie Sun
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Wenwei Luo
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- The Second School of Clinical Medicine, South Medical University, Guangzhou 510080, China
| | - Fanglu Chi
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| | - Hongzhe Li
- Research Service, VA Loma Linda Healthcare System, Loma Linda, CA 92350, USA
- Department of Otolaryngology-Head and Neck Surgery, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | - Dongdong Ren
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai 200031, China
- NHC Key Laboratory of Hearing Medicine, Fudan University, Shanghai 200031, China
| |
Collapse
|
4
|
Trébeau C, de Monvel JB, Altay G, Tinevez JY, Etournay R. Extracting multiple surfaces from 3D microscopy images in complex biological tissues with the Zellige software tool. BMC Biol 2022; 20:183. [PMID: 35999534 PMCID: PMC9397159 DOI: 10.1186/s12915-022-01378-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/22/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Efficient tools allowing the extraction of 2D surfaces from 3D-microscopy data are essential for studies aiming to decipher the complex cellular choreography through which epithelium morphogenesis takes place during development. Most existing methods allow for the extraction of a single and smooth manifold of sufficiently high signal intensity and contrast, and usually fail when the surface of interest has a rough topography or when its localization is hampered by other surrounding structures of higher contrast. Multiple surface segmentation entails laborious manual annotations of the various surfaces separately. RESULTS As automating this task is critical in studies involving tissue-tissue or tissue-matrix interaction, we developed the Zellige software, which allows the extraction of a non-prescribed number of surfaces of varying inclination, contrast, and texture from a 3D image. The tool requires the adjustment of a small set of control parameters, for which we provide an intuitive interface implemented as a Fiji plugin. CONCLUSIONS As a proof of principle of the versatility of Zellige, we demonstrate its performance and robustness on synthetic images and on four different types of biological samples, covering a wide range of biological contexts.
Collapse
Affiliation(s)
- Céline Trébeau
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
| | | | - Gizem Altay
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
| | - Jean-Yves Tinevez
- Institut Pasteur, Université Paris Cité, Image Analysis Hub, F-75015, Paris, France.
| | - Raphaël Etournay
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France.
| |
Collapse
|
5
|
Jarysta A, Tarchini B. Multiple PDZ domain protein maintains patterning of the apical cytoskeleton in sensory hair cells. Development 2021; 148:270996. [PMID: 34228789 DOI: 10.1242/dev.199549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
Sound transduction occurs in the hair bundle, the apical compartment of sensory hair cells in the inner ear. The hair bundle is formed of actin-based stereocilia aligned in rows of graded heights. It was previously shown that the GNAI-GPSM2 complex is part of a developmental blueprint that defines the polarized organization of the apical cytoskeleton in hair cells, including stereocilia distribution and elongation. Here, we report a role for multiple PDZ domain (MPDZ) protein during apical hair cell morphogenesis in mouse. We show that MPDZ is enriched at the hair cell apical membrane along with MAGUK p55 subfamily member 5 (MPP5/PALS1) and the Crumbs protein CRB3. MPDZ is required there to maintain the proper segregation of apical blueprint proteins, including GNAI-GPSM2. Loss of the blueprint coincides with misaligned stereocilia placement in Mpdz mutant hair cells, and results in permanently misshapen hair bundles. Graded molecular and structural defects along the cochlea can explain the profile of hearing loss in Mpdz mutants, where deficits are most severe at high frequencies.
Collapse
Affiliation(s)
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.,Department of Medicine, Tufts University, Boston, MA 02111, USA.,Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, ME 04469, USA
| |
Collapse
|
6
|
Oya R, Tsukamoto O, Sato T, Kato H, Matsuoka K, Oshima K, Kamakura T, Ohta Y, Imai T, Takashima S, Inohara H. Phosphorylation of MYL12 by Myosin Light Chain Kinase Regulates Cellular Shape Changes in Cochlear Hair Cells. J Assoc Res Otolaryngol 2021; 22:425-441. [PMID: 33877471 PMCID: PMC8329122 DOI: 10.1007/s10162-021-00796-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/11/2021] [Indexed: 10/21/2022] Open
Abstract
The organ of Corti is an auditory organ located in the cochlea, comprising hair cells (HCs) and other supporting cells. Cellular shape changes of HCs are important for the development of auditory epithelia and hearing function. It was previously observed that HCs and inner sulcus cells (ISCs) demonstrate cellular shape changes similar to the apical constriction of the neural epithelia. Apical constriction is induced via actomyosin cable contraction in the apical junctional complex and necessary for the physiological function of the epithelium. Actomyosin cable contraction is mainly regulated by myosin regulatory light chain (MRLC) phosphorylation by myosin light chain kinase (MLCK). However, MRLC and MLCK isoforms expressed in HCs and ISCs are unknown. Hence, we investigated the expression patterns and roles of MRLCs and MLCKs in HCs. Droplet digital PCR revealed that HCs expressed MYL12A/B and MYL9, which are non-muscle MRLC and smooth muscle MLCK (smMLCK), respectively. Immunofluorescence staining throughout the organ of Corti demonstrated that only MYL12 was expressed in the apical portion of HCs, whereas MYL12 and MYL9 were expressed on ISCs. In addition, purified MYL12B was phosphorylated by smMLCK in vitro, and the harvested HCs contained phosphorylated MYL12. Furthermore, accompanied by the expansion of the cell area of outer HCs, MYL12 phosphorylation was reduced by ML-7, which is an inhibitor of smMLCK. In conclusion, MYL12 phosphorylation by smMLCK contributed to the apical constriction-like cellular shape change of HCs possibly relating to the development of auditory epithelia and hearing function.
Collapse
Affiliation(s)
- Ryohei Oya
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka, Japan
| | - Osamu Tsukamoto
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka, Japan
| | - Takashi Sato
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hisakazu Kato
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka, Japan
| | - Ken Matsuoka
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka, Japan
| | - Kazuo Oshima
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takefumi Kamakura
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yumi Ohta
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takao Imai
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Seiji Takashima
- Department of Medical Biochemistry, Osaka University Graduate School of Medicine/Frontier Biosciences, Osaka, Japan
| | - Hidenori Inohara
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
7
|
Kindt KS, Akturk A, Jarysta A, Day M, Beirl A, Flonard M, Tarchini B. EMX2-GPR156-Gαi reverses hair cell orientation in mechanosensory epithelia. Nat Commun 2021; 12:2861. [PMID: 34001891 PMCID: PMC8129141 DOI: 10.1038/s41467-021-22997-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/10/2021] [Indexed: 12/21/2022] Open
Abstract
Hair cells detect sound, head position or water movements when their mechanosensory hair bundle is deflected. Each hair bundle has an asymmetric architecture that restricts stimulus detection to a single axis. Coordinated hair cell orientations within sensory epithelia further tune stimulus detection at the organ level. Here, we identify GPR156, an orphan GPCR of unknown function, as a critical regulator of hair cell orientation. We demonstrate that the transcription factor EMX2 polarizes GPR156 distribution, enabling it to signal through Gαi and trigger a 180° reversal in hair cell orientation. GPR156-Gαi mediated reversal is essential to establish hair cells with mirror-image orientations in mouse otolith organs in the vestibular system and in zebrafish lateral line. Remarkably, GPR156-Gαi also instructs hair cell reversal in the auditory epithelium, despite a lack of mirror-image organization. Overall, our work demonstrates that conserved GPR156-Gαi signaling is integral to the framework that builds directional responses into mechanosensory epithelia.
Collapse
MESH Headings
- Animals
- Cell Polarity/genetics
- Epithelium/metabolism
- Female
- GTP-Binding Protein alpha Subunits, Gi-Go/genetics
- GTP-Binding Protein alpha Subunits, Gi-Go/metabolism
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Microscopy, Confocal/methods
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Zebrafish/metabolism
- Mice
Collapse
Affiliation(s)
- Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Alisha Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | | | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME, USA.
- Department of Medicine, Tufts University, Boston, MA, USA.
- Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, ME, USA.
| |
Collapse
|
8
|
Balendran V, Skidmore JM, Ritter KE, Gao J, Cimerman J, Beyer LA, Hurd EA, Raphael Y, Martin DM. Chromatin remodeler CHD7 is critical for cochlear morphogenesis and neurosensory patterning. Dev Biol 2021; 477:11-21. [PMID: 34004180 DOI: 10.1016/j.ydbio.2021.05.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/12/2021] [Accepted: 05/10/2021] [Indexed: 11/18/2022]
Abstract
Epigenetic regulation of gene transcription by chromatin remodeling proteins has recently emerged as an important contributing factor in inner ear development. Pathogenic variants in CHD7, the gene encoding Chromodomain Helicase DNA binding protein 7, cause CHARGE syndrome, which presents with malformations in the developing ear. Chd7 is broadly expressed in the developing mouse otocyst and mature auditory epithelium, yet the pathogenic effects of Chd7 loss in the cochlea are not well understood. Here we characterized cochlear epithelial phenotypes in mice with deletion of Chd7 throughout the otocyst (using Foxg1Cre/+ and Pax2Cre), in the otic mesenchyme (using TCre), in hair cells (using Atoh1Cre), in developing neuroblasts (using NgnCre), or in spiral ganglion neurons (using ShhCre/+). Pan-otic deletion of Chd7 resulted in shortened cochleae with aberrant projections and axonal looping, disorganized, supernumerary hair cells at the apical turn and a narrowed epithelium with missing hair cells in the middle region. Deletion of Chd7 in the otic mesenchyme had no effect on overall cochlear morphology. Loss of Chd7 in hair cells did not disrupt their formation or organization of the auditory epithelium. Similarly, absence of Chd7 in spiral ganglion neurons had no effect on axonal projections. In contrast, deletion of Chd7 in developing neuroblasts led to smaller spiral ganglia and disorganized cochlear neurites. Together, these observations reveal dosage-, tissue-, and time-sensitive cell autonomous roles for Chd7 in cochlear elongation and cochlear neuron organization, with minimal functions for Chd7 in hair cells. These studies provide novel information about roles for Chd7 in development of auditory neurons.
Collapse
Affiliation(s)
- Vinodh Balendran
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | | | - K Elaine Ritter
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Jingxia Gao
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Jelka Cimerman
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA
| | - Lisa A Beyer
- Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | | | - Yehoash Raphael
- Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA
| | - Donna M Martin
- Departments of Pediatrics, The University of Michigan, Ann Arbor, MI, USA; Otolaryngology - Head and Neck Surgery, The University of Michigan, Ann Arbor, MI, USA; Human Genetics, The University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Nunley H, Nagashima M, Martin K, Lorenzo Gonzalez A, Suzuki SC, Norton DA, Wong ROL, Raymond PA, Lubensky DK. Defect patterns on the curved surface of fish retinae suggest a mechanism of cone mosaic formation. PLoS Comput Biol 2020; 16:e1008437. [PMID: 33320887 PMCID: PMC7771878 DOI: 10.1371/journal.pcbi.1008437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 12/29/2020] [Accepted: 10/13/2020] [Indexed: 11/18/2022] Open
Abstract
The outer epithelial layer of zebrafish retinae contains a crystalline array of cone photoreceptors, called the cone mosaic. As this mosaic grows by mitotic addition of new photoreceptors at the rim of the hemispheric retina, topological defects, called "Y-Junctions", form to maintain approximately constant cell spacing. The generation of topological defects due to growth on a curved surface is a distinct feature of the cone mosaic not seen in other well-studied biological patterns like the R8 photoreceptor array in the Drosophila compound eye. Since defects can provide insight into cell-cell interactions responsible for pattern formation, here we characterize the arrangement of cones in individual Y-Junction cores as well as the spatial distribution of Y-junctions across entire retinae. We find that for individual Y-junctions, the distribution of cones near the core corresponds closely to structures observed in physical crystals. In addition, Y-Junctions are organized into lines, called grain boundaries, from the retinal center to the periphery. In physical crystals, regardless of the initial distribution of defects, defects can coalesce into grain boundaries via the mobility of individual particles. By imaging in live fish, we demonstrate that grain boundaries in the cone mosaic instead appear during initial mosaic formation, without requiring defect motion. Motivated by this observation, we show that a computational model of repulsive cell-cell interactions generates a mosaic with grain boundaries. In contrast to paradigmatic models of fate specification in mostly motionless cell packings, this finding emphasizes the role of cell motion, guided by cell-cell interactions during differentiation, in forming biological crystals. Such a route to the formation of regular patterns may be especially valuable in situations, like growth on a curved surface, where the resulting long-ranged, elastic, effective interactions between defects can help to group them into grain boundaries.
Collapse
Affiliation(s)
- Hayden Nunley
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mikiko Nagashima
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kamirah Martin
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alcides Lorenzo Gonzalez
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sachihiro C. Suzuki
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Declan A. Norton
- Department of Physics, Trinity College Dublin, Dublin, Ireland
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Rachel O. L. Wong
- Department of Biological Structure, University of Washington, Seattle, Washington, United States of America
| | - Pamela A. Raymond
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David K. Lubensky
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
10
|
Cohen R, Amir-Zilberstein L, Hersch M, Woland S, Loza O, Taiber S, Matsuzaki F, Bergmann S, Avraham KB, Sprinzak D. Mechanical forces drive ordered patterning of hair cells in the mammalian inner ear. Nat Commun 2020; 11:5137. [PMID: 33046691 PMCID: PMC7550578 DOI: 10.1038/s41467-020-18894-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/15/2020] [Indexed: 01/03/2023] Open
Abstract
Periodic organization of cells is required for the function of many organs and tissues. The development of such periodic patterns is typically associated with mechanisms based on intercellular signaling such as lateral inhibition and Turing patterning. Here we show that the transition from disordered to ordered checkerboard-like pattern of hair cells and supporting cells in the mammalian hearing organ, the organ of Corti, is likely based on mechanical forces rather than signaling events. Using time-lapse imaging of mouse cochlear explants, we show that hair cells rearrange gradually into a checkerboard-like pattern through a tissue-wide shear motion that coordinates intercalation and delamination events. Using mechanical models of the tissue, we show that global shear and local repulsion forces on hair cells are sufficient to drive the transition from disordered to ordered cellular pattern. Our findings suggest that mechanical forces drive ordered hair cell patterning in a process strikingly analogous to the process of shear-induced crystallization in polymer and granular physics.
Collapse
Affiliation(s)
- Roie Cohen
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel.,The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel.,Faculty of Exact Sciences, Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Liat Amir-Zilberstein
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Micha Hersch
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland
| | - Shiran Woland
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Olga Loza
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Shahar Taiber
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel.,Sackler Faculty of Medicine and Sagol School of Neuroscience, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Fumio Matsuzaki
- Laboratory of Cell Asymmetry, RIKEN Center for Biosystems Dynamics Research, Kobe, 650-0047, Japan
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, 1015, Lausanne, Switzerland.,Swiss Institute of Bioinformatics, 1015, Lausanne, Switzerland.,Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Karen B Avraham
- Sackler Faculty of Medicine and Sagol School of Neuroscience, Department of Human Molecular Genetics and Biochemistry, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - David Sprinzak
- George S. Wise Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, 6997801, Tel Aviv, Israel. .,The Center for Physics and Chemistry of Living Systems, Tel Aviv University, 6997801, Tel Aviv, Israel.
| |
Collapse
|
11
|
Abstract
The cochlea, a coiled structure located in the ventral region of the inner ear, acts as the primary structure for the perception of sound. Along the length of the cochlear spiral is the organ of Corti, a highly derived and rigorously patterned sensory epithelium that acts to convert auditory stimuli into neural impulses. The development of the organ of Corti requires a series of inductive events that specify unique cellular characteristics and axial identities along its three major axes. Here, we review recent studies of the cellular and molecular processes regulating several aspects of cochlear development, such as axial patterning, cochlear outgrowth and cellular differentiation. We highlight how the precise coordination of multiple signaling pathways is required for the successful formation of a complete organ of Corti.
Collapse
Affiliation(s)
- Elizabeth Carroll Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Sahu P, Kang J, Erdemci-Tandogan G, Manning ML. Linear and nonlinear mechanical responses can be quite different in models for biological tissues. SOFT MATTER 2020; 16:1850-1856. [PMID: 31984411 PMCID: PMC7453973 DOI: 10.1039/c9sm01068h] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The fluidity of biological tissues - whether cells can change neighbors and rearrange - is important for their function. In traditional materials, researchers have used linear response functions, such as the shear modulus, to accurately predict whether a material will behave as a fluid. Similarly, in disordered 2D vertex models for confluent biological tissues, the shear modulus becomes zero precisely when the cells can change neighbors and the tissue fluidizes, at a critical value of control parameter s0* = 3.81. However, the ordered ground states of 2D vertex models become linearly unstable at a lower value of control parameter (3.72), suggesting that there may be a decoupling between linear and nonlinear response. We demonstrate that the linear response does not correctly predict the nonlinear behavior in these systems: when the control parameter is between 3.72 and 3.81, cells cannot freely change neighbors even though the shear modulus is zero. These results highlight that the linear response of vertex models should not be expected to generically predict their rheology. We develop a simple geometric ansatz that correctly predicts the nonlinear response, which may serve as a framework for making nonlinear predictions in other vertex-like models.
