1
|
Wang Z, Wang X, Lan X, Zhu H, Qu L, Pan C. Polymorphism within the GATA binding protein 4 gene is significantly associated with goat litter size. Anim Biotechnol 2023; 34:4291-4300. [PMID: 36421983 DOI: 10.1080/10495398.2022.2147533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
GATA binding protein 4 (GATA4) is a typical transcription binding factor, and its main functions include regulating the proliferation, differentiation and apoptosis of ovarian granulosa cells, promoting spermatogenesis and sex differentiation, implying that this gene have possibly roles in animal reproduction. This study aims to detect five potential insertion/deletions (indels) of the GATA4 gene in 606 healthy unrelated Shaanbei white cashmere (SBWC) goats and analyze its association with the litter size. The electrophoresis and DNA sequencing identified two polymorphic indels (e.g., P4-Del-8bp and P5-Ins-9bp indel). Then T-test analysis showed that P4-Del-8bp was significantly correlated with litter size (p = 0.022) because of two different genotypes detected, e.g., insertion-deletion (ID) and deletion-deletion (DD), and the average litter size of individuals with DD genotype goats was higher than that of others. However, there was no correlation between P5-Ins-9bp and lambing of goats. Chi-square (X2) test found that the distribution of and P4-Del-8bp genotypes (X2 = 6.475, p = 0.011) was significantly different between single and multiple-lamb groups, while P5-Ins-9bp (X2 = 0.030, p = 0.862) was not. Therefore, these findings revealed that P4-Del-8bp polymorphism of goat GATA4 gene was a potential molecular marker significantly associated with litter size, which can be used for the marker-assisted selection (MAS) breeding to improve goat industry.
Collapse
Affiliation(s)
- Zhiying Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinyu Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Haijing Zhu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Lei Qu
- Life Science Research Center, Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
2
|
La Y, Ma X, Bao P, Chu M, Yan P, Liang C, Guo X. Genome-Wide Landscape of mRNAs, lncRNAs, and circRNAs during Testicular Development of Yak. Int J Mol Sci 2023; 24:ijms24054420. [PMID: 36901865 PMCID: PMC10002557 DOI: 10.3390/ijms24054420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/01/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
Testicular development is a tightly regulated process in mammals. Understanding the molecular mechanisms of yak testicular development will benefit the yak breeding industry. However, the roles of different RNAs, such as mRNA, lncRNA, and circRNA in the testicular development of yak, are still largely unclear. In this study, transcriptome analyses were performed on the expression profiles of mRNAs, lncRNAs, and circRNAs in testis tissues of Ashidan yak at different developmental stages, including 6-months-old (M6), 18-months-old (M18), and 30-months-old (M30). A total of 30, 23, and 277 common differentially expressed (DE) mRNAs, lncRNAs, and circRNAs were identified in M6, M18, and M30, respectively. Furthermore, functional enrichment analysis showed that the common DE mRNAs during the entire developmental process were mainly involved in gonadal mesoderm development, cell differentiation, and spermatogenesis processes. Additionally, co-expression network analysis identified the potential lncRNAs related to spermatogenesis, e.g., TCONS_00087394 and TCONS_00012202. Our study provides new information about changes in RNA expression during yak testicular development, which greatly improves our understanding of the molecular mechanisms regulating testicular development in yaks.
Collapse
Affiliation(s)
- Yongfu La
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Correspondence: (C.L.); (X.G.); Tel.: +86-093-1211-5257 (X.G.)
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China
- Correspondence: (C.L.); (X.G.); Tel.: +86-093-1211-5257 (X.G.)
| |
Collapse
|
3
|
Mehanovic S, Pierre KJ, Viger RS, Tremblay JJ. COUP-TFII interacts and functionally cooperates with GATA4 to regulate Amhr2 transcription in mouse MA-10 Leydig cells. Andrology 2022; 10:1411-1425. [PMID: 35973717 DOI: 10.1111/andr.13266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/19/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Leydig cells produce testosterone and insulin-like 3, two hormones essential for male sex differentiation and reproductive function. The orphan nuclear receptor COUP-TFII and the zinc finger factor GATA4 are two transcription factors involved in Leydig cell differentiation, gene expression and function. OBJECTIVES Several Leydig cell gene promoters contain binding motifs for both GATA factors and nuclear receptors. The goal of present study is to determine whether GATA4 and COUP-TFII cooperate to regulate gene expression in Leydig cells. MATERIALS AND METHODS The transcriptomes from GATA4- and COUP-TFII-depleted MA-10 Leydig cells were analyzed using bioinformatic tools. Functional cooperation between GATA4 and COUP-TFII, and other related family members, was assessed by transient transfections in Leydig (MA-10 and MLTC-1) and fibroblast (CV-1) cell lines on several gene promoters. Recruitment of GATA4 and COUP-TFII to gene promoters was investigated by chromatin immunoprecipitation. Co-immunoprecipitation was used to determine whether GATA4 and COUP-TFII interact in MA-10 Leydig cells. RESULTS Transcriptomic analyses of GATA4- and COUP-TFII-depleted MA-10 Leydig cells revealed 44 commonly regulated genes including the anti-Müllerian hormone receptor (Amhr2) gene. GATA4 and COUP-TFII independently activated the Amhr2 promoter, and their combination led to a stronger activation. A GC-rich element, located in the proximal Amhr2 promoter was found to be essential for GATA4- and COUP-TFII-dependent activation as well as for the COUP-TFII/GATA4 cooperation. COUP-TFII and GATA4 directly interacted in MA-10 Leydig cell extracts. Chromatin immunoprecipitation revealed that GATA4 and COUP-TFII are recruited to the proximal Amhr2 promoter, which contains binding sites for both factors in addition to the GC-rich element. Cooperation between COUP-TFII and GATA6, but not GATA1 and GATA3, was also observed. DISCUSSION AND CONCLUSION Our results establish the importance of a physical and functional cooperation between COUP-TFII/GATA4 in the regulation of gene expression in MA-10 Leydig cells, and more specifically the Amhr2 gene. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Samir Mehanovic
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Kenley Joule Pierre
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada
| | - Robert S Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| | - Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec-Université Laval, CHUL Room T3-67, Québec City, QC, G1V 4G2, Canada.,Centre for Research in Reproduction, Development and Intergenerational Health, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, G1V 0A6, Canada
| |
Collapse
|
4
|
Viger RS, de Mattos K, Tremblay JJ. Insights Into the Roles of GATA Factors in Mammalian Testis Development and the Control of Fetal Testis Gene Expression. Front Endocrinol (Lausanne) 2022; 13:902198. [PMID: 35692407 PMCID: PMC9178088 DOI: 10.3389/fendo.2022.902198] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/28/2022] Open
Abstract
Defining how genes get turned on and off in a correct spatiotemporal manner is integral to our understanding of the development, differentiation, and function of different cell types in both health and disease. Testis development and subsequent male sex differentiation of the XY fetus are well-orchestrated processes that require an intricate network of cell-cell communication and hormonal signals that must be properly interpreted at the genomic level. Transcription factors are at the forefront for translating these signals into a coordinated genomic response. The GATA family of transcriptional regulators were first described as essential regulators of hematopoietic cell differentiation and heart morphogenesis but are now known to impact the development and function of a multitude of tissues and cell types. The mammalian testis is no exception where GATA factors play essential roles in directing the expression of genes crucial not only for testis differentiation but also testis function in the developing male fetus and later in adulthood. This minireview provides an overview of the current state of knowledge of GATA factors in the male gonad with a particular emphasis on their mechanisms of action in the control of testis development, gene expression in the fetal testis, testicular disease, and XY sex differentiation in humans.
Collapse
Affiliation(s)
- Robert S. Viger
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| | - Jacques J. Tremblay
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle and Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Quebec City, QC, Canada
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec—Université Laval, Quebec City, QC, Canada
| |
Collapse
|
5
|
de Mattos K, Viger RS, Tremblay JJ. Transcription Factors in the Regulation of Leydig Cell Gene Expression and Function. Front Endocrinol (Lausanne) 2022; 13:881309. [PMID: 35464056 PMCID: PMC9022205 DOI: 10.3389/fendo.2022.881309] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/28/2022] Open
Abstract
Cell differentiation and acquisition of specialized functions are inherent steps in events that lead to normal tissue development and function. These processes require accurate temporal, tissue, and cell-specific activation or repression of gene transcription. This is achieved by complex interactions between transcription factors that form a unique combinatorial code in each specialized cell type and in response to different physiological signals. Transcription factors typically act by binding to short, nucleotide-specific DNA sequences located in the promoter region of target genes. In males, Leydig cells play a crucial role in sex differentiation, health, and reproductive function from embryonic life to adulthood. To better understand the molecular mechanisms regulating Leydig cell differentiation and function, several transcription factors important to Leydig cells have been identified, including some previously unknown to this specialized cell type. This mini review summarizes the current knowledge on transcription factors in fetal and adult Leydig cells, describing their roles and mechanisms of action.
Collapse
Affiliation(s)
- Karine de Mattos
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
| | - Robert S. Viger
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
| | - Jacques J. Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Université Laval, Québec City, QC, Canada
- Centre de recherche en Reproduction, Développement et Santé Intergénérationnelle, Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, QC, Canada
- *Correspondence: Jacques J. Tremblay,
| |
Collapse
|
6
|
Park JK, Song Y, Kim DW, Cho K, Yeo JM, Lee R, Lim YS, Lee WY, Park HJ. Helix-loop-helix protein ID4 expressed in bovine Sertoli cells. Acta Histochem 2021; 123:151800. [PMID: 34673438 DOI: 10.1016/j.acthis.2021.151800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 10/20/2022]
Abstract
Stage- and cell type-specific biomarkers are important for understanding spermatogenesis in mammalian testis. The present study identified several testicular cell marker proteins in 6- and 24-month old bovine testes. In 6-month old bovine testes, spermatogonia and spermatocytes were detected but complete spermatogenesis occurred in 24-month old testes. The diameters of the seminiferous tubules increased significantly in the 24-month old testes compared with those in the 6-month old testes. Protein Gene Product 9.5 (PGP9.5), also known as the undifferentiated spermatogonium marker, and GATA4 (GATA binding protein 4), vimentin, and SOX9 (SRY-Box Transcription Factor 9) were detected in the basement membrane region. Interestingly, ID4 (inhibitor of DNA binding protein 4; previously known as the undifferentiated cell marker) proteins were located in the basement membrane region but their expression patterns were different from those of PGP9.5. Co-immunohistochemistry results showed that ID4 was detected in the Sertoli cells expressing vimentin and SOX9 in 6- and 24-month old bovine testes. This result indicated that ID4 is a putative biomarker of Sertoli cell in the bovine system, which is different from the rodent models. Thus, these results will contribute in understanding the process of spermatogenesis that is different in bovines compared to other species.
Collapse
|
7
|
Zhang J, Yu P, Liu T, Qiao D, Hu Q, Su S. Identification and functional analysis of SOX transcription factors in the genome of the Chinese soft-shell turtle (Pelodiscus sinensis). Comp Biochem Physiol B Biochem Mol Biol 2020; 242:110407. [PMID: 31923463 DOI: 10.1016/j.cbpb.2020.110407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 11/28/2022]
Abstract
SOX transcription factors play an irreplaceable role in biological developmental processes. Sox genes have been identified in a wide variety of species; however, their identification and functional analysis in the genome of the Chinese soft-shell turtle (Pelodiscus sinensis) have not been performed. In the present study, the Chinese soft-shell turtle genome was found to contain 17 Sox genes, which were categorized into seven groups according to their phylogenetic relationships. Gene structure and protein motif analysis of the Sox genes showed that within the same phylogenetic group, their exon-intron number and motif structure of the Sox family were relatively conserved, but diverged in the comparison between different groups. Sexual dimorphism expression analysis for the Sox genes displayed that Sox8 and Sox9 were upregulated in the testis, while Sox3, Sox7, Sox11, and Sox13 were upregulated in the ovary. A correlation network analysis of SOX transcription factors with their target genes analysis showed that Sox3 correlated negatively with Sox9 and gata4. Sox11 and Sox7 correlated negatively with gata4. Sox8 and Sox9 correlated positively with gata4. Therefore, the genome-wide identification and functional analysis of the Sox gene family will be useful to further reveal the functions of Sox genes in the Chinese soft-shell turtle.
Collapse
Affiliation(s)
- Jun Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Peng Yu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Tiantian Liu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Dan Qiao
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qingtao Hu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Shiping Su
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
8
|
Penny GM, Cochran RB, Pihlajoki M, Kyrönlahti A, Schrade A, Häkkinen M, Toppari J, Heikinheimo M, Wilson DB. Probing GATA factor function in mouse Leydig cells via testicular injection of adenoviral vectors. Reproduction 2017; 154:455-467. [PMID: 28710293 PMCID: PMC5589507 DOI: 10.1530/rep-17-0311] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/09/2017] [Accepted: 07/14/2017] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells produce androgens essential for proper male reproductive development and fertility. Here, we describe a new Leydig cell ablation model based on Cre/Lox recombination of mouse Gata4 and Gata6, two genes implicated in the transcriptional regulation of steroidogenesis. The testicular interstitium of adult Gata4flox/flox ; Gata6flox/flox mice was injected with adenoviral vectors encoding Cre + GFP (Ad-Cre-IRES-GFP) or GFP alone (Ad-GFP). The vectors efficiently and selectively transduced Leydig cells, as evidenced by GFP reporter expression. Three days after Ad-Cre-IRES-GFP injection, expression of androgen biosynthetic genes (Hsd3b1, Cyp17a1 and Hsd17b3) was reduced, whereas expression of another Leydig cell marker, Insl3, was unchanged. Six days after Ad-Cre-IRES-GFP treatment, the testicular interstitium was devoid of Leydig cells, and there was a concomitant loss of all Leydig cell markers. Chromatin condensation, nuclear fragmentation, mitochondrial swelling, and other ultrastructural changes were evident in the degenerating Leydig cells. Liquid chromatography-tandem mass spectrometry demonstrated reduced levels of androstenedione and testosterone in testes from mice injected with Ad-Cre-IRES-GFP. Late effects of treatment included testicular atrophy, infertility and the accumulation of lymphoid cells in the testicular interstitium. We conclude that adenoviral-mediated gene delivery is an expeditious way to probe Leydig cell function in vivo Our findings reinforce the notion that GATA factors are key regulators of steroidogenesis and testicular somatic cell survival.Free Finnish abstract: A Finnish translation of this abstract is freely available at http://www.reproduction-online.org/content/154/4/455/suppl/DC2.
Collapse
Affiliation(s)
- Gervette M Penny
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Rebecca B Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| | - Marjut Pihlajoki
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kyrönlahti
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anja Schrade
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Merja Häkkinen
- University of Eastern FinlandSchool of Pharmacy, Kuopio, Finland
| | - Jorma Toppari
- Department of PhysiologyInstitute of Biomedicine, University of Turku and Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Children's HospitalUniversity of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
- Department of Developmental BiologyWashington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Shima Y, Morohashi KI. Leydig progenitor cells in fetal testis. Mol Cell Endocrinol 2017; 445:55-64. [PMID: 27940302 DOI: 10.1016/j.mce.2016.12.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/18/2016] [Accepted: 12/07/2016] [Indexed: 12/21/2022]
Abstract
Testicular Leydig cells play pivotal roles in masculinization of organisms by producing androgens. At least two distinct Leydig cell populations sequentially emerge in the mammalian testis. Leydig cells in the fetal testis (fetal Leydig cells) appear just after initial sex differentiation and induce masculinization of male fetuses. Although there has been a debate on the fate of fetal Leydig cells in the postnatal testis, it has been generally believed that fetal Leydig cells regress and are completely replaced by another Leydig cell population, adult Leydig cells. Recent studies revealed that gene expression patterns are different between fetal and adult Leydig cells and that the androgens produced in fetal Leydig cells are different from those in adult Leydig cells in mice. Although these results suggested that fetal and adult Leydig cells have distinct origins, several recent studies of mouse models support the hypothesis that fetal and adult Leydig cells arise from a common progenitor pool. In this review, we first provide an overview of previous knowledge, mainly from mouse studies, focusing on the cellular origins of fetal Leydig cells and the regulatory mechanisms underlying fetal Leydig cell differentiation. In addition, we will briefly discuss the functional differences of fetal Leydig cells between human and rodents. We will also discuss recent studies with mouse models that give clues for understanding how the progenitor cells in the fetal testis are subsequently destined to become fetal or adult Leydig cells.
Collapse
Affiliation(s)
- Yuichi Shima
- Department of Anatomy, Kawasaki Medical School, 577 Matsushima, Kurashiki, Okayama 701-0192, Japan.
| | - Ken-Ichirou Morohashi
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| |
Collapse
|
10
|
Dörner J, Martinez Rodriguez V, Ziegler R, Röhrig T, Cochran RS, Götz RM, Levin MD, Pihlajoki M, Heikinheimo M, Wilson DB. GLI1 + progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic gonadal-like tissue. Mol Cell Endocrinol 2017; 441:164-175. [PMID: 27585489 PMCID: PMC5235954 DOI: 10.1016/j.mce.2016.08.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 08/26/2016] [Accepted: 08/28/2016] [Indexed: 01/20/2023]
Abstract
As certain strains of mice age, hyperplastic lesions resembling gonadal tissue accumulate beneath the adrenal capsule. Gonadectomy (GDX) accelerates this heterotopic differentiation, resulting in the formation of wedge-shaped adrenocortical neoplasms that produce sex steroids. Stem/progenitor cells that reside in the adrenal capsule and retain properties of the adrenogonadal primordium are thought to be the source of this heterotopic tissue. Here, we demonstrate that GLI1+ progenitors in the adrenal capsule give rise to gonadal-like cells that accumulate in the subcapsular region. A tamoxifen-inducible Cre driver (Gli1-creERT2) and two reporters (R26R-lacZ, R26R-confetti) were used to track the fate of GLI1+ cells in the adrenal glands of B6D2F2 mice, a strain that develops both GDX-induced adrenocortical neoplasms and age-dependent subcapsular cell hyperplasia. In gonadectomized B6D2F2 mice GLI1+ progenitors contributed to long-lived adrenal capsule cells and to adrenocortical neoplasms that expressed Gata4 and Foxl2, two prototypical gonadal markers. Pdgfra, a gene expressed in adrenocortical stromal cells, was upregulated in the GDX-induced neoplasms. In aged non-gonadectomized B6D2F2 mice GLI1+ progenitors gave rise to patches of subcapsular cell hyperplasia. Treatment with GANT61, a small-molecule GLI antagonist, attenuated the upregulation of gonadal-like markers (Gata4, Amhr2, Foxl2) in response to GDX. These findings support the premise that GLI1+ progenitor cells in the adrenal capsule of the adult mouse give rise to heterotopic tissue.
Collapse
Affiliation(s)
- Julia Dörner
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110 USA; Hochschule Mannheim - University of Applied Sciences, 68163 Mannheim, Germany
| | - Verena Martinez Rodriguez
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110 USA; Hochschule Mannheim - University of Applied Sciences, 68163 Mannheim, Germany
| | - Ricarda Ziegler
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110 USA; Hochschule Mannheim - University of Applied Sciences, 68163 Mannheim, Germany
| | - Theresa Röhrig
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110 USA; Hochschule Mannheim - University of Applied Sciences, 68163 Mannheim, Germany
| | - Rebecca S Cochran
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Ronni M Götz
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110 USA; Hochschule Mannheim - University of Applied Sciences, 68163 Mannheim, Germany
| | - Mark D Levin
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110 USA
| | - Marjut Pihlajoki
- University of Helsinki and Helsinki University Central Hospital, Children's Hospital, 00290 Helsinki, Finland
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110 USA; University of Helsinki and Helsinki University Central Hospital, Children's Hospital, 00290 Helsinki, Finland
| | - David B Wilson
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110 USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110 USA.
| |
Collapse
|
11
|
Establishment of a surgically induced cryptorchidism canine recipient model for spermatogonial stem cell transplantation. Lab Anim Res 2016; 32:257-266. [PMID: 28053620 PMCID: PMC5206233 DOI: 10.5625/lar.2016.32.4.257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/10/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022] Open
Abstract
Transplantation of spermatogonial stem cells (SSCs) in experimental animal models has been used to study germ line stem cell biology and to produce transgenic animals. The species-specific recipient model preparation is important for the characterization of SSCs and the production of offspring. Here, we investigated the effects of surgically induced cryptorchidism in dog as a new recipient model for spermatogonial stem cell transplantation. Artificially unilateral or bilateral cryptorchidism was induced in ten mature male dogs by surgically returning the testis and epididymis to the abdominal cavity. The testes and epididymides were collected every week after the induction of artificial cryptorchidism (surgery) for one month. To determine the effect of surgical cryptorchidism, the seminiferous tubule diameter was measured and immunohistochemistry using PGP9.5 and GATA4 antibodies was analyzed. The diameters of the seminiferous tubules of abdominal testes were significantly reduced compared to those of the scrotal testes. Immunohistochemistry results showed that PGP9.5 positive undifferentiated spermatogonia were significantly reduced after surgical cryptorchidism induction, but there were no significant changes in GATA-4 positive sertoli cells. To evaluate the testis function recovery rate, orchiopexy was performed on two dogs after 30 days of bilateral cryptorchidism. In the orchiopexy group, SCP3 positive spermatocytes were detected, and spermatogenesis was recovered 8 weeks after orchiopexy. In this study, we provided optimum experimental conditions and time for surgical preparation of a recipient canine model for SSC transplantation. Additionally, our data will contribute to recipient preparation by using surgically induced cryptorchidism in non-rodent species.
Collapse
|
12
|
Wen Q, Cheng CY, Liu YX. Development, function and fate of fetal Leydig cells. Semin Cell Dev Biol 2016; 59:89-98. [PMID: 26968934 PMCID: PMC5016207 DOI: 10.1016/j.semcdb.2016.03.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 12/21/2022]
Abstract
During fetal testis development, fetal Leydig cells (FLCs) are found to be originated from multiple progenitor cells. FLC specification and function are under tight regulation of specific genes and signaling proteins. Furthermore, Sertoli cells play a crucial role to regulate FLC differentiation during fetal testis development. FLC progenitor- and FLC-produced biomolecules are also involved in the differentiation and activity of rodent FLCs. The main function of FLCs is to produce androgens to masculinize XY embryos. However, FLCs are capable of producing androstenedione but not testosterone due to the lack of 17β-HSD (17β-hydroxysteroid dehydrogenase), but fetal Sertoli cells express 17β-HSD which thus transforms androstenedione to testosterone in the fetal testis. On the other hand, FLCs produce activin A to regulate Sertoli cell proliferation, and Sertoli cells in turn modulate testis cord expansion. It is now generally accepted that adult Leydig cells (ALCs) gradually replace FLCs during postnatal development to produce testosterone to support spermatogenesis as FLCs undergo degeneration in neonatal and pre-pubertal testes. However, based on studies using genetic tracing mouse models, FLCs are found to persist in adult testes, making up ∼20% of total Leydig cells. In this review, we evaluate the latest findings regarding the development, function and fate of FLCs during fetal and adult testis development.
Collapse
Affiliation(s)
- Qing Wen
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - C Yan Cheng
- The Mary M. Wohlford Laboratory for Male Contraceptive Research, Center for Biomedical Research, Population Council, New York, New York 10065, United States.
| | - Yi-Xun Liu
- State Key Laboratory of Stem Cells and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
13
|
Figueiredo AFA, França LR, Hess RA, Costa GMJ. Sertoli cells are capable of proliferation into adulthood in the transition region between the seminiferous tubules and the rete testis in Wistar rats. Cell Cycle 2016; 15:2486-96. [PMID: 27420022 DOI: 10.1080/15384101.2016.1207835] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Sertoli cells (SCs) play a crucial role in testis differentiation, development and function, determining the magnitude of sperm production in sexually mature animals. For over 40 years, it has been considered that these key testis somatic cells stop dividing during early pre-pubertal phase, between around 10 to 20 days after birth respectively in mice and rats, being after that under physiological conditions a stable and terminally differentiated population. However, evidences from the literature are challenging this dogma. In the present study, using several important functional markers (Ki-67, BrdU, p27, GATA-4, Androgen Receptor), we investigated the SC differentiation status in 36 days old and adult Wistar rats, focusing mainly in the transition region (TR) between the seminiferous tubules (ST) and the rete testis. Our results showed that SCs in TR remain undifferentiated for a longer period and, although at a lesser degree, even in adult rats proliferating SCs were observed in this region. Therefore, these findings suggest that, different from the other ST regions investigated, SCs residing in the TR exhibit a distinct functional phenotype. These undifferentiated SCs may compose a subpopulation of SC progenitors that reside in a specific microenvironment capable of growing the ST length if needed from this particular testis region. Moreover, our findings demonstrate an important aspect of testis function in mammals and opens new venues for other experimental approaches to the investigation of SC physiology, spermatogenesis progression and testis growth. Besides that, the TR may represent an important site for pathophysiological investigations and cellular interactions in the testis.
Collapse
Affiliation(s)
- A F A Figueiredo
- a Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , MG , Brazil
| | - L R França
- a Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , MG , Brazil.,b National Institute of Amazonian Research (INPA/Manaus), National Institute of Amazonian Research (INPA) , Manaus , AM , Brazil
| | - R A Hess
- c Department of Comparative Biosciences , University of Illinois , Urbana Champaign , IL , USA
| | - G M J Costa
- a Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , MG , Brazil
| |
Collapse
|
14
|
Schrade A, Kyrönlahti A, Akinrinade O, Pihlajoki M, Fischer S, Rodriguez VM, Otte K, Velagapudi V, Toppari J, Wilson DB, Heikinheimo M. GATA4 Regulates Blood-Testis Barrier Function and Lactate Metabolism in Mouse Sertoli Cells. Endocrinology 2016; 157:2416-31. [PMID: 26974005 PMCID: PMC4891789 DOI: 10.1210/en.2015-1927] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Conditional deletion of Gata4 in Sertoli cells (SCs) of adult mice has been shown to increase permeability of the blood-testis barrier (BTB) and disrupt spermatogenesis. To gain insight into the molecular underpinnings of these phenotypic abnormalities, we assessed the impact of Gata4 gene silencing in cell culture models. Microarray hybridization identified genes dysregulated by siRNA-mediated inhibition of Gata4 in TM4 cells, an immortalized mouse SC line. Differentially expressed genes were validated by quantitative RT-PCR analysis of primary cultures of Gata4(flox/flox) mouse SCs that had been subjected to cre-mediated recombination in vitro. Depletion of GATA4 in TM4 cells and primary SCs was associated with altered expression of genes involved in key facets of BTB maintenance, including tight/adherens junction formation (Tjp1, Cldn12, Vcl, Tnc, Csk) and extracellular matrix reorganization (Lamc1, Col4a1, Col4a5, Mmp10, Mmp23, Timp2). Western blotting and immunocytochemistry demonstrated reduced levels of tight junction protein-1, a prototypical tight junction protein, in GATA4-depleted cells. These changes were accompanied by a loss of morphologically recognizable junctional complexes and a decline in epithelial membrane resistance. Furthermore, Gata4 gene silencing was associated with altered expression of Hk1, Gpi1, Pfkp, Pgam1, Gls2, Pdk3, Pkd4, and Ldhb, genes regulating the production of lactate, a key nutrient that SCs provide to developing germ cells. Comprehensive metabolomic profiling demonstrated impaired lactate production in GATA4-deficient SCs. We conclude that GATA4 plays a pivotal role in the regulation of BTB function and lactate metabolism in mouse SCs.
Collapse
Affiliation(s)
- Anja Schrade
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Antti Kyrönlahti
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Oyediran Akinrinade
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Marjut Pihlajoki
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Simon Fischer
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Verena Martinez Rodriguez
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Kerstin Otte
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Vidya Velagapudi
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Jorma Toppari
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - David B Wilson
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| | - Markku Heikinheimo
- Children's Hospital (A.S., A.K., O.A., M.P., M.H.), University of Helsinki and Helsinki University Central Hospital, Helsinki 00014, Finland; Institute of Applied Biotechnology (S.F., K.O.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, Turku 20520, Finland; and Departments of Pediatrics (A.S., V.M.R., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University, St Louis, Missouri 63110
| |
Collapse
|
15
|
Martin LJ. Cell interactions and genetic regulation that contribute to testicular Leydig cell development and differentiation. Mol Reprod Dev 2016; 83:470-87. [DOI: 10.1002/mrd.22648] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 04/10/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Luc J. Martin
- Department of Biology; Université de Moncton; Moncton New-Brunswick Canada
| |
Collapse
|
16
|
Liu J, Zhang W, Du X, Jiang J, Wang C, Wang X, Zhang Q, He Y. Molecular characterization and functional analysis of the GATA4 in tongue sole (Cynoglossus semilaevis). Comp Biochem Physiol B Biochem Mol Biol 2016; 193:1-8. [DOI: 10.1016/j.cbpb.2015.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Revised: 11/23/2015] [Accepted: 12/02/2015] [Indexed: 01/11/2023]
|
17
|
Pihlajoki M, Färkkilä A, Soini T, Heikinheimo M, Wilson DB. GATA factors in endocrine neoplasia. Mol Cell Endocrinol 2016; 421:2-17. [PMID: 26027919 PMCID: PMC4662929 DOI: 10.1016/j.mce.2015.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Revised: 04/26/2015] [Accepted: 05/09/2015] [Indexed: 02/07/2023]
Abstract
GATA transcription factors are structurally-related zinc finger proteins that recognize the consensus DNA sequence WGATAA (the GATA motif), an essential cis-acting element in the promoters and enhancers of many genes. These transcription factors regulate cell fate specification and differentiation in a wide array of tissues. As demonstrated by genetic analyses of mice and humans, GATA factors play pivotal roles in the development, homeostasis, and function of several endocrine organs including the adrenal cortex, ovary, pancreas, parathyroid, pituitary, and testis. Additionally, GATA factors have been shown to be mutated, overexpressed, or underexpressed in a variety of endocrine tumors (e.g., adrenocortical neoplasms, parathyroid tumors, pituitary adenomas, and sex cord stromal tumors). Emerging evidence suggests that GATA factors play a direct role in the initiation, proliferation, or propagation of certain endocrine tumors via modulation of key developmental signaling pathways implicated in oncogenesis, such as the WNT/β-catenin and TGFβ pathways. Altered expression or function of GATA factors can also affect the metabolism, ploidy, and invasiveness of tumor cells. This article provides an overview of the role of GATA factors in endocrine neoplasms. Relevant animal models are highlighted.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Anniina Färkkilä
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland; Department of Obstetrics and Gynecology, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Tea Soini
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland
| | - Markku Heikinheimo
- Children's Hospital, Helsinki University Central Hospital, University of Helsinki, 00290 Helsinki, Finland; Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David B Wilson
- Department of Pediatrics, St. Louis Children's Hospital, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
18
|
Subculture of Germ Cell-Derived Colonies with GATA4-Positive Feeder Cells from Neonatal Pig Testes. Stem Cells Int 2016; 2016:6029271. [PMID: 26880974 PMCID: PMC4736562 DOI: 10.1155/2016/6029271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 11/25/2015] [Indexed: 01/15/2023] Open
Abstract
Enrichment of spermatogonial stem cells is important for studying their self-renewal and differentiation. Although germ cell-derived colonies (GDCs) have been successfully cultured from neonatal pig testicular cells under 31°C conditions, the short period of in vitro maintenance (<2 months) limited their application to further investigations. To develop a culture method that allows for in vitro maintenance of GDCs for long periods, we subcultured the GDCs with freshly prepared somatic cells from neonatal pig testes as feeder cells. The subcultured GDCs were maintained up to passage 13 with the fresh feeder cells (FFCs) and then frozen. Eight months later, the frozen GDCs could again form the colonies on FFCs as shown in passages 1 to 13. Immunocytochemistry data revealed that the FFCs expressed GATA-binding protein 4 (GATA4), which is also detected in the cells of neonatal testes and total testicular cells, and that the expression of GATA4 was decreased in used old feeder cells. The subcultured GDCs in each passage had germ and stem cell characteristics, and flow cytometric analyses revealed that ~60% of these cells were GFRα-1 positive. In conclusion, neonatal pig testes-derived GDCs can be maintained for long periods with GATA4-expressing testicular somatic cells.
Collapse
|
19
|
Tremblay JJ. Molecular regulation of steroidogenesis in endocrine Leydig cells. Steroids 2015; 103:3-10. [PMID: 26254606 DOI: 10.1016/j.steroids.2015.08.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 07/19/2015] [Accepted: 08/04/2015] [Indexed: 02/06/2023]
Abstract
Steroid hormones regulate essential physiological processes and inadequate levels are associated with various pathological conditions. Consequently, the process of steroid hormone biosynthesis is finely regulated. In the testis, the main steroidogenic cells are the Leydig cells. There are two distinct populations of Leydig cells that arise during development: fetal and adult Leydig cells. Fetal Leydig cells are responsible for masculinizing the male urogenital tract and inducing testis descent. These cells atrophy shortly after birth and do not contribute to the adult Leydig cell population. Adult Leydig cells derive from undifferentiated precursors present after birth and become fully steroidogenic at puberty. The differentiation of both Leydig cell populations is controlled by locally produced paracrine factors and by endocrine hormones. In fully differentially and steroidogenically active Leydig cells, androgen production and hormone-responsiveness involve various signaling pathways and downstream transcription factors. This review article focuses on recent developments regarding the origin and function of Leydig cells, the regulation of their differentiation by signaling molecules, hormones, and structural changes, the signaling pathways, kinases, and transcription factors involved in their differentiation and in mediating LH-responsiveness, as well as the fine-tuning mechanisms that ensure adequate production steroid hormones.
Collapse
Affiliation(s)
- Jacques J Tremblay
- Reproduction, Mother and Child Health, Centre de recherche du centre hospitalier universitaire de Québec, Québec City, Québec G1V 4G2, Canada; Centre for Research in Biology of Reproduction, Department of Obstetrics, Gynaecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec G1V 0A6, Canada.
| |
Collapse
|
20
|
Jiang XH, Bukhari I, Zheng W, Yin S, Wang Z, Cooke HJ, Shi QH. Blood-testis barrier and spermatogenesis: lessons from genetically-modified mice. Asian J Androl 2015; 16:572-80. [PMID: 24713828 PMCID: PMC4104086 DOI: 10.4103/1008-682x.125401] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The blood-testis barrier (BTB) is found between adjacent Sertoli cells in the testis where it creates a unique microenvironment for the development and maturation of meiotic and postmeiotic germ cells in seminiferous tubes. It is a compound proteinous structure, composed of several types of cell junctions including tight junctions (TJs), adhesion junctions and gap junctions (GJs). Some of the junctional proteins function as structural proteins of BTB and some have regulatory roles. The deletion or functional silencing of genes encoding these proteins may disrupt the BTB, which may cause immunological or other damages to meiotic and postmeiotic cells and ultimately lead to spermatogenic arrest and infertility. In this review, we will summarize the findings on the BTB structure and function from genetically-modified mouse models and discuss the future perspectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing-Hua Shi
- Hefei National Laboratory for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China; Institute of Physics, Chinese Academy of Sciences, Hefei, China,
| |
Collapse
|
21
|
Qin F, Zhang J, Zan L, Guo W, Wang J, Chen L, Cao Y, Shen O, Tong J. Inhibitory effect of melatonin on testosterone synthesis is mediated via GATA-4/SF-1 transcription factors. Reprod Biomed Online 2015; 31:638-46. [PMID: 26386639 DOI: 10.1016/j.rbmo.2015.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 07/27/2015] [Accepted: 07/29/2015] [Indexed: 02/01/2023]
Abstract
The aim of the present study was to elucidate whether the GATA-4/SF-1 signalling pathway is involved in the inhibitory effects of melatonin on testosterone production in both the TM3 Leydig cell line and in C57BL/6J mice. In-vitro experiments demonstrated that melatonin treatment significantly reduced testosterone levels in cell culture medium (P < 0.05 or P < 0.01); and decreased intracellular cyclic adenosine monophospha accumulation (P < 0.05 or P < 0.01) and mRNA/protein expression of GATA-4, SF-1 (NR5A1), StAR, P450SCC (CYP11A1) and 3β-HSD (P < 0.05 or P < 0.01). These effects were blocked by N-acetyl-2-benzyltryptamin, a melatonin receptor antagonist. Similar effects of melatonin on testosterone production (P < 0.05 or P < 0.01) and down-regulation of transcription factors GATA-4 and SF-1 (P < 0.01) were also observed in mice treated with intratesticular injections of melatonin. Overall, the data suggest that the inhibitory effects of melatonin on testosterone production are mediated via down-regulation of GATA-4 and SF-1 expression.
Collapse
Affiliation(s)
- Fenju Qin
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China; Department of Biological Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Zhang
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Linsen Zan
- College of Animal Science and Technology, Northwest A&F University, Xian, 712100, China
| | - Weiqiang Guo
- Department of Biological Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jin Wang
- Department of Biological Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Lili Chen
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Yi Cao
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Ouxi Shen
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China
| | - Jian Tong
- School of Public Health, Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
22
|
Daems C, Di-Luoffo M, Paradis É, Tremblay JJ. MEF2 Cooperates With Forskolin/cAMP and GATA4 to Regulate Star Gene Expression in Mouse MA-10 Leydig Cells. Endocrinology 2015; 156:2693-703. [PMID: 25860031 DOI: 10.1210/en.2014-1964] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In Leydig cells, steroidogenic acute regulatory protein (STAR) participates in cholesterol shuttling from the outer to the inner mitochondrial membrane, the rate-limiting step in steroidogenesis. Steroid hormone biosynthesis and steroidogenic gene expression are regulated by LH, which activates various signaling pathways and transcription factors, including cAMP/Ca(2+)/CAMK (Ca(2+)/calmodulin-dependent kinase)-myocyte enhancer factor 2 (MEF2). The 4 MEF2 transcription factors are essential regulators of cell differentiation and organogenesis in numerous tissues. Recently, MEF2 was identified in Sertoli and Leydig cells of the testis. Here, we report that MEF2 regulates steroidogenesis in mouse MA-10 Leydig cells by acting on the Star gene. In MA-10 cells depleted of MEF2 using siRNAs (small interfering RNAs), STAR protein levels, Star mRNA levels, and promoter activity were significantly decreased. On its own, MEF2 did not activate the mouse Star promoter but was found to cooperate with forskolin/cAMP. By chromatin immunoprecipitation and DNA precipitation assays, we confirmed MEF2 binding to a consensus element located at -232 bp of the Star promoter. Mutation or deletion of the MEF2 element reduced but did not abrogate the MEF2/cAMP cooperation, indicating that MEF2 cooperates with other DNA-bound transcription factor(s). We identified GATA4 (GATA binding protein 4) as a partner for MEF2 in Leydig cells, because mutation of the GATA element abrogated the MEF2/cAMP cooperation on a reporter lacking a MEF2 element. MEF2 and GATA4 interact as revealed by coimmunoprecipitation, and MEF2 and GATA4 transcriptionally cooperate on the Star promoter. Altogether, our results define MEF2 as a novel regulator of steroidogenesis and Star transcription in Leydig cells and identify GATA4 as a key partner for MEF2-mediated action.
Collapse
Affiliation(s)
- Caroline Daems
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Mickaël Di-Luoffo
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Élise Paradis
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| | - Jacques J Tremblay
- Reproduction (C.D., M.D.-L., E.P., J.J.T.), Mother and Child Health, Centre de Recherche du Centre Hospitalier Universitaire de Québec, Québec City, Québec, Canada G1V 4G2; and Centre de Recherche en Biologie de la Reproduction (J.J.T.), Department of Obstetrics, Gynecology, and Reproduction, Faculty of Medicine, Université Laval, Québec City, Québec, Canada G1V 0A6
| |
Collapse
|
23
|
Padua MB, Jiang T, Morse DA, Fox SC, Hatch HM, Tevosian SG. Combined loss of the GATA4 and GATA6 transcription factors in male mice disrupts testicular development and confers adrenal-like function in the testes. Endocrinology 2015; 156:1873-86. [PMID: 25668066 PMCID: PMC4398756 DOI: 10.1210/en.2014-1907] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The roles of the GATA4 and GATA6 transcription factors in testis development were examined by simultaneously ablating Gata4 and Gata6 with Sf1Cre (Nr5a1Cre). The deletion of both genes resulted in a striking testicular phenotype. Embryonic Sf1Cre; Gata4(flox/flox) Gata6(flox/flox) (conditional double mutant) testes were smaller than control organs and contained irregular testis cords and fewer gonocytes. Gene expression analysis revealed significant down-regulation of Dmrt1 and Mvh. Surprisingly, Amh expression was strongly up-regulated and remained high beyond postnatal day 7, when it is normally extinguished. Neither DMRT1 nor GATA1 was detected in the Sertoli cells of the mutant postnatal testes. Furthermore, the expression of the steroidogenic genes Star, Cyp11a1, Hsd3b1, and Hsd17b3 was low throughout embryogenesis. Immunohistochemical analysis revealed a prominent reduction in cytochrome P450 side-chain cleavage enzyme (CYP11A1)- and 3β-hydroxysteroid dehydrogenase-positive (3βHSD) cells, with few 17α-hydroxylase/17,20 lyase-positive (CYP17A1) cells present. In contrast, in postnatal Sf1Cre; Gata4(flox/flox) Gata6(flox/flox) testes, the expression of the steroidogenic markers Star, Cyp11a1, and Hsd3b6 was increased, but a dramatic down-regulation of Hsd17b3, which is required for testosterone synthesis, was observed. The genes encoding adrenal enzymes Cyp21a1, Cyp11b1, Cyp11b2, and Mcr2 were strongly up-regulated, and clusters containing numerous CYP21A2-positive cells were localized in the interstitium. These data suggest a lack of testis functionality, with a loss of normal steroidogenic testis function, concomitant with an expansion of the adrenal-like cell population in postnatal conditional double mutant testes. Sf1Cre; Gata4(flox/flox) Gata6(flox/flox) animals of both sexes lack adrenal glands; however, despite this deficiency, males are viable in contrast to the females of the same genotype, which die shortly after birth.
Collapse
Affiliation(s)
- Maria B Padua
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida 32610
| | | | | | | | | | | |
Collapse
|
24
|
Schrade A, Kyrönlahti A, Akinrinade O, Pihlajoki M, Häkkinen M, Fischer S, Alastalo TP, Velagapudi V, Toppari J, Wilson DB, Heikinheimo M. GATA4 is a key regulator of steroidogenesis and glycolysis in mouse Leydig cells. Endocrinology 2015; 156:1860-72. [PMID: 25668067 PMCID: PMC4398762 DOI: 10.1210/en.2014-1931] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Transcription factor GATA4 is expressed in somatic cells of the mammalian testis. Gene targeting studies in mice have shown that GATA4 is essential for proper differentiation and function of Sertoli cells. The role of GATA4 in Leydig cell development, however, remains controversial, because targeted mutagenesis experiments in mice have not shown a consistent phenotype, possibly due to context-dependent effects or compensatory responses. We therefore undertook a reductionist approach to study the function of GATA4 in Leydig cells. Using microarray analysis and quantitative RT-PCR, we identified a set of genes that are down-regulated or up-regulated after small interfering RNA (siRNA)-mediated silencing of Gata4 in the murine Leydig tumor cell line mLTC-1. These same genes were dysregulated when primary cultures of Gata4(flox/flox) adult Leydig cells were subjected to adenovirus-mediated cre-lox recombination in vitro. Among the down-regulated genes were enzymes of the androgen biosynthetic pathway (Cyp11a1, Hsd3b1, Cyp17a1, and Srd5a). Silencing of Gata4 expression in mLTC-1 cells was accompanied by reduced production of sex steroid precursors, as documented by mass spectrometric analysis. Comprehensive metabolomic analysis of GATA4-deficient mLTC-1 cells showed alteration of other metabolic pathways, notably glycolysis. GATA4-depleted mLTC-1 cells had reduced expression of glycolytic genes (Hk1, Gpi1, Pfkp, and Pgam1), lower intracellular levels of ATP, and increased extracellular levels of glucose. Our findings suggest that GATA4 plays a pivotal role in Leydig cell function and provide novel insights into metabolic regulation in this cell type.
Collapse
Affiliation(s)
- Anja Schrade
- Children's Hospital (A.S., A.K., O.A., M.P., T.-P.A., M.H.), University of Helsinki, Helsinki 00014, Finland; Institute of Biomedicine (O.A.), University of Helsinki, Helsinki 00014, Finland; School of Pharmacy (M.H.), University of Eastern Finland, Kuopio 70211, Finland; Institute of Applied Biotechnology (S.F.), University of Applied Sciences Biberach, Biberach 88400, Germany; Metabolomics Unit (V.V.), Institute for Molecular Medicine Finland, University of Helsinki 00014, Helsinki, Finland; Departments of Physiology and Pediatrics (J.T.), University of Turku, Turku 20520, Finland; and Departments of Pediatrics (A.S., M.P., D.B.W., M.H.) and Developmental Biology (D.B.W.), Washington University in St. Louis, St. Louis, Missouri 63110
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Bergeron F, Nadeau G, Viger RS. GATA4 knockdown in MA-10 Leydig cells identifies multiple target genes in the steroidogenic pathway. Reproduction 2014; 149:245-57. [PMID: 25504870 DOI: 10.1530/rep-14-0369] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
GATA4 is an essential transcription factor required for the initiation of genital ridge formation, for normal testicular and ovarian differentiation at the time of sex determination, and for male and female fertility in adulthood. In spite of its crucial roles, the genes and/or gene networks that are ultimately regulated by GATA4 in gonadal tissues remain to be fully understood. This is particularly true for the steroidogenic lineages such as Leydig cells of the testis where many in vitro (promoter) studies have provided good circumstantial evidence that GATA4 is a key regulator of Leydig cell gene expression and steroidogenesis, but formal proof is still lacking. We therefore performed a microarray screening analysis of MA-10 Leydig cells in which Gata4 expression was knocked down using an siRNA strategy. Analysis identified several GATA4-regulated pathways including cholesterol synthesis, cholesterol transport, and especially steroidogenesis. A decrease in GATA4 protein was associated with decreased expression of steroidogenic genes previously suspected to be GATA4 targets such as Cyp11a1 and Star. Gata4 knockdown also led to an important decrease in other novel steroidogenic targets including Srd5a1, Gsta3, Hsd3b1, and Hsd3b6, as well as genes known to participate in cholesterol metabolism such as Scarb1, Ldlr, Soat1, Scap, and Cyp51. Consistent with the decreased expression of these genes, a reduction in GATA4 protein compromised the ability of MA-10 cells to produce steroids both basally and under hormone stimulation. These data therefore provide strong evidence that GATA4 is an essential transcription factor that sits atop of the Leydig cell steroidogenic program.
Collapse
Affiliation(s)
- Francis Bergeron
- ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Gabriel Nadeau
- ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| | - Robert S Viger
- ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4 ReproductionMother and Child Health, Room T3-67, Centre de Recherche du Centre Hospitalier Universitaire (CHU) de Québec, Centre de Recherche en Biologie de la Reproduction (CRBR), 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2Department of Obstetrics and GynecologyFaculty of Medicine, Laval University, Quebec City, Quebec, Canada G1K 7P4
| |
Collapse
|
26
|
Kilcoyne KR, Smith LB, Atanassova N, Macpherson S, McKinnell C, van den Driesche S, Jobling MS, Chambers TJG, De Gendt K, Verhoeven G, O’Hara L, Platts S, Renato de Franca L, Lara NLM, Anderson RA, Sharpe RM. Fetal programming of adult Leydig cell function by androgenic effects on stem/progenitor cells. Proc Natl Acad Sci U S A 2014; 111:E1924-32. [PMID: 24753613 PMCID: PMC4020050 DOI: 10.1073/pnas.1320735111] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.
Collapse
Affiliation(s)
- Karen R. Kilcoyne
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Lee B. Smith
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Nina Atanassova
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Sheila Macpherson
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Chris McKinnell
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Sander van den Driesche
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Matthew S. Jobling
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Thomas J. G. Chambers
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Karel De Gendt
- Department of Clinical and Experimental Medicine, Catholic University of Leuven, B-300 Leuven, Belgium; and
| | - Guido Verhoeven
- Department of Clinical and Experimental Medicine, Catholic University of Leuven, B-300 Leuven, Belgium; and
| | - Laura O’Hara
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Sophie Platts
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Luiz Renato de Franca
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, MG 31270-901, Belo Horizonte, Brazil
| | - Nathália L. M. Lara
- Laboratory of Cellular Biology, Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, MG 31270-901, Belo Horizonte, Brazil
| | - Richard A. Anderson
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Richard M. Sharpe
- Medical Research Council Centre for Reproductive Health, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
27
|
Hu Y, Dong C, Chen M, Lu J, Han X, Qiu L, Chen Y, Qin J, Li X, Gu A, Xia Y, Sun H, Li Z, Wang Y. Low-dose monobutyl phthalate stimulates steroidogenesis through steroidogenic acute regulatory protein regulated by SF-1, GATA-4 and C/EBP-beta in mouse Leydig tumor cells. Reprod Biol Endocrinol 2013; 11:72. [PMID: 23889939 PMCID: PMC3734203 DOI: 10.1186/1477-7827-11-72] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The ubiquitous use of dibutyl phthalate (DBP), one of the most widely used plasticizers, results in extensive exposure to humans and the environment. DBP and its major metabolite, monobutyl phthalate (MBP), may alter steroid biosynthesis and their exposure may lead to damage to male reproductive function. Low-doses of DBP/MBP may result in increased steroidogenesis in vitro and in vivo. However, the mechanisms of possible effects of low-dose MBP on steroidogenesis remain unclear. The aim of present study was to elaborate the role of transcription factors and steroidogenic acute regulatory protein in low-dose MBP-induced distruption of steroidogenesis in mouse Leydig tumor cells (MLTC-1 cells). METHODS In the present study, MLTC-1 cells were cultured in RPMI 1640 medium supplemented with 2 g/L sodium bicarbonate. Progesterone level was examined by I125-pregesterone Coat-A-Count radioimmunoassay (RIA) kits. mRNA and protein levels were assessed by reverse transcription-polymerase chain reaction (RT-PCR) and western blot, respectively. DNA-binding of several transcription factors was examined by electrophoretic mobility shift assay (EMSA). RESULTS In this study, various doses of MBP (0, 10(-9), 10(-8), 10(-7), or 10(-6) M) were added to the medium followed by stimulation of MLTC-1 cells with human chorionic gonadotrophin (hCG). The results showed that MBP increased progesterone production and steroidogenic acute regulatory protein (StAR) mRNA and protein levels. However, the protein levels of cytochrome P450scc and 3 beta-hydroxy-steroid dehydrogenase (3 beta-HSD) were unchanged after MBP treatment. EMSA assay showed that DNA-binding of steroidogenic factors 1(SF-1), GATA-4 and CCAAT/enhancer binding protein-beta (C/EBP-beta) was increased in a dose-dependent manner after MBP exposure. Western blot tests were next employed and confirmed that the protein levels of SF-1, GATA-4 and C/EBP-beta were also increased. Additionally, western blot tests confirmed the expression of DAX-1, negative factor of SF-1, was dose-dependently down regulated after MBP exposure, which further confirmed the role of SF-1 in MBP-stimulated steroid biosynthesis. CONCLUSIONS In conclusion, we firstly delineated the regulation of StAR by transcription factors including SF-1, GATA-4 and C/EBP-beta maybe critical mechanism involved in low-dose MBP-stimulated steroidogenesis.
Collapse
Affiliation(s)
- Yanhui Hu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Congcong Dong
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Minjian Chen
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jing Lu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiumei Han
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lianglin Qiu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yansu Chen
- Department of Molecular Cell Biology and Toxicology, Jiangsu Key Lab of Cancer Biomarkers, Prevention & Treatment, Cancer Center, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jingjing Qin
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiaocheng Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Aihua Gu
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hong Sun
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 211166, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yubang Wang
- State Key Laboratory of Reproductive Medicine, Institute of Toxicology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Safety Assessment and Research Center for Drug, Pesticide and Veterinary Drug of Jiangsu Province, Nanjing Medical University, Nanjing, 211166, China
| |
Collapse
|
28
|
Pihlajoki M, Gretzinger E, Cochran R, Kyrönlahti A, Schrade A, Hiller T, Sullivan L, Shoykhet M, Schoeller EL, Brooks MD, Heikinheimo M, Wilson DB. Conditional mutagenesis of Gata6 in SF1-positive cells causes gonadal-like differentiation in the adrenal cortex of mice. Endocrinology 2013; 154:1754-67. [PMID: 23471215 PMCID: PMC3628026 DOI: 10.1210/en.2012-1892] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Transcription factor GATA6 is expressed in the fetal and adult adrenal cortex and has been implicated in steroidogenesis. To characterize the role of transcription factor GATA6 in adrenocortical development and function, we generated mice in which Gata6 was conditionally deleted using Cre-LoxP recombination with Sf1-cre. The adrenal glands of adult Gata6 conditional knockout (cKO) mice were small and had a thin cortex. Cytomegalic changes were evident in fetal and adult cKO adrenal glands, and chromaffin cells were ectopically located at the periphery of the glands. Corticosterone secretion in response to exogenous ACTH was blunted in cKO mice. Spindle-shaped cells expressing Gata4, a marker of gonadal stroma, accumulated in the adrenal subcapsule of Gata6 cKO mice. RNA analysis demonstrated the concomitant upregulation of other gonadal-like markers, including Amhr2, in the cKO adrenal glands, suggesting that GATA6 inhibits the spontaneous differentiation of adrenocortical stem/progenitor cells into gonadal-like cells. Lhcgr and Cyp17 were overexpressed in the adrenal glands of gonadectomized cKO vs control mice, implying that GATA6 also limits sex steroidogenic cell differentiation in response to the hormonal changes that accompany gonadectomy. Nulliparous female and orchiectomized male Gata6 cKO mice lacked an adrenal X-zone. Microarray hybridization identified Pik3c2g as a novel X-zone marker that is downregulated in the adrenal glands of these mice. Our findings offer genetic proof that GATA6 regulates the differentiation of steroidogenic progenitors into adrenocortical cells.
Collapse
Affiliation(s)
- Marjut Pihlajoki
- Department of Pediatrics, Washington University School of Medicine, 660 South Euclid Avenue, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Morohashi K, Baba T, Tanaka M. Steroid Hormones and the Development of Reproductive Organs. Sex Dev 2013; 7:61-79. [DOI: 10.1159/000342272] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
30
|
Schoeller EL, Albanna G, Frolova AI, Moley KH. Insulin rescues impaired spermatogenesis via the hypothalamic-pituitary-gonadal axis in Akita diabetic mice and restores male fertility. Diabetes 2012; 61:1869-78. [PMID: 22522616 PMCID: PMC3379646 DOI: 10.2337/db11-1527] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The mechanism responsible for poor reproductive outcomes in type 1 diabetic males is not well understood. In light of new evidence that the Sertoli cells of the testis secrete insulin, it is currently unclear whether diabetic subfertility is the result of deficiency of pancreatic insulin, testicular insulin, or both. In this study, the Akita mouse diabetic model, which expresses a mutant, nonfunctional form of ins2 in testes and pancreas, was used to distinguish between systemic and local effects of insulin deficiency on the process of spermatogenesis and fertility. We determined that Akita homozygous male mice are infertile and have reduced testis size and abnormal morphology. Spermatogonial germ cells are still present but are unable to mature into spermatocytes and spermatids. Exogenous insulin treatment regenerates testes and restores fertility, but this plasma insulin cannot pass through the blood-testis barrier. We conclude that insulin does not rescue fertility through direct interaction with the testis; instead, it restores function of the hypothalamic-pituitary-gonadal axis and, thus, normalizes hormone levels of luteinizing hormone and testosterone. Although we show that the Sertoli cells of the testis secrete insulin protein, this insulin does not appear to be critical for fertility.
Collapse
Affiliation(s)
- Erica L. Schoeller
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Gabriella Albanna
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Antonina I. Frolova
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
| | - Kelle H. Moley
- Department of Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri
- Corresponding author: Kelle H. Moley,
| |
Collapse
|
31
|
Krachulec J, Vetter M, Schrade A, Löbs AK, Bielinska M, Cochran R, Kyrönlahti A, Pihlajoki M, Parviainen H, Jay PY, Heikinheimo M, Wilson DB. GATA4 is a critical regulator of gonadectomy-induced adrenocortical tumorigenesis in mice. Endocrinology 2012; 153:2599-611. [PMID: 22461617 PMCID: PMC3359595 DOI: 10.1210/en.2011-2135] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In response to gonadectomy certain inbred mouse strains develop sex steroidogenic adrenocortical neoplasms. One of the hallmarks of neoplastic transformation is expression of GATA4, a transcription factor normally present in gonadal but not adrenal steroidogenic cells of the adult mouse. To show that GATA4 directly modulates adrenocortical tumorigenesis and is not merely a marker of gonadal-like differentiation in the neoplasms, we studied mice with germline or conditional loss-of-function mutations in the Gata4 gene. Germline Gata4 haploinsufficiency was associated with attenuated tumor growth and reduced expression of sex steroidogenic genes in the adrenal glands of ovariectomized B6D2F1 and B6AF1 mice. At 12 months after ovariectomy, wild-type B6D2F1 mice had biochemical and histological evidence of adrenocortical estrogen production, whereas Gata4(+/-) B6D2F1 mice did not. Germline Gata4 haploinsufficiency exacerbated the secondary phenotype of postovariectomy obesity in B6D2F1 mice, presumably by limiting ectopic estrogen production in the adrenal glands. Amhr2-cre-mediated deletion of floxed Gata4 (Gata4(F)) in nascent adrenocortical neoplasms of ovariectomized B6.129 mice reduced tumor growth and the expression of gonadal-like markers in a Gata4(F) dose-dependent manner. We conclude that GATA4 is a key modifier of gonadectomy-induced adrenocortical neoplasia, postovariectomy obesity, and sex steroidogenic cell differentiation.
Collapse
Affiliation(s)
- Justyna Krachulec
- Department of Pediatrics, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Effective silencing of Sry gene with RNA interference in developing mouse embryos resulted in feminization of XY gonad. J Biomed Biotechnol 2012; 2012:343891. [PMID: 22500086 PMCID: PMC3303865 DOI: 10.1155/2012/343891] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Accepted: 10/15/2011] [Indexed: 12/14/2022] Open
Abstract
Delivering siRNA or shRNA into the developing embryos is still a main challenge to use of RNAi in mammalian systems. Here we analyze several factors influencing RNAi-mediated silencing of Sry gene, which is a tightly controlled spatiotemporal expressed gene and only shortly expressed in developing mouse embryo gonad. A Sry gene-specific shRNAs expression vector (pSilencer4.1/Sry565) was constructed. The shRNA constructs were mixed with polyethylenimines (PEIs) to form a complex and then injected into pregnant mice though tail vein. Our results showed that Sry gene was downregulated significantly in developing embryos. Further study revealed that knocking-down of Sry expression resulted in feminization of gonad development in mouse embryos and the expression level of Sox9 and Wt1 gene was also significantly changed by downregulation of Sry. The transfection efficiency is associated with the amount of plasmid DNA injection, injection time, injection speed, and volume. Our studies suggest that transplacental RNAi could be implemented by tail vein injection of plasmid vector into pregnant mice.
Collapse
|
33
|
Li J, Chen W, Wang D, Zhou L, Sakai F, Guan G, Nagahama Y. GATA4 is involved in the gonadal development and maturation of the teleost fish tilapia, Oreochromis niloticus. J Reprod Dev 2011; 58:237-42. [PMID: 22186677 DOI: 10.1262/jrd.11-131s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
GATA4, a member of the GATA family, is a well-known transcription factor implicated in the regulation of sex determination and sexual differentiation in mammals. However, little is known about the possible role of GATA4 in fish reproduction. In the present study, a full-length GATA4 cDNA from the tilapia was cloned and characterized. The tilapia GATA4 gene contained an open reading frame (ORF) of 1179 nucleotides encoding a protein of 392 amino acids. Sequence alignment revealed that the tilapia GATA4 protein shared higher homology (ranging from 63.1 to 74.6%) with other vertebrates. RT-PCR analysis indicated that the GATA4 gene is expressed in the ovary, testis, liver, intestine and heart in adult tilapia. In situ hybridization was performed to examine the temporal and spatial expression patterns of GATA4 during tilapia gonadal differentiation and development. In the undifferentiated gonad, GATA4 was expressed in the somatic cells of both sexes. Subsequently, GATA4 expression persisted in the differentiated, juvenile and adult ovary and testis in tilapia. Our data indicate for the first time that GATA4 is not only necessary for the onset of gonadal differentiation, but also important for gonadal development and maturation.
Collapse
Affiliation(s)
- Jianzhong Li
- Key Lab of Protein Chemistry and Developmental Biology of the Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, China.
| | | | | | | | | | | | | |
Collapse
|
34
|
LaRocca J, Boyajian A, Brown C, Smith SD, Hixon M. Effects of in utero exposure to Bisphenol A or diethylstilbestrol on the adult male reproductive system. ACTA ACUST UNITED AC 2011; 92:526-33. [PMID: 21922642 DOI: 10.1002/bdrb.20336] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 08/15/2011] [Indexed: 11/07/2022]
Abstract
The objective of this study was to determine whether in utero exposure to Bisphenol A (BPA) induced reproductive tract abnormalities in the adult male testis. Using the C57/Bl6 mouse, we examined sex-organ weights, anogenital distance, and testis histopathology in adult males exposed in utero via oral gavage to sesame oil, 50 µg/kg BPA, 1000 µg/kg BPA, or 2 µg/kg diethylstilbestrol (DES) as a positive control from gestational days 10 to 16. No changes in sperm production or germ cell apoptosis were observed in adult testes after exposure to either chemical. Adult mRNA levels of genes associated with sexual maturation and differentiation, GATA4 and ID2, were significantly lower only in DES-exposed testes. In summary, the data indicate no gross alterations in spermatogenesis after in utero exposure to BPA or DES. At the molecular level, in utero exposure to DES, but not BPA, leads to decreased mRNA expression of genes associated with Sertoli cell differentiation.
Collapse
Affiliation(s)
- Jessica LaRocca
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island, USA
| | | | | | | | | |
Collapse
|
35
|
Kyrönlahti A, Euler R, Bielinska M, Schoeller EL, Moley KH, Toppari J, Heikinheimo M, Wilson DB. GATA4 regulates Sertoli cell function and fertility in adult male mice. Mol Cell Endocrinol 2011; 333:85-95. [PMID: 21172404 PMCID: PMC3026658 DOI: 10.1016/j.mce.2010.12.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 11/10/2010] [Accepted: 12/13/2010] [Indexed: 11/19/2022]
Abstract
Transcription factor GATA4 is expressed in Sertoli and Leydig cells and is required for proper development of the murine fetal testis. The role of GATA4 in adult testicular function, however, has remained unclear due to prenatal lethality of mice harboring homozygous mutations in Gata4. To characterize the function of GATA4 in the adult testis, we generated mice in which Gata4 was conditionally deleted in Sertoli cells using Cre-LoxP recombination with Amhr2-Cre. Conditional knockout (cKO) mice developed age-dependent testicular atrophy and loss of fertility, which coincided with decreases in the quantity and motility of sperm. Histological analysis demonstrated Sertoli cell vacuolation, impaired spermatogenesis, and increased permeability of the blood-testis barrier. RT-PCR analysis of cKO testes showed decreased expression of germ cell markers and increased expression of testicular injury markers. Our findings support the premise that GATA4 is a key transcriptional regulator of Sertoli cell function in adult mice.
Collapse
Affiliation(s)
- Antti Kyrönlahti
- Department of Pediatrics, Washington University, St. Louis, MO 63110
- Children s Hospital, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - Rosemarie Euler
- Department of Pediatrics, Washington University, St. Louis, MO 63110
- Hochschule Mannheim - University of Applied Sciences, 68163 Mannheim, Germany
| | | | - Erica L. Schoeller
- Department of Obstetrics & Gynecology, Washington University, St. Louis, MO 63110
| | - Kelle H. Moley
- Department of Obstetrics & Gynecology, Washington University, St. Louis, MO 63110
- Department of Cell Biology & Physiology, Washington University, St. Louis, MO 63110
| | - Jorma Toppari
- Departments of Physiology and Pediatrics, University of Turku, Turku, Finland
| | - Markku Heikinheimo
- Department of Pediatrics, Washington University, St. Louis, MO 63110
- Children s Hospital, Biomedicum Helsinki, University of Helsinki, 00290 Helsinki, Finland
| | - David B. Wilson
- Department of Pediatrics, Washington University, St. Louis, MO 63110
- Department of Developmental Biology, Washington University, St. Louis, MO 63110
| |
Collapse
|
36
|
Zaytouni T, Efimenko EE, Tevosian SG. GATA transcription factors in the developing reproductive system. ADVANCES IN GENETICS 2011; 76:93-134. [PMID: 22099693 DOI: 10.1016/b978-0-12-386481-9.00004-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Previous work has firmly established the role for both GATA4 and FOG2 in the initial global commitment to sexual fate, but their (joint or individual) function in subsequent steps remained unknown. Hence, gonad-specific deletions of these genes in mice were required to reveal their roles in sexual development and gene regulation. The development of tissue-specific Cre lines allowed for substantial advances in the understanding of the function of GATA proteins in sex determination, gonadal differentiation and reproductive development in mice. Here we summarize the recent work that examined the requirement of GATA4 and FOG2 proteins at several critical stages in testis and ovarian differentiation. We also discuss the molecular mechanisms involved in this regulation through the control of Dmrt1 gene expression in the testis and the canonical Wnt/ß-catenin pathway in the ovary.
Collapse
Affiliation(s)
- Tamara Zaytouni
- Department of Genetics, Dartmouth Medical School, Hanover, NH, USA
| | | | | |
Collapse
|
37
|
Nel-Themaat L, Jang CW, Stewart MD, Akiyama H, Viger RS, Behringer RR. Sertoli cell behaviors in developing testis cords and postnatal seminiferous tubules of the mouse. Biol Reprod 2010; 84:342-50. [PMID: 20944081 DOI: 10.1095/biolreprod.110.086900] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Sertoli cells are the primary structural component of the fetal testis cords and postnatal seminiferous tubules. Live imaging technologies facilitate the visualization of cell morphologies and behaviors through developmental processes. A transgenic mouse line was generated using a fragment of the rat Gata4 gene to direct the expression of a dual-color fluorescent protein reporter in fetal and adult Sertoli cells. The reporter encoded a red fluorescent protein, monomeric Cherry (mCherry), fused to histone 2B and enhanced green fluorescent protein (EGFP) fused to a glycosylphosphatidylinositol sequence, with a self-cleaving 2A polypeptide separating the two fusion proteins. After translation, the red and green fluorescent proteins translocated to the nucleus and plasma membrane, respectively, of Sertoli cells. Transgene expression in testes was first detected by fluorescent microscopy around Embryonic Day 12.0. Sertoli cell division and migration were visualized during testis cord formation in organ culture. Initially, the Sertoli cells had mesenchyme-like morphologies and behaviors, but later, the cells migrated to the periphery of the testis cords to become epithelialized. In postnatal seminiferous tubules, Sertoli nuclei were evenly spaced when viewed from the external surface of tubules, and Sertoli cytoplasm and membranes were associated with germ cells basally in a rosette pattern. This mouse line was bred to previously described transgenic mouse lines expressing EGFP in Sertoli cytoplasm or a nuclear cyan fluorescent protein (Cerulean) and mCherry in plasma membranes of germ cells. This revealed the physical relationship between Sertoli and germ cells in developing testis cords and provided a novel perspective on Sertoli cell development.
Collapse
Affiliation(s)
- Liesl Nel-Themaat
- Department of Genetics, University of Texas M.D. Anderson Cancer Center, Houston, Texas, 77005, USA
| | | | | | | | | | | |
Collapse
|
38
|
Neural tube defects in mice with reduced levels of inositol 1,3,4-trisphosphate 5/6-kinase. Proc Natl Acad Sci U S A 2009; 106:9831-5. [PMID: 19482943 DOI: 10.1073/pnas.0904172106] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Inositol 1,3,4-trisphosphate 5/6-kinase (ITPK1) is a key regulatory enzyme at the branch point for the synthesis of inositol hexakisphosphate (IP(6)), an intracellular signaling molecule implicated in the regulation of ion channels, endocytosis, exocytosis, transcription, DNA repair, and RNA export from the nucleus. IP(6) also has been shown to be an integral structural component of several proteins. We have generated a mouse strain harboring a beta-galactosidase (betagal) gene trap cassette in the second intron of the Itpk1 gene. Animals homozygous for this gene trap are viable, fertile, and produce less ITPK1 protein than wild-type and heterozygous animals. Thus, the gene trap represents a hypomorphic rather than a null allele. Using a combination of immunohistochemistry, in situ hybridization, and betagal staining of mice heterozygous for the hypomorphic allele, we found high expression of Itpk1 in the developing central and peripheral nervous systems and in the paraxial mesoderm. Examination of embryos resulting from homozygous matings uncovered neural tube defects (NTDs) in some animals and axial skeletal defects or growth retardation in others. On a C57BL/6 x 129(P2)Ola background, 12% of mid-gestation embryos had spina bifida and/or exencephaly, whereas wild-type animals of the same genetic background had no NTDs. We conclude that ITPK1 is required for proper development of the neural tube and axial mesoderm.
Collapse
|
39
|
Wu N, Lin XK, Liao B, DU WH, Han FT, Zhao JH. [Effect of Sry silencing by siRNA on the expression of sex determining genes in mouse embryos]. YI CHUAN = HEREDITAS 2009; 30:195-202. [PMID: 18244926 DOI: 10.3724/sp.j.1005.2008.00195] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In order to investigate Sry regulation network in the development of male embryo, we inhibited the Sry gene expression by RNAi and then examined expression of other sex-related genes. Six genes (Sox9, Wt1, Sf1, Dax1, Gata4 and Amh), which are suggested to be closely related to Sry regulation were studied. Two siRNA expression vectors pSilencer4.1/Sry217 and pSilencer4.1/Sry565 were constructed and injected into gestated mouse through tail vein at 9.5 day of conception (dpc). The inhibition efficiency of Sry and the expression of other six genes were examined in male embryos at 11.5 dpc by RT-PCR and Western-blot. Expressions of the other six genes were analyzed by fluorescence quantity PCR. The results indicated both the pSilencer4.1/Sry217 and pSilencer4.1/Sry565 could inhibit significantly increased after Sry silencing. In contrast, no significant changes were observed in the expression of Sf1, Amh, Gata4, Dax1 and Sox9 when silencing Sry by siRNA. Our results suggested that the Wt1 transcription was regulated by Sry, whereas the Sox9 expression is not directly regulated by Sry in the development of genital ridge.
Collapse
Affiliation(s)
- Ning Wu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100094, China.
| | | | | | | | | | | |
Collapse
|
40
|
Nishida H, Miyagawa S, Vieux-Rochas M, Morini M, Ogino Y, Suzuki K, Nakagata N, Choi HS, Levi G, Yamada G. Positive regulation of steroidogenic acute regulatory protein gene expression through the interaction between Dlx and GATA-4 for testicular steroidogenesis. Endocrinology 2008; 149:2090-7. [PMID: 18276760 DOI: 10.1210/en.2007-1265] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Split hand/foot malformation (SHFM) is syndromic ectrodactyly often associated with mental retardation and/or craniofacial defects. Several clinical reports previously described urogenital dysplasia such as micropenis, hypospadias, and small testis in SHFM patients. Genetic lesions in the Dlx5 and Dlx6 (Dlx5/6) locus are associated with the human genetic disorder SHFM type 1. Although Dlx5/6 are expressed in the testis, their possible function of Dlx5/6 during testis differentiation has not been described. In this study, we show that Dlx5/6 are expressed in the fetal Leydig cells during testis development. We examined the effect of Dlx5 expression on the promoter activation of the steroidogenic acute regulatory protein (StAR) gene, which is essential for gonadal and adrenal steroidogenesis, in a Leydig cell line. Dlx5 efficiently activates the StAR promoter when GATA-4, another transcription factor essential for testicular steroidogenesis, was coexpressed. The transcriptional activation required the GATA-4-recognition element in the StAR promoter region and Dlx5 can physically interact with GATA-4. Furthermore, we herein show that the double inactivation of Dlx5 and Dlx6 in the mouse leads to decreased testosterone level and abnormal masculinization phenotype. These results suggest that Dlx5 and Dlx6 participate in the control of steroidogenesis during testis development. The findings of this study may open the way to analyze human congenital birth defects.
Collapse
Affiliation(s)
- Hisayo Nishida
- Center for Animal Resources and Development, Graduate School of Medical and Pharmaceutical Sciences and the Global COE Research Program, Kumamoto University, Kumamoto 860-0811, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
O'Shaughnessy PJ, Hu L, Baker PJ. Effect of germ cell depletion on levels of specific mRNA transcripts in mouse Sertoli cells and Leydig cells. Reproduction 2008; 135:839-50. [PMID: 18390686 PMCID: PMC2592074 DOI: 10.1530/rep-08-0012] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
It has been shown that testicular germ cell development is critically dependent upon somatic cell activity but, conversely, the extent to which germ cells normally regulate somatic cell function is less clear. This study was designed, therefore, to examine the effect of germ cell depletion on Sertoli cell and Leydig cell transcript levels. Mice were treated with busulphan to deplete the germ cell population and levels of mRNA transcripts encoding 26 Sertoli cell-specific proteins and 6 Leydig cell proteins were measured by real-time PCR up to 50 days after treatment. Spermatogonia were lost from the testis between 5 and 10 days after treatment, while spermatocytes were depleted after 10 days and spermatids after 20 days. By 30 days after treatment, most tubules were devoid of germ cells. Circulating FSH and intratesticular testosterone were not significantly affected by treatment. Of the 26 Sertoli cell markers tested, 13 showed no change in transcript levels after busulphan treatment, 2 showed decreased levels, 9 showed increased levels and 2 showed a biphasic response. In 60% of cases, changes in transcript levels occurred after the loss of the spermatids. Levels of mRNA transcripts encoding Leydig cell-specific products related to steroidogenesis were unaffected by treatment. Results indicate (1) that germ cells play a major and widespread role in the regulation of Sertoli cell activity, (2) most changes in transcript levels are associated with the loss of spermatids and (3) Leydig cell steroidogenesis is largely unaffected by germ cell ablation.
Collapse
Affiliation(s)
- P J O'Shaughnessy
- Division of Cell Sciences, Institute of Comparative Medicine, University of Glasgow Veterinary School, Bearsden Road, Glasgow G61 1QH, UK.
| | | | | |
Collapse
|
42
|
Wu X, Wan S, Lee MM. Key factors in the regulation of fetal and postnatal Leydig cell development. J Cell Physiol 2008; 213:429-33. [PMID: 17674364 DOI: 10.1002/jcp.21231] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The primary function of testicular Leydig cells is the production of androgens to promote sexual differentiation in the fetus, secondary sexual maturation at puberty, and spermatogenesis in the adult. The fetal and postnatal (adult) populations of Leydig cells differ morphologically and have distinct profiles of gene expression. As postnatal Leydig cells differentiate, they transition through three discrete maturational stages characterized by decreasing proliferative rate and increasing testosterone biosynthetic capacity. In this review, we discuss the development of both fetal and postnatal Leydig cells and review the regulation of this process by some of the key hormones and growth factors.
Collapse
Affiliation(s)
- Xiufeng Wu
- Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | |
Collapse
|
43
|
GATA factors and androgen receptor collaborate to transcriptionally activate the Rhox5 homeobox gene in Sertoli cells. Mol Cell Biol 2008; 28:2138-53. [PMID: 18212046 DOI: 10.1128/mcb.01170-07] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
How Sertoli-specific expression is initiated is poorly understood. Here, we address this issue using the proximal promoter (Pp) from the Rhox5 homeobox gene. Its Sertoli cell-specific expression is achieved, in part, through a negative regulatory element that inhibits Pp transcription in non-Sertoli cell lines. Complementing this negative regulation is positive regulation conferred by four androgen-response elements (AREs) that interact with the androgen receptor (AR), a nuclear hormone receptor expressed at high levels in Sertoli cells. A third control mechanism is provided by a consensus GATA-binding site that is crucial for Pp transcription both in vitro and in vivo. Several lines of evidence suggested that GATA factors and AR act cooperatively to activate Pp transcription: (i) the GATA-binding site crucial for Pp transcription is in close proximity to two of the AREs, (ii) GATA and AR form a complex with the Pp in vitro, (iii) overexpression of GATA factors rescued expression from mutant Pp constructs harboring defective AREs, and (iv) incubation of a Sertoli cell line with testosterone triggered corecruitment of AR and GATA4 to the Pp. Collectively, our results suggest that the Rhox5 gene achieves Sertoli cell-specific transcription using a combinatorial strategy involving negative and cooperative positive regulation.
Collapse
|
44
|
Viger RS, Guittot SM, Anttonen M, Wilson DB, Heikinheimo M. Role of the GATA family of transcription factors in endocrine development, function, and disease. Mol Endocrinol 2008; 22:781-98. [PMID: 18174356 DOI: 10.1210/me.2007-0513] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The WGATAR motif is a common nucleotide sequence found in the transcriptional regulatory regions of numerous genes. In vertebrates, these motifs are bound by one of six factors (GATA1 to GATA6) that constitute the GATA family of transcriptional regulatory proteins. Although originally considered for their roles in hematopoietic cells and the heart, GATA factors are now known to be expressed in a wide variety of tissues where they act as critical regulators of cell-specific gene expression. This includes multiple endocrine organs such as the pituitary, pancreas, adrenals, and especially the gonads. Insights into the functional roles played by GATA factors in adult organ systems have been hampered by the early embryonic lethality associated with the different Gata-null mice. This is now being overcome with the generation of tissue-specific knockout models and other knockdown strategies. These approaches, together with the increasing number of human GATA-related pathologies have greatly broadened the scope of GATA-dependent genes and, importantly, have shown that GATA action is not necessarily limited to early development. This has been particularly evident in endocrine organs where GATA factors appear to contribute to the transcription of multiple hormone-encoding genes. This review provides an overview of the GATA family of transcription factors as they relate to endocrine function and disease.
Collapse
Affiliation(s)
- Robert S Viger
- Ontogeny-Reproduction Research Unit, Room T1-49, CHUQ Research Centre, 2705 Laurier Boulevard, Quebec City, Quebec, Canada G1V 4G2.
| | | | | | | | | |
Collapse
|
45
|
O'Shaughnessy PJ, Baker PJ, Monteiro A, Cassie S, Bhattacharya S, Fowler PA. Developmental changes in human fetal testicular cell numbers and messenger ribonucleic acid levels during the second trimester. J Clin Endocrinol Metab 2007; 92:4792-801. [PMID: 17848411 DOI: 10.1210/jc.2007-1690] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
CONTEXT Normal fetal testis development is essential for masculinization and subsequent adult fertility. The second trimester is a critical period of human testicular development and masculinization, but there is a paucity of reliable developmental data. OBJECTIVE The objective of the study was to analyze second-trimester human testicular morphology and function. DESIGN This was an observational study of second-trimester testis development. SETTING The study was conducted at the Universities of Glasgow and Aberdeen. PATIENTS/PARTICIPANTS Testes were collected from 57 morphologically normal fetuses of women undergoing elective termination of normally progressing pregnancies (11-19 wk gestation). MAIN OUTCOME MEASURE(S) Testicular morphology, cell numbers, and quantitative expression of 22 key testicular genes were determined. RESULTS Sertoli cell and germ cell number increased exponentially throughout the second trimester. Leydig cell number initially increased exponentially but slowed toward 19 wk. Transcripts encoding Sertoli (KITL, FGF9, SOX9, FSHR, WT1) and germ (CKIT, TFAP2C) cell-specific products increased per testis through the second trimester, but expression per cell was static apart from TFAP2C, which declined. Leydig cell transcripts (HSD17B3, CYP11A1, PTC1, CYP17, LHR, INSL3) also remained static per cell. Testicular expression of adrenal transcripts MC2R, CYP11B1, and CYP21 was detectable but unchanged. Expression of other transcripts known or postulated to be involved in testicular development (GATA4, GATA6, CXORF6, WNT2B, WNT4, WNT5A) increased significantly per testis during the second trimester. CONCLUSIONS The second trimester is essential for the establishment of Sertoli and germ cell numbers. Sertoli and Leydig cells are active throughout the period, but there is no evidence of changing transcript levels.
Collapse
Affiliation(s)
- P J O'Shaughnessy
- Division of Cell Sciences, University of Glasgow Veterinary School, Bearsden Road, Glasgow G61 1QH, United Kingdom. p.j.o'
| | | | | | | | | | | |
Collapse
|