1
|
England SJ, Rusnock AK, Mujcic A, Kowalchuk A, de Jager S, Hilinski WC, Juárez-Morales JL, Smith ME, Grieb G, Banerjee S, Lewis KE. Molecular analyses of zebrafish V0v spinal interneurons and identification of transcriptional regulators downstream of Evx1 and Evx2 in these cells. Neural Dev 2023; 18:8. [PMID: 38017520 PMCID: PMC10683209 DOI: 10.1186/s13064-023-00176-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/12/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. METHODS To identify candidate members of V0v gene regulatory networks, we FAC-sorted wild-type and evx1;evx2 double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes in evx1;evx2 double mutants and wild-type siblings. RESULTS Our data reveal two molecularly distinct subtypes of zebrafish V0v spinal interneurons at 48 h and suggest that, by this stage of development, evx1;evx2 double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes are hmx2 and hmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuron expression of skor1a and nefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulate skor1a and nefma expression in V0v interneurons by repressing Hmx2/3a expression. CONCLUSIONS This study identifies two molecularly distinct subsets of zebrafish V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.
Collapse
Affiliation(s)
| | | | - Amra Mujcic
- Biology Department, Syracuse University, Syracuse, NY, USA
| | | | - Sarah de Jager
- Physiology, Development and Neuroscience Department, Cambridge University, Cambridge, UK
| | | | - José L Juárez-Morales
- Biology Department, Syracuse University, Syracuse, NY, USA
- Programa de IxM-CONAHCYT, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), La Paz, Baja California Sur, México
| | | | - Ginny Grieb
- Biology Department, Syracuse University, Syracuse, NY, USA
| | - Santanu Banerjee
- Biological Sciences Department, SUNY-Cortland, Cortland, NY, USA
| | | |
Collapse
|
2
|
England SJ, Woodard AK, Mujcic A, Kowalchuk A, de Jager S, Hilinski WC, Juárez-Morales JL, Smith ME, Grieb G, Banerjee S, Lewis KE. Molecular Analyses of V0v Spinal Interneurons and Identification of Transcriptional Regulators Downstream of Evx1 and Evx2 in these Cells. RESEARCH SQUARE 2023:rs.3.rs-3290462. [PMID: 37693471 PMCID: PMC10491344 DOI: 10.21203/rs.3.rs-3290462/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Background V0v spinal interneurons are highly conserved, glutamatergic, commissural neurons that function in locomotor circuits. We have previously shown that Evx1 and Evx2 are required to specify the neurotransmitter phenotype of these cells. However, we still know very little about the gene regulatory networks that act downstream of these transcription factors in V0v cells. Methods To identify candidate members of V0v gene regulatory networks, we FAC-sorted WT and evx1;evx2 double mutant zebrafish V0v spinal interneurons and expression-profiled them using microarrays and single cell RNA-seq. We also used in situ hybridization to compare expression of a subset of candidate genes in evx1;evx2 double mutants and wild-type siblings. Results Our data reveal two molecularly distinct subtypes of V0v spinal interneurons at 48 h and suggest that, by this stage of development, evx1;evx2 double mutant cells transfate into either inhibitory spinal interneurons, or motoneurons. Our results also identify 25 transcriptional regulator genes that require Evx1/2 for their expression in V0v interneurons, plus a further 11 transcriptional regulator genes that are repressed in V0v interneurons by Evx1/2. Two of the latter genes are hmx2 and hmx3a. Intriguingly, we show that Hmx2/3a, repress dI2 interneuronal expression of skor1a and nefma, two genes that require Evx1/2 for their expression in V0v interneurons. This suggests that Evx1/2 might regulate skor1a and nefma expression in V0v interneurons by repressing Hmx2/3a expression. Conclusions This study identifies two molecularly distinct subsets of V0v spinal interneurons, as well as multiple transcriptional regulators that are strong candidates for acting downstream of Evx1/2 to specify the essential functional characteristics of these cells. Our data further suggest that in the absence of both Evx1 and Evx2, V0v spinal interneurons initially change their neurotransmitter phenotypes from excitatory to inhibitory and then, later, start to express markers of distinct types of inhibitory spinal interneurons, or motoneurons. Taken together, our findings significantly increase our knowledge of V0v and spinal development and move us closer towards the essential goal of identifying the complete gene regulatory networks that specify this crucial cell type.
Collapse
|
3
|
Xie L, Liu H, You Z, Wang L, Li Y, Zhang X, Ji X, He H, Yuan T, Zheng W, Wu Z, Xiong M, Wei W, Chen Y. Comprehensive spatiotemporal mapping of single-cell lineages in developing mouse brain by CRISPR-based barcoding. Nat Methods 2023; 20:1244-1255. [PMID: 37460718 DOI: 10.1038/s41592-023-01947-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/06/2023] [Indexed: 08/09/2023]
Abstract
A fundamental interest in developmental neuroscience lies in the ability to map the complete single-cell lineages within the brain. To this end, we developed a CRISPR editing-based lineage-specific tracing (CREST) method for clonal tracing in Cre mice. We then used two complementary strategies based on CREST to map single-cell lineages in developing mouse ventral midbrain (vMB). By applying snapshotting CREST (snapCREST), we constructed a spatiotemporal lineage landscape of developing vMB and identified six progenitor archetypes that could represent the principal clonal fates of individual vMB progenitors and three distinct clonal lineages in the floor plate that specified glutamatergic, dopaminergic or both neurons. We further created pandaCREST (progenitor and derivative associating CREST) to associate the transcriptomes of progenitor cells in vivo with their differentiation potentials. We identified multiple origins of dopaminergic neurons and demonstrated that a transcriptome-defined progenitor type comprises heterogeneous progenitors, each with distinct clonal fates and molecular signatures. Therefore, the CREST method and strategies allow comprehensive single-cell lineage analysis that could offer new insights into the molecular programs underlying neural specification.
Collapse
Affiliation(s)
- Lianshun Xie
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hengxin Liu
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwen You
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Luyue Wang
- University of Chinese Academy of Sciences, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yiwen Li
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoshan Ji
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Hui He
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tingli Yuan
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenping Zheng
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ziyan Wu
- UniXell Biotechnology, Shanghai, China
| | - Man Xiong
- State Key Laboratory of Medical Neurobiology-Ministry of Education Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wu Wei
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China.
- Center for Biomedical Informatics, Shanghai Engineering Research Center for Big Data in Pediatric Precision Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University, Shanghai, China.