Collapse
Affiliation(s)
- Preeti Sahu
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA.
| | | | | | | |
Collapse
|
13
|
Montcouquiol M, Kelley MW. Development and Patterning of the Cochlea: From Convergent Extension to Planar Polarity. Cold Spring Harb Perspect Med 2020; 10:cshperspect.a033266. [PMID: 30617059 DOI: 10.1101/cshperspect.a033266] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Within the mammalian cochlea, sensory hair cells and supporting cells are aligned in curvilinear rows that extend along the length of the tonotopic axis. In addition, all of the cells within the epithelium are uniformly polarized across the orthogonal neural-abneural axis. Finally, each hair cell is intrinsically polarized as revealed by the presence of an asymmetrically shaped and apically localized stereociliary bundle. It has been known for some time that many of the developmental processes that regulate these patterning events are mediated, to some extent, by the core planar cell polarity (PCP) pathway. This article will review more recent work demonstrating how components of the PCP pathway interact with cytoskeletal motor proteins to regulate cochlear outgrowth. Finally, a signaling pathway originally identified for its role in asymmetric cell divisions has recently been shown to mediate several aspects of intrinsic hair cell polarity, including kinocilia migration, bundle shape, and elongation.
Collapse
Affiliation(s)
- Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, F-33077 Bordeaux, France.,University of Bordeaux, Neurocentre Magendie, U1215, F-33077 Bordeaux, France
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
14
|
Sutherland A, Keller R, Lesko A. Convergent extension in mammalian morphogenesis. Semin Cell Dev Biol 2019; 100:199-211. [PMID: 31734039 DOI: 10.1016/j.semcdb.2019.11.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 11/01/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Convergent extension is a fundamental morphogenetic process that underlies not only the generation of the elongated vertebrate body plan from the initially radially symmetrical embryo, but also the specific shape changes characteristic of many individual tissues. These tissue shape changes are the result of specific cell behaviors, coordinated in time and space, and affected by the physical properties of the tissue. While mediolateral cell intercalation is the classic cellular mechanism for producing tissue convergence and extension, other cell behaviors can also provide similar tissue-scale distortions or can modulate the effects of mediolateral cell intercalation to sculpt a specific shape. Regulation of regional tissue morphogenesis through planar polarization of the variety of underlying cell behaviors is well-recognized, but as yet is not well understood at the molecular level. Here, we review recent advances in understanding the cellular basis for convergence and extension and its regulation.
Collapse
Affiliation(s)
- Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| | - Raymond Keller
- Department of Biology, University of Virginia, Charlottesville, VA, 22903, USA.
| | - Alyssa Lesko
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
15
|
Spatiotemporal coordination of cellular differentiation and tissue morphogenesis in organ of Corti development. Med Mol Morphol 2018. [PMID: 29536272 DOI: 10.1007/s00795-018-0185-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The organ of Corti, an acoustic sensory organ, is a specifically differentiated epithelium of the cochlear duct, which is a part of the membranous labyrinth in the inner ear. Cells in the organ of Corti are generally classified into two kinds; hair cells, which transduce the mechanical stimuli of sound to the cell membrane electrical potential differences, and supporting cells. These cells emerge from homogeneous prosensory epithelium through cell fate determination and differentiation. In the organ of Corti organogenesis, cell differentiation and the rearrangement of their position proceed in parallel, resulting in a characteristic alignment of mature hair cells and supporting cells. Recently, studies have focused on the signaling molecules and transcription factors that regulate cell fate determination and differentiation processes. In comparison, less is known about the mechanism of the formation of the tissue architecture; however, this is important in the morphogenesis of the organ of Corti. Thus, this review will introduce previous findings that focus on how cell fate determination, cell differentiation, and whole tissue morphogenesis proceed in a spatiotemporally and finely coordinated manner. This overview provides an insight into the regulatory mechanisms of the coordination in the developing organ of Corti.
Collapse
|
16
|
Barald KF, Shen YC, Bianchi LM. Chemokines and cytokines on the neuroimmunoaxis: Inner ear neurotrophic cytokines in development and disease. Prospects for repair? Exp Neurol 2018; 301:92-99. [DOI: 10.1016/j.expneurol.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/18/2017] [Accepted: 10/12/2017] [Indexed: 01/22/2023]
|
17
|
Goodyear RJ, Lu X, Deans MR, Richardson GP. A tectorin-based matrix and planar cell polarity genes are required for normal collagen-fibril orientation in the developing tectorial membrane. Development 2017; 144:3978-3989. [PMID: 28935705 PMCID: PMC5702074 DOI: 10.1242/dev.151696] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/08/2017] [Indexed: 12/20/2022]
Abstract
The tectorial membrane is an extracellular structure of the cochlea. It develops on the surface of the auditory epithelium and contains collagen fibrils embedded in a tectorin-based matrix. The collagen fibrils are oriented radially with an apically directed slant - a feature considered crucial for hearing. To determine how this pattern is generated, collagen-fibril formation was examined in mice lacking a tectorin-based matrix, epithelial cilia or the planar cell polarity genes Vangl2 and Ptk7 In wild-type mice, collagen-fibril bundles appear within a tectorin-based matrix at E15.5 and, as fibril number rapidly increases, become co-aligned and correctly oriented. Epithelial width measurements and data from Kif3acKO mice suggest, respectively, that radial stretch and cilia play little, if any, role in determining normal collagen-fibril orientation; however, evidence from tectorin-knockout mice indicates that confinement is important. PRICKLE2 distribution reveals the planar cell polarity axis in the underlying epithelium is organised along the length of the cochlea and, in mice in which this polarity is disrupted, the apically directed collagen offset is no longer observed. These results highlight the importance of the tectorin-based matrix and epithelial signals for precise collagen organisation in the tectorial membrane.
Collapse
Affiliation(s)
- Richard J Goodyear
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Xiaowei Lu
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA 22098, USA
| | - Michael R Deans
- Department of Surgery, Division of Otolaryngology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Department of Neurobiology and Anatomy, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Guy P Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
18
|
Zhang T, Xu J, Maire P, Xu PX. Six1 is essential for differentiation and patterning of the mammalian auditory sensory epithelium. PLoS Genet 2017; 13:e1006967. [PMID: 28892484 PMCID: PMC5593176 DOI: 10.1371/journal.pgen.1006967] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 08/08/2017] [Indexed: 11/19/2022] Open
Abstract
The organ of Corti in the cochlea is a two-cell layered epithelium: one cell layer of mechanosensory hair cells that align into one row of inner and three rows of outer hair cells interdigitated with one cell layer of underlying supporting cells along the entire length of the cochlear spiral. These two types of epithelial cells are derived from common precursors in the four- to five-cell layered primordium and acquire functionally important shapes during terminal differentiation through the thinning process and convergent extension. Here, we have examined the role of Six1 in the establishment of the auditory sensory epithelium. Our data show that prior to terminal differentiation of the precursor cells, deletion of Six1 leads to formation of only a few hair cells and defective patterning of the sensory epithelium. Previous studies have suggested that downregulation of Sox2 expression in differentiating hair cells must occur after Atoh1 mRNA activation in order to allow Atoh1 protein accumulation due to antagonistic effects between Atoh1 and Sox2. Our analysis indicates that downregulation of Sox2 in the differentiating hair cells depends on Six1 activity. Furthermore, we found that Six1 is required for the maintenance of Fgf8 expression and dynamic distribution of N-cadherin and E-cadherin in the organ of Corti during differentiation. Together, our analyses uncover essential roles of Six1 in hair cell differentiation and formation of the organ of Corti in the mammalian cochlea.
Collapse
Affiliation(s)
- Ting Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jinshu Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Pascal Maire
- INSERM U1016, Institut Cochin, Paris, France; CNRS UMR 8104, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
19
|
Driver EC, Northrop A, Kelley MW. Cell migration, intercalation and growth regulate mammalian cochlear extension. Development 2017; 144:3766-3776. [PMID: 28870992 DOI: 10.1242/dev.151761] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/24/2017] [Indexed: 01/01/2023]
Abstract
Developmental remodeling of the sensory epithelium of the cochlea is required for the formation of an elongated, tonotopically organized auditory organ, but the cellular processes that mediate these events are largely unknown. We used both morphological assessments of cellular rearrangements and time-lapse imaging to visualize cochlear remodeling in mouse. Analysis of cell redistribution showed that the cochlea extends through a combination of radial intercalation and cell growth. Live imaging demonstrated that concomitant cellular intercalation results in a brief period of epithelial convergence, although subsequent changes in cell size lead to medial-lateral spreading. Supporting cells, which retain contact with the basement membrane, exhibit biased protrusive activity and directed movement along the axis of extension. By contrast, hair cells lose contact with the basement membrane, but contribute to continued outgrowth through increased cell size. Regulation of cellular protrusions, movement and intercalation within the cochlea all require myosin II. These results establish, for the first time, many of the cellular processes that drive the distribution of sensory cells along the tonotopic axis of the cochlea.
