1
|
Kasamoto M, Funakoshi S, Hatani T, Okubo C, Nishi Y, Tsujisaka Y, Nishikawa M, Narita M, Ohta A, Kimura T, Yoshida Y. Am80, a retinoic acid receptor agonist, activates the cardiomyocyte cell cycle and enhances engraftment in the heart. Stem Cell Reports 2023; 18:1672-1685. [PMID: 37451261 PMCID: PMC10444569 DOI: 10.1016/j.stemcr.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023] Open
Abstract
Human induced pluripotent stem cell-derived (hiPSC) cardiomyocytes are a promising source for regenerative therapy. To realize this therapy, however, their engraftment potential after their injection into the host heart should be improved. Here, we established an efficient method to analyze the cell cycle activity of hiPSC cardiomyocytes using a fluorescence ubiquitination-based cell cycle indicator (FUCCI) system. In vitro high-throughput screening using FUCCI identified a retinoic acid receptor (RAR) agonist, Am80, as an effective cell cycle activator in hiPSC cardiomyocytes. The transplantation of hiPSC cardiomyocytes treated with Am80 before the injection significantly enhanced the engraftment in damaged mouse heart for 6 months. Finally, we revealed that the activation of endogenous Wnt pathways through both RARA and RARB underlies the Am80-mediated cell cycle activation. Collectively, this study highlights an efficient method to activate cell cycle in hiPSC cardiomyocytes by Am80 as a means to increase the graft size after cell transplantation into a damaged heart.
Collapse
Affiliation(s)
- Manabu Kasamoto
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Shunsuke Funakoshi
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint program (T-CiRA), Fujisawa, Japan.
| | - Takeshi Hatani
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Chikako Okubo
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yohei Nishi
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Yuta Tsujisaka
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Misato Nishikawa
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Megumi Narita
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Akira Ohta
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Takeshi Kimura
- Department of Cardiovascular Medicine, Kyoto University Hospital, Kyoto, Japan
| | - Yoshinori Yoshida
- Centre for iPS Cell Research and Application, Kyoto University, Kyoto, Japan; Takeda-CiRA Joint program (T-CiRA), Fujisawa, Japan.
| |
Collapse
|
2
|
Song H, Morrow BE. Tbx2 and Tbx3 regulate cell fate progression of the otic vesicle for inner ear development. Dev Biol 2023; 494:71-84. [PMID: 36521641 PMCID: PMC9870991 DOI: 10.1016/j.ydbio.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/05/2022] [Accepted: 12/10/2022] [Indexed: 12/14/2022]
Abstract
The morphogenesis of the otic vesicle (OV) to form inner ear organs serves as an excellent model system to understand cell fate acquisition on a single cell level. Tbx2 and Tbx3 (Tbx2/3) encode closely related T-box transcription factors that are expressed widely in the mammalian OV. Inactivation of both genes in the OV (Tbx2/3cKO) results in failed morphogenesis into inner ear organs. To understand the basis of these defects, single cell RNA-sequencing (scRNA-seq) was performed on the OV lineage, in controls versus Tbx2/3cKO embryos. We identified a multipotent population termed otic progenitors in controls that are marked by expression of the known otic placode markers Eya1, Sox2, and Sox3 as well as new markers Fgf18, Cxcl12, and Pou3f3. The otic progenitor population was increased three-fold in Tbx2/3cKO embryos, concomitant with dysregulation of genes in these cells as well as reduced progression to more differentiated states of prosensory and nonsensory cells. An ectopic neural population of cells was detected in the posterior OV of Tbx2/3cKO embryos but had reduced maturation to delaminated neural cells. As all three cell fates were affected in Tbx2/3cKO embryos, we suggest that Tbx2/3 promotes progression of multipotent otic progenitors to more differentiated cell types in the OV.
Collapse
Affiliation(s)
- Hansoo Song
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY, USA
| | - Bernice E Morrow
- Department of Genetics, Albert Einstein College of Medicine, 1301 Morris Park Ave., Bronx, NY, USA.
| |
Collapse
|
3
|
Tan AL, Mohanty S, Guo J, Lekven AC, Riley BB. Pax2a, Sp5a and Sp5l act downstream of Fgf and Wnt to coordinate sensory-neural patterning in the inner ear. Dev Biol 2022; 492:139-153. [PMID: 36244503 DOI: 10.1016/j.ydbio.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/25/2022] [Accepted: 10/10/2022] [Indexed: 01/21/2023]
Abstract
In zebrafish, sensory epithelia and neuroblasts of the inner ear form simultaneously in abutting medial and lateral domains, respectively, in the floor of the otic vesicle. Previous studies support regulatory roles for Fgf and Wnt, but how signaling is coordinated is poorly understood. We investigated this problem using pharmacological and transgenic methods to alter Fgf or Wnt signaling from early placodal stages to evaluate later changes in growth and patterning. Blocking Fgf at any stage reduces proliferation of otic tissue and terminates both sensory and neural specification. Wnt promotes proliferation in the otic vesicle but is not required for sensory or neural development. However, sustained overactivation of Wnt laterally expands sensory epithelia and blocks neurogenesis. pax2a, sp5a and sp5l are coregulated by Fgf and Wnt and show overlapping expression in the otic placode and vesicle. Gain- and loss-of-function studies show that these genes are together required for Wnt's suppression of neurogenesis, as well as some aspects of sensory development. Thus, pax2a, sp5a and sp5l are critical for mediating Fgf and Wnt signaling to promote spatially localized sensory and neural development.
Collapse
Affiliation(s)
- Amy L Tan
- Biology Department, Texas A&M University, College Station, TX, United States
| | - Saurav Mohanty
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Jinbai Guo
- Biology Department, Texas A&M University, College Station, TX, United States
| | - Arne C Lekven
- Department of Biology and Biochemistry, University of Houston, Houston, TX, United States
| | - Bruce B Riley
- Biology Department, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
4
|
Hardy S, Choo YM, Hamann M, Cray J. Manzamine-A Alters In Vitro Calvarial Osteoblast Function. Mar Drugs 2022; 20:647. [PMID: 36286470 PMCID: PMC9604769 DOI: 10.3390/md20100647] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
Manzamine-A is a marine-derived alkaloid which has anti-viral and anti-proliferative properties and is currently being investigated for its efficacy in the treatment of certain viruses (malaria, herpes, HIV-1) and cancers (breast, cervical, colorectal). Manzamine-A has been found to exert effects via modulation of SIX1 gene expression, a gene critical to craniofacial development via the WNT, NOTCH, and PI3K/AKT pathways. To date little work has focused on Manzamine-A and how its use may affect bone. We hypothesize that Manzamine-A, through SIX1, alters bone cell activity. Here, we assessed the effects of Manzamine-A on cells that are responsible for the generation of bone, pre-osteoblasts and osteoblasts. PCR, qrtPCR, MTS cell viability, Caspase 3/7, and functional assays were used to test the effects of Manzamine-A on these cells. Our data suggests Six1 is highly expressed in osteoblasts and their progenitors. Further, osteoblast progenitors and osteoblasts exhibit great sensitivity to Manzamine-A treatment exhibited by a significant decrease in cell viability, increase in cellular apoptosis, and decrease in alkaline phosphatase activity. In silico binding experiment showed that manzamine A potential as an inhibitor of cell proliferation and survival proteins, i.e., Iκb, JAK2, AKT, PKC, FAK, and Bcl-2. Overall, our data suggests Manzamine-A may have great effects on bone health overall and may disrupt skeletal development, homeostasis, and repair.