- Lingang Laboratory, Shanghai, China.
| | - Yuejun Chen
- Institute of Neuroscience, Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China.
| |
Collapse
|
4
|
Diaz C, de la Torre MM, Rubenstein JLR, Puelles L. Dorsoventral Arrangement of Lateral Hypothalamus Populations in the Mouse Hypothalamus: a Prosomeric Genoarchitectonic Analysis. Mol Neurobiol 2023; 60:687-731. [PMID: 36357614 PMCID: PMC9849321 DOI: 10.1007/s12035-022-03043-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
The lateral hypothalamus (LH) has a heterogeneous cytoarchitectonic organization that has not been elucidated in detail. In this work, we analyzed within the framework of the prosomeric model the differential expression pattern of 59 molecular markers along the ventrodorsal dimension of the medial forebrain bundle in the mouse, considering basal and alar plate subregions of the LH. We found five basal (LH1-LH5) and four alar (LH6-LH9) molecularly distinct sectors of the LH with neuronal cell groups that correlate in topography with previously postulated alar and basal hypothalamic progenitor domains. Most peptidergic populations were restricted to one of these LH sectors though some may have dispersed into a neighboring sector. For instance, histaminergic Hdc-positive neurons were mostly contained within the basal LH3, Nts (neurotensin)- and Tac2 (tachykinin 2)-expressing cells lie strictly within LH4, Hcrt (hypocretin/orexin)-positive and Pmch (pro-melanin-concentrating hormone)-positive neurons appeared within separate LH5 subdivisions, Pnoc (prepronociceptin)-expressing cells were mainly restricted to LH6, and Sst (somatostatin)-positive cells were identified within the LH7 sector. The alar LH9 sector, a component of the Foxg1-positive telencephalo-opto-hypothalamic border region, selectively contained Satb2-expressing cells. Published studies of rodent LH subdivisions have not described the observed pattern. Our genoarchitectonic map should aid in systematic approaches to elucidate LH connectivity and function.
Collapse
Affiliation(s)
- Carmen Diaz
- Department of Medical Sciences, School of Medicine and Institute for Research in Neurological Disabilities, University of Castilla-La Mancha, 02006 Albacete, Spain
| | - Margaret Martinez de la Torre
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| | - John L. R. Rubenstein
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, UCSF Medical School, San Francisco, California USA
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, University of Murcia, 30100 Murcia, Spain
| |
Collapse
|
5
|
Xu P, He H, Gao Q, Zhou Y, Wu Z, Zhang X, Sun L, Hu G, Guan Q, You Z, Zhang X, Zheng W, Xiong M, Chen Y. Human midbrain dopaminergic neuronal differentiation markers predict cell therapy outcome in a Parkinson's disease model. J Clin Invest 2022; 132:156768. [PMID: 35700056 PMCID: PMC9282930 DOI: 10.1172/jci156768] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
Human pluripotent stem cell (hPSC)-based replacement therapy holds great promise in treating Parkinson's disease (PD). However, the heterogeneity of hPSC-derived donor cells and the low yield of midbrain dopaminergic (mDA) neurons after transplantation hinder its broad clinical application. Here, we depicted the single-cell molecular landscape during mDA neuron differentiation. We found that this process recapitulated the development of multiple but adjacent fetal brain regions including ventral midbrain, isthmus, and ventral hindbrain, resulting in heterogenous donor cell population. We reconstructed the differentiation trajectory of mDA lineage and identified CLSTN2 and PTPRO as specific surface markers of mDA progenitors, which were predictive of mDA neuron differentiation and could facilitate highly enriched mDA neurons (up to 80%) following progenitor sorting and transplantation. Marker sorted progenitors exhibited higher therapeutic potency in correcting motor deficits of PD mice. Different marker sorted grafts had a strikingly consistent cellular composition, in which mDA neurons were enriched, while off-target neuron types were mostly depleted, suggesting stable graft outcomes. Our study provides a better understanding of cellular heterogeneity during mDA neuron differentiation, and establishes a strategy to generate highly purified donor cells to achieve stable and predictable therapeutic outcomes, raising the prospect of hPSC-based PD cell replacement therapies.
Collapse
Affiliation(s)
- Peibo Xu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Hui He
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qinqin Gao
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yingying Zhou
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Ziyan Wu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Zhang
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Linyu Sun
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Gang Hu
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Qian Guan
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Zhiwen You
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyue Zhang
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wenping Zheng
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Man Xiong
- Institute State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai, China
| | - Yuejun Chen
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Zhang H, Wang H, Shen X, Jia X, Yu S, Qiu X, Wang Y, Du J, Yan J, He J. The landscape of regulatory genes in brain-wide neuronal phenotypes of a vertebrate brain. eLife 2021; 10:68224. [PMID: 34895465 PMCID: PMC8769648 DOI: 10.7554/elife.68224] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 12/05/2021] [Indexed: 11/18/2022] Open
Abstract
Multidimensional landscapes of regulatory genes in neuronal phenotypes at whole-brain levels in the vertebrate remain elusive. We generated single-cell transcriptomes of ~67,000 region- and neurotransmitter/neuromodulator-identifiable cells from larval zebrafish brains. Hierarchical clustering based on effector gene profiles ('terminal features') distinguished major brain cell types. Sister clusters at hierarchical termini displayed similar terminal features. It was further verified by a population-level statistical method. Intriguingly, glutamatergic/GABAergic sister clusters mostly expressed distinct transcription factor (TF) profiles ('convergent pattern'), whereas neuromodulator-type sister clusters predominantly expressed the same TF profiles ('matched pattern'). Interestingly, glutamatergic/GABAergic clusters with similar TF profiles could also display different terminal features ('divergent pattern'). It led us to identify a library of RNA-binding proteins that differentially marked divergent pair clusters, suggesting the post-transcriptional regulation of neuron diversification. Thus, our findings reveal multidimensional landscapes of transcriptional and post-transcriptional regulators in whole-brain neuronal phenotypes in the zebrafish brain.