Collapse
Affiliation(s)
- Elizabeth Carroll Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Amy Northrop
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Matthew W Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
20
|
Cellular recognition and patterning in sensory systems. Exp Cell Res 2017; 358:52-57. [PMID: 28392352 DOI: 10.1016/j.yexcr.2017.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/01/2017] [Accepted: 04/05/2017] [Indexed: 11/22/2022]
Abstract
Cells dissociated from various tissues of vertebrate embryos preferentially reaggregate with cells from the same tissue when they are mixed together. This tissue-specific recognition process in vertebrates is mainly mediated by a family of cell adhesion molecules because of their specific binding properties. Recent studies have revealed that two families of adhesion molecules, nectins and cadherins, are associated with each other, and these associations provide cells with the differential adhesive affinities required for cellular recognition and complex cellular pattern formations during development. This review provides an overview of recent findings regarding the cooperative functions of nectins and cadherins, as well as a discussion of the molecular basis underlying these functions.
Collapse
|
21
|
Togashi H. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia. Front Cell Dev Biol 2016; 4:104. [PMID: 27695692 PMCID: PMC5023662 DOI: 10.3389/fcell.2016.00104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 08/31/2016] [Indexed: 11/13/2022] Open
Abstract
Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.
Collapse
Affiliation(s)
- Hideru Togashi
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine Kobe, Japan
| |
Collapse
|
22
|
Abstract
UNLABELLED Mechanosensory hair cells (HCs) residing in the inner ear are critical for hearing and balance. Precise coordination of proliferation, sensory specification, and differentiation during development is essential to ensure the correct patterning of HCs in the cochlear and vestibular epithelium. Recent studies have revealed that FGF20 signaling is vital for proper HC differentiation. However, the mechanisms by which FGF20 signaling promotes HC differentiation remain unknown. Here, we show that mitogen-activated protein 3 kinase 4 (MEKK4) expression is highly regulated during inner ear development and is critical to normal cytoarchitecture and function. Mice homozygous for a kinase-inactive MEKK4 mutation exhibit significant hearing loss. Lack of MEKK4 activity in vivo also leads to a significant reduction in the number of cochlear and vestibular HCs, suggesting that MEKK4 activity is essential for overall development of HCs within the inner ear. Furthermore, we show that loss of FGF20 signaling in vivo inhibits MEKK4 activity, whereas gain of Fgf20 function stimulates MEKK4 expression, suggesting that Fgf20 modulates MEKK4 activity to regulate cellular differentiation. Finally, we demonstrate, for the first time, that MEKK4 acts as a critical node to integrate FGF20-FGFR1 signaling responses to specifically influence HC development and that FGFR1 signaling through activation of MEKK4 is necessary for outer hair cell differentiation. Collectively, this study provides compelling evidence of an essential role for MEKK4 in inner ear morphogenesis and identifies the requirement of MEKK4 expression in regulating the specific response of FGFR1 during HC development and FGF20/FGFR1 signaling activated MEKK4 for normal sensory cell differentiation. SIGNIFICANCE STATEMENT Sensory hair cells (HCs) are the mechanoreceptors within the inner ear responsible for our sense of hearing. HCs are formed before birth, and mammals lack the ability to restore the sensory deficits associated with their loss. In this study, we show, for the first time, that MEKK4 signaling is essential for the development of normal cytoarchitecture and hearing function as MEKK4 signaling-deficient mice exhibit a significant reduction of HCs and a hearing loss. We also identify MEKK4 as a critical hub kinase for FGF20-FGFR1 signaling to induce HC differentiation in the mammalian cochlea. These results reveal a new paradigm in the regulation of HC differentiation and provide significant new insights into the mechanism of Fgf signaling governing HC formation.
Collapse
|
23
|
Dcc Mediates Functional Assembly of Peripheral Auditory Circuits. Sci Rep 2016; 6:23799. [PMID: 27040640 PMCID: PMC4819185 DOI: 10.1038/srep23799] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 03/11/2016] [Indexed: 01/12/2023] Open
Abstract
Proper structural organization of spiral ganglion (SG) innervation is crucial for normal hearing function. However, molecular mechanisms underlying the developmental formation of this precise organization remain not well understood. Here, we report in the developing mouse cochlea that deleted in colorectal cancer (Dcc) contributes to the proper organization of spiral ganglion neurons (SGNs) within the Rosenthal's canal and of SGN projections toward both the peripheral and central auditory targets. In Dcc mutant embryos, mispositioning of SGNs occurred along the peripheral auditory pathway with misrouted afferent fibers and reduced synaptic contacts with hair cells. The central auditory pathway simultaneously exhibited similar defective phenotypes as in the periphery with abnormal exit of SGNs from the Rosenthal's canal towards central nuclei. Furthermore, the axons of SGNs ascending into the cochlear nucleus had disrupted bifurcation patterns. Thus, Dcc is necessary for establishing the proper spatial organization of SGNs and their fibers in both peripheral and central auditory pathways, through controlling axon targeting and cell migration. Our results suggest that Dcc plays an important role in the developmental formation of peripheral and central auditory circuits, and its mutation may contribute to sensorineural hearing loss.
Collapse
|
24
|
Kirjavainen A, Laos M, Anttonen T, Pirvola U. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea. Biol Open 2015; 4:516-26. [PMID: 25770185 PMCID: PMC4400594 DOI: 10.1242/bio.20149753] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Hair cells of the organ of Corti (OC) of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC), a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.
Collapse
Affiliation(s)
- Anna Kirjavainen
- Department of Biosciences, Viikinkaari 1, 00014 University of Helsinki, Finland
| | - Maarja Laos
- Department of Biosciences, Viikinkaari 1, 00014 University of Helsinki, Finland
| | - Tommi Anttonen
- Department of Biosciences, Viikinkaari 1, 00014 University of Helsinki, Finland
| | - Ulla Pirvola
- Department of Biosciences, Viikinkaari 1, 00014 University of Helsinki, Finland
| |
Collapse
|
25
|
Fgf10 is required for specification of non-sensory regions of the cochlear epithelium. Dev Biol 2015; 400:59-71. [PMID: 25624266 DOI: 10.1016/j.ydbio.2015.01.015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 11/20/2022]
Abstract
The vertebrate inner ear is a morphologically complex sensory organ comprised of two compartments, the dorsal vestibular apparatus and the ventral cochlear duct, required for motion and sound detection, respectively. Fgf10, in addition to Fgf3, is necessary for the earliest stage of otic placode induction, but continued expression of Fgf10 in the developing otic epithelium, including the prosensory domain and later in Kolliker׳s organ, suggests additional roles for this gene during morphogenesis of the labyrinth. While loss of Fgf10 was implicated previously in semicircular canal agenesis, we show that Fgf10(-/+) embryos also exhibit a reduction or absence of the posterior semicircular canal, revealing a dosage-sensitive requirement for FGF10 in vestibular development. In addition, we show that Fgf10(-/-) embryos have previously unappreciated defects of cochlear morphogenesis, including a somewhat shortened duct, and, surprisingly, a substantially narrower duct. The mutant cochlear epithelium lacks Reissner׳s membrane and a large portion of the outer sulcus-two non-contiguous, non-sensory domains. Marker gene analyses revealed effects on Reissner׳s membrane as early as E12.5-E13.5 and on the outer sulcus by E15.5, stages when Fgf10 is expressed in close proximity to Fgfr2b, but these effects were not accompanied by changes in epithelial cell proliferation or death. These data indicate a dual role for Fgf10 in cochlear development: to regulate outgrowth of the duct and subsequently as a bidirectional signal that sequentially specifies Reissner׳s membrane and outer sulcus non-sensory domains. These findings may help to explain the hearing loss sometimes observed in LADD syndrome subjects with FGF10 mutations.
Collapse
|
26
|
Gegg M, Böttcher A, Burtscher I, Hasenoeder S, Van Campenhout C, Aichler M, Walch A, Grant SGN, Lickert H. Flattop regulates basal body docking and positioning in mono- and multiciliated cells. eLife 2014; 3:e03842. [PMID: 25296022 PMCID: PMC4221739 DOI: 10.7554/elife.03842] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 10/07/2014] [Indexed: 12/29/2022] Open
Abstract
Planar cell polarity (PCP) regulates basal body (BB) docking and positioning during cilia formation, but the underlying mechanisms remain elusive. In this study, we investigate the uncharacterized gene Flattop (Fltp) that is transcriptionally activated during PCP acquisition in ciliated tissues. Fltp knock-out mice show BB docking and ciliogenesis defects in multiciliated lung cells. Furthermore, Fltp is necessary for kinocilium positioning in monociliated inner ear hair cells. In these cells, the core PCP molecule Dishevelled 2, the BB/spindle positioning protein Dlg3, and Fltp localize directly adjacent to the apical plasma membrane, physically interact and surround the BB at the interface of the microtubule and actin cytoskeleton. Dlg3 and Fltp knock-outs suggest that both cooperatively translate PCP cues for BB positioning in the inner ear. Taken together, the identification of novel BB/spindle positioning components as potential mediators of PCP signaling might have broader implications for other cell types, ciliary disease, and asymmetric cell division.
