1
|
Loh KM, Zheng SL, Liu KJ, Yin Q, Amir-Ugokwe ZA, Jha SK, Qi Y, Wazny VK, Nguyen AT, Chen A, Njunkeng FM, Cheung C, Spiekerkoetter E, Red-Horse K, Ang LT. Protocol for efficient generation of human artery and vein endothelial cells from pluripotent stem cells. STAR Protoc 2024; 6:103494. [PMID: 39705146 PMCID: PMC11728883 DOI: 10.1016/j.xpro.2024.103494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/10/2024] [Accepted: 11/11/2024] [Indexed: 12/22/2024] Open
Abstract
Blood vessels permeate all organs and execute myriad roles in health and disease. Here, we present a protocol to efficiently generate human artery and vein endothelial cells (ECs) from pluripotent stem cells within 3-4 days of differentiation. We delineate how to seed human pluripotent stem cells and sequentially differentiate them into primitive streak, lateral mesoderm, and either artery or vein ECs. We differentiate stem cells in defined, serum-free culture media in monolayers, without feeder cells or genetic manipulations. For complete details on the use and execution of this protocol, please refer to Ang et al. 1.
Collapse
Affiliation(s)
- Kyle M Loh
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Sherry Li Zheng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Kevin J Liu
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Qingqing Yin
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA
| | - Zhainib A Amir-Ugokwe
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Sawan K Jha
- Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Yue Qi
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Vanessa K Wazny
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore
| | - Alana T Nguyen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Angela Chen
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA
| | - Faith-Masong Njunkeng
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, 308232, Singapore, Singapore; Institute of Molecular and Cell Biology, A∗STAR, 138673, Singapore, Singapore
| | - Edda Spiekerkoetter
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford University, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Lay Teng Ang
- Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Urology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
2
|
Hadjikypri X, Theofanous C, Christodoulidi A, Georgiades P. New findings on the orientation of the mouse anterior-posterior (A-P) axis before and during the initiation of gastrulation using a more refined embryo staging. Biochem Biophys Rep 2024; 40:101817. [PMID: 39286290 PMCID: PMC11402440 DOI: 10.1016/j.bbrep.2024.101817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/11/2024] [Accepted: 08/25/2024] [Indexed: 09/19/2024] Open
Abstract
A clinically significant event of early mammalian embryogenesis is the generation and early development of the anterior-posterior (A-P) axis, the imaginary line along which the structures from head to tail will form. This axis not only appears before gastrulation but is also oriented in a specific way in relation to the long and short diameters of the bilaterally symmetric epiblast. In mice, the most widely used mammalian in vivo model of early embryogenesis, the A-P axis is normally aligned with the long epiblast diameter by the early streak (ES) stage, a time during early gastrulation around embryonic day 6.5 (E6.5). Incorrect orientation of the A-P axis by the ES stage, that is, being aligned with the short epiblast diameter, leads to failure in completing gastrulation and results in embryo death soon after. Knowing the orientation of this axis from when it forms before gastrulation (around E5.5) until just before the ES stage is crucial for: (a) understanding the ill-defined factors involved in its formation and early development since they must be spatially related to it, and (b) providing explanations for the underlying mechanism when it is incorrectly orientated. However, the orientation of the A-P axis in pre-ES embryos of the E5.5-E6.5 period remains unclear. Specifically, although it is thought that this axis initially aligns with the short epiblast diameter and subsequently changes its orientation to become aligned with the long diameter by an unidentified pre-gastrulation stage before the ES stage, this proposition remains unresolved. This is largely due to the lack of clearly defined morphological criteria for staging certain periods of pre-ES mouse embryos (especially when the A-P axis initiates and when gastrulation begins prior to the ES stage), which are a prerequisite for identifying A-P axis orientation at specific pre-ES stages. Furthermore, although the orientation of an extraembryonic trophoblast asymmetry, specifically the tilt of the ectoplacental cone (EPC), coincides with that of the A-P axis by the ES stage, it is unknown whether such an association also exists at pre-gastrulation stages during A-P axis formation. Knowing this would exclude or implicate this trophoblast asymmetry as an upstream factor in orientating the A-P axis when it forms. To address these issues, we established a more refined embryo staging for the E5.5-E6.5 period using a novel combination of live morphological criteria and used it to examine the orientation of the A-P axis and that of the EPC tilt at specific stages. First, contrary to current thinking, we show that when the A-P axis first appears at our newly described anterior visceral endoderm-1 (AVE-1) and AVE-2 stages, it aligns with the long epiblast diameter in all embryos. This orientation is maintained in most embryos at all subsequent pre-gastrulation stages, specifically at our AVE-3 and pre-streak stages (the remaining embryos of these stages had this axis aligned with the short epiblast diameter). Second, we identified for the first time the pre-ES stage when gastrulation initiates, which we named the nascent streak (NS) stage, and further subdivided it into NS-1 and NS-2. At variance with current belief, we provide evidence that the earliest stage just before the ES stage when all embryos align their A-P axis with the long epiblast diameter is not a pre-gastrulation stage, but the NS-2 stage (at NS-1, most but not all embryos had this A-P axis orientation). Third, we implicate the EPC tilt as a possible extraembryonic factor in promoting correct A-P axis orientation, as this tilt exists before the AVE-1 stage and its orientation coincided with that of the A-P axis in all embryos at AVE-1, AVE-2 and ES stages and almost all embryos at AVE-3, pre-streak and NS stages. Overall, our work: (a) identified the previously unresolved orientation of the mouse A-P axis within the epiblast before the ES stage during the E5.5-E6.5 period; (b) provides an alternative explanation for when this axis is incorrectly oriented by the ES stage, namely, its defective alignment with the short epiblast diameter by this stage could be due to its failure to align with the long epiblast diameter from the time of its formation; and (c) implicates the pre-existing orientation of the EPC tilt as a possible factor in orientating the newly formed A-P axis.
Collapse
Affiliation(s)
- Xenia Hadjikypri
- Department of Biological Sciences, University of Cyprus, University Campus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Christina Theofanous
- Department of Biological Sciences, University of Cyprus, University Campus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Antonia Christodoulidi
- Department of Biological Sciences, University of Cyprus, University Campus, P.O. Box 20537, 1678, Nicosia, Cyprus
| | - Pantelis Georgiades
- Department of Biological Sciences, University of Cyprus, University Campus, P.O. Box 20537, 1678, Nicosia, Cyprus
| |
Collapse
|
3
|
Barham K, Spencer R, Baker NC, Knudsen TB. Engineering a computable epiblast for in silico modeling of developmental toxicity. Reprod Toxicol 2024; 128:108625. [PMID: 38857815 PMCID: PMC11539952 DOI: 10.1016/j.reprotox.2024.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
Developmental hazard evaluation is an important part of assessing chemical risks during pregnancy. Toxicological outcomes from prenatal testing in pregnant animals result from complex chemical-biological interactions, and while New Approach Methods (NAMs) based on in vitro bioactivity profiles of human cells offer promising alternatives to animal testing, most of these assays lack cellular positional information, physical constraints, and regional organization of the intact embryo. Here, we engineered a fully computable model of the embryonic disc in the CompuCell3D.org modeling environment to simulate epithelial-mesenchymal transition (EMT) of epiblast cells and self-organization of mesodermal domains (chordamesoderm, paraxial, lateral plate, posterior/extraembryonic). Mesodermal fate is modeled by synthetic activity of the BMP4-NODAL-WNT signaling axis. Cell position in the epiblast determines timing with respect to EMT for 988 computational cells in the computer model. An autonomous homeobox (Hox) clock hidden in the epiblast is driven by WNT-FGF4-CDX signaling. Executing the model renders a quantitative cell-level computation of mesodermal fate and consequences of perturbation based on known biology. For example, synthetic perturbation of the control network rendered altered phenotypes (cybermorphs) mirroring some aspects of experimental mouse embryology, with electronic knockouts, under-activation (hypermorphs) or over-activation (hypermorphs) particularly affecting the size and specification of the posterior mesoderm. This foundational model is trained on embryology but capable of performing a wide variety of toxicological tasks conversing through anatomical simulation to integrate in vitro chemical bioactivity data with known embryology. It is amenable to quantitative simulation for probabilistic prediction of early developmental toxicity.