Collapse
Affiliation(s)
- Hui Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of SciencesBeijingChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Haifang Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Xiaoyu Shen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Xinling Jia
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Shuguang Yu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of SciencesBeijingChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Xiaoying Qiu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Yufan Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,University of Chinese Academy of SciencesBeijingChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina,School of Future Technology, University of Chinese Academy of SciencesBeijingChina
| | - Jun Yan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina,School of Future Technology, University of Chinese Academy of SciencesBeijingChina
| | - Jie He
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of SciencesShanghaiChina,Shanghai Center for Brain Science and Brain-Inspired Intelligence TechnologyShanghaiChina
| |
Collapse
|
7
|
Fried L, Modestino EJ, Siwicki D, Lott L, Thanos PK, Baron D, Badgaiyan RD, Ponce JV, Giordano J, Downs WB, Gondré-Lewis MC, Bruce S, Braverman ER, Boyett B, Blum K. Hypodopaminergia and "Precision Behavioral Management" (PBM): It is a Generational Family Affair. Curr Pharm Biotechnol 2020; 21:528-541. [PMID: 31820688 DOI: 10.2174/1389201021666191210112108] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/24/2019] [Accepted: 11/24/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIMS This case series presents the novel Genetic Addiction Risk Score (GARS®) coupled with a customized pro-dopamine regulator matched to polymorphic reward genes having a hypodopaminergic risk. METHODS The proband is a female with a history of drug abuse and alcoholism. She experienced a car accident under the influence and voluntarily entered treatment. Following an assessment, she was genotyped using the GARS, and started a neuronutrient with a KB220 base indicated by the identified polymorphisms. She began taking it in April 2018 and continues. RESULTS She had success in recovery from Substance Use Disorder (SUD) and improvement in socialization, family, economic status, well-being, and attenuation of Major Depression. She tested negative over the first two months in treatment and a recent screening. After approximately two months, her parents also decided to take the GARS and started taking the recommended variants. The proband's father (a binge drinker) and mother (no SUD) both showed improvement in various behavioral issues. Finally, the proband's biological children were also GARS tested, showing a high risk for SUD. CONCLUSION This three-generation case series represents an example of the impact of genetic information coupled with an appropriate DNA guided "Pro-Dopamine Regulator" in recovery and enhancement of life.
Collapse
Affiliation(s)
- Lyle Fried
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Transformations Treatment Center, Delray Beach, FL, United States
| | - Edward J Modestino
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Department of Psychology, Curry College, Milton, MA, United States
| | - David Siwicki
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States
| | - Lisa Lott
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States
| | - Panayotis K Thanos
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Behavioral Neuropharmacology & Neuroimaging Laboratory on Addiction, Research Institute on Addictions, University of Buffalo, Buffalo, NY, United States
| | - David Baron
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, United States
| | - Rajendra D Badgaiyan
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Department of Psychiatry, Icahn School of Medicine, New York, NY, United States
| | - Jessica V Ponce
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States
| | - James Giordano
- John Giordano, Life Enhancement Recovery Center, Hollywood, FL, United States
| | - William B Downs
- Victory Nutrition International, Lederach, PA, United States
| | - Marjorie C Gondré-Lewis
- Department of Anatomy, Developmental Neuro-Psycho-Pharmacology Laboratory, Howard University College of Medicine, Washington, DC, United States
| | - Steinberg Bruce
- Department of Psychology, Curry College, Milton, MA, United States
| | - Eric R Braverman
- Department of Clinical Neurology, PATH Foundation, New York, NY, United States
| | - Brent Boyett
- Division of Neuroscience & Addiction Research, Pathway Healthcare, Birmingham, AL, United States
| | - Kenneth Blum
- Department of Precision Addiction Management, Geneus Health, LLC., San Antonio, TX, United States.,Graduate School of Biomedical Sciences, Western University Health Sciences, Pomona, CA, United States.,John Giordano, Life Enhancement Recovery Center, Hollywood, FL, United States.,Victory Nutrition International, Lederach, PA, United States.,Department of Clinical Neurology, PATH Foundation, New York, NY, United States.,Division of Neuroscience & Addiction Research, Pathway Healthcare, Birmingham, AL, United States.,Division of Addiction Services, Dominion Diagnostics, LLC, North Kingstown, RI, United States.,Department of Psychiatry, University of Vermont, Burlington, VM, United States.,Eotvos Loránd University, Institute of Psychology, Budapest, Hungary.,Department of Psychiatry, Wright State University, Boonshoft School of Medicine and Dayton VA, Medical Center, Dayton, OH, United States
| |
Collapse
|
8
|
Estacio-Gómez A, Hassan A, Walmsley E, Le LW, Southall TD. Dynamic neurotransmitter specific transcription factor expression profiles during Drosophila development. Biol Open 2020; 9:9/5/bio052928. [PMID: 32493733 PMCID: PMC7286294 DOI: 10.1242/bio.052928] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The remarkable diversity of neurons in the nervous system is generated during development, when properties such as cell morphology, receptor profiles and neurotransmitter identities are specified. In order to gain a greater understanding of neurotransmitter specification we profiled the transcription state of cholinergic, GABAergic and glutamatergic neurons in vivo at three developmental time points. We identified 86 differentially expressed transcription factors that are uniquely enriched, or uniquely depleted, in a specific neurotransmitter type. Some transcription factors show a similar profile across development, others only show enrichment or depletion at specific developmental stages. Profiling of Acj6 (cholinergic enriched) and Ets65A (cholinergic depleted) binding sites in vivo reveals that they both directly bind the ChAT locus, in addition to a wide spectrum of other key neuronal differentiation genes. We also show that cholinergic enriched transcription factors are expressed in mostly non-overlapping populations in the adult brain, implying the absence of combinatorial regulation of neurotransmitter fate in this context. Furthermore, our data underlines that, similar to Caenorhabditis elegans, there are no simple transcription factor codes for neurotransmitter type specification. This article has an associated First Person interview with the first author of the paper. Summary: Transcriptome profiling of cholinergic, GABAergic and glutamatergic neurons in Drosophila identified multiple transcription factors as potential regulators of neurotransmitter fate.
Collapse
Affiliation(s)
- Alicia Estacio-Gómez
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Amira Hassan
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Emma Walmsley
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Lily Wong Le
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| | - Tony D Southall
- Department of Life Sciences, Imperial College London, Sir Ernst Chain Building, London SW7 2AZ, UK
| |
Collapse
|
9
|
Rozani I, Tsapara G, Witts EC, Deaville SJ, Miles GB, Zagoraiou L. Pitx2 cholinergic interneurons are the source of C bouton synapses on brainstem motor neurons. Sci Rep 2019; 9:4936. [PMID: 30894556 PMCID: PMC6426951 DOI: 10.1038/s41598-019-39996-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 01/15/2019] [Indexed: 11/29/2022] Open
Abstract
Cholinergic neuromodulation has been described throughout the brain and has been implicated in various functions including attention, food intake and response to stress. Cholinergic modulation is also thought to be important for regulating motor systems, as revealed by studies of large cholinergic synapses on spinal motor neurons, called C boutons, which seem to control motor neuron excitability in a task-dependent manner. C boutons on spinal motor neurons stem from spinal interneurons that express the transcription factor Pitx2. C boutons have also been identified on the motor neurons of specific cranial nuclei. However, the source and roles of cranial C boutons are less clear. Previous studies suggest that they originate from Pitx2+ and Pitx2- neurons, in contrast to spinal cord C boutons that originate solely from Pitx2 neurons. Here, we address this controversy using mouse genetics, and demonstrate that brainstem C boutons are Pitx2+ derived. We also identify new Pitx2 populations and map the cholinergic Pitx2 neurons of the mouse brain. Taken together, our data present important new information about the anatomical organization of cholinergic systems which impact motor systems of the brainstem. These findings will enable further analyses of the specific roles of cholinergic modulation in motor control.