Collapse
Affiliation(s)
- Moritz Gegg
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Anika Böttcher
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Ingo Burtscher
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Stefan Hasenoeder
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
| | - Claude Van Campenhout
- Genetique du Developpement, L'Institut de biologie et de médecine moléculaires, Université libre de Bruxelles, Gosselies, Belgium
| | - Michaela Aichler
- Research Unit Analytical Pathology, Helmholtz Center Munich, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Center Munich, Munich, Germany
| | - Seth G N Grant
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Neuroregeneration, Univeristy of Edinburgh, Cambridge, United Kingdom
| | - Heiko Lickert
- Institute of Stem Cell Research, Helmholtz Center Munich, Munich, Germany
- Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Munich, Germany
- For correspondence:
| |
Collapse
|
27
|
Bohnenpoll T, Trowe MO, Wojahn I, Taketo MM, Petry M, Kispert A. Canonical Wnt signaling regulates the proliferative expansion and differentiation of fibrocytes in the murine inner ear. Dev Biol 2014; 391:54-65. [PMID: 24727668 DOI: 10.1016/j.ydbio.2014.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 01/18/2023]
Abstract
Otic fibrocytes tether the cochlear duct to the surrounding otic capsule but are also critically involved in maintenance of ion homeostasis in the cochlea, thus, perception of sound. The molecular pathways that regulate the development of this heterogenous group of cells from mesenchymal precursors are poorly understood. Here, we identified epithelial Wnt7a and Wnt7b as possible ligands of Fzd-mediated β-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated periotic mesenchyme (POM). Mice with a conditional deletion of Ctnnb1 in the POM exhibited a complete failure of fibrocyte differentiation, a severe reduction of mesenchymal cells surrounding the cochlear duct, loss of pericochlear spaces, a thickening and partial loss of the bony capsule and a secondary disturbance of cochlear duct coiling shortly before birth. Analysis at earlier stages revealed that radial patterning of the POM in two domains with highly condensed cartilaginous precursors and more loosely arranged inner mesenchymal cells occurred normally but that proliferation in the inner domain was reduced and cytodifferentiation failed. Cells with mis/overexpression of a stabilized form of Ctnnb1 in the entire POM mesenchyme sorted to the inner mesenchymal compartment and exhibited increased proliferation. Our analysis suggests that Wnt signals from the cochlear duct epithelium are crucial to induce differentiation and expansion of fibrocyte precursor cells. Our findings emphasize the importance of epithelial-mesenchymal signaling in inner ear development.
Collapse
Affiliation(s)
- Tobias Bohnenpoll
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | - Marianne Petry
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
28
|
Abstract
Animal development requires a carefully orchestrated cascade of cell fate specification events and cellular movements. A surprisingly small number of choreographed cellular behaviours are used repeatedly to shape the animal body plan. Among these, cell intercalation lengthens or spreads a tissue at the expense of narrowing along an orthogonal axis. Key steps in the polarization of both mediolaterally and radially intercalating cells have now been clarified. In these different contexts, intercalation seems to require a distinct combination of mechanisms, including adhesive changes that allow cells to rearrange, cytoskeletal events through which cells exert the forces needed for cell neighbour exchange, and in some cases the regulation of these processes through planar cell polarity.
Collapse
|
29
|
Lepelletier L, de Monvel JB, Buisson J, Desdouets C, Petit C. Auditory hair cell centrioles undergo confined Brownian motion throughout the developmental migration of the kinocilium. Biophys J 2014; 105:48-58. [PMID: 23823223 DOI: 10.1016/j.bpj.2013.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 05/02/2013] [Accepted: 05/03/2013] [Indexed: 12/31/2022] Open
Abstract
Planar polarization of the forming hair bundle, the mechanosensory antenna of auditory hair cells, depends on the poorly characterized center-to-edge displacement of a primary cilium, the kinocilium, at their apical surface. Taking advantage of the gradient of hair cell differentiation along the cochlea, we reconstituted a map of the kinocilia displacements in the mouse embryonic cochlea. We then developed a cochlear organotypic culture and video-microscopy approach to monitor the movements of the kinocilium basal body (mother centriole) and its daughter centriole, which we analyzed using particle tracking and modeling. We found that both hair cell centrioles undergo confined Brownian movements around their equilibrium positions, under the apparent constraint of a radial restoring force of ∼0.1 pN. This magnitude depended little on centriole position, suggesting nonlinear interactions with constraining, presumably cytoskeletal elements. The only dynamic change observed during the period of kinocilium migration was a doubling of the centrioles' confinement area taking place early in the process. It emerges from these static and dynamic observations that kinocilia migrate gradually in parallel with the organization of hair cells into rows during cochlear neuroepithelium extension. Analysis of the confined motion of hair cell centrioles under normal and pathological conditions should help determine which structures contribute to the restoring force exerting on them.
Collapse
Affiliation(s)
- Léa Lepelletier
- Unité de Génétique et Physiologie de l'Audition, Institut Pasteur, Paris, France
| | | | | | | | | |
Collapse
|
30
|
A molecular blueprint at the apical surface establishes planar asymmetry in cochlear hair cells. Dev Cell 2013; 27:88-102. [PMID: 24135232 DOI: 10.1016/j.devcel.2013.09.011] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 08/29/2013] [Accepted: 09/13/2013] [Indexed: 11/22/2022]
Abstract
Sound perception relies on the planar polarization of the mechanosensory hair cell apex, which develops a V-shaped stereocilia bundle pointing toward an eccentric kinocilium. It remains unknown how intrinsically asymmetric bundles arise and are concomitantly oriented in the tissue. We report here that mInsc, LGN, and Gαi proteins, which classically regulate mitotic spindle orientation, are polarized in a lateral microvilli-free region, or "bare zone," at the apical hair cell surface. By creating and extending the bare zone, these proteins trigger a relocalization of the eccentric kinocilium midway toward the cell center. aPKC is restrained medially by mInsc/LGN/Gαi, resulting in compartmentalization of the apical surface that imparts the V-shaped distribution of stereocilia and brings the asymmetric bundle in register with the relocalized kinocilium. Gαi is additionally required for lateral orientation of cochlear hair cells, providing a possible mechanism to couple the emergence of asymmetric stereocilia bundles with planar cell polarity.
Collapse
|
31
|
Auditory ganglion source of Sonic hedgehog regulates timing of cell cycle exit and differentiation of mammalian cochlear hair cells. Proc Natl Acad Sci U S A 2013; 110:13869-74. [PMID: 23918393 DOI: 10.1073/pnas.1222341110] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Neural precursor cells of the central nervous system undergo successive temporal waves of terminal division, each of which is soon followed by the onset of cell differentiation. The organ of Corti in the mammalian cochlea develops differently, such that precursors at the apex are the first to exit from the cell cycle but the last to begin differentiating as mechanosensory hair cells. Using a tissue-specific knockout approach in mice, we show that this unique temporal pattern of sensory cell development requires that the adjacent auditory (spiral) ganglion serve as a source of the signaling molecule Sonic hedgehog (Shh). In the absence of this signaling, the cochlear duct is shortened, sensory hair cell precursors exit from the cell cycle prematurely, and hair cell differentiation closely follows cell cycle exit in a similar apical-to-basal direction. The dynamic relationship between the restriction of Shh expression in the developing spiral ganglion and its proximity to regions of the growing cochlear duct dictates the timing of terminal mitosis of hair cell precursors and their subsequent differentiation.
Collapse
|
32
|
Bardet PL, Guirao B, Paoletti C, Serman F, Léopold V, Bosveld F, Goya Y, Mirouse V, Graner F, Bellaïche Y. PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue. Dev Cell 2013; 25:534-46. [PMID: 23707736 DOI: 10.1016/j.devcel.2013.04.020] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2012] [Revised: 03/12/2013] [Accepted: 04/22/2013] [Indexed: 12/18/2022]
Abstract
Planar cell rearrangements control epithelial tissue morphogenesis and cellular pattern formation. They lead to the formation of new junctions whose length and stability determine the cellular pattern of tissues. Here, we show that during Drosophila wing development the loss of the tumor suppressor PTEN disrupts cell rearrangements by preventing the lengthening of newly formed junctions that become unstable and keep on rearranging. We demonstrate that the failure to lengthen and to stabilize is caused by the lack of a decrease of Myosin II and Rho-kinase concentration at the newly formed junctions. This defect results in a heterogeneous cortical contractility at cell junctions that disrupts regular hexagonal pattern formation. By identifying PTEN as a specific regulator of junction lengthening and stability, our results uncover how a homogenous distribution of cortical contractility along the cell cortex is restored during cell rearrangement to control the formation of epithelial cellular pattern.