Collapse
Affiliation(s)
- Samantha Hardy
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Mark Hamann
- Departments of Drug Discovery and Biomedical Sciences and Public Health, Colleges of Pharmacy and Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - James Cray
- Department of Biomedical Education and Anatomy, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
- Division of Biosciences, The Ohio State College of Dentistry, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Żak M, Daudet N. A gradient of Wnt activity positions the neurosensory domains of the inner ear. eLife 2021; 10:59540. [PMID: 33704062 PMCID: PMC7993990 DOI: 10.7554/elife.59540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
The auditory and vestibular organs of the inner ear and the neurons that innervate them originate from Sox2-positive and Notch-active neurosensory domains specified at early stages of otic development. Sox2 is initially present throughout the otic placode and otocyst, and then it becomes progressively restricted to a ventro-medial domain. Using gain- and loss-of-function approaches in the chicken otocyst, we show that these early changes in Sox2 expression are regulated in a dose-dependent manner by Wnt/beta-catenin signalling. Both high and very low levels of Wnt activity repress Sox2 and neurosensory competence. However, intermediate levels allow the maintenance of Sox2 expression and sensory organ formation. We propose that a dorso-ventral (high-to-low) gradient and wave of Wnt activity initiated at the dorsal rim of the otic placode progressively restricts Sox2 and Notch activity to the ventral half of the otocyst, thereby positioning the neurosensory competent domains in the inner ear.
Collapse
Affiliation(s)
- Magdalena Żak
- UCL Ear Institute, University College London, London, United Kingdom
| | - Nicolas Daudet
- UCL Ear Institute, University College London, London, United Kingdom
| |
Collapse
|
6
|
Karimi-Boroujeni M, Zahedi-Amiri A, Coombs KM. Embryonic Origins of Virus-Induced Hearing Loss: Overview of Molecular Etiology. Viruses 2021; 13:71. [PMID: 33419104 PMCID: PMC7825458 DOI: 10.3390/v13010071] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 12/19/2022] Open
Abstract
Hearing loss, one of the most prevalent chronic health conditions, affects around half a billion people worldwide, including 34 million children. The World Health Organization estimates that the prevalence of disabling hearing loss will increase to over 900 million people by 2050. Many cases of congenital hearing loss are triggered by viral infections during different stages of pregnancy. However, the molecular mechanisms by which viruses induce hearing loss are not sufficiently explored, especially cases that are of embryonic origins. The present review first describes the cellular and molecular characteristics of the auditory system development at early stages of embryogenesis. These developmental hallmarks, which initiate upon axial specification of the otic placode as the primary root of the inner ear morphogenesis, involve the stage-specific regulation of several molecules and pathways, such as retinoic acid signaling, Sonic hedgehog, and Wnt. Different RNA and DNA viruses contributing to congenital and acquired hearing loss are then discussed in terms of their potential effects on the expression of molecules that control the formation of the auditory and vestibular compartments following otic vesicle differentiation. Among these viruses, cytomegalovirus and herpes simplex virus appear to have the most effect upon initial molecular determinants of inner ear development. Moreover, of the molecules governing the inner ear development at initial stages, SOX2, FGFR3, and CDKN1B are more affected by viruses causing either congenital or acquired hearing loss. Abnormalities in the function or expression of these molecules influence processes like cochlear development and production of inner ear hair and supporting cells. Nevertheless, because most of such virus-host interactions were studied in unrelated tissues, further validations are needed to confirm whether these viruses can mediate the same effects in physiologically relevant models simulating otic vesicle specification and growth.
Collapse
Affiliation(s)
- Maryam Karimi-Boroujeni
- School of Rehabilitation Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Ali Zahedi-Amiri
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada;
- Manitoba Centre for Proteomics and Systems Biology, Winnipeg, MB R3E 3P4, Canada
- Children’s Hospital Research Institute of Manitoba, University of Manitoba, Winnipeg, MB R3E 3P4, Canada
| |
Collapse
|
7
|
Thawani A, Groves AK. Building the Border: Development of the Chordate Neural Plate Border Region and Its Derivatives. Front Physiol 2020; 11:608880. [PMID: 33364980 PMCID: PMC7750469 DOI: 10.3389/fphys.2020.608880] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
The paired cranial sensory organs and peripheral nervous system of vertebrates arise from a thin strip of cells immediately adjacent to the developing neural plate. The neural plate border region comprises progenitors for four key populations of cells: neural plate cells, neural crest cells, the cranial placodes, and epidermis. Putative homologues of these neural plate border derivatives can be found in protochordates such as amphioxus and tunicates. In this review, we summarize key signaling pathways and transcription factors that regulate the inductive and patterning events at the neural plate border region that give rise to the neural crest and placodal lineages. Gene regulatory networks driven by signals from WNT, fibroblast growth factor (FGF), and bone morphogenetic protein (BMP) signaling primarily dictate the formation of the crest and placodal lineages. We review these studies and discuss the potential of recent advances in spatio-temporal transcriptomic and epigenomic analyses that would allow a mechanistic understanding of how these signaling pathways and their downstream transcriptional cascades regulate the formation of the neural plate border region.
Collapse
Affiliation(s)
- Ankita Thawani
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Andrew K Groves
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
8
|
Reynolds K, Zhang S, Sun B, Garland M, Ji Y, Zhou CJ. Genetics and signaling mechanisms of orofacial clefts. Birth Defects Res 2020; 112:1588-1634. [PMID: 32666711 PMCID: PMC7883771 DOI: 10.1002/bdr2.1754] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Abstract
Craniofacial development involves several complex tissue movements including several fusion processes to form the frontonasal and maxillary structures, including the upper lip and palate. Each of these movements are controlled by many different factors that are tightly regulated by several integral morphogenetic signaling pathways. Subject to both genetic and environmental influences, interruption at nearly any stage can disrupt lip, nasal, or palate fusion and result in a cleft. Here, we discuss many of the genetic risk factors that may contribute to the presentation of orofacial clefts in patients, and several of the key signaling pathways and underlying cellular mechanisms that control lip and palate formation, as identified primarily through investigating equivalent processes in animal models, are examined.
Collapse
Affiliation(s)
- Kurt Reynolds
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Shuwen Zhang
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Bo Sun
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Michael Garland
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
| | - Yu Ji
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| | - Chengji J. Zhou
- Department of Biochemistry and Molecular Medicine, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Institute for Pediatric Regenerative Medicine of Shriners Hospitals for Children, University of California at Davis, School of Medicine, Sacramento, CA 95817
- Biochemistry, Molecular, Cellular, and Developmental Biology (BMCDB) graduate group, University of California, Davis, CA 95616
| |
Collapse
|
9
|
Zhang LS, Kang X, Lu J, Zhang Y, Wu X, Wu G, Zheng J, Tuladhar R, Shi H, Wang Q, Morlock L, Yao H, Huang LJS, Maire P, Kim J, Williams N, Xu J, Chen C, Zhang CC, Lum L. Installation of a cancer promoting WNT/SIX1 signaling axis by the oncofusion protein MLL-AF9. EBioMedicine 2019; 39:145-158. [PMID: 30528456 PMCID: PMC6354558 DOI: 10.1016/j.ebiom.2018.11.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/16/2018] [Accepted: 11/16/2018] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Chromosomal translocation-induced expression of the chromatin modifying oncofusion protein MLL-AF9 promotes acute myelocytic leukemia (AML). Whereas WNT/β-catenin signaling has previously been shown to support MLL-AF9-driven leukemogenesis, the mechanism underlying this relationship remains unclear. METHODS We used two novel small molecules targeting WNT signaling as well as a genetically modified mouse model that allow targeted deletion of the WNT protein chaperone Wntless (WLS) to evaluate the role of WNT signaling in AML progression. ATAC-seq and transcriptome profiling were deployed to understand the cellular consequences of disrupting a WNT signaling in leukemic initiating cells (LICs). FINDINGS We identified Six1 to be a WNT-controlled target gene in MLL-AF9-transformed leukemic initiating cells (LICs). MLL-AF9 alters the accessibility of Six1 DNA to the transcriptional effector TCF7L2, a transducer of WNT/β-catenin gene expression changes. Disruption of WNT/SIX1 signaling using inhibitors of the Wnt signaling delays the development of AML. INTERPRETATION By rendering TCF/LEF-binding elements controlling Six1 accessible to TCF7L2, MLL-AF9 promotes WNT/β-catenin-dependent growth of LICs. Small molecules disrupting WNT/β-catenin signaling block Six1 expression thereby disrupting leukemia driven by MLL fusion proteins.
Collapse
Affiliation(s)
- Li-Shu Zhang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xunlei Kang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jianming Lu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yuannyu Zhang
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiaofeng Wu
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Guojin Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Junke Zheng
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Rubina Tuladhar
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Heping Shi
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Qiaoling Wang
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lorraine Morlock
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiyu Yao
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lily Jun-Shen Huang
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Pascal Maire
- Institut Cochin, Université Paris-Descartes, Centre National de la Recherche Scientifique (CNRS), UMR, 8104, Paris, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U1016, Paris, France
| | - James Kim
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Noelle Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jian Xu
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chuo Chen
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cheng Cheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lawrence Lum
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
10
|
Lahlou H, Nivet E, Lopez-Juarez A, Fontbonne A, Assou S, Zine A. Enriched Differentiation of Human Otic Sensory Progenitor Cells Derived From Induced Pluripotent Stem Cells. Front Mol Neurosci 2018; 11:452. [PMID: 30618604 PMCID: PMC6306956 DOI: 10.3389/fnmol.2018.00452] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 11/22/2018] [Indexed: 12/31/2022] Open
Abstract
Age-related neurosensory deficit of the inner ear is mostly due to a loss of hair cells (HCs). Development of stem cell-based therapy requires a better understanding of factors and signals that drive stem cells into otic sensory progenitor cells (OSPCs) to replace lost HCs. Human induced pluripotent stem cells (hiPSCs) theoretically represent an unlimited supply for the generation of human OSPCs in vitro. In this study, we developed a monolayer-based differentiation system to generate an enriched population of OSPCs via a stepwise differentiation of hiPSCs. Gene and protein expression analyses revealed the efficient induction of a comprehensive panel of otic/placodal and late otic markers over the course of the differentiation. Furthermore, whole transcriptome analysis confirmed a developmental path of OSPC differentiation from hiPSCs. We found that modulation of WNT and transforming growth factor-β (TGF-β) signaling combined with fibroblast growth factor 3 (FGF3) and FGF10 treatment over a 6-day period drives the expression of early otic/placodal markers followed by late otic sensory markers within 13 days, indicative of a differentiation into embryonic-like HCs. In summary, we report a rapid and efficient strategy to generate an enriched population of OSPCs from hiPSCs, thereby establishing the value of this approach for disease modeling and cell-based therapies of the inner ear.
Collapse
Affiliation(s)
- Hanae Lahlou
- LNIA, CNRS UMR 7260, Aix-Marseille Université, Marseille, France
| | - Emmanuel Nivet
- Aix-Marseille Université, CNRS, INP UMR 7051, Marseille, France
| | | | - Arnaud Fontbonne
- LNIA, CNRS UMR 7260, Aix-Marseille Université, Marseille, France
| | - Said Assou
- IRMB, Université Montpellier, INSERM U1183, Montpellier, France
| | - Azel Zine
- LNIA, CNRS UMR 7260, Aix-Marseille Université, Marseille, France.,Université Montpellier, UFR de Pharmacie, Montpellier, France
| |
Collapse
|
11
|
Expression, function, and regulation of the embryonic transcription factor TBX1 in parathyroid tumors. J Transl Med 2017; 97:1488-1499. [PMID: 28920943 DOI: 10.1038/labinvest.2017.88] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 07/16/2017] [Accepted: 07/19/2017] [Indexed: 01/11/2023] Open
Abstract
Transcription factors active in embryonic parathyroid cells can be maintained in adult parathyroids and be involved in tumorigenesis. TBX1, the candidate gene of 22q11.2-DiGeorge syndrome, which includes congenital hypoparathyroidism, is involved in parathyroid embryogenesis. The study aimed to investigate expression, function, and regulation of the parathyroid embryonic transcription factor TBX1 in human parathyroid adult normal and tumor tissues. TBX1 transcripts were detected in normal parathyroids and were deregulated in parathyroid tumors. Using immunohistochemistry, TBX1 protein was detected, mainly at the nuclear level, in a consistent proportion of cells in normal adult parathyroids, whereas TBX1 immunoreactivity was absent in fetal parathyroids. TBX1-expressing cells were markedly reduced in about a half of adenomas (PAds) and two-thirds of carcinomas and the proportion of TBX1-expressing cells negatively correlated with the serum albumin-corrected calcium levels in the analyzed tumors. Moreover, a subset of TBX1-expressing tumor cells coexpressed PTH. TBX1 silencing in HEK293 cells, expressing endogenous TBX1, increased the proportion of cells in the G0/G1 phase of cell cycle; concomitantly, CDKN1A/p21 and CDKN2A/p16 transcripts increased and ID1 mRNA levels decreased. TBX1 silencing exerted similar effects in PAd-derived cells, suggesting cell cycle arrest. Moreover, in PAd-derived cells GCM2 and PTH mRNA levels were unaffected by TBX1 deficiency, whereas it was associated with reduction of WNT5A, an antagonist of canonical WNT/β-catenin pathway. WNT/β-catenin activation by lithium chloride inhibited TBX1 expression levels both in HEK293 and PAd-derived cells. In conclusion, TBX1 is expressed in adult parathyroid cells and deregulated in parathyroid tumors, where TBX1 deficiency may potentially contribute to the low proliferative nature of parathyroid tumors.
Collapse
|
12
|
DeJonge RE, Liu XP, Deig CR, Heller S, Koehler KR, Hashino E. Modulation of Wnt Signaling Enhances Inner Ear Organoid Development in 3D Culture. PLoS One 2016; 11:e0162508. [PMID: 27607106 PMCID: PMC5015985 DOI: 10.1371/journal.pone.0162508] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/01/2016] [Indexed: 01/17/2023] Open
Abstract
Stem cell-derived inner ear sensory epithelia are a promising source of tissues for treating patients with hearing loss and dizziness. We recently demonstrated how to generate inner ear sensory epithelia, designated as inner ear organoids, from mouse embryonic stem cells (ESCs) in a self-organizing 3D culture. Here we improve the efficiency of this culture system by elucidating how Wnt signaling activity can drive the induction of otic tissue. We found that a carefully timed treatment with the potent Wnt agonist CHIR99021 promotes induction of otic vesicles—a process that was previously self-organized by unknown mechanisms. The resulting otic-like vesicles have a larger lumen size and contain a greater number of Pax8/Pax2-positive otic progenitor cells than organoids derived without the Wnt agonist. Additionally, these otic-like vesicles give rise to large inner ear organoids with hair cells whose morphological, biochemical and functional properties are indistinguishable from those of vestibular hair cells in the postnatal mouse inner ear. We conclude that Wnt signaling plays a similar role during inner ear organoid formation as it does during inner ear development in the embryo.
Collapse
Affiliation(s)
- Rachel E. DeJonge
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Xiao-Ping Liu
- Department of Otolaryngology, F.M. Kirby Neurobiology Center Boston Children’s Hospital, and Harvard Medical School, Boston, MA, 02115, United States of America
| | - Christopher R. Deig
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
| | - Stefan Heller
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Palo Alto, CA, 94305, United States of America
| | - Karl R. Koehler
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- * E-mail: (EH); (KRK)
| | - Eri Hashino
- Department of Otolaryngology-Head and Neck Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, United States of America
- * E-mail: (EH); (KRK)
| |
Collapse
|
13
|
Cochlear afferent innervation development. Hear Res 2015; 330:157-69. [DOI: 10.1016/j.heares.2015.07.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 06/02/2015] [Accepted: 07/21/2015] [Indexed: 01/11/2023]
|
14
|
Yousaf R, Meng Q, Hufnagel RB, Xia Y, Puligilla C, Ahmed ZM, Riazuddin S. MAP3K1 function is essential for cytoarchitecture of the mouse organ of Corti and survival of auditory hair cells. Dis Model Mech 2015; 8:1543-53. [PMID: 26496772 PMCID: PMC4728323 DOI: 10.1242/dmm.023077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 10/16/2015] [Indexed: 12/11/2022] Open
Abstract
MAP3K1 is a serine/threonine kinase that is activated by a diverse set of stimuli and exerts its effect through various downstream effecter molecules, including JNK, ERK1/2 and p38. In humans, mutant alleles of MAP3K1 are associated with 46,XY sex reversal. Until recently, the only phenotype observed in Map3k1tm1Yxia mutant mice was open eyelids at birth. Here, we report that homozygous Map3k1tm1Yxia mice have early-onset profound hearing loss accompanied by the progressive degeneration of cochlear outer hair cells. In the mouse inner ear, MAP3K1 has punctate localization at the apical surface of the supporting cells in close proximity to basal bodies. Although the cytoarchitecture, neuronal wiring and synaptic junctions in the organ of Corti are grossly preserved, Map3k1tm1Yxia mutant mice have supernumerary functional outer hair cells (OHCs) and Deiters' cells. Loss of MAP3K1 function resulted in the downregulation of Fgfr3, Fgf8, Fgf10 and Atf3 expression in the inner ear. Fgfr3, Fgf8 and Fgf10 have a role in induction of the otic placode or in otic epithelium development in mice, and their functional deficits cause defects in cochlear morphogenesis and hearing loss. Our studies suggest that MAP3K1 has an essential role in the regulation of these key cochlear morphogenesis genes. Collectively, our data highlight the crucial role of MAP3K1 in the development and function of the mouse inner ear and hearing. Summary:Map3k1 mutant mice exhibit early-onset profound hearing loss and supernumerary outer hair cells, along with dysregulation of the FGF signaling pathway, accentuating its function in otic epithelium development and morphogenesis.
Collapse
Affiliation(s)
- Rizwan Yousaf
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Qinghang Meng
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Robert B Hufnagel
- Divisions of Pediatric Ophthalmology and Human Genetics, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Ying Xia
- Department of Environmental Health, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, USA
| | - Chandrakala Puligilla
- Department of Pathology & Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head & Neck Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
15
|
Huyghe A, Van den Ackerveken P, Sacheli R, Prévot PP, Thelen N, Renauld J, Thiry M, Delacroix L, Nguyen L, Malgrange B. MicroRNA-124 Regulates Cell Specification in the Cochlea through Modulation of Sfrp4/5. Cell Rep 2015; 13:31-42. [PMID: 26387953 DOI: 10.1016/j.celrep.2015.08.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/01/2015] [Accepted: 08/18/2015] [Indexed: 02/08/2023] Open
Abstract
The organ of Corti, the auditory organ of the mammalian inner ear, contains sensory hair cells and supporting cells that arise from a common sensory progenitor. The molecular bases allowing the specification of these progenitors remain elusive. In the present study, by combining microarray analyses with conditional deletion of Dicer in the developing inner ear, we identified that miR-124 controls cell fate in the developing organ of Corti. By targeting secreted frizzled-related protein 4 (Sfrp4) and Sfrp5, two inhibitors of the Wnt pathway, we showed that miR-124 controls the β-catenin-dependent and also the PCP-related non-canonical Wnt pathways that contribute to HC differentiation and polarization in the organ of Corti. Thus, our work emphasizes the importance of miR-124 as an epigenetic safeguard that fine-tunes the expression of genes critical for cell patterning during cochlear differentiation.
Collapse
Affiliation(s)
- Aurélia Huyghe
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium
| | | | - Rosalie Sacheli
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium
| | - Pierre-Paul Prévot
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium
| | - Nicolas Thelen
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium
| | - Justine Renauld
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium
| | - Marc Thiry
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium
| | - Laurence Delacroix
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium
| | - Laurent Nguyen
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium
| | - Brigitte Malgrange
- GIGA-Neurosciences, University of Liege, C.H.U. Sart Tilman, Liege 4000, Belgium.
| |
Collapse
|
16
|
Jansson L, Kim GS, Cheng AG. Making sense of Wnt signaling-linking hair cell regeneration to development. Front Cell Neurosci 2015; 9:66. [PMID: 25814927 PMCID: PMC4356074 DOI: 10.3389/fncel.2015.00066] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/12/2015] [Indexed: 01/10/2023] Open
Abstract
Wnt signaling is a highly conserved pathway crucial for development and homeostasis of multicellular organisms. Secreted Wnt ligands bind Frizzled receptors to regulate diverse processes such as axis patterning, cell division, and cell fate specification. They also serve to govern self-renewal of somatic stem cells in several adult tissues. The complexity of the pathway can be attributed to the myriad of Wnt and Frizzled combinations as well as its diverse context-dependent functions. In the developing mouse inner ear, Wnt signaling plays diverse roles, including specification of the otic placode and patterning of the otic vesicle. At later stages, its activity governs sensory hair cell specification, cell cycle regulation, and hair cell orientation. In regenerating sensory organs from non-mammalian species, Wnt signaling can also regulate the extent of proliferative hair cell regeneration. This review describes the current knowledge of the roles of Wnt signaling and Wnt-responsive cells in hair cell development and regeneration. We also discuss possible future directions and the potential application and limitation of Wnt signaling in augmenting hair cell regeneration.
Collapse
Affiliation(s)
- Lina Jansson
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Grace S Kim
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| | - Alan G Cheng
- Department of Otolaryngology-Head and Neck Surgery, School of Medicine, Stanford University Stanford, CA, USA
| |
Collapse
|
17
|
Su YX, Hou CC, Yang WX. Control of hair cell development by molecular pathways involving Atoh1, Hes1 and Hes5. Gene 2014; 558:6-24. [PMID: 25550047 DOI: 10.1016/j.gene.2014.12.054] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 11/23/2014] [Accepted: 12/25/2014] [Indexed: 01/14/2023]
Abstract
Atoh1, Hes1 and Hes5 are crucial for normal inner ear hair cell development. They regulate the expression of each other in a complex network, while they also interact with many other genes and pathways, such as Notch, FGF, SHH, WNT, BMP and RA. This paper summarized molecular pathways that involve Atoh1, Hes1, and Hes5. Some of the pathways and gene regulation mechanisms discussed here were studied in other tissues, yet they might inspire studies in inner ear hair cell development. Thereby, we presented a complex regulatory network involving these three genes, which might be crucial for proliferation and differentiation of inner ear hair cells.
Collapse
Affiliation(s)
- Yi-Xun Su
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cong-Cong Hou
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Raft S, Groves AK. Segregating neural and mechanosensory fates in the developing ear: patterning, signaling, and transcriptional control. Cell Tissue Res 2014; 359:315-32. [PMID: 24902666 DOI: 10.1007/s00441-014-1917-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/08/2014] [Indexed: 12/21/2022]
Abstract
The vertebrate inner ear is composed of multiple sensory receptor epithelia, each of which is specialized for detection of sound, gravity, or angular acceleration. Each receptor epithelium contains mechanosensitive hair cells, which are connected to the brainstem by bipolar sensory neurons. Hair cells and their associated neurons are derived from the embryonic rudiment of the inner ear epithelium, but the precise spatial and temporal patterns of their generation, as well as the signals that coordinate these events, have only recently begun to be understood. Gene expression, lineage tracing, and mutant analyses suggest that both neurons and hair cells are generated from a common domain of neural and sensory competence in the embryonic inner ear rudiment. Members of the Shh, Wnt, and FGF families, together with retinoic acid signals, regulate transcription factor genes within the inner ear rudiment to establish the axial identity of the ear and regionalize neurogenic activity. Close-range signaling, such as that of the Notch pathway, specifies the fate of sensory regions and individual cell types. We also describe positive and negative interactions between basic helix-loop-helix and SoxB family transcription factors that specify either neuronal or sensory fates in a context-dependent manner. Finally, we review recent work on inner ear development in zebrafish, which demonstrates that the relative timing of neurogenesis and sensory epithelial formation is not phylogenetically constrained.
Collapse
Affiliation(s)
- Steven Raft
- Section on Sensory Cell Regeneration and Development, National Institute on Deafness and Other Communication Disorders National Institutes of Health, 35 Convent Drive, Bethesda, MD, 20892, USA,
| | | |
Collapse
|
19
|
Bohnenpoll T, Trowe MO, Wojahn I, Taketo MM, Petry M, Kispert A. Canonical Wnt signaling regulates the proliferative expansion and differentiation of fibrocytes in the murine inner ear. Dev Biol 2014; 391:54-65. [PMID: 24727668 DOI: 10.1016/j.ydbio.2014.03.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 01/18/2023]
Abstract
Otic fibrocytes tether the cochlear duct to the surrounding otic capsule but are also critically involved in maintenance of ion homeostasis in the cochlea, thus, perception of sound. The molecular pathways that regulate the development of this heterogenous group of cells from mesenchymal precursors are poorly understood. Here, we identified epithelial Wnt7a and Wnt7b as possible ligands of Fzd-mediated β-catenin (Ctnnb1)-dependent (canonical) Wnt signaling in the adjacent undifferentiated periotic mesenchyme (POM). Mice with a conditional deletion of Ctnnb1 in the POM exhibited a complete failure of fibrocyte differentiation, a severe reduction of mesenchymal cells surrounding the cochlear duct, loss of pericochlear spaces, a thickening and partial loss of the bony capsule and a secondary disturbance of cochlear duct coiling shortly before birth. Analysis at earlier stages revealed that radial patterning of the POM in two domains with highly condensed cartilaginous precursors and more loosely arranged inner mesenchymal cells occurred normally but that proliferation in the inner domain was reduced and cytodifferentiation failed. Cells with mis/overexpression of a stabilized form of Ctnnb1 in the entire POM mesenchyme sorted to the inner mesenchymal compartment and exhibited increased proliferation. Our analysis suggests that Wnt signals from the cochlear duct epithelium are crucial to induce differentiation and expansion of fibrocyte precursor cells. Our findings emphasize the importance of epithelial-mesenchymal signaling in inner ear development.
Collapse
Affiliation(s)
- Tobias Bohnenpoll
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Mark-Oliver Trowe
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Irina Wojahn
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | | | - Marianne Petry
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| | - Andreas Kispert
- Institut für Molekularbiologie, OE5250, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
20
|
Lassiter RNT, Stark MR, Zhao T, Zhou CJ. Signaling mechanisms controlling cranial placode neurogenesis and delamination. Dev Biol 2013; 389:39-49. [PMID: 24315854 DOI: 10.1016/j.ydbio.2013.11.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 11/22/2013] [Accepted: 11/23/2013] [Indexed: 01/17/2023]
Abstract
The neurogenic cranial placodes are a unique transient epithelial niche of neural progenitor cells that give rise to multiple derivatives of the peripheral nervous system, particularly, the sensory neurons. Placode neurogenesis occurs throughout an extended period of time with epithelial cells continually recruited as neural progenitor cells. Sensory neuron development in the trigeminal, epibranchial, otic, and olfactory placodes coincides with detachment of these neuroblasts from the encompassing epithelial sheet, leading to delamination and ingression into the mesenchyme where they continue to differentiate as neurons. Multiple signaling pathways are known to direct placodal development. This review defines the signaling pathways working at the finite spatiotemporal period when neuronal selection within the placodes occurs, and neuroblasts concomitantly delaminate from the epithelium. Examining neurogenesis and delamination after initial placodal patterning and specification has revealed a common trend throughout the neurogenic placodes, which suggests that both activated FGF and attenuated Notch signaling activities are required for neurogenesis and changes in epithelial cell adhesion leading to delamination. We also address the varying roles of other pathways such as the Wnt and BMP signaling families during sensory neurogenesis and neuroblast delamination in the differing placodes.
Collapse
Affiliation(s)
- Rhonda N T Lassiter
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, CA 95817, USA; Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Sacramento, CA 95817, USA.
| | - Michael R Stark
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.
| | - Tianyu Zhao
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, CA 95817, USA; Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Sacramento, CA 95817, USA
| | - Chengji J Zhou
- Institute for Pediatric Regenerative Medicine at Shriners Hospitals for Children-Northern California, CA 95817, USA; Department of Cell Biology and Human Anatomy, University of California Davis, School of Medicine, Sacramento, CA 95817, USA; Department of Biochemistry and Molecular Medicine, University of California Davis, School of Medicine, Sacramento, CA 95817, USA.
| |
Collapse
|
21
|
Zhang Y, Han Q, Li C, Li W, Fan H, Xing Q, Yan B. Genetic analysis of the TBX1 gene promoter in indirect inguinal hernia. Gene 2013; 535:290-3. [PMID: 24295890 DOI: 10.1016/j.gene.2013.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 10/31/2013] [Accepted: 11/03/2013] [Indexed: 12/22/2022]
Abstract
Inguinal hernia is a common disease, most cases of which are indirect inguinal hernia (IIH). Genetic factors play an important role for inguinal hernia. Increased incidences of inguinal hernia have been reported in patients with 22q11.2 microdeletion syndrome, which is mainly caused by TBX1 gene mutations. Thus, we hypothesized that altered TBX1 gene expression may contribute to IIH development. In this study, the human TBX1 gene promoter was genetically analyzed in children with IIH (n=100) and ethnic-matched controls (n=167). Functions of DNA sequence variants (DSVs) within the TBX1 gene promoter were examined in cultured human fibroblast cells. The results showed that two heterozygous DSVs were found, both of which were single nucleotide polymorphisms. One DSV, g.4248 C>T (rs41298629), was identified in a 2-year-old boy with right-sided IIH, but not in all controls, which significantly decreased TBX1 gene promoter activity. Another DSV, g.4199 C>T (rs41260844), was found in both IIH patients and controls with similar frequencies (P>0.05), which did not affect TBX1 gene promoter activity. Collectively, our data suggested that the DSV within the TBX1 gene promoter may change TBX1 level, contributing to IIH development as a rare risk factor. Underlying molecular mechanisms need to be established.
Collapse
Affiliation(s)
- Yu Zhang
- Division of General Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Qingluan Han
- Division of General Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Chunyu Li
- Division of Electrocardiogram, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Wei Li
- Division of General Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Hongjin Fan
- Division of General Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Qining Xing
- Division of General Surgery, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China
| | - Bo Yan
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong 272029, China.
| |
Collapse
|
22
|
Jacques BE, Puligilla C, Weichert RM, Ferrer-Vaquer A, Hadjantonakis AK, Kelley MW, Dabdoub A. A dual function for canonical Wnt/β-catenin signaling in the developing mammalian cochlea. Development 2013; 139:4395-404. [PMID: 23132246 DOI: 10.1242/dev.080358] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The canonical Wnt/β-catenin signaling pathway is known to play crucial roles in organogenesis by regulating both proliferation and differentiation. In the inner ear, this pathway has been shown to regulate the size of the otic placode from which the cochlea will arise; however, direct activity of canonical Wnt signaling as well as its function during cochlear mechanosensory hair cell development had yet to be identified. Using TCF/Lef:H2B-GFP reporter mice and transfection of an independent TCF/Lef reporter construct, we describe the pattern of canonical Wnt activity in the developing mouse cochlea. We show that prior to terminal mitosis, canonical Wnt activity is high in early prosensory cells from which hair cells and support cells will differentiate, and activity becomes reduced as development progresses. Using an in vitro model we demonstrate that Wnt/β-catenin signaling regulates both proliferation and hair cell differentiation within the developing cochlear duct. Inhibition of Wnt/β-catenin signaling blocks proliferation during early mitotic phases of development and inhibits hair cell formation in the differentiating organ of Corti. Conversely, activation increases the number of hair cells that differentiate and induces proliferation in prosensory cells, causing an expansion of the Sox2-positive prosensory domain. We further demonstrate that the induced proliferation of Sox2-positive cells may be mediated by the cell cycle regulator cyclin D1. Lastly, we provide evidence that the mitotic Sox2-positive cells are competent to differentiate into hair cells. Combined, our data suggest that Wnt/β-catenin signaling has a dual function in cochlear development, regulating both proliferation and hair cell differentiation.
Collapse
Affiliation(s)
- Bonnie E Jacques
- University of California San Diego, School of Medicine, Department of Surgery, Division of Otolaryngology, La Jolla, CA 92093-0666, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Transrepression activity of T-box1 in a gene regulation network in mouse cells. Gene 2012; 510:162-70. [DOI: 10.1016/j.gene.2012.09.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/30/2012] [Accepted: 09/06/2012] [Indexed: 11/24/2022]
|
24
|
Abstract
The inner ear is a structurally complex vertebrate organ built to encode sound, motion, and orientation in space. Given its complexity, it is not surprising that inner ear dysfunction is a relatively common consequence of human genetic mutation. Studies in model organisms suggest that many genes currently known to be associated with human hearing impairment are active during embryogenesis. Hence, the study of inner ear development provides a rich context for understanding the functions of genes implicated in hearing loss. This chapter focuses on molecular mechanisms of inner ear development derived from studies of model organisms.
Collapse
Affiliation(s)
- Doris K Wu
- National Institute on Deafness and Other Communication Disorders, Rockville, Maryland 20850, USA.
| | | |
Collapse
|
25
|
Wang H, Chen D, Ma L, Meng H, Liu Y, Xie W, Pang S, Yan B. Genetic analysis of the TBX1 gene promoter in ventricular septal defects. Mol Cell Biochem 2012; 370:53-8. [PMID: 22801995 DOI: 10.1007/s11010-012-1397-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Accepted: 07/07/2012] [Indexed: 12/18/2022]
Abstract
Congenital heart disease (CHD) is the most common birth defects in humans. The genetic causes for CHD remain largely unknown. T-box transcription factor 1 (TBX1), a dosage-sensitive regulator, plays a critical role in the heart development. Mutations in the coding regions of TBX1 gene have been associated to 22q11 deletion syndrome with cardiac defects and isolated CHD cases, including ventricular septal defect (VSD). To date, TBX1 gene promoter region has not been analyzed and reported in CHD patients. We hypothesized that the sequence variants within TBX1 gene promoter region may change TBX1 levels and mediate CHD development. In this study, the promoter regions of TBX1 gene were genetically and functionally analyzed in 280 VSD patients and 267 healthy controls. Two novel heterozygous variants, g.4353C>T and g.4510A>C, were found in two VSD patients, but in none of controls. The single-nucleotide polymorphism-rs41260844, g.4199T>C, was found more frequent in VSD patients than controls (P < 0.01). Functional analyses revealed that these sequence variants significantly enhanced transcriptional activities of TBX1 gene promoter. Therefore, the sequence variants within TBX1 gene promoter may contribute to the VSD etiology by altering the expression levels of TBX1 gene. Pharmaceutical or genetic manipulation of TBX1 gene expression may provide a novel personalized therapy to prevent and treat late cardiac complications for the adult CHD patients carrying these variants.
Collapse
Affiliation(s)
- Haihua Wang
- Shandong Provincial Key Laboratory of Cardiac Disease Diagnosis and Treatment, Jining Medical University Affiliated Hospital, Jining Medical University, Jining, Shandong, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Papangeli I, Scambler P. The 22q11 deletion: DiGeorge and velocardiofacial syndromes and the role of TBX1. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:393-403. [PMID: 23799583 DOI: 10.1002/wdev.75] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Hemizygous deletion of 22q11 affects approximately 1:4000 live births and may give rise to many different malformations but classically results in a constellation of phenotypes that receive a diagnosis of DiGeorge syndrome or velocardiofacial syndrome. Particularly affected are the heart and great vessels, the endocrine glands of the neck, the face, the soft palate, and cognitive development. Although up to 50 genes may be deleted, it is haploinsufficiency of the transcription factor TBX1 that is thought to make the greatest contribution to the disorder. Mouse embryos are exquisitely sensitive to varying levels of Tbx1 mRNA, and Tbx1 is required in all three germ layers of the embryonic pharyngeal region for normal development. TBX1 controls cell proliferation and affects cellular differentiation in a cell autonomous fashion, but it also directs non-cell autonomous effects, most notably in the signaling between pharyngeal surface ectoderm and the rostral neural crest. TBX1 interacts with several signaling pathways, including fibroblast growth factor, retinoic acid, CTNNB1 (formerly known as β-catenin), and bone morphogenetic protein (BMP), and may regulate pathways by both DNA-binding and non-binding activity. In addition to the structural abnormalities seen in 22q11 deletion syndrome (DS) and Tbx1 mutant mouse models, patients reaching adolescence and adulthood have a predisposition to psychiatric illness. Whether this has a developmental basis and, if so, which genes are involved is an ongoing strand of research. Thus, knowledge of the genetic and developmental mechanisms underlying 22q11DS has the potential to inform about common disease as well as developmental defect.
Collapse
Affiliation(s)
- Irinna Papangeli
- Department of Molecular Medicine, UCL Institute of Child Health, London, UK
| | | |
Collapse
|
27
|
Cox BC, Liu Z, Lagarde MMM, Zuo J. Conditional gene expression in the mouse inner ear using Cre-loxP. J Assoc Res Otolaryngol 2012; 13:295-322. [PMID: 22526732 PMCID: PMC3346893 DOI: 10.1007/s10162-012-0324-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 03/19/2012] [Indexed: 10/28/2022] Open
Abstract
In recent years, there has been significant progress in the use of Cre-loxP technology for conditional gene expression in the inner ear. Here, we introduce the basic concepts of this powerful technology, emphasizing the differences between Cre and CreER. We describe the creation and Cre expression pattern of each Cre and CreER mouse line that has been reported to have expression in auditory and vestibular organs. We compare the Cre expression patterns between Atoh1-CreER(TM) and Atoh1-CreER(T2) and report a new line, Fgfr3-iCreER(T2), which displays inducible Cre activity in cochlear supporting cells. We also explain how results can vary when transgenic vs. knock-in Cre/CreER alleles are used to alter gene expression. We discuss practical issues that arise when using the Cre-loxP system, such as the use of proper controls, Cre efficiency, reporter expression efficiency, and Cre leakiness. Finally, we introduce other methods for conditional gene expression, including Flp recombinase and the tetracycline-inducible system, which can be combined with Cre-loxP mouse models to investigate conditional expression of more than one gene.
Collapse
Affiliation(s)
- Brandon C. Cox
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Marcia M. Mellado Lagarde
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105 USA
| |
Collapse
|
28
|
Liu Z, Owen T, Fang J, Zuo J. Overactivation of Notch1 signaling induces ectopic hair cells in the mouse inner ear in an age-dependent manner. PLoS One 2012; 7:e34123. [PMID: 22448289 PMCID: PMC3309011 DOI: 10.1371/journal.pone.0034123] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 02/22/2012] [Indexed: 12/25/2022] Open
Abstract
Background During mouse inner ear development, Notch1 signaling first specifies sensory progenitors, and subsequently controls progenitors to further differentiate into either hair cells (HCs) or supporting cells (SCs). Overactivation of NICD (Notch1 intracellular domain) at early embryonic stages leads to ectopic HC formation. However, it remains unclear whether such an effect can be elicited at later embryonic or postnatal stages, which has important implications in mouse HC regeneration by reactivation of Notch1 signaling. Methodology/Principal Findings We performed comprehensive in vivo inducible overactivation of NICD at various developmental stages. In CAGCreER+; Rosa26-NICDloxp/+ mice, tamoxifen treatment at embryonic day 10.5 (E10.5) generated ectopic HCs in the non-sensory regions in both utricle and cochlea, whereas ectopic HCs only appeared in the utricle when tamoxifen was given at E13. When tamoxifen was injected at postnatal day 0 (P0) and P1, no ectopic HCs were observed in either utricle or cochlea. Interestingly, Notch1 signaling induced new HCs in a non-cell-autonomous manner, because the new HCs did not express NICD. Adjacent to the new HCs were cells expressing the SC marker Sox10 (either NICD+ or NICD-negative). Conclusions/Significance Our data demonstrate that the developmental stage determines responsiveness of embryonic otic precursors and neonatal non-sensory epithelial cells to NICD overactivation, and that Notch 1 signaling in the wild type, postnatal inner ear is not sufficient for generating new HCs. Thus, our genetic mouse model is suitable to test additional pathways that could synergistically interact with Notch1 pathway to produce HCs at postnatal ages.
Collapse
MESH Headings
- Age Factors
- Animals
- Animals, Newborn
- Cell Communication
- Cochlea/metabolism
- Cochlea/pathology
- Ear, Inner/cytology
- Ear, Inner/embryology
- Ear, Inner/metabolism
- Female
- Fluorescent Antibody Technique
- Hair Cells, Auditory/cytology
- Hair Cells, Auditory/metabolism
- Male
- Mice
- Mice, Knockout
- Mice, Transgenic
- Proteins/physiology
- RNA, Untranslated
- Receptors, Notch/physiology
- Regeneration/physiology
- Signal Transduction
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- Integrated Program in Biomedical Sciences, University of Tennessee Health Science Center, Memphis, Tennessee, United States of America
| | - Thomas Owen
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- University of Bath, Bath, United Kingdom
| | - Jie Fang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
| | - Jian Zuo
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
29
|
Noda T, Oki S, Kitajima K, Harada T, Komune S, Meno C. Restriction of Wnt signaling in the dorsal otocyst determines semicircular canal formation in the mouse embryo. Dev Biol 2011; 362:83-93. [PMID: 22166339 DOI: 10.1016/j.ydbio.2011.11.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/27/2011] [Accepted: 11/28/2011] [Indexed: 01/07/2023]
Abstract
The mouse inner ear develops from a simple epithelial pouch, the otocyst, with the dorsal and ventral portions giving rise to the vestibule and cochlea, respectively. The otocyst undergoes a morphological change to generate flattened saclike structures, known as outpocketings, in the dorsal and lateral regions. The semicircular canals of the vestibule form from the periphery of the outpocketings, with the central region (the fusion plate) undergoing de-epithelialization and disappearing. However, little is known of the mechanism that orchestrates formation of the semicircular canals. We now show that the area of canonical Wnt signaling changes dynamically in the dorsal otocyst during its morphogenesis. The genes for several Wnt ligands were found to be expressed in the dorsal otocyst according to specific patterns, whereas those for secreted inhibitors of Wnt ligands were expressed exclusively in the ventral otocyst. With the use of whole-embryo culture in combination with potent modulators of canonical Wnt signaling, we found that forced persistence of such signaling resulted in impaired formation both of the lateral outpocketing and of the fusion plates of the dorsal outpocketing. Canonical Wnt signaling was found to suppress Netrin1 expression and to preserve the integrity of the outpocketing epithelium. In addition, inhibition of canonical Wnt signaling reduced the size of the otocyst, likely through suppression of cell proliferation and promotion of apoptosis. Our stage-specific functional analysis suggests that strict regulation of canonical Wnt signaling in the dorsal otocyst orchestrates the process of semicircular canal formation.
Collapse
Affiliation(s)
- Teppei Noda
- Department of Developmental Biology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Brown AS, Epstein DJ. Otic ablation of smoothened reveals direct and indirect requirements for Hedgehog signaling in inner ear development. Development 2011; 138:3967-76. [PMID: 21831920 DOI: 10.1242/dev.066126] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mouse embryos lacking sonic hedgehog (Shh), dorsoventral polarity within the otic vesicle is disrupted. Consequently, ventral otic derivatives, including the cochlear duct and saccule, fail to form, and dorsal otic derivatives, including the semicircular canals, endolymphatic duct and utricle, are malformed or absent. Since inner ear patterning and morphogenesis are heavily dependent on extracellular signals derived from tissues that are also compromised by the loss of Shh, the extent to which Shh signaling acts directly on the inner ear for its development is unclear. To address this question, we generated embryos in which smoothened (Smo), an essential transducer of Hedgehog (Hh) signaling, was conditionally inactivated in the otic epithelium (Smo(ecko)). Ventral otic derivatives failed to form in Smo(ecko) embryos, whereas vestibular structures developed properly. Consistent with these findings, we demonstrate that ventral, but not dorsal, otic identity is directly dependent on Hh. The role of Hh in cochlear-vestibular ganglion (cvg) formation is more complex, as both direct and indirect signaling mechanisms are implicated. Our data suggest that the loss of cvg neurons in Shh(-/-) animals is due, in part, to an increase in Wnt responsiveness in the otic vesicle, resulting in the ectopic expression of Tbx1 in the neurogenic domain and subsequent repression of Ngn1 transcription. A mitogenic role for Shh in cvg progenitor proliferation was also revealed in our analysis of Smo(ecko) embryos. Taken together, these data contribute to a better understanding of the intrinsic and extrinsic signaling properties of Shh during inner ear development.
Collapse
Affiliation(s)
- Alexander S Brown
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104, USA
| | | |
Collapse
|
31
|
Savaris RF, Groll JM, Young SL, DeMayo FJ, Jeong JW, Hamilton AE, Giudice LC, Lessey BA. Progesterone resistance in PCOS endometrium: a microarray analysis in clomiphene citrate-treated and artificial menstrual cycles. J Clin Endocrinol Metab 2011; 96:1737-46. [PMID: 21411543 PMCID: PMC3100753 DOI: 10.1210/jc.2010-2600] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CONTEXT Polycystic ovary syndrome (PCOS), the most common endocrinopathy of reproductive-aged women, is characterized by ovulatory dysfunction and hyperandrogenism. OBJECTIVE The aim was to compare gene expression between endometrial samples of normal fertile controls and women with PCOS. DESIGN AND SETTING We conducted a case control study at university teaching hospitals. PATIENTS Normal fertile controls and women with PCOS participated in the study. INTERVENTIONS Endometrial samples were obtained from normal fertile controls and from women with PCOS, either induced to ovulate with clomiphene citrate or from a modeled secretory phase using daily administration of progesterone. MAIN OUTCOME MEASURE Total RNA was isolated from samples and processed for array hybridization with Affymetrix HG U133 Plus 2 arrays. Data were analyzed using GeneSpring GX11 and Ingenuity Pathways Analysis. Selected gene expression differences were validated using RT-PCR and/or immunohistochemistry in separately obtained PCOS and normal endometrium. RESULTS ANOVA analysis revealed 5160 significantly different genes among the three conditions. Of these, 466 were differentially regulated between fertile controls and PCOS. Progesterone-regulated genes, including mitogen-inducible gene 6 (MIG6), leukemia inhibitory factor (LIF), GRB2-associated binding protein 1 (GAB1), S100P, and claudin-4 were significantly lower in PCOS endometrium; whereas cell proliferation genes, such as Anillin and cyclin B1, were up-regulated. CONCLUSIONS Differences in gene expression provide evidence of progesterone resistance in midsecretory PCOS endometrium, independent of clomiphene citrate and corresponding to the observed phenotypes of hyperplasia, cancer, and poor reproductive outcomes in this group of women.
Collapse
Affiliation(s)
- Ricardo F Savaris
- Departamento de Ginecologia e Obstetrícia, Programa de Pós-Graduação em Cirurgia: Ciências Cirúrgicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-903, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Trempus CS, Wei SJ, Humble MM, Dang H, Bortner CD, Sifre MI, Kissling GE, Sunman JA, Akiyama SK, Roberts JD, Tucker CJ, Chun KS, Tennant RW, Langenbach R. A novel role for the T-box transcription factor Tbx1 as a negative regulator of tumor cell growth in mice. Mol Carcinog 2011; 50:981-91. [PMID: 21438027 DOI: 10.1002/mc.20768] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 02/11/2011] [Accepted: 02/18/2011] [Indexed: 11/09/2022]
Abstract
The T-box transcription factor, Tbx1, an important regulatory gene in development, is highly expressed in hair follicle (HF) stem cells in adult mice. Because mouse models of skin carcinogenesis have demonstrated that HF stem cells are a carcinogen target population and contribute significantly to tumor development, we investigated whether Tbx1 plays a role in skin carcinogenesis. We first assessed Tbx1 expression levels in mouse skin tumors, and found down-regulation in all tumors examined. To study the effect of Tbx1 expression on growth and tumorigenic potential of carcinoma cells, we transfected mouse Tbx1 cDNA into a mouse spindle cell carcinoma cell line that did not express endogenous Tbx1. Following transfection, two cell lines expressing different levels of the Tbx1/V5 fusion protein were selected for further study. Intradermal injection of the cell lines into mice revealed that Tbx1 expression significantly suppressed tumor growth, albeit with no change in tumor morphology. In culture, ectopic Tbx1 expression resulted in decreased cell growth and reduced development into multilayered colonies, compared to control cells. Tbx1-transfectants exhibited a reduced proliferative rate compared to control cells, with fewer cells in S and G2/M phases. The Tbx1 transfectants developed significantly fewer colonies in soft agar, demonstrating loss of anchorage-independent growth. Taken together, our data show that ectopic expression of Tbx1 restored contact inhibition to the skin tumor cells, suggesting that this developmentally important transcription factor may have a novel dual role as a negative regulator of tumor growth. © 2011 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Carol S Trempus
- Laboratory of Toxicology and Pharmacology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Appler JM, Goodrich LV. Connecting the ear to the brain: Molecular mechanisms of auditory circuit assembly. Prog Neurobiol 2011; 93:488-508. [PMID: 21232575 DOI: 10.1016/j.pneurobio.2011.01.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 12/09/2010] [Accepted: 01/03/2011] [Indexed: 12/21/2022]
Abstract
Our sense of hearing depends on precisely organized circuits that allow us to sense, perceive, and respond to complex sounds in our environment, from music and language to simple warning signals. Auditory processing begins in the cochlea of the inner ear, where sounds are detected by sensory hair cells and then transmitted to the central nervous system by spiral ganglion neurons, which faithfully preserve the frequency, intensity, and timing of each stimulus. During the assembly of auditory circuits, spiral ganglion neurons establish precise connections that link hair cells in the cochlea to target neurons in the auditory brainstem, develop specific firing properties, and elaborate unusual synapses both in the periphery and in the CNS. Understanding how spiral ganglion neurons acquire these unique properties is a key goal in auditory neuroscience, as these neurons represent the sole input of auditory information to the brain. In addition, the best currently available treatment for many forms of deafness is the cochlear implant, which compensates for lost hair cell function by directly stimulating the auditory nerve. Historically, studies of the auditory system have lagged behind other sensory systems due to the small size and inaccessibility of the inner ear. With the advent of new molecular genetic tools, this gap is narrowing. Here, we summarize recent insights into the cellular and molecular cues that guide the development of spiral ganglion neurons, from their origin in the proneurosensory domain of the otic vesicle to the formation of specialized synapses that ensure rapid and reliable transmission of sound information from the ear to the brain.
Collapse
Affiliation(s)
- Jessica M Appler
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|