Collapse
Affiliation(s)
- Ismini Rozani
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527, Athens, Greece
- Division of Animal and Human Physiology, Department of Biology, National & Kapodistrian University of Athens, Panepistimiopolis, Ilisia, Greece
| | - Georgia Tsapara
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527, Athens, Greece
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland
| | - Emily C Witts
- Sainsbury Wellcome Centre, 25 Howland Street, London, W1T 4JG, UK
- School of Psychology & Neuroscience, University of St Andrews, Fife, KY169JP, UK
| | - S James Deaville
- School of Psychology & Neuroscience, University of St Andrews, Fife, KY169JP, UK
| | - Gareth B Miles
- School of Psychology & Neuroscience, University of St Andrews, Fife, KY169JP, UK
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Str., 11527, Athens, Greece.
| |
Collapse
|
10
|
Makrides N, Panayiotou E, Fanis P, Karaiskos C, Lapathitis G, Malas S. Sequential Role of SOXB2 Factors in GABAergic Neuron Specification of the Dorsal Midbrain. Front Mol Neurosci 2018; 11:152. [PMID: 29867344 PMCID: PMC5952183 DOI: 10.3389/fnmol.2018.00152] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/17/2018] [Indexed: 12/23/2022] Open
Abstract
Studies proposed a model for embryonic neurogenesis where the expression levels of the SOXB2 and SOXB1 factors regulate the differentiation status of the neural stem cells. However, the precise role of the SOXB2 genes remains controversial. Therefore, this study aims to investigate the effects of individual deletions of the SOX21 and SOX14 genes during the development of the dorsal midbrain. We show that SOX21 and SOX14 function distinctly during the commitment of the GABAergic lineage. More explicitly, deletion of SOX21 reduced the expression of the GABAergic precursor marker GATA3 and BHLHB5 while the expression of GAD6, which marks GABAergic terminal differentiation, was not affected. In contrast deletion of SOX14 alone was sufficient to inhibit terminal differentiation of the dorsal midbrain GABAergic neurons. Furthermore, we demonstrate through gain-of-function experiments, that despite the homology of SOX21 and SOX14, they have unique gene targets and cannot compensate for the loss of each other. Taken together, these data do not support a pan-neurogenic function for SOXB2 genes in the dorsal midbrain, but instead they influence, sequentially, the specification of GABAergic neurons.
Collapse
Affiliation(s)
- Neoklis Makrides
- Developmental and Functional Genetics Group, The Cyprus Institute of Neurology & Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| | - Elena Panayiotou
- Neurologic Clinic A, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Pavlos Fanis
- Department of Molecular Genetics, Function & Therapy, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Christos Karaiskos
- Neuroscience Laboratory, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - George Lapathitis
- Neuroscience Laboratory, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - Stavros Malas
- Developmental and Functional Genetics Group, The Cyprus Institute of Neurology & Genetics and Cyprus School of Molecular Medicine, Nicosia, Cyprus
| |
Collapse
|
11
|
Deficiency of the Thyroid Hormone Transporter Monocarboxylate Transporter 8 in Neural Progenitors Impairs Cellular Processes Crucial for Early Corticogenesis. J Neurosci 2017; 37:11616-11631. [PMID: 29109240 DOI: 10.1523/jneurosci.1917-17.2017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/02/2017] [Indexed: 11/21/2022] Open
Abstract
Thyroid hormones (THs) are essential for establishing layered brain structures, a process called corticogenesis, by acting on transcriptional activity of numerous genes. In humans, deficiency of the monocarboxylate transporter 8 (MCT8), involved in cellular uptake of THs before their action, results in severe neurological abnormalities, known as the Allan-Herndon-Dudley syndrome. While the brain lesions predominantly originate prenatally, it remains unclear how and when exactly MCT8 dysfunction affects cellular processes crucial for corticogenesis. We investigated this by inducing in vivo RNAi vector-based knockdown of MCT8 in neural progenitors of the chicken optic tectum, a layered structure that shares many developmental features with the mammalian cerebral cortex. MCT8 knockdown resulted in cellular hypoplasia and a thinner optic tectum. This could be traced back to disrupted cell-cycle kinetics and a premature shift to asymmetric cell divisions impairing progenitor cell pool expansion. Birth-dating experiments confirmed diminished neurogenesis in the MCT8-deficient cell population as well as aberrant migration of both early-born and late-born neuroblasts, which could be linked to reduced reelin signaling and disorganized radial glial cell fibers. Impaired neurogenesis resulted in a reduced number of glutamatergic and GABAergic neurons, but the latter additionally showed decreased differentiation. Moreover, an accompanying reduction in untransfected GABAergic neurons suggests hampered intercellular communication. These results indicate that MCT8-dependent TH uptake in the neural progenitors is essential for early events in corticogenesis, and help to understand the origin of the problems in cortical development and function in Allan-Herndon-Dudley syndrome patients.SIGNIFICANCE STATEMENT Thyroid hormones (THs) are essential to establish the stereotypical layered structure of the human forebrain during embryonic development. Before their action on gene expression, THs require cellular uptake, a process facilitated by the TH transporter monocarboxylate transporter 8 (MCT8). We investigated how and when dysfunctional MCT8 can induce brain lesions associated with the Allan-Herndon-Dudley syndrome, characterized by psychomotor retardation. We used the layered chicken optic tectum to model cortical development, and induced MCT8 deficiency in neural progenitors. Impaired cell proliferation, migration, and differentiation resulted in an underdeveloped optic tectum and a severe reduction in nerve cells. Our data underline the need for MCT8-dependent TH uptake in neural progenitors and stress the importance of local TH action in early development.
Collapse
|
12
|
Odorant Sensory Input Modulates DNA Secondary Structure Formation and Heterogeneous Ribonucleoprotein Recruitment on the Tyrosine Hydroxylase and Glutamic Acid Decarboxylase 1 Promoters in the Olfactory Bulb. J Neurosci 2017; 37:4778-4789. [PMID: 28411275 DOI: 10.1523/jneurosci.1363-16.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 12/25/2022] Open
Abstract
Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. For a subset of olfactory bulb interneurons, activity-dependent changes in GABA are reflected by corresponding changes in Glutamate decarboxylase 1 (Gad1) expression levels. Mechanisms regulating Gad1 promoter activity are poorly understood, but here we show that a conserved G:C-rich region in the mouse Gad1 proximal promoter region both recruits heterogeneous nuclear ribonucleoproteins (hnRNPs) that facilitate transcription and forms single-stranded DNA secondary structures associated with transcriptional repression. This promoter architecture and function is shared with Tyrosine hydroxylase (Th), which is also modulated by odorant-dependent activity in the olfactory bulb. This study shows that the balance between DNA secondary structure formation and hnRNP binding on the mouse Th and Gad1 promoters in the olfactory bulb is responsive to changes in odorant-dependent sensory input. These findings reveal that Th and Gad1 share a novel transcription regulatory mechanism that facilitates sensory input-dependent regulation of dopamine and GABA expression.SIGNIFICANCE STATEMENT Adaptation of neural circuits to changes in sensory input can modify several cellular processes within neurons, including neurotransmitter biosynthesis levels. This study shows that transcription of genes encoding rate-limiting enzymes for GABA and dopamine biosynthesis (Gad1 and Th, respectively) in the mammalian olfactory bulb is regulated by G:C-rich regions that both recruit heterogeneous nuclear ribonucleoproteins (hnRNPs) to facilitate transcription and form single-stranded DNA secondary structures associated with repression. hnRNP binding and formation of DNA secondary structure on the Th and Gad1 promoters are mutually exclusive, and odorant sensory input levels regulate the balance between these regulatory features. These findings reveal that Th and Gad1 share a transcription regulatory mechanism that facilitates odorant-dependent regulation of dopamine and GABA expression levels.
Collapse
|
13
|
Waite MR, Martin DM. Axial level-specific regulation of neuronal development: lessons from PITX2. J Neurosci Res 2015; 93:195-8. [PMID: 25124216 DOI: 10.1002/jnr.23471] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/09/2014] [Accepted: 07/16/2014] [Indexed: 12/19/2022]
Abstract
Transcriptional regulation of gene expression is vital for proper control of proliferation, migration, differentiation, and survival of developing neurons. Pitx2 encodes a homeodomain transcription factor that is highly expressed in the developing and adult mammalian brain. In humans, mutations in PITX2 result in Rieger syndrome, characterized by defects in the development of the eyes, umbilicus, and teeth and variable abnormalities in the brain, including hydrocephalus and cerebellar hypoplasia. Alternative splicing of Pitx2 in the mouse results in three isoforms, Pitx2a, Pitx2b, and Pitx2c, each of which is expressed symmetrically along the left-right axis of the brain throughout development. Here, we review recent evidence for axial and brain region-specific requirements for Pitx2 during neuronal migration and differentiation, highlighting known isoform contributions.
Collapse
Affiliation(s)
- Mindy R Waite
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan
| | | |
Collapse
|
14
|
Burney MJ, Johnston C, Wong KY, Teng SW, Beglopoulos V, Stanton LW, Williams BP, Bithell A, Buckley NJ. An epigenetic signature of developmental potential in neural stem cells and early neurons. Stem Cells 2014; 31:1868-80. [PMID: 23712654 DOI: 10.1002/stem.1431] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 04/09/2013] [Accepted: 04/22/2013] [Indexed: 01/30/2023]
Abstract
A cardinal property of neural stem cells (NSCs) is their ability to adopt multiple fates upon differentiation. The epigenome is widely seen as a read-out of cellular potential and a manifestation of this can be seen in embryonic stem cells (ESCs), where promoters of many lineage-specific regulators are marked by a bivalent epigenetic signature comprising trimethylation of both lysine 4 and lysine 27 of histone H3 (H3K4me3 and H3K27me3, respectively). Bivalency has subsequently emerged as a powerful epigenetic indicator of stem cell potential. Here, we have interrogated the epigenome during differentiation of ESC-derived NSCs to immature GABAergic interneurons. We show that developmental transitions are accompanied by loss of bivalency at many promoters in line with their increasing developmental restriction from pluripotent ESC through multipotent NSC to committed GABAergic interneuron. At the NSC stage, the promoters of genes encoding many transcriptional regulators required for differentiation of multiple neuronal subtypes and neural crest appear to be bivalent, consistent with the broad developmental potential of NSCs. Upon differentiation to GABAergic neurons, all non-GABAergic promoters resolve to H3K27me3 monovalency, whereas GABAergic promoters resolve to H3K4me3 monovalency or retain bivalency. Importantly, many of these epigenetic changes occur before any corresponding changes in gene expression. Intriguingly, another group of gene promoters gain bivalency as NSCs differentiate toward neurons, the majority of which are associated with functions connected with maturation and establishment and maintenance of connectivity. These data show that bivalency provides a dynamic epigenetic signature of developmental potential in both NSCs and in early neurons.
Collapse
Affiliation(s)
- Matthew J Burney
- Centre for the Cellular Basis of Behaviour, Department of Neuroscience, Institute of Psychiatry, King's College London, James Black Centre, London, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Achim K, Salminen M, Partanen J. Mechanisms regulating GABAergic neuron development. Cell Mol Life Sci 2014; 71:1395-415. [PMID: 24196748 PMCID: PMC11113277 DOI: 10.1007/s00018-013-1501-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/10/2013] [Accepted: 10/14/2013] [Indexed: 12/17/2022]
Abstract
Neurons using gamma-aminobutyric acid (GABA) as their neurotransmitter are the main inhibitory neurons in the mature central nervous system (CNS) and show great variation in their form and function. GABAergic neurons are produced in all of the main domains of the CNS, where they develop from discrete regions of the neuroepithelium. Here, we review the gene expression and regulatory mechanisms controlling the main steps of GABAergic neuron development: early patterning of the proliferative neuroepithelium, production of postmitotic neural precursors, establishment of their identity and migration. By comparing the molecular regulation of these events across CNS, we broadly identify three regions utilizing distinct molecular toolkits for GABAergic fate determination: telencephalon-anterior diencephalon (DLX2 type), posterior diencephalon-midbrain (GATA2 type) and hindbrain-spinal cord (PTF1A and TAL1 types). Similarities and differences in the molecular regulatory mechanisms reveal the core determinants of a GABAergic neuron as well as provide insights into generation of the vast diversity of these neurons.
Collapse
Affiliation(s)
- Kaia Achim
- EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Marjo Salminen
- Department of Veterinary Biosciences, University of Helsinki, Agnes Sjobergin katu 2, PO Box 66, 00014 Helsinki, Finland
| | - Juha Partanen
- Department of Biosciences, University of Helsinki, Viikinkaari 5, PO Box 56, 00014 Helsinki, Finland
| |
Collapse
|
16
|
Microarray analysis of perinatal-estrogen-induced changes in gene expression related to brain sexual differentiation in mice. PLoS One 2013; 8:e79437. [PMID: 24223949 PMCID: PMC3817063 DOI: 10.1371/journal.pone.0079437] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 09/23/2013] [Indexed: 11/19/2022] Open
Abstract
Sexual dimorphism of the behaviors or physiological functions in mammals is mainly due to the sex difference of the brain. A number of studies have suggested that the brain is masculinized or defeminized by estradiol converted from testicular androgens in perinatal period in rodents. However, the mechanisms of estrogen action resulting in masculinization/defeminization of the brain have not been clarified yet. The large-scale analysis with microarray in the present study is an attempt to obtain the candidate gene(s) mediating the perinatal estrogen effect causing the brain sexual differentiation. Female mice were injected with estradiol benzoate (EB) or vehicle on the day of birth, and the hypothalamus was collected at either 1, 3, 6, 12, or 24 h after the EB injection. More than one hundred genes down-regulated by the EB treatment in a biphasic manner peaked at 3 h and 12-24 h after the EB treatment, while forty to seventy genes were constantly up-regulated after it. Twelve genes, including Ptgds, Hcrt, Tmed2, Klc1, and Nedd4, whose mRNA expressions were down-regulated by the neonatal EB treatment, were chosen for further examination by semiquantitative RT-PCR in the hypothalamus of perinatal intact male and female mice. We selected the genes based on the known profiles of their potential roles in brain development. mRNA expression levels of Ptgds, Hcrt, Tmed2, and Nedd4 were significantly lower in male mice than females at the day of birth, suggesting that the genes are down-regulated by estrogen converted from testicular androgen in perinatal male mice. Some genes, such as Ptgds encoding prostaglandin D2 production enzyme and Hcrt encording orexin, have been reported to have a role in neuroprotection. Thus, Ptgds and Hcrt could be possible candidate genes, which may mediate the effect of perinatal estrogen responsible for brain sexual differentiation.
Collapse
|
17
|
Matsui T, Hongo Y, Haizuka Y, Kaida K, Matsumura G, Martin DM, Kobayashi Y. C-terminals in the mouse branchiomotor nuclei originate from the magnocellular reticular formation. Neurosci Lett 2013; 548:137-42. [PMID: 23756176 PMCID: PMC3776024 DOI: 10.1016/j.neulet.2013.05.063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/13/2013] [Accepted: 05/31/2013] [Indexed: 10/26/2022]
Abstract
Large cholinergic synaptic boutons called "C-terminals" contact motoneurons and regulate their excitability. C-terminals in the spinal somatic motor nuclei originate from cholinergic interneurons in laminae VII and X that express a transcription factor Pitx2. Cranial motor nuclei contain another type of motoneuron: branchiomotor neurons. Although branchiomotor neurons receive abundant C-terminal projections, the neural source of these C-terminals remains unknown. In the present study, we first examined whether cholinergic neurons express Pitx2 in the reticular formation of the adult mouse brainstem, as in the spinal cord. Although Pitx2-positive cholinergic neurons were observed in the magnocellular reticular formation and region around the central canal in the caudal medulla, none was present more rostrally in the brainstem tegmentum. We next explored the origin of C-terminals in the branchiomotor nuclei by using biotinylated dextran amine (BDA). BDA injections into the magnocellular reticular formation of the medulla and pons resulted in the labeling of numerous C-terminals in the branchiomotor nuclei: the ambiguous, facial, and trigeminal motor nuclei. Our results revealed that the origins of C-terminals in the branchiomotor nuclei are cholinergic neurons in the magnocellular reticular formation not only in the caudal medulla, but also at more rostral levels of the brainstem, which lacks Pitx2-positive neurons.
Collapse
Affiliation(s)
- Toshiyasu Matsui
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yu Hongo
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
- Third Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - Yoshinori Haizuka
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Kenichi Kaida
- Third Department of Internal Medicine, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | - George Matsumura
- Department of Anatomy, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan
| | - Donna M. Martin
- Departments of Pediatrics, Human Genetics, and the Cellular and Molecular Biology Program, The University of Michigan, Ann Arbor, MI 48019-5652, USA
| | - Yasushi Kobayashi
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| |
Collapse
|
18
|
Currie KW, Pearson BJ. Transcription factors lhx1/5-1 and pitx are required for the maintenance and regeneration of serotonergic neurons in planarians. Development 2013; 140:3577-88. [PMID: 23903188 DOI: 10.1242/dev.098590] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In contrast to most adult organisms, freshwater planarians can regenerate any injured body part, including their entire nervous system. This allows for the analysis of genes required for both the maintenance and regeneration of specific neural subtypes. In addition, the loss of specific neural subtypes may uncover previously unknown behavioral roles for that neural population in the context of the adult animal. Here we show that two homeodomain transcription factor homologs, Smed-lhx1/5-1 and Smed-pitx, are required for the maintenance and regeneration of serotonergic neurons in planarians. When either lhx1/5-1 or pitx was knocked down by RNA interference, the expression of multiple canonical markers for serotonergic neurons was lost. Surprisingly, the loss of serotonergic function uncovered a role for these neurons in the coordination of motile cilia on the ventral epidermis of planarians that are required for their nonmuscular gliding locomotion. Finally, we show that in addition to its requirement in serotonergic neurons, Smed-pitx is required for proper midline patterning during regeneration, when it is required for the expression of the midline-organizing molecules Smed-slit in the anterior and Smed-wnt1 in the posterior.