Collapse
Affiliation(s)
- Kaitlyn Barham
- Oak Ridge Associated Universities, USA; USEPA, Center for Compuational Toxicology and Exposure.
| | | | | | | |
Collapse
|
4
|
Plunder S, Danesin C, Glise B, Ferreira MA, Merino-Aceituno S, Theveneau E. Modelling variability and heterogeneity of EMT scenarios highlights nuclear positioning and protrusions as main drivers of extrusion. Nat Commun 2024; 15:7365. [PMID: 39198505 PMCID: PMC11358417 DOI: 10.1038/s41467-024-51372-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Epithelial-Mesenchymal Transition (EMT) is a key process in physiological and pathological settings. EMT is often presented as a linear sequence with (i) disassembly of cell-cell junctions, (ii) loss of epithelial polarity and (iii) reorganization of the cytoskeleton leading to basal extrusion from the epithelium. Once out, cells can adopt a migratory phenotype with a front-rear polarity. While this sequence can occur, in vivo observations have challenged it. It is now accepted that multiple EMT scenarios coexist in heterogeneous cell populations. However, the relative importance of each step as well as that of variability and heterogeneity on the efficiency of cell extrusion has not been assessed. Here we used computational modelling to simulate multiple EMT-like scenarios and confronted these data to the EMT of neural crest cells. Overall, our data point to a key role of nuclear positioning and protrusive activity to generate timely basal extrusion.
Collapse
Affiliation(s)
- Steffen Plunder
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Cathy Danesin
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Bruno Glise
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Marina A Ferreira
- CMUC, Department of Mathematics, University of Coimbra, 3000-413, Coimbra, Portugal
| | - Sara Merino-Aceituno
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria.
| | - Eric Theveneau
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France.
| |
Collapse
|
5
|
Despin-Guitard E, Rosa VS, Plunder S, Mathiah N, Van Schoor K, Nehme E, Merino-Aceituno S, Egea J, Shahbazi MN, Theveneau E, Migeotte I. Non-apical mitoses contribute to cell delamination during mouse gastrulation. Nat Commun 2024; 15:7364. [PMID: 39198421 PMCID: PMC11358383 DOI: 10.1038/s41467-024-51638-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
During the epithelial-mesenchymal transition driving mouse embryo gastrulation, cells divide more frequently at the primitive streak, and half of those divisions happen away from the apical pole. These observations suggest that non-apical mitoses might play a role in cell delamination. We aim to uncover and challenge the molecular determinants of mitosis position in different regions of the epiblast through computational modeling and pharmacological treatments of embryos and stem cell-based epiblast spheroids. Blocking basement membrane degradation at the streak has no impact on the asymmetry in mitosis frequency and position. By contrast, disturbance of the actomyosin cytoskeleton or cell cycle dynamics elicits ectopic non-apical mitosis and shows that the streak region is characterized by local relaxation of the actomyosin cytoskeleton and less stringent regulation of cell division. These factors are essential for normal dynamics at the streak and favor cell delamination from the epiblast.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Viviane S Rosa
- MRC Laboratory of Molecular Biology, CB2 0QH, Cambridge, UK
| | - Steffen Plunder
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto, 606-8501, Japan
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
| | - Navrita Mathiah
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Kristof Van Schoor
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Eliana Nehme
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium
| | - Sara Merino-Aceituno
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090, Vienna, Austria
| | - Joaquim Egea
- Molecular and Developmental Neurobiology, Dept. Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida/IRBLLEIDA, Rovira Roure 80, 25198, Lleida, Spain
| | | | - Eric Theveneau
- Molecular, Cellular and Developmental biology department (MCD), Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, 31062, Toulouse, France
| | - Isabelle Migeotte
- IRIBHM J.E. Dumont, Université Libre de Bruxelles, Brussels, B-1070, Belgium.
| |
Collapse
|
6
|
Rosner M, Hengstschläger M. Oct4 controls basement membrane development during human embryogenesis. Dev Cell 2024; 59:1439-1456.e7. [PMID: 38579716 DOI: 10.1016/j.devcel.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/02/2024] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
Basement membranes (BMs) are sheet-like structures of extracellular matrix (ECM) that provide structural support for many tissues and play a central role in signaling. They are key regulators of cell behavior and tissue functions, and defects in their assembly or composition are involved in numerous human diseases. Due to the differences between human and animal embryogenesis, ethical concerns, legal constraints, the scarcity of human tissue material, and the inaccessibility of the in vivo condition, BM regulation during human embryo development has remained elusive. Using the post-implantation amniotic sac embryoid (PASE), we delineate BM assembly upon post-implantation development and BM disassembly during primitive streak (PS) cell dissemination. Further, we show that the transcription factor Oct4 regulates the expression of BM structural components and receptors and controls BM development by regulating Akt signaling and the small GTPase Rac1. These results represent a relevant step toward a more comprehensive understanding of early human development.
Collapse
Affiliation(s)
- Margit Rosner
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna 1090, Austria.
| |
Collapse
|
7
|
Sato N, Rosa VS, Makhlouf A, Kretzmer H, Sampath Kumar A, Grosswendt S, Mattei AL, Courbot O, Wolf S, Boulanger J, Langevin F, Wiacek M, Karpinski D, Elosegui-Artola A, Meissner A, Zernicka-Goetz M, Shahbazi MN. Basal delamination during mouse gastrulation primes pluripotent cells for differentiation. Dev Cell 2024; 59:1252-1268.e13. [PMID: 38579720 PMCID: PMC7616279 DOI: 10.1016/j.devcel.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/05/2023] [Accepted: 03/08/2024] [Indexed: 04/07/2024]
Abstract
The blueprint of the mammalian body plan is laid out during gastrulation, when a trilaminar embryo is formed. This process entails a burst of proliferation, the ingression of embryonic epiblast cells at the primitive streak, and their priming toward primitive streak fates. How these different events are coordinated remains unknown. Here, we developed and characterized a 3D culture of self-renewing mouse embryonic cells that captures the main transcriptional and architectural features of the early gastrulating mouse epiblast. Using this system in combination with microfabrication and in vivo experiments, we found that proliferation-induced crowding triggers delamination of cells that express high levels of the apical polarity protein aPKC. Upon delamination, cells become more sensitive to Wnt signaling and upregulate the expression of primitive streak markers such as Brachyury. This mechanistic coupling between ingression and differentiation ensures that the right cell types become specified at the right place during embryonic development.