Collapse
Affiliation(s)
- Pierre-Luc Bardet
- Polarity Division and Morphogenesis Team, Institut Curie, CNRS UMR 3215, INSERM U934, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Rikitake Y, Mandai K, Takai Y. The role of nectins in different types of cell-cell adhesion. J Cell Sci 2013; 125:3713-22. [PMID: 23027581 DOI: 10.1242/jcs.099572] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mammalian tissues and organs are composed of different types of cells that adhere to each other homotypically (i.e. interactions between cells of the same cell type) or heterotypically (i.e. interactions between different cell types), forming a variety of cellular patterns, including mosaic patterns. At least three types of cell-cell adhesion have been observed: symmetric homotypic, asymmetric homotypic and heterotypic cell adhesions. Cadherins and nectins, which are known cell-cell adhesion molecules, mediate these cell adhesions. Cadherins comprise a family of more than 100 members, but they are primarily involved in homophilic trans-interactions (i.e. interactions between the same cadherin members) between opposing cells. By contrast, the nectin family comprises only four members, and these proteins form both homophilic and heterophilic trans-interactions (i.e. interactions between the same and different nectin members on opposing cells). In addition, heterophilic trans-interactions between nectins are much stronger than homophilic trans-interactions. Because of these unique properties, nectins have crucial roles in asymmetric homotypic cell-cell adhesion at neuronal synapses and in various types of heterotypic cell-cell adhesions. We summarize recent progress in our understanding of the biology of nectins and discuss their roles in heterotypic cell-cell adhesions, whose formation cannot be solely explained by the action of cadherins.
Collapse
Affiliation(s)
- Yoshiyuki Rikitake
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe 650-0017, Japan
| | | | | |
Collapse
|
34
|
Driver EC, Sillers L, Coate TM, Rose MF, Kelley MW. The Atoh1-lineage gives rise to hair cells and supporting cells within the mammalian cochlea. Dev Biol 2013; 376:86-98. [PMID: 23318633 PMCID: PMC3652277 DOI: 10.1016/j.ydbio.2013.01.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/17/2012] [Accepted: 01/05/2013] [Indexed: 12/22/2022]
Abstract
The organ of Corti, located within the mammalian cochlea, contains a precise mosaic of hair cells (HC) and supporting cells (SC), the patterning of which is critical for auditory function. Progenitors of HCs and SCs are found in the same post-mitotic region of the cochlear duct during early stages of cochlear development, and both HCs and SCs are absent in mice lacking the transcription factor Atoh1. Based on existing data, Atoh1 is thought to be the earliest determinant of HC fate, and to have a cell-autonomous role in HC differentiation, but the lineage of Atoh1-positive cells within the cochlear duct remains unclear. To address this issue, we used an inducible Atoh1(Cre⁎PR) allele to permanently mark Atoh1-expressing cells at different developmental time points. We found that up to 30% of cells from the Atoh1-lineage develop as SCs, and that the number of Atoh1-positive SCs decreases both spatially and temporally in a pattern consistent with ongoing commitment. Modulation of Notch signaling, necessary for formation of the HC-SC mosaic, changes the percentage of cells from the Atoh1-lineage that develop as either HCs or SCs. The HC-SC ratio is also affected by morphogenesis of the cochlea, as inhibiting the outgrowth of the cochlear duct increases the number of Atoh1-lineage cells that develop as SCs. Our results demonstrate that the Atoh1-lineage is established early in cochlear development, but also show that expression of Atoh1 does not absolutely result in commitment to a HC fate.
Collapse
Affiliation(s)
- Elizabeth Carroll Driver
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD 20892, USA
| | - Laura Sillers
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD 20892, USA
| | - Thomas M. Coate
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD 20892, USA
| | - Matthew F. Rose
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Matthew W. Kelley
- Laboratory of Cochlear Development, National Institute on Deafness and Other Communications Disorders, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
35
|
Chacon-Heszele MF, Ren D, Reynolds AB, Chi F, Chen P. Regulation of cochlear convergent extension by the vertebrate planar cell polarity pathway is dependent on p120-catenin. Development 2012; 139:968-78. [PMID: 22318628 PMCID: PMC3274358 DOI: 10.1242/dev.065326] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2011] [Indexed: 11/20/2022]
Abstract
The vertebrate planar cell polarity (PCP) pathway consists of conserved PCP and ciliary genes. During development, the PCP pathway regulates convergent extension (CE) and uniform orientation of sensory hair cells in the cochlea. It is not clear how these diverse morphogenetic processes are regulated by a common set of PCP genes. Here, we show that cellular contacts and geometry change drastically and that the dynamic expression of N-cadherin and E-cadherin demarcates sharp boundaries during cochlear extension. The conditional knockout of a component of the adherens junctions, p120-catenin, leads to the reduction of E-cadherin and N-cadherin and to characteristic cochlear CE defects but not misorientation of hair cells. The specific CE defects in p120-catenin mutants are in contrast to associated CE and hair cell misorientation defects observed in common PCP gene mutants. Moreover, the loss-of-function of a conserved PCP gene, Vangl2, alters the dynamic distribution of N-cadherin and E-cadherin in the cochlea and causes similar abnormalities in cellular morphology to those found in p120-catenin mutants. Conversely, we found that Pcdh15 interacts genetically with PCP genes to regulate the formation of polar hair bundles, but not CE defects in the cochlea. Together, these results indicate that the vertebrate PCP pathway regulates CE and hair cell polarity independently and that a p120-catenin-dependent mechanism regulates CE of the cochlea.
Collapse
Affiliation(s)
- Maria F. Chacon-Heszele
- Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, Georgia 30322, USA
| | - Dongdong Ren
- Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, Georgia 30322, USA
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
| | - Albert B. Reynolds
- Department of Cancer Biology, Vanderbilt University, 211 Kirkland Hall, Nashville, TN 37240, USA
| | - Fanglu Chi
- Department of Otolaryngology, Eye, Ear, Nose and Throat Hospital, Fudan University, 220 Handan Road, Yangpu District, Shanghai 200433, China
| | - Ping Chen
- Department of Cell Biology, Emory University, 615 Michael Street, Atlanta, Georgia 30322, USA
| |
Collapse
|
36
|
Abstract
The inner ears of vertebrates represent one of the most striking examples of planar cell polarity (PCP). Populations of directionally sensitive mechanosensory hair cells develop actin-based stereociliary bundles that are uniformly oriented. Analysis of perturbations in bundle polarity in mice with mutations in Vangl2 formed the basis for the initial demonstration of conservation of the PCP signaling pathway in vertebrates. Subsequent studies have demonstrated roles for other "core" PCP genes, such as Frizzled, Disheveled, and Celsr, and for identifying novel PCP molecules such as Scribble and Ptk7. In addition, the demonstration of hearing deficits in humans with mutations in cilia genes combined with analysis of PCP defects in mice with ciliary deletion has implicated the cilia as an important modulator of hair cell polarization. Finally, the presence of shortened cochleae in many PCP mouse mutants has revealed an additional role for the PCP pathway in the development of the auditory system.
Collapse
Affiliation(s)
- Helen May-Simera
- Laboratory of Cochlear Development, NIDCD, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
37
|
Redundant functions of Rac GTPases in inner ear morphogenesis. Dev Biol 2011; 362:172-86. [PMID: 22182523 DOI: 10.1016/j.ydbio.2011.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 11/10/2011] [Accepted: 12/02/2011] [Indexed: 11/21/2022]
Abstract
Development of the mammalian inner ear requires coordination of cell proliferation, cell fate determination and morphogenetic movements. While significant progress has been made in identifying developmental signals required for inner ear formation, less is known about how distinct signals are coordinated by their downstream mediators. Members of the Rac family of small GTPases are known regulators of cytoskeletal remodeling and numerous other cellular processes. However, the function of Rac GTPases in otic development is largely unexplored. Here, we show that Rac1 and Rac3 redundantly regulate many aspects of inner ear morphogenesis. While no morphological defects were observed in Rac3(-/-) mice, Rac1(CKO); Rac3(-/-) double mutants displayed enhanced vestibular and cochlear malformations compared to Rac1(CKO) single mutants. Moreover, in Rac1(CKO); Rac3(-/-) mutants, we observed compromised E-cadherin-mediated cell adhesion, reduced cell proliferation and increased cell death in the early developing otocyst, leading to a decreased size and malformation of the membranous labyrinth. Finally, cochlear extension was severely disrupted in Rac1(CKO); Rac3(-/-) mutants, accompanied by a loss of epithelial cohesion and formation of ectopic sensory patches underneath the cochlear duct. The compartmentalized expression of otic patterning genes within the Rac1(CKO); Rac3(-/-) mutant otocyst was largely normal, however, indicating that Rac proteins regulate inner ear morphogenesis without affecting cell fate specification. Taken together, our results reveal an essential role for Rac GTPases in coordinating cell adhesion, cell proliferation, cell death and cell movements during otic development.
Collapse
|
38
|
Bermingham-McDonogh O, Reh TA. Regulated reprogramming in the regeneration of sensory receptor cells. Neuron 2011; 71:389-405. [PMID: 21835338 DOI: 10.1016/j.neuron.2011.07.015] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/22/2011] [Indexed: 12/15/2022]
Abstract
Vision, olfaction, hearing, and balance are mediated by receptors that reside in specialized sensory epithelial organs. Age-related degeneration of the photoreceptors in the retina and the hair cells in the cochlea, caused by macular degeneration and sensorineural hearing loss, respectively, affect a growing number of individuals. Although sensory receptor cells in the mammalian retina and inner ear show only limited or no regeneration, in many nonmammalian vertebrates, these sensory epithelia show remarkable regenerative potential. We summarize the current state of knowledge of regeneration in the specialized sense organs in both nonmammalian vertebrates and mammals and discuss possible areas where new advances in regenerative medicine might provide approaches to successfully stimulate sensory receptor cell regeneration. The field of regenerative medicine is still in its infancy, but new approaches using stem cells and reprogramming suggest ways in which the potential for regeneration may be restored in individuals suffering from sensory loss.
Collapse
Affiliation(s)
- Olivia Bermingham-McDonogh
- Department of Biological Structure, Institute for Stem Cells and Regenerative Medicine, University of Washington, Seattle, WA 98195, USA.
| | | |
Collapse
|
39
|
Togashi H, Kominami K, Waseda M, Komura H, Miyoshi J, Takeichi M, Takai Y. Nectins establish a checkerboard-like cellular pattern in the auditory epithelium. Science 2011; 333:1144-7. [PMID: 21798896 DOI: 10.1126/science.1208467] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the auditory epithelium of the cochlea, the sensory hair cells and supporting cells are arranged in a checkerboard-like fashion, but the mechanism underlying this cellular patterning is unclear. We found that mouse hair cells and supporting cells express the immunoglobulin-like adhesion molecules nectin-1 and -3, respectively, and that their interaction mediates the heterotypic adhesion between these two cell types. Genetic removal of nectin-1 or -3 disrupted the checkerboard-like pattern, inducing aberrant attachment between hair cells. When cells expressing either nectin-1 or -3 were cocultured, they arranged themselves into a mosaic pattern. Thus, nectin-1 and -3 promote the formation of the checkerboard-like pattern of the auditory epithelia.
Collapse
Affiliation(s)
- Hideru Togashi
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Takemura M, Adachi-Yamada T. Cell death and selective adhesion reorganize the dorsoventral boundary for zigzag patterning of Drosophila wing margin hairs. Dev Biol 2011; 357:336-46. [PMID: 21781959 DOI: 10.1016/j.ydbio.2011.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2011] [Revised: 06/30/2011] [Accepted: 07/05/2011] [Indexed: 11/17/2022]
Abstract
Animal tissues and organs are comprised of several types of cells, which are often arranged in a well-ordered pattern. The posterior part of the Drosophila wing margin is covered with a double row of long hairs, which are equally and alternately derived from the dorsal and ventral sides of the wing, exhibiting a zigzag pattern in the lateral view. How this geometrically regular pattern is formed has not been fully understood. In this study, we show that this zigzag pattern is created by rearrangement of wing margin cells along the dorsoventral boundary flanked by the double row of hair cells during metamorphosis. This cell rearrangement is induced by selective apoptosis of wing margin cells that are spatially separated from hair cells. As a result of apoptosis, the remaining wing margin cells are rearranged in a well-ordered manner, which shapes corrugated lateral sides of both dorsal and ventral edges to interlock them for zigzag patterning. We further show that the corrugated topology of the wing edges is achieved by cell-type specific expression and localization of four kinds of NEPH1/nephrin family proteins through heterophilic adhesion between wing margin cells and hair cells. Homophilic E-cadherin adhesion is also required for attachment of the corrugated dorsoventral edges. Taken together, our results demonstrate that sequential coordination of apoptosis and epithelial architecture with selective adhesion creates the zigzag hair alignment. This may be a common mechanism for geometrically ordered repetitive packing of several types of cells in similarly patterned developmental fields such as the mammalian organ of Corti.
Collapse
Affiliation(s)
- Masahiko Takemura
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe 657-8501, Japan
| | | |
Collapse
|
41
|
Trowe MO, Shah S, Petry M, Airik R, Schuster-Gossler K, Kist R, Kispert A. Loss of Sox9 in the periotic mesenchyme affects mesenchymal expansion and differentiation, and epithelial morphogenesis during cochlea development in the mouse. Dev Biol 2010; 342:51-62. [DOI: 10.1016/j.ydbio.2010.03.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 02/24/2010] [Accepted: 03/16/2010] [Indexed: 10/19/2022]
|
42
|
Hwang CH, Guo D, Harris MA, Howard O, Mishina Y, Gan L, Harris SE, Wu DK. Role of bone morphogenetic proteins on cochlear hair cell formation: analyses of Noggin and Bmp2 mutant mice. Dev Dyn 2010; 239:505-13. [PMID: 20063299 DOI: 10.1002/dvdy.22200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The mammalian organ of Corti of the inner ear is a highly sophisticated sensory end organ responsible for detecting sound. Noggin is a secreted glycoprotein, which antagonizes bone morphogenetic proteins 2 and 4 (Bmp2 and Bmp4). The lack of this antagonist causes increased rows of inner and outer hair cells in the organ of Corti. In mice, Bmp2 is expressed transiently in nascent cochlear hair cells. To investigate whether Noggin normally modulates the levels of Bmp2 for hair cell formation, we deleted Bmp2 in the cochlear hair cells using two cre strains, Foxg1(cre/+) and Gfi1(cre/+). Bmp2 conditional knockout cochleae generated using these two cre strains show normal hair cells. Furthermore, Gfi1(cre/+);Bmp2(lox/-) mice are viable and have largely normal hearing. The combined results of Noggin and Bmp2 mutants suggest that Noggin is likely to regulate other Bmps in the cochlea such as Bmp4.
Collapse
Affiliation(s)
- Chan Ho Hwang
- Laboratory of Molecular Biology, National Institute on Deafness and Other Communication Disorders, Rockville, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Simone RP, DiNardo S. Actomyosin contractility and Discs large contribute to junctional conversion in guiding cell alignment within the Drosophila embryonic epithelium. Development 2010; 137:1385-94. [PMID: 20332153 DOI: 10.1242/dev.048520] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proper control of epithelial morphogenesis is vital to development and is often disrupted in disease. After germ band extension, the cells of the Drosophila ventral embryonic epidermis are packed in a two-dimensional polygonal array. Although epithelial cell rearrangements are being studied productively in several tissues, the ventral epidermis is of particular interest as the final cell arrangement is, uniquely, far from equilibrium. We show that over the course of several hours, a subset of cells within each parasegment adopts a rectilinear configuration and aligns into parallel columns. Live imaging shows that this is accomplished by the shrinkage of select cell interfaces, as three-cell junctions are converted to four-cell junctions. Additionally, we show that non-muscle Myosin II and the polarity proteins Discs large (Dlg) and Bazooka are enriched along cell interfaces in a complex but reproducible pattern that suggests their involvement in junctional conversion and cell alignment. Indeed, depletion of Myosin II or dlg disrupts these processes. These results show that tight spatial regulation of actomyosin contractility is required to produce this high-energy arrangement of cells.
Collapse
Affiliation(s)
- Robert P Simone
- University of Pennsylvania Medical School, Department of Cell and Developmental Biology, 421 Curie Boulevard, Philadelphia, PA 19104-6048, USA
| | | |
Collapse
|
44
|
CD44 is a marker for the outer pillar cells in the early postnatal mouse inner ear. J Assoc Res Otolaryngol 2010; 11:407-18. [PMID: 20386946 DOI: 10.1007/s10162-010-0211-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 02/24/2010] [Indexed: 01/20/2023] Open
Abstract
Cluster of differentiation antigens (CD proteins) are classically used as immune cell markers. However, their expression within the inner ear is still largely undefined. In this study, we explored the possibility that specific CD proteins might be useful for defining inner ear cell populations. mRNA expression profiling of microdissected auditory and vestibular sensory epithelia revealed 107 CD genes as expressed in the early postnatal mouse inner ear. The expression of 68 CD genes was validated with real-time RT-PCR using RNA extracted from microdissected sensory epithelia of cochleae, utricles, saccules, and cristae of newborn mice. Specifically, CD44 was identified as preferentially expressed in the auditory sensory epithelium. Immunohistochemistry revealed that within the early postnatal organ of Corti, the expression of CD44 is restricted to outer pillar cells. In order to confirm and expand this finding, we characterized the expression of CD44 in two different strains of mice with loss- and gain-of-function mutations in Fgfr3 which encodes a receptor for FGF8 that is essential for pillar cell development. We found that the expression of CD44 is abolished from the immature pillar cells in homozygous Fgfr3 knockout mice. In contrast, both the outer pillar cells and the aberrant Deiters' cells in the Fgfr3 ( P244R/ ) (+) mice express CD44. The deafness phenotype segregating in DFNB51 families maps to a linkage interval that includes CD44. To study the potential role of CD44 in hearing, we characterized the auditory system of CD44 knockout mice and sequenced the entire open reading frame of CD44 of affected members of DFNB51 families. Our results suggest that CD44 does not underlie the deafness phenotype of the DFNB51 families. Finally, our study reveals multiple potential new cell type-specific markers in the mouse inner ear and identifies a new marker for outer pillar cells.
Collapse
|
45
|
|
46
|
Regulation of cell fate and patterning in the developing mammalian cochlea. Curr Opin Otolaryngol Head Neck Surg 2009; 17:381-7. [PMID: 19623076 DOI: 10.1097/moo.0b013e3283303347] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
PURPOSE OF REVIEW A significant proportion of hearing loss and deafness is caused by defects in the structure or function of cells within the organ of Corti. Identification of the molecular factors that regulate the development of this structure should provide valuable insights regarding inner ear formation and the signaling pathways that underlie congenital auditory deficits. In addition, targeted modulation of these same factors could be developed as therapies for hair cell regeneration. RECENT FINDINGS Results from experiments using transgenic and mutant mice, as well as in-vitro techniques, have identified genes and signaling pathways that are required to either specify unique auditory cell types, such as hair cells or supporting cells, or to generate the highly ordered cellular pattern that is characteristic for the organ of Corti. In particular, the hedgehog and fibroblast growth factor signaling pathways modulate the formation of the progenitor cells that will give rise to the organ of Corti. SRY-box containing gene 2, a transcription factor that is required for the formation of the cochlear progenitor cell population, has paradoxically been shown to also act as an inhibitor of hair cell development. Finally, the motor protein myosin II regulates extension of the organ of Corti and the alignment of hair cells and supporting cells into ordered rows. SUMMARY A better understanding of the signaling pathways that direct different aspects of cochlear development, such as specific of cell fates or cellular patterning, offers the potential to identify new pathways or molecules that could be targeted for therapeutic interventions.
Collapse
|
47
|
Yamamoto N, Okano T, Ma X, Adelstein RS, Kelley MW. Myosin II regulates extension, growth and patterning in the mammalian cochlear duct. Development 2009; 136:1977-86. [PMID: 19439495 DOI: 10.1242/dev.030718] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The sensory epithelium of the mammalian cochlea comprises mechanosensory hair cells that are arranged into four ordered rows extending along the length of the cochlear spiral. The factors that regulate the alignment of these rows are unknown. Results presented here demonstrate that cellular patterning within the cochlea, including the formation of ordered rows of hair cells, arises through morphological remodeling that is consistent with the mediolateral component of convergent extension. Non-muscle myosin II is shown to be expressed in a pattern that is consistent with an active role in cellular remodeling within the cochlea, and genetic or pharmacological inhibition of myosin II results in defects in cellular patterning that are consistent with a disruption in convergence and extension. These results identify the first molecule, myosin II, which directly regulates cellular patterning and alignment within the cochlear sensory epithelium. Our results also provide insights into the cellular mechanisms that are required for the formation of highly ordered cellular patterns.
Collapse
Affiliation(s)
- Norio Yamamoto
- Section on Developmental Neuroscience, National Institute on Deafness and other Communication Disorders, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
48
|
Jxc1/Sobp, encoding a nuclear zinc finger protein, is critical for cochlear growth, cell fate, and patterning of the organ of corti. J Neurosci 2008; 28:6633-41. [PMID: 18579736 DOI: 10.1523/jneurosci.1280-08.2008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The mouse cochlea emerges from the ventral pole of the otocyst to form a one and three-quarter coil. Little is known about the factors that control the growth of the cochlea. Jackson circler (jc) is a recessive mutation causing deafness resulting from a growth arrest of the cochlea duct at day 13.5 of embryonic development. Here, we identify the vertebrate homolog of the Drosophila Sobp (sine oculis-binding protein) gene (named Jxc1) in the jc locus. Jxc1 encodes a nuclear protein that has two FCS-type zinc finger domains (PS51024) and bears nuclear localization signals and highly conserved sequence motifs. Transiently expressed wild-type protein is targeted to the nucleus, but mutant isoforms were mislocalized in the cytoplasm. In jc mutants, the cellular patterning of the organ of Corti is severely disrupted, exhibiting supernumerary hair cells at the apex, showing mirror-image duplications of tunnel of Corti and inner hair cells, and expressing ectopic vestibular-like hair cells within Kölliker's organ. Jxc1 mRNA was detected in inner ear sensory hair cells, supporting cells, and the acoustic ganglia. Expression was also found in the developing retina, olfactory epithelium, trigeminal ganglion, and hair follicles. Collectively, our data support a role for Jxc1 in controlling a critical step in cochlear growth, cell fate, and patterning of the organ of Corti.
Collapse
|
49
|
Abstract
The conventional theory about the snail shell shape of the mammalian cochlea is that it evolved essentially and perhaps solely to conserve space inside the skull. Recently, a theory proposed that the spiral's graded curvature enhances the cochlea's mechanical response to low frequencies. This article provides a multispecies analysis of cochlear shape to test this theory and demonstrates that the ratio of the radii of curvature from the outermost and innermost turns of the cochlear spiral is a significant cochlear feature that correlates strongly with low-frequency hearing limits. The ratio, which is a measure of curvature gradient, is a reflection of the ability of cochlear curvature to focus acoustic energy at the outer wall of the cochlear canal as the wave propagates toward the apex of the cochlea.
Collapse
|
50
|
Li S, Mark S, Radde-Gallwitz K, Schlisner R, Chin MT, Chen P. Hey2 functions in parallel with Hes1 and Hes5 for mammalian auditory sensory organ development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:20. [PMID: 18302773 PMCID: PMC2277407 DOI: 10.1186/1471-213x-8-20] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Accepted: 02/26/2008] [Indexed: 01/08/2023]
Abstract
BACKGROUND During mouse development, the precursor cells that give rise to the auditory sensory organ, the organ of Corti, are specified prior to embryonic day 14.5 (E14.5). Subsequently, the sensory domain is patterned precisely into one row of inner and three rows of outer sensory hair cells interdigitated with supporting cells. Both the restriction of the sensory domain and the patterning of the sensory mosaic of the organ of Corti involve Notch-mediated lateral inhibition and cellular rearrangement characteristic of convergent extension. This study explores the expression and function of a putative Notch target gene. RESULTS We report that a putative Notch target gene, hairy-related basic helix-loop-helix (bHLH) transcriptional factor Hey2, is expressed in the cochlear epithelium prior to terminal differentiation. Its expression is subsequently restricted to supporting cells, overlapping with the expression domains of two known Notch target genes, Hairy and enhancer of split homolog genes Hes1 and Hes5. In combination with the loss of Hes1 or Hes5, genetic inactivation of Hey2 leads to increased numbers of mis-patterned inner or outer hair cells, respectively. Surprisingly, the ectopic hair cells in Hey2 mutants are accompanied by ectopic supporting cells. Furthermore, Hey2-/-;Hes1-/- and Hey2-/-;Hes1+/- mutants show a complete penetrance of early embryonic lethality. CONCLUSION Our results indicate that Hey2 functions in parallel with Hes1 and Hes5 in patterning the organ of Corti, and interacts genetically with Hes1 for early embryonic development and survival. Our data implicates expansion of the progenitor pool and/or the boundaries of the developing sensory organ to account for patterning defects observed in Hey2 mutants.
Collapse
Affiliation(s)
- Shuangding Li
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sharayne Mark
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | - Rebecca Schlisner
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael T Chin
- University of Washington School of Medicine at SLU, 815 Mercer Street, Seattle, WA 98109, USA
| | - Ping Chen
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|