Collapse
Affiliation(s)
- Ko W Currie
- Hospital for Sick Children, Program in Developmental and Stem Cell Biology, Toronto, ON, Canada
| | | |
Collapse
|
19
|
Gasparini F, Degasperi V, Shimeld SM, Burighel P, Manni L. Evolutionary conservation of the placodal transcriptional network during sexual and asexual development in chordates. Dev Dyn 2013; 242:752-66. [DOI: 10.1002/dvdy.23957] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/14/2013] [Accepted: 02/15/2013] [Indexed: 01/14/2023] Open
Affiliation(s)
- Fabio Gasparini
- Dipartimento di Biologia; Università degli Studi di Padova; Padova; Italy
| | | | - Sebastian M. Shimeld
- Department of Zoology; University of Oxford; South Parks Road; Oxford; United Kingdom
| | - Paolo Burighel
- Dipartimento di Biologia; Università degli Studi di Padova; Padova; Italy
| | - Lucia Manni
- Dipartimento di Biologia; Università degli Studi di Padova; Padova; Italy
| |
Collapse
|
20
|
Parveen N, Masood A, Iftikhar N, Minhas BF, Minhas R, Nawaz U, Abbasi AA. Comparative genomics using teleost fish helps to systematically identify target gene bodies of functionally defined human enhancers. BMC Genomics 2013; 14:122. [PMID: 23432897 PMCID: PMC3599049 DOI: 10.1186/1471-2164-14-122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 02/19/2013] [Indexed: 12/03/2022] Open
Abstract
Background Human genome is enriched with thousands of conserved non-coding elements (CNEs). Recently, a medium throughput strategy was employed to analyze the ability of human CNEs to drive tissue specific expression during mouse embryogenesis. These data led to the establishment of publicly available genome wide catalog of functionally defined human enhancers. Scattering of enhancers over larger regions in vertebrate genomes seriously impede attempts to pinpoint their precise target genes. Such associations are prerequisite to explore the significance of this in vivo characterized catalog of human enhancers in development, disease and evolution. Results This study is an attempt to systematically identify the target gene-bodies for functionally defined human CNE-enhancers. For the purpose we adopted the orthology/paralogy mapping approach and compared the CNE induced reporter expression with reported endogenous expression pattern of neighboring genes. This procedure pinpointed specific target gene-bodies for the total of 192 human CNE-enhancers. This enables us to gauge the maximum genomic search space for enhancer hunting: 4 Mb of genomic sequence around the gene of interest (2 Mb on either side). Furthermore, we used human-rodent comparison for a set of 159 orthologous enhancer pairs to infer that the central nervous system (CNS) specific gene expression is closely associated with the cooperative interaction among at least eight distinct transcription factors: SOX5, HFH, SOX17, HNF3β, c-FOS, Tal1beta-E47S, MEF and FREAC. Conclusions In conclusion, the systematic wiring of cis-acting sites and their target gene bodies is an important step to unravel the role of in vivo characterized catalog of human enhancers in development, physiology and medicine.
Collapse
Affiliation(s)
- Nazia Parveen
- National Center for Bioinformatics, Program of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | | | | | | | | | | | | |
Collapse
|
21
|
Zhang Z, Gutierrez D, Li X, Bidlack F, Cao H, Wang J, Andrade K, Margolis HC, Amendt BA. The LIM homeodomain transcription factor LHX6: a transcriptional repressor that interacts with pituitary homeobox 2 (PITX2) to regulate odontogenesis. J Biol Chem 2013; 288:2485-500. [PMID: 23229549 PMCID: PMC3554917 DOI: 10.1074/jbc.m112.402933] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/29/2012] [Indexed: 11/06/2022] Open
Abstract
LHX6 is a LIM-homeobox transcription factor expressed during embryogenesis; however, the molecular mechanisms regulating LHX6 transcriptional activities are unknown. LHX6 and the PITX2 homeodomain transcription factor have overlapping expression patterns during tooth and craniofacial development, and in this report, we demonstrate new transcriptional mechanisms for these factors. PITX2 and LHX6 are co-expressed in the oral and dental epithelium and epithelial cell lines. Lhx6 expression is increased in Pitx2c transgenic mice and decreased in Pitx2 null mice. PITX2 activates endogenous Lhx6 expression and the Lhx6 promoter, whereas LHX6 represses its promoter activity. Chromatin immunoprecipitation experiments reveal endogenous PITX2 binding to the Lhx6 promoter. LHX6 directly interacts with PITX2 to inhibit PITX2 transcriptional activities and activation of multiple promoters. Bimolecular fluorescence complementation assays reveal an LHX6·PITX2 nuclear interaction in living cells. LHX6 has a dominant repressive effect on the PITX2 synergistic activation with LEF-1 and β-catenin co-factors. Thus, LHX6 acts as a transcriptional repressor and represses the expression of several genes involved in odontogenesis. We have identified specific defects in incisor, molar, mandible, bone, and root development and late stage enamel formation in Lhx6 null mice. Amelogenin and ameloblastin expression is reduced and/or delayed in the Lhx6 null mice, potentially resulting from defects in dentin deposition and ameloblast differentiation. Our results demonstrate that LHX6 regulates cell proliferation in the cervical loop and promotes cell differentiation in the anterior region of the incisor. We demonstrate new molecular mechanisms for LHX6 and an interaction with PITX2 for normal craniofacial and tooth development.
Collapse
Affiliation(s)
- Zichao Zhang
- From the Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M University Health Science Center, Houston, Texas 77030 and
| | - Diana Gutierrez
- From the Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M University Health Science Center, Houston, Texas 77030 and
| | - Xiao Li
- From the Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M University Health Science Center, Houston, Texas 77030 and
| | - Felicitas Bidlack
- the Department of Biomineralization, The Forsyth Institute, Boston, Massachusetts 02142
| | - Huojun Cao
- From the Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M University Health Science Center, Houston, Texas 77030 and
| | - Jianbo Wang
- From the Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M University Health Science Center, Houston, Texas 77030 and
| | - Kelsey Andrade
- From the Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M University Health Science Center, Houston, Texas 77030 and
| | - Henry C. Margolis
- the Department of Biomineralization, The Forsyth Institute, Boston, Massachusetts 02142
| | - Brad A. Amendt
- From the Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A & M University Health Science Center, Houston, Texas 77030 and
| |
Collapse
|
22
|
Waite MR, Skidmore JM, Micucci JA, Shiratori H, Hamada H, Martin JF, Martin DM. Pleiotropic and isoform-specific functions for Pitx2 in superior colliculus and hypothalamic neuronal development. Mol Cell Neurosci 2013; 52:128-39. [PMID: 23147109 PMCID: PMC3540135 DOI: 10.1016/j.mcn.2012.11.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 10/01/2012] [Accepted: 11/02/2012] [Indexed: 02/01/2023] Open
Abstract
Transcriptional regulation of gene expression during development is critical for proper neuronal differentiation and migration. Alternative splicing and differential isoform expression have been demonstrated for most mammalian genes, but their specific contributions to gene function are not well understood. In mice, the transcription factor gene Pitx2 is expressed as three different isoforms (PITX2A, PITX2B, and PITX2C) which have unique amino termini and common DNA binding homeodomains and carboxyl termini. The specific roles of these isoforms in neuronal development are not known. Here we report the onset of Pitx2ab and Pitx2c isoform-specific expression by E9.5 in the developing mouse brain. Using isoform-specific Pitx2 deletion mouse strains, we show that collicular neuron migration requires PITX2AB and that collicular GABAergic differentiation and targeting of hypothalamic projections require unique Pitx2 isoform dosage. These results provide insights into Pitx2 dosage and isoform-specific requirements underlying midbrain and hypothalamic development.
Collapse
Affiliation(s)
- Mindy R Waite
- Cellular and Molecular Biology Graduate Program, 2966 Taubman Medical Library, University of Michigan, Ann Arbor, MI 48109-0619, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Rabe TI, Griesel G, Blanke S, Kispert A, Leitges M, van der Zwaag B, Burbach JPH, Varoqueaux F, Mansouri A. The transcription factor Uncx4.1 acts in a short window of midbrain dopaminergic neuron differentiation. Neural Dev 2012; 7:39. [PMID: 23217170 PMCID: PMC3558320 DOI: 10.1186/1749-8104-7-39] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 11/13/2012] [Indexed: 11/25/2022] Open
Abstract
Background The homeobox containing transcription factor Uncx4.1 is, amongst others, expressed in the mouse midbrain. The early expression of this transcription factor in the mouse, as well as in the chick midbrain, points to a conserved function of Uncx4.1, but so far a functional analysis in this brain territory is missing. The goal of the current study was to analyze in which midbrain neuronal subgroups Uncx4.1 is expressed and to examine whether this factor plays a role in the early development of these neuronal subgroups. Results We have shown that Uncx4.1 is expressed in GABAergic, glutamatergic and dopaminergic neurons in the mouse midbrain. In midbrain dopaminergic (mDA) neurons Uncx4.1 expression is particularly high around E11.5 and strongly diminished already at E17.5. The analysis of knockout mice revealed that the loss of Uncx4.1 is accompanied with a 25% decrease in the population of mDA neurons, as marked by tyrosine hydroxylase (TH), dopamine transporter (DAT), Pitx3 and Ngn2. In contrast, the number of glutamatergic Pax6-positive cells was augmented, while the GABAergic neuron population appears not affected in Uncx4.1-deficient embryos. Conclusion We conclude that Uncx4.1 is implicated in the development of mDA neurons where it displays a unique temporal expression profile in the early postmitotic stage. Our data indicate that the mechanism underlying the role of Uncx4.1 in mDA development is likely related to differentiation processes in postmitotic stages, and where Ngn2 is engaged. Moreover, Uncx4.1 might play an important role during glutamatergic neuronal differentiation in the mouse midbrain.
Collapse
Affiliation(s)
- Tamara I Rabe
- Department of Molecular Cell Biology, Max Planck Institute of Biophysical Chemistry, Am Fassberg 11, Goettingen, 37077, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Skidmore JM, Waite MR, Alvarez-Bolado G, Puelles L, Martin DM. A novel TaulacZ allele reveals a requirement for Pitx2 in formation of the mammillothalamic tract. Genesis 2012; 50:67-73. [DOI: 10.1002/dvg.20793] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 08/04/2011] [Accepted: 08/19/2011] [Indexed: 12/25/2022]
|
25
|
Waite MR, Skaggs K, Kaviany P, Skidmore JM, Causeret F, Martin JF, Martin DM. Distinct populations of GABAergic neurons in mouse rhombomere 1 express but do not require the homeodomain transcription factor PITX2. Mol Cell Neurosci 2012; 49:32-43. [PMID: 21925604 PMCID: PMC3244529 DOI: 10.1016/j.mcn.2011.08.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 08/04/2011] [Accepted: 08/30/2011] [Indexed: 11/20/2022] Open
Abstract
Hindbrain rhombomere 1 (r1) is located caudal to the isthmus, a critical organizer region, and rostral to rhombomere 2 in the developing mouse brain. Dorsal r1 gives rise to the cerebellum, locus coeruleus, and several brainstem nuclei, whereas cells from ventral r1 contribute to the trochlear and trigeminal nuclei as well as serotonergic and GABAergic neurons of the dorsal raphe. Recent studies have identified several molecular events controlling dorsal r1 development. In contrast, very little is known about ventral r1 gene expression and the genetic mechanisms regulating its formation. Neurons with distinct neurotransmitter phenotypes have been identified in ventral r1 including GABAergic, serotonergic, and cholinergic neurons. Here we show that PITX2 marks a distinct population of GABAergic neurons in mouse embryonic ventral r1. This population appears to retain its GABAergic identity even in the absence of PITX2. We provide a comprehensive map of markers that places these PITX2-positive GABAergic neurons in a region of r1 that intersects and is potentially in communication with the dorsal raphe.
Collapse
Affiliation(s)
- Mindy R Waite
- Program in Cell and Molecular Biology, 2966 Taubman Medical Library, University of Michigan, Ann Arbor, MI 48109-0619, USA.
| | - Kaia Skaggs
- Department of Neurology, 3520A MSRB I, University of Michigan, Ann Arbor, MI, 48019-5652, USA.
| | - Parisa Kaviany
- Department of Pediatrics, 3520A MSRB I, University of Michigan, Ann Arbor, MI, 48019-5652, USA.
| | - Jennifer M Skidmore
- Department of Pediatrics, 3520A MSRB I, University of Michigan, Ann Arbor, MI, 48019-5652, USA.
| | - Frédéric Causeret
- Institut Jacques Monod, Université Paris Diderot, CNRS UMR 7592, Sorbonne Paris Cité, Paris, France.
| | - James F Martin
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Cardiomyocyte Renewal Lab Texas Heart Institute, Houston Texas, 77030, USA.
| | - Donna M Martin
- Program in Cell and Molecular Biology, 2966 Taubman Medical Library, University of Michigan, Ann Arbor, MI 48109-0619, USA; Department of Pediatrics, 3520A MSRB I, University of Michigan, Ann Arbor, MI, 48019-5652, USA; Department of Human Genetics, 3520A MSRB I, University of Michigan, Ann Arbor, MI, 48019-5652, USA.
| |
Collapse
|
26
|
Girard F, Meszar Z, Marti C, Davis FP, Celio M. Gene expression analysis in the parvalbumin-immunoreactive PV1 nucleus of the mouse lateral hypothalamus. Eur J Neurosci 2011; 34:1934-43. [DOI: 10.1111/j.1460-9568.2011.07918.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|