Collapse
Affiliation(s)
- Nanami Sato
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Viviane S Rosa
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Aly Makhlouf
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Helene Kretzmer
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | | | - Stefanie Grosswendt
- Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Max Delbruck Center for Molecular Medicine, 13125 Berlin, Germany; Berlin Institute of Health (BIH) at Charité-Universitätsmedizin, Berlin, Germany
| | | | - Olivia Courbot
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Physics, King's College London, London WC2R 2LS, UK
| | - Steffen Wolf
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | | | - Michal Wiacek
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Alberto Elosegui-Artola
- Cell and Tissue Mechanobiology Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Department of Physics, King's College London, London WC2R 2LS, UK
| | | | - Magdalena Zernicka-Goetz
- University of Cambridge, Cambridge CB2 3EL, UK; California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
8
|
Nakamura K, Watanabe Y, Boitet C, Satake S, Iida H, Yoshihi K, Ishii Y, Kato K, Kondoh H. Wnt signal-dependent antero-posterior specification of early-stage CNS primordia modeled in EpiSC-derived neural stem cells. Front Cell Dev Biol 2024; 11:1260528. [PMID: 38405136 PMCID: PMC10884098 DOI: 10.3389/fcell.2023.1260528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/30/2023] [Indexed: 02/27/2024] Open
Abstract
The specification of the embryonic central nervous system (CNS) into future brain (forebrain, midbrain, or hindbrain) and spinal cord (SC) regions is a critical step of CNS development. A previous chicken embryo study indicated that anterior epiblast cells marked by Sox2 N2 enhancer activity are specified to the respective brain regions during the transition phase of the epiblast to the neural plate-forming neural primordium. The present study showed that the SC precursors positioned posterior to the hindbrain precursors in the anterior epiblast migrated posteriorly in contrast to the anterior migration of brain precursors. The anteroposterior specification of the CNS precursors occurs at an analogous time (∼E7.5) in mouse embryos, in which an anterior-to-posterior incremental gradient of Wnt signal strength was observed. To examine the possible Wnt signal contribution to the anteroposterior CNS primordium specification, we utilized mouse epiblast stem cell (EpiSC)-derived neurogenesis in culture. EpiSCs maintained in an activin- and FGF2-containing medium start neural development after the removal of activin, following a day in a transitory state. We placed activin-free EpiSCs in EGF- and FGF2-containing medium to arrest neural development and expand the cells into neural stem cells (NSCs). Simultaneously, a Wnt antagonist or agonist was added to the culture, with the anticipation that different levels of Wnt signals would act on the transitory cells to specify CNS regionality; then, the Wnt-treated cells were expanded as NSCs. Gene expression profiles of six NSC lines were analyzed using microarrays and single-cell RNA-seq. The NSC lines demonstrated anteroposterior regional specification in response to increasing Wnt signal input levels: forebrain-midbrain-, hindbrain-, cervical SC-, and thoracic SC-like lines. The regional coverage of these NSC lines had a range; for instance, the XN1 line expressed Otx2 and En2, indicating midbrain characteristics, but additionally expressed the SC-characteristic Hoxa5. The ranges in the anteroposterior specification of neural primordia may be narrowed as neural development proceeds. The thoracic SC is presumably the posterior limit of the contribution by anterior epiblast-derived neural progenitors, as the characteristics of more posterior SC regions were not displayed.
Collapse
Affiliation(s)
- Kae Nakamura
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Yusaku Watanabe
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Claire Boitet
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Université Joseph Fourier, Domaine Universitaire, Saint-Martin-d’Hères, France
| | - Sayaka Satake
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Hideaki Iida
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Koya Yoshihi
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
| | - Yasuo Ishii
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Department of Biology, School of Medicine, Tokyo Women’s Medical University, Tokyo, Japan
| | - Kagayaki Kato
- National Institute for Basic Biology, Okazaki, Aichi, Japan
| | - Hisato Kondoh
- Faculty of Life Sciences, Kyoto Sangyo University, Kita-ku, Kyoto, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
9
|
Kondoh H. Gastrulation: Its Principles and Variations. Results Probl Cell Differ 2024; 72:27-60. [PMID: 38509251 DOI: 10.1007/978-3-031-39027-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
As epiblast cells initiate development into various somatic cells, they undergo a large-scale reorganization, called gastrulation. The gastrulation of the epiblast cells produces three groups of cells: the endoderm layer, the collection of miscellaneous mesodermal tissues, and the ectodermal layer, which includes the neural, epidermal, and associated tissues. Most studies of gastrulation have focused on the formation of the tissues that provide the primary route for cell reorganization, that is, the primitive streak, in the chicken and mouse. In contrast, how gastrulation alters epiblast-derived cells has remained underinvestigated. This chapter highlights the regulation of cell and tissue fate via the gastrulation process. The roles and regulatory functions of neuromesodermal progenitors (NMPs) in the gastrulation process, elucidated in the last decade, are discussed in depth to resolve points of confusion. Chicken and mouse embryos, which form a primitive streak as the site of mesoderm precursor ingression, have been investigated extensively. However, primitive streak formation is an exception, even among amniotes. The roles of gastrulation processes in generating various somatic tissues will be discussed broadly.
Collapse
Affiliation(s)
- Hisato Kondoh
- Osaka University, Suita, Osaka, Japan
- Biohistory Research Hall, Takatsuki, Osaka, Japan
| |
Collapse
|
10
|
Stringa B, Solnica-Krezel L. Signaling mechanisms that direct cell fate specification and morphogenesis in human embryonic stem cells-based models of human gastrulation. Emerg Top Life Sci 2023; 7:383-396. [PMID: 38087898 DOI: 10.1042/etls20230084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 12/19/2023]
Abstract
During mammalian gastrulation, a mass of pluripotent cells surrounded by extraembryonic tissues differentiates into germ layers, mesoderm, endoderm, and ectoderm. The three germ layers are then organized into a body plan with organ rudiments via morphogenetic gastrulation movements of emboly, epiboly, convergence, and extension. Emboly is the most conserved gastrulation movement, whereby mesodermal and endodermal progenitors undergo epithelial-to-mesenchymal transition (EMT) and move via a blastopore/primitive streak beneath the ectoderm. Decades of embryologic, genetic, and molecular studies in invertebrates and vertebrates, delineated a BMP > WNT > NODAL signaling cascade underlying mesoderm and endoderm specification. Advances have been made in the research animals in understanding the cellular and molecular mechanisms underlying gastrulation morphogenesis. In contrast, little is known about human gastrulation, which occurs in utero during the third week of gestation and its investigations face ethical and methodological limitations. This is changing with the unprecedented progress in modeling aspects of human development, using human pluripotent stem cells (hPSCs), including embryonic stem cells (hESC)-based embryo-like models (SCEMs). In one approach, hESCs of various pluripotency are aggregated to self-assemble into structures that resemble pre-implantation or post-implantation embryo-like structures that progress to early gastrulation, and some even reach segmentation and neurulation stages. Another approach entails coaxing hESCs with biochemical signals to generate germ layers and model aspects of gastrulation morphogenesis, such as EMT. Here, we review the recent advances in understanding signaling cascades that direct germ layers specification and the early stages of gastrulation morphogenesis in these models. We discuss outstanding questions, challenges, and opportunities for this promising area of developmental biology.
Collapse
Affiliation(s)
- Blerta Stringa
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, U.S.A
| |
Collapse
|
11
|
Karvas RM, Zemke JE, Ali SS, Upton E, Sane E, Fischer LA, Dong C, Park KM, Wang F, Park K, Hao S, Chew B, Meyer B, Zhou C, Dietmann S, Theunissen TW. 3D-cultured blastoids model human embryogenesis from pre-implantation to early gastrulation stages. Cell Stem Cell 2023; 30:1148-1165.e7. [PMID: 37683602 DOI: 10.1016/j.stem.2023.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/24/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Naive human pluripotent stem cells have the remarkable ability to self-organize into blastocyst-like structures ("blastoids") that model lineage segregation in the pre-implantation embryo. However, the extent to which blastoids can recapitulate the defining features of human post-implantation development remains unexplored. Here, we report that blastoids cultured on thick three-dimensional (3D) extracellular matrices capture hallmarks of early post-implantation development, including epiblast lumenogenesis, rapid expansion and diversification of trophoblast lineages, and robust invasion of extravillous trophoblast cells by day 14. Extended blastoid culture results in the localized activation of primitive streak marker TBXT and the emergence of embryonic germ layers by day 21. We also show that the modulation of WNT signaling alters the balance between epiblast and trophoblast fates in post-implantation blastoids. This work demonstrates that 3D-cultured blastoids offer a continuous and integrated in vitro model system of human embryonic and extraembryonic development from pre-implantation to early gastrulation stages.
Collapse
Affiliation(s)
- Rowan M Karvas
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph E Zemke
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Syed Shahzaib Ali
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eric Upton
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Eshan Sane
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Laura A Fischer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kyoung-Mi Park
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Fei Wang
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Kibeom Park
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Senyue Hao
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Brian Chew
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brittany Meyer
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chao Zhou
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sabine Dietmann
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Thorold W Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
12
|
Oh SY, Na SB, Kang YK, Do JT. In Vitro Embryogenesis and Gastrulation Using Stem Cells in Mice and Humans. Int J Mol Sci 2023; 24:13655. [PMID: 37686459 PMCID: PMC10563085 DOI: 10.3390/ijms241713655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
During early mammalian embryonic development, fertilized one-cell embryos develop into pre-implantation blastocysts and subsequently establish three germ layers through gastrulation during post-implantation development. In recent years, stem cells have emerged as a powerful tool to study embryogenesis and gastrulation without the need for eggs, allowing for the generation of embryo-like structures known as synthetic embryos or embryoids. These in vitro models closely resemble early embryos in terms of morphology and gene expression and provide a faithful recapitulation of early pre- and post-implantation embryonic development. Synthetic embryos can be generated through a combinatorial culture of three blastocyst-derived stem cell types, such as embryonic stem cells, trophoblast stem cells, and extraembryonic endoderm cells, or totipotent-like stem cells alone. This review provides an overview of the progress and various approaches in studying in vitro embryogenesis and gastrulation in mice and humans using stem cells. Furthermore, recent findings and breakthroughs in synthetic embryos and gastruloids are outlined. Despite ethical considerations, synthetic embryo models hold promise for understanding mammalian (including humans) embryonic development and have potential implications for regenerative medicine and developmental research.
Collapse
Affiliation(s)
| | | | | | - Jeong Tae Do
- Department of Stem Cell Regenerative Biotechnology, Konkuk Institute of Technology, Konkuk University, Seoul 05029, Republic of Korea; (S.Y.O.); (S.B.N.); (Y.K.K.)
| |
Collapse
|
13
|
Fuselier KTB, Kruger C, Salbaum JM, Kappen C. Correspondence of Yolk Sac and Embryonic Genotypes in F0 Mouse CRISPants. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i6.3989. [PMID: 37885852 PMCID: PMC10601497 DOI: 10.18103/mra.v11i6.3989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
CRISPR-mediated genome editing in vivo can be accompanied by prolonged stability of the Cas9 protein in mouse embryos. Then, genome edited variant alleles will be induced as long as Cas9 protein is active, and unmodified wildtype target loci are available. The corollary is that CRISPR-modified alleles that arise after the first zygotic cell division potentially could be distributed asymmetrically to the cell lineages that are specified early during morula and blastocyst development. This has practical implications for the investigation of F0 generation individuals, as cells in embryonic and extraembryonic tissues, such as the visceral yolk sac, might end up inheriting different genotypes. We here investigated the hypothetically possible scenarios by genotyping individual F0 CRISPants and their associated visceral yolk sacs in parallel. In all cases, we found that embryonic genotype was accurately reflected by yolk sac genotyping, with the two tissues indicating genetic congruence, even when the conceptus was a mosaic of cells with distinct allele configurations. Nevertheless, low abundance of a variant allele may represent a private mutation occurring only in the yolk sac, and in those rare cases, additional genotyping to determine the mutational status of the embryo proper is warranted.
Collapse
Affiliation(s)
- Kayla T B Fuselier
- Department of Developmental Biology, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Claudia Kruger
- Department of Developmental Biology, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - J Michael Salbaum
- Department of Regulation of Gene Expression, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center/Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
14
|
Emig AA, Williams MLK. Gastrulation morphogenesis in synthetic systems. Semin Cell Dev Biol 2023; 141:3-13. [PMID: 35817656 PMCID: PMC9825685 DOI: 10.1016/j.semcdb.2022.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 01/11/2023]
Abstract
Recent advances in pluripotent stem cell culture allow researchers to generate not only most embryonic cell types, but also morphologies of many embryonic structures, entirely in vitro. This recreation of embryonic form from naïve cells, known as synthetic morphogenesis, has important implications for both developmental biology and regenerative medicine. However, the capacity of stem cell-based models to recapitulate the morphogenetic cell behaviors that shape natural embryos remains unclear. In this review, we explore several examples of synthetic morphogenesis, with a focus on models of gastrulation and surrounding stages. By varying cell types, source species, and culture conditions, researchers have recreated aspects of primitive streak formation, emergence and elongation of the primary embryonic axis, neural tube closure, and more. Here, we describe cell behaviors within in vitro/ex vivo systems that mimic in vivo morphogenesis and highlight opportunities for more complete models of early development.
Collapse
Affiliation(s)
- Alyssa A Emig
- Center for Precision Environmental Health & Department of Molecular and Cellular Biology, Baylor College of Medicine, USA
| | - Margot L K Williams
- Center for Precision Environmental Health & Department of Molecular and Cellular Biology, Baylor College of Medicine, USA.
| |
Collapse
|
15
|
Francou A, Anderson KV, Hadjantonakis AK. A ratchet-like apical constriction drives cell ingression during the mouse gastrulation EMT. eLife 2023; 12:e84019. [PMID: 37162187 PMCID: PMC10171865 DOI: 10.7554/elife.84019] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/21/2023] [Indexed: 05/11/2023] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a fundamental process whereby epithelial cells acquire mesenchymal phenotypes and the ability to migrate. EMT is the hallmark of gastrulation, an evolutionarily conserved developmental process. In mammals, epiblast cells ingress at the primitive streak to form mesoderm. Cells ingress and exit the epiblast epithelial layer and the associated EMT is dynamically regulated and involves a stereotypical sequence of cell behaviors. 3D time-lapse imaging of gastrulating mouse embryos combined with cell and tissue scale data analyses revealed the asynchronous ingression of epiblast cells at the primitive streak. Ingressing cells constrict their apical surfaces in a pulsed ratchet-like fashion through asynchronous shrinkage of apical junctions. A quantitative analysis of the distribution of apical proteins revealed the anisotropic and reciprocal enrichment of members of the actomyosin network and Crumbs2 complexes, potential regulators of asynchronous shrinkage of cell junctions. Loss of function analyses demonstrated a requirement for Crumbs2 in myosin II localization and activity at apical junctions, and as a candidate regulator of actomyosin anisotropy.
Collapse
Affiliation(s)
- Alexandre Francou
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
16
|
Gredler ML, Zallen JA. Multicellular rosettes link mesenchymal-epithelial transition to radial intercalation in the mouse axial mesoderm. Dev Cell 2023:S1534-5807(23)00134-X. [PMID: 37080203 DOI: 10.1016/j.devcel.2023.03.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Mesenchymal-epithelial transitions are fundamental drivers of development and disease, but how these behaviors generate epithelial structure is not well understood. Here, we show that mesenchymal-epithelial transitions promote epithelial organization in the mouse node and notochordal plate through the assembly and radial intercalation of three-dimensional rosettes. Axial mesoderm rosettes acquire junctional and apical polarity, develop a central lumen, and dynamically expand, coalesce, and radially intercalate into the surface epithelium, converting mesenchymal-epithelial transitions into higher-order tissue structure. In mouse Par3 mutants, axial mesoderm rosettes establish central tight junction polarity but fail to form an expanded apical domain and lumen. These defects are associated with altered rosette dynamics, delayed radial intercalation, and formation of a small, fragmented surface epithelial structure. These results demonstrate that three-dimensional rosette behaviors translate mesenchymal-epithelial transitions into collective radial intercalation and epithelial formation, providing a strategy for building epithelial sheets from individual self-organizing units in the mammalian embryo.
Collapse
Affiliation(s)
- Marissa L Gredler
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
17
|
Li J, Zhu Q, Cao J, Liu Y, Lu Y, Sun Y, Li Q, Huang Y, Shang S, Bian X, Li C, Zhang L, Wang Y, Nie Y, Fu J, Li W, Mazid MA, Jiang Y, Jia W, Wang X, Sun Y, Esteban MA, Sun Q, Zhou F, Liu Z. Cynomolgus monkey embryo model captures gastrulation and early pregnancy. Cell Stem Cell 2023; 30:362-377.e7. [PMID: 37028403 DOI: 10.1016/j.stem.2023.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/18/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
Human stem cell-derived blastoids display similar morphology and cell lineages to normal blastocysts. However, the ability to investigate their developmental potential is limited. Here, we construct cynomolgus monkey blastoids resembling blastocysts in morphology and transcriptomics using naive ESCs. These blastoids develop to embryonic disk with the structures of yolk sac, chorionic cavity, amnion cavity, primitive streak, and connecting stalk along the rostral-caudal axis through prolonged in vitro culture (IVC). Primordial germ cells, gastrulating cells, visceral endoderm/yolk sac endoderm, three germ layers, and hemato-endothelial progenitors in IVC cynomolgus monkey blastoids were observed by single-cell transcriptomics or immunostaining. Moreover, transferring cynomolgus monkey blastoids to surrogates achieves pregnancies, as indicated by progesterone levels and presence of early gestation sacs. Our results reveal the capacity of in vitro gastrulation and in vivo early pregnancy of cynomolgus monkey blastoids, providing a useful system to dissect primate embryonic development without the same ethical concerns and access challenges in human embryo study.
Collapse
Affiliation(s)
- Jie Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Qingyuan Zhu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Cao
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Ying Liu
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yong Lu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yining Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Qian Li
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiming Huang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Shenshen Shang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; College of Agriculture, Henan University of Science and Technology, Luoyang 471023, Henan, China
| | - Xinyan Bian
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Chunyang Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Liansheng Zhang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yan Wang
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Yanhong Nie
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Jiqiang Fu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Md Abdul Mazid
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yu Jiang
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Wenqi Jia
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaolong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shanxi, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Miguel A Esteban
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qiang Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| | - Fan Zhou
- Haihe Laboratory of Cell Ecosystem, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, China; University of Chinese Academy of Sciences, 100049 Beijing, China.
| |
Collapse
|
18
|
Abstract
During gastrulation, early embryos specify and reorganise the topology of their germ layers. Surprisingly, this fundamental and early process does not appear to be rigidly constrained by evolutionary pressures; instead, the morphology of gastrulation is highly variable throughout the animal kingdom. Recent experimental results demonstrate that it is possible to generate different alternative gastrulation modes in single organisms, such as in early cnidarian, arthropod and vertebrate embryos. Here, we review the mechanisms that underlie the plasticity of vertebrate gastrulation both when experimentally manipulated and during evolution. Using the insights obtained from these experiments we discuss the effects of the increase in yolk volume on the morphology of gastrulation and provide new insights into two crucial innovations during amniote gastrulation: the transition from a ring-shaped mesoderm domain in anamniotes to a crescent-shaped domain in amniotes, and the evolution of the reptilian blastoporal plate/canal into the avian primitive streak.
Collapse
Affiliation(s)
| | - Cornelis J. Weijer
- School of Life Sciences Research Complex, University of Dundee, Dow Street, Dundee, DD1 5EH, UK
| |
Collapse
|
19
|
Nattasit P, Niibe K, Yamada M, Ohori-Morita Y, Limraksasin P, Tiskratok W, Yamamoto M, Egusa H. Stiffness-Tunable Hydrogel-Sandwich Culture Modulates the YAP-Mediated Mechanoresponse in Induced-Pluripotent Stem Cell Embryoid Bodies and Augments Cardiomyocyte Differentiation. Macromol Biosci 2023:e2300021. [PMID: 36871184 DOI: 10.1002/mabi.202300021] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 03/06/2023]
Abstract
Microenvironmental factors, including substrate stiffness, regulate stem cell behavior and differentiation. However, the effects of substrate stiffness on the behavior of induced pluripotent stem cell (iPSC)- derived embryoid bodies (EB) remain unclear. To investigate the effects of mechanical cues on iPSC-EB differentiation, a 3D hydrogel-sandwich culture (HGSC) system is developed that controls the microenvironment surrounding iPSC-EBs using a stiffness-tunable polyacrylamide hydrogel assembly. Mouse iPSC-EBs are seeded between upper and lower polyacrylamide hydrogels of differing stiffness (Young's modulus [E'] = 54.3 ± 7.1 kPa [hard], 28.1 ± 2.3 kPa [moderate], and 5.1 ± 0.1 kPa [soft]) and cultured for 2 days. HGSC induces stiffness-dependent activation of the yes-associated protein (YAP) mechanotransducer and actin cytoskeleton rearrangement in the iPSC-EBs. Moreover, moderate-stiffness HGSC specifically upregulates the mRNA and protein expression of ectoderm and mesoderm lineage differentiation markers in iPSC-EBs via YAP-mediated mechanotransduction. Pretreatment of mouse iPSC-EBs with moderate-stiffness HGSC promotes cardiomyocyte (CM) differentiation and structural maturation of myofibrils. The proposed HGSC system provides a viable platform for investigating the role of mechanical cues on the pluripotency and differentiation of iPSCs that can be beneficial for research into tissue regeneration and engineering.
Collapse
Affiliation(s)
- Praphawi Nattasit
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Kunimichi Niibe
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Masahiro Yamada
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Yumi Ohori-Morita
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| | - Phoonsuk Limraksasin
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
- Dental Stem Cell Biology Research Unit, Center of Excellence for Regenerative Dentistry, and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Watcharaphol Tiskratok
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
- Institute of Dentistry, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Masaya Yamamoto
- Department of Material Processing, Tohoku University Graduate School of Engineering, Sendai, Miyagi, 980-8579, Japan
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, 980-8575, Japan
| |
Collapse
|
20
|
Srivastava P, Romanazzo S, Kopecky C, Nemec S, Ireland J, Molley TG, Lin K, Jayathilaka PB, Pandzic E, Yeola A, Chandrakanthan V, Pimanda J, Kilian K. Defined Microenvironments Trigger In Vitro Gastrulation in Human Pluripotent Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2203614. [PMID: 36519269 PMCID: PMC9929265 DOI: 10.1002/advs.202203614] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/19/2022] [Indexed: 06/17/2023]
Abstract
Gastrulation is a stage in embryo development where three germ layers arise to dictate the human body plan. In vitro models of gastrulation have been demonstrated by treating pluripotent stem cells with soluble morphogens to trigger differentiation. However, in vivo gastrulation is a multistage process coordinated through feedback between soluble gradients and biophysical forces, with the multipotent epiblast transforming to the primitive streak followed by germ layer segregation. Here, the authors show how constraining pluripotent stem cells to hydrogel islands triggers morphogenesis that mirrors the stages preceding in vivo gastrulation, without the need for exogenous supplements. Within hours of initial seeding, cells display a contractile phenotype at the boundary, which leads to enhanced proliferation, yes-associated protein (YAP) translocation, epithelial to mesenchymal transition, and emergence of SRY-box transcription factor 17 (SOX17)+ T/BRACHYURY+ cells. Molecular profiling and pathway analysis reveals a role for mechanotransduction-coupled wingless-type (WNT) signaling in orchestrating differentiation, which bears similarities to processes observed in whole organism models of development. After two days, the colonies form multilayered aggregates, which can be removed for further growth and differentiation. This approach demonstrates how materials alone can initiate gastrulation, thereby providing in vitro models of development and a tool to support organoid bioengineering efforts.
Collapse
Affiliation(s)
- Pallavi Srivastava
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Sara Romanazzo
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Chantal Kopecky
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Stephanie Nemec
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Jake Ireland
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Thomas G. Molley
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Kang Lin
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Pavithra B. Jayathilaka
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
| | - Elvis Pandzic
- Katharina Gaus Light Microscopy FacilityMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - Avani Yeola
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - Vashe Chandrakanthan
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
| | - John Pimanda
- School of Biomedical SciencesUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- Department of HaematologyPrince of Wales HospitalRandwickNSW2031Australia
| | - Kristopher Kilian
- School of ChemistryAustralian Centre for NanoMedicineUniversity of New South WalesSydneyNSW2052Australia
- Adult Cancer ProgramSchool of Clinical Medicine, Lowy Cancer Research CentreUNSW SydneySydneyNSW2052Australia
- School of Materials Science and EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
21
|
Chuai M, Serrano Nájera G, Serra M, Mahadevan L, Weijer CJ. Reconstruction of distinct vertebrate gastrulation modes via modulation of key cell behaviors in the chick embryo. SCIENCE ADVANCES 2023; 9:eabn5429. [PMID: 36598979 PMCID: PMC9812380 DOI: 10.1126/sciadv.abn5429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 11/28/2022] [Indexed: 06/10/2023]
Abstract
The morphology of gastrulation driving the internalization of the mesoderm and endoderm differs markedly among vertebrate species. It ranges from involution of epithelial sheets of cells through a circular blastopore in amphibians to ingression of mesenchymal cells through a primitive streak in amniotes. By targeting signaling pathways controlling critical cell behaviors in the chick embryo, we generated crescent- and ring-shaped mesendoderm territories in which cells can or cannot ingress. These alterations subvert the formation of the chick primitive streak into the gastrulation modes seen in amphibians, reptiles, and teleost fish. Our experimental manipulations are supported by a theoretical framework linking cellular behaviors to self-organized multicellular flows outlined in detail in the accompanying paper. Together, this suggests that the evolution of gastrulation movements is largely determined by changes in a few critical cell behaviors in the mesendoderm territory across different species and controlled by a relatively small number of signaling pathways.
Collapse
Affiliation(s)
- Manli Chuai
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Guillermo Serrano Nájera
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Mattia Serra
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Lakshminarayanan Mahadevan
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02134, USA
- Departments of Physics and Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cornelis J. Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
22
|
Schnirman RE, Kuo SJ, Kelly RC, Yamaguchi TP. The role of Wnt signaling in the development of the epiblast and axial progenitors. Curr Top Dev Biol 2023; 153:145-180. [PMID: 36967193 DOI: 10.1016/bs.ctdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Understanding how the body plan is established during embryogenesis remains a fundamental biological question. The Wnt/β-catenin signaling pathway plays a crucial and highly conserved role in body plan formation, functioning to polarize the primary anterior-posterior (AP) or head-to-tail body axis in most metazoans. In this chapter, we focus on the roles that the mammalian Wnt/β-catenin pathway plays to prepare the pluripotent epiblast for gastrulation, and to elicit the emergence of multipotent axial progenitors from the caudal epiblast. Interactions between Wnt and retinoic acid (RA), another powerful family of developmental signaling molecules, in axial progenitors will also be discussed. Gastrulation movements and somitogenesis result in the anterior displacement of the RA source (the rostral somites and lateral plate mesoderm (LPM)), from the posterior Wnt source (the primitive streak (PS)), leading to the establishment of antiparallel gradients of RA and Wnt that control the self-renewal and successive differentiation of neck, trunk and tail progenitors.
Collapse
Affiliation(s)
| | - Samuel J Kuo
- NCI-Frederick, NIH, Frederick, MD, United States
| | - Ryan C Kelly
- NCI-Frederick, NIH, Frederick, MD, United States
| | | |
Collapse
|
23
|
Downs KM. The mouse allantois: new insights at the embryonic-extraembryonic interface. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210251. [PMID: 36252214 PMCID: PMC9574631 DOI: 10.1098/rstb.2021.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
During the early development of Placentalia, a distinctive projection emerges at the posterior embryonic-extraembryonic interface of the conceptus; its fingerlike shape presages maturation into the placental umbilical cord, whose major role is to shuttle fetal blood to and from the chorion for exchange with the mother during pregnancy. Until recently, the biology of the cord's vital vascular anlage, called the body stalk/allantois in humans and simply the allantois in rodents, has been largely unknown. Here, new insights into the development of the mouse allantois are featured, from its origin and mechanism of arterial patterning through its union with the chorion. Key to generating the allantois and its critical functions are the primitive streak and visceral endoderm, which together are sufficient to create the entire fetal-placental connection. Their newly discovered roles at the embryonic-extraembryonic interface challenge conventional wisdom, including the physical limits of the primitive streak, its function as sole purveyor of mesoderm in the mouse, potency of visceral endoderm, and the putative role of the allantois in the germ line. With this working model of allantois development, understanding a plethora of hitherto poorly understood orphan diseases in humans is now within reach. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Karen M. Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
24
|
Arias AM, Marikawa Y, Moris N. Gastruloids: Pluripotent stem cell models of mammalian gastrulation and embryo engineering. Dev Biol 2022; 488:35-46. [PMID: 35537519 PMCID: PMC9477185 DOI: 10.1016/j.ydbio.2022.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/12/2022]
Abstract
Gastrulation is a fundamental and critical process of animal development whereby the mass of cells that results from the proliferation of the zygote transforms itself into a recognizable outline of an organism. The last few years have seen the emergence of a number of experimental models of early mammalian embryogenesis based on Embryonic Stem (ES) cells. One of this is the Gastruloid model. Gastruloids are aggregates of defined numbers of ES cells that, under defined culture conditions, undergo controlled proliferation, symmetry breaking, and the specification of all three germ layers characteristic of vertebrate embryos, and their derivatives. However, they lack brain structures and, surprisingly, reveal a disconnect between cell type specific gene expression and tissue morphogenesis, for example during somitogenesis. Gastruloids have been derived from mouse and human ES cells and several variations of the original model have emerged that reveal a hereto unknown modularity of mammalian embryos. We discuss the organization and development of gastruloids in the context of the embryonic stages that they represent, pointing out similarities and differences between the two. We also point out their potential as a reproducible, scalable and searchable experimental system and highlight some questions posed by the current menagerie of gastruloids.
Collapse
Affiliation(s)
- Alfonso Martinez Arias
- Systems Bioengineering, MELIS, Universidad Pompeu Fabra, Doctor Aiguader, 88, ICREA, Pag Lluis Companys 23, Barcelona, Spain.
| | - Yusuke Marikawa
- Institute for Biogenesis Research, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| |
Collapse
|
25
|
McFann SE, Shvartsman SY, Toettcher JE. Putting in the Erk: Growth factor signaling and mesoderm morphogenesis. Curr Top Dev Biol 2022; 149:263-310. [PMID: 35606058 DOI: 10.1016/bs.ctdb.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It has long been known that FGF signaling contributes to mesoderm formation, a germ layer found in triploblasts that is composed of highly migratory cells that give rise to muscles and to the skeletal structures of vertebrates. FGF signaling activates several pathways in the developing mesoderm, including transient activation of the Erk pathway, which triggers mesodermal fate specification through the induction of the gene brachyury and activates morphogenetic programs that allow mesodermal cells to position themselves in the embryo. In this review, we discuss what is known about the generation and interpretation of transient Erk signaling in mesodermal tissues across species. We focus specifically on mechanisms that translate the level and duration of Erk signaling into cell fate and cell movement instructions and discuss strategies for further interrogating the role that Erk signaling dynamics play in mesodermal gastrulation and morphogenesis.
Collapse
Affiliation(s)
- Sarah E McFann
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, United States; Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States
| | - Stanislav Y Shvartsman
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, United States; Department of Molecular Biology, Princeton University, Princeton, NJ, United States; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY, United States
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States.
| |
Collapse
|
26
|
Matsuda M, Chu CW, Sokol SY. Lmo7 recruits myosin II heavy chain to regulate actomyosin contractility and apical domain size in Xenopus ectoderm. Development 2022; 149:275389. [PMID: 35451459 PMCID: PMC9188752 DOI: 10.1242/dev.200236] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/30/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
Apical constriction, or a reduction in size of the apical domain, underlies many morphogenetic events during development. Actomyosin complexes play an essential role in apical constriction; however, the detailed analysis of molecular mechanisms is still pending. Here, we show that Lim domain only protein 7 (Lmo7), a multidomain adaptor at apical junctions, promotes apical constriction in the Xenopus superficial ectoderm, whereas apical domain size increases in Lmo7-depleted cells. Lmo7 is primarily localized at apical junctions and promotes the formation of the dense circumferential actomyosin belt. Strikingly, Lmo7 binds non-muscle myosin II (NMII) and recruits it to apical junctions and the apical cortex. This NMII recruitment is essential for Lmo7-mediated apical constriction. Lmo7 knockdown decreases NMIIA localization at apical junctions and delays neural tube closure in Xenopus embryos. Our findings suggest that Lmo7 serves as a scaffold that regulates actomyosin contractility and apical domain size.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
27
|
Omelchenko T. Cellular protrusions in 3D: Orchestrating early mouse embryogenesis. Semin Cell Dev Biol 2022; 129:63-74. [PMID: 35577698 DOI: 10.1016/j.semcdb.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022]
Abstract
Cellular protrusions generated by the actin cytoskeleton are central to the process of building the body of the embryo. Problems with cellular protrusions underlie human diseases and syndromes, including implantation defects and pregnancy loss, congenital birth defects, and cancer. Cells use protrusive activity together with actin-myosin contractility to create an ordered body shape of the embryo. Here, I review how actin-rich protrusions are used by two major morphological cell types, epithelial and mesenchymal cells, during collective cell migration to sculpt the mouse embryo body. Pre-gastrulation epithelial collective migration of the anterior visceral endoderm is essential for establishing the anterior-posterior body axis. Gastrulation mesenchymal collective migration of the mesoderm wings is crucial for body elongation, and somite and heart formation. Analysis of mouse mutants with disrupted cellular protrusions revealed the key role of protrusions in embryonic morphogenesis and embryo survival. Recent technical approaches have allowed examination of the mechanisms that control cell and tissue movements in vivo in the complex 3D microenvironment of living mouse embryos. Advancing our understanding of protrusion-driven morphogenesis should provide novel insights into human developmental disorders and cancer metastasis.
Collapse
Affiliation(s)
- Tatiana Omelchenko
- Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, 1230 York Avenue, New York 10065, USA.
| |
Collapse
|
28
|
Hashmi A, Tlili S, Perrin P, Lowndes M, Peradziryi H, Brickman JM, Martínez Arias A, Lenne PF. Cell-state transitions and collective cell movement generate an endoderm-like region in gastruloids. eLife 2022; 11:59371. [PMID: 35404233 PMCID: PMC9033300 DOI: 10.7554/elife.59371] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 04/08/2022] [Indexed: 12/04/2022] Open
Abstract
Shaping the animal body plan is a complex process that involves the spatial organization and patterning of the different germ layers. Recent advances in live imaging have started to unravel the cellular choreography underlying this process in mammals, however, the sequence of events transforming an unpatterned cell ensemble into structured territories is largely unknown. Here, using gastruloids –3D aggregates of mouse embryonic stem cells- we study the formation of one of the three germ layers, the endoderm. We show that the endoderm is generated from an epiblast-like homogeneous state by a three-step mechanism: (i) a loss of E-cadherin mediated contacts in parts of the aggregate leading to the appearance of islands of E-cadherin expressing cells surrounded by cells devoid of E-cadherin, (ii) a separation of these two populations with islands of E-cadherin expressing cells flowing toward the aggregate tip, and (iii) their differentiation into an endoderm population. During the flow, the islands of E-cadherin expressing cells are surrounded by cells expressing T-Brachyury, reminiscent of the process occurring at the primitive streak. Consistent with recent in vivo observations, the endoderm formation in the gastruloids does not require an epithelial-to-mesenchymal transition, but rather a maintenance of an epithelial state for a subset of cells coupled with fragmentation of E-cadherin contacts in the vicinity, and a sorting process. Our data emphasize the role of signaling and tissue flows in the establishment of the body plan.
Collapse
Affiliation(s)
- Ali Hashmi
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Sham Tlili
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Pierre Perrin
- IBDM, Aix Marseille University, CNRS, Marseille, France
| | - Molly Lowndes
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Hanna Peradziryi
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
29
|
Royer C, Sandham E, Slee E, Schneider F, Lagerholm CB, Godwin J, Veits N, Hathrell H, Zhou F, Leonavicius K, Garratt J, Narendra T, Vincent A, Jones C, Child T, Coward K, Graham C, Fritzsche M, Lu X, Srinivas S. ASPP2 maintains the integrity of mechanically stressed pseudostratified epithelia during morphogenesis. Nat Commun 2022; 13:941. [PMID: 35177595 PMCID: PMC8854694 DOI: 10.1038/s41467-022-28590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/28/2022] [Indexed: 11/09/2022] Open
Abstract
During development, pseudostratified epithelia undergo large scale morphogenetic events associated with increased mechanical stress. Using a variety of genetic and imaging approaches, we uncover that in the mouse E6.5 epiblast, where apical tension is highest, ASPP2 safeguards tissue integrity. It achieves this by preventing the most apical daughter cells from delaminating apically following division events. In this context, ASPP2 maintains the integrity and organisation of the filamentous actin cytoskeleton at apical junctions. ASPP2 is also essential during gastrulation in the primitive streak, in somites and in the head fold region, suggesting that it is required across a wide range of pseudostratified epithelia during morphogenetic events that are accompanied by intense tissue remodelling. Finally, our study also suggests that the interaction between ASPP2 and PP1 is essential to the tumour suppressor function of ASPP2, which may be particularly relevant in the context of tissues that are subject to increased mechanical stress. The early embryo maintains its structure in the face of large mechanical stresses during morphogenesis. Here they show that ASPP2 acts to preserve epithelial integrity in regions of high apical tension during early development.
Collapse
Affiliation(s)
- Christophe Royer
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| | - Elizabeth Sandham
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Falk Schneider
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.,Translational Imaging Center, University of Southern California, Los Angeles, CA, 90089, USA
| | - Christoffer B Lagerholm
- Wolfson Imaging Centre Oxford, MRC Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jonathan Godwin
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Nisha Veits
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Holly Hathrell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK
| | - Felix Zhou
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Karolis Leonavicius
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Jemma Garratt
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Tanaya Narendra
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.,Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Anna Vincent
- Oxford Fertility, Institute of Reproductive Sciences, Oxford Business Park North, Oxford, OX4 2HW, UK
| | - Celine Jones
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Tim Child
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK.,Oxford Fertility, Institute of Reproductive Sciences, Oxford Business Park North, Oxford, OX4 2HW, UK
| | - Kevin Coward
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Chris Graham
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, OX3 9DU, UK
| | - Marco Fritzsche
- Kennedy Institute for Rheumatology, University of Oxford, Oxford, OX3 7LF, UK.,Rosalind Franklin Institute, Didcot, OX11 0QS, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX, UK.
| |
Collapse
|
30
|
Eve A. Transitions in development – an interview with Margot Kossmann Williams. Development 2022; 149:274216. [DOI: 10.1242/dev.200424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Margot Kossmann Williams is an Assistant Professor at Baylor College of Medicine in Texas, USA. Margot uses zebrafish genetics, live imaging and embryonic explants to investigate how cell movements, such as those underlying axis elongation, are coordinated. We met Margot over Teams for a chat about careers, mentors and starting a new group just before a pandemic.
Collapse
|
31
|
Thowfeequ S, Stower MJ, Srinivas S. Epithelial dynamics during early mouse development. Curr Opin Genet Dev 2022; 72:110-117. [PMID: 34929609 PMCID: PMC7615355 DOI: 10.1016/j.gde.2021.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 11/03/2022]
Abstract
The first epithelia to arise in an organism face the challenge of maintaining the integrity of the newly formed tissue, while exhibiting the behavioral flexibility required for morphogenetic processes to occur effectively. Epithelial cells integrate biochemical and biomechanical cues, both intrinsic and extrinsic, in order to bring about the molecular changes which determine their morphology, behavior and fate. In this review we highlight recent advances in our understanding of the various dynamic processes that the emergent epithelial cells undergo during the first seven days of mouse development and speculate what the future holds in understanding the mechanistic bases for these processes through integrative approaches.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK
| | - Matthew J Stower
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK
| | - Shankar Srinivas
- University of Oxford, Department of Physiology, Anatomy and Genetics, South Parks Road, Oxford, OX1 3QX, UK.
| |
Collapse
|
32
|
Sheng G, Martinez Arias A, Sutherland A. The primitive streak and cellular principles of building an amniote body through gastrulation. Science 2021; 374:abg1727. [PMID: 34855481 DOI: 10.1126/science.abg1727] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Guojun Sheng
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, Doctor Aiguader, 88 ICREA, Pag Lluis Companys 23, Barcelona, Spain
| | - Ann Sutherland
- Department of Cell Biology, University of Virginia Health System, Charlottesville, VA, USA
| |
Collapse
|
33
|
Despin-Guitard E, Migeotte I. Mitosis, a springboard for epithelial-mesenchymal transition? Cell Cycle 2021; 20:2452-2464. [PMID: 34720062 DOI: 10.1080/15384101.2021.1992854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Mitosis is a key process in development and remains critical to ensure homeostasis in adult tissues. Besides its primary role in generating two new cells, cell division involves deep structural and molecular changes that might have additional effects on cell and tissue fate and shape. Specific quantitative and qualitative regulation of mitosis has been observed in multiple morphogenetic events in different embryo models. For instance, during mouse embryo gastrulation, the portion of epithelium that undergoes epithelial to mesenchymal transition, where a static epithelial cell become mesenchymal and motile, has a higher mitotic index and a distinct localization of mitotic rounding, compared to the rest of the tissue. Here we explore the potential mechanisms through which mitosis may favor tissue reorganization in various models. Notably, we discuss the mechanical impact of cell rounding on the cell and its environment, and the modification of tissue physical parameters through changes in cell-cell and cell-matrix adhesion.
Collapse
Affiliation(s)
- Evangéline Despin-Guitard
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| | - Isabelle Migeotte
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM), Iribhm, Université Libre De Bruxelles, Brussels, Belgium
| |
Collapse
|
34
|
Gorfinkiel N, Martinez Arias A. The cell in the age of the genomic revolution: Cell Regulatory Networks. Cells Dev 2021; 168:203720. [PMID: 34252599 DOI: 10.1016/j.cdev.2021.203720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022]
Abstract
Over the last few years an intense activity in the areas of advanced microscopy and quantitative cell biology has put the focus on the morphogenetic events that shape embryos. The interest in these processes is taking place against the backdrop of genomic studies, particularly of global patterns of gene expression at the level of single cells, which cannot fully account for the way cells build tissues and organs. Here we discuss the need to integrate the activity of genes with that of cells and propose the need to develop a framework, based on cellular processes and cell interactions, that parallels that which has been created for gene activity in the form of Gene Regulatory Networks (GRNs). We begin to do this by suggesting elements for building Cell Regulatory Networks (CRNs). In the same manner that GRNs create schedules of gene expression that result in the emergence of cell fates over time, CRNs create tissues and organs i.e. space. We also suggest how GRNs and CRNs might interact in the building of embryos through feedback loops involving mechanics and tissue tectonics.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Departamento de Genética, Fisiología y Microbiología, Facultad de CC Biológicas, Universidad Complutense, José Antonio Nováis 12, Madrid, Spain.
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, ICREA (Institució Catalana de Recerca i Estudis Avançats), Doctor Aiguader 88, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
35
|
Font-Noguera M, Montemurro M, Benassayag C, Monier B, Suzanne M. Getting started for migration: A focus on EMT cellular dynamics and mechanics in developmental models. Cells Dev 2021; 168:203717. [PMID: 34245942 DOI: 10.1016/j.cdev.2021.203717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/11/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022]
Abstract
The conversion of epithelial cells into mesenchymal ones, through a process known as epithelial-mesenchymal transition (or EMT) is a reversible process involved in critical steps of animal development as early as gastrulation and throughout organogenesis. In pathological conditions such as aggressive cancers, EMT is often associated with increased drug resistance, motility and invasiveness. The characterisation of the upstream signals and main decision takers, such as the EMT-transcription factors, has led to the identification of a core molecular machinery controlling the specification towards EMT. However, the cellular execution steps of this fundamental shift are poorly described, especially in cancerous cells. Here we review our current knowledge regarding the stepwise nature of EMT in model organisms as diverse as sea urchin, Drosophila, zebrafish, mouse or chicken. We focus on the cellular dynamics and mechanics of the transitional stages by which epithelial cells progressively become mesenchymal and leave the epithelium. We gather the currently available pieces of the puzzle, including the overlooked property of EMT cells to produce mechanical forces along their apico-basal axis before detaching from their neighbours. We discuss the interplay between EMT and the surrounding tissue. Finally, we propose a conceptual framework of EMT cell dynamics from the very first hint of epithelial cell reorganisation to the successful exit from the epithelial sheet.
Collapse
Affiliation(s)
- Meritxell Font-Noguera
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Marianne Montemurro
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Corinne Benassayag
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Bruno Monier
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Integrative (CBI), University of Toulouse, CNRS, UPS, 31062 Toulouse, France.
| |
Collapse
|
36
|
Repina NA, McClave T, Johnson HJ, Bao X, Kane RS, Schaffer DV. Engineered Illumination Devices for Optogenetic Control of Cellular Signaling Dynamics. Cell Rep 2021; 31:107737. [PMID: 32521262 PMCID: PMC9357365 DOI: 10.1016/j.celrep.2020.107737] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 03/09/2020] [Accepted: 05/14/2020] [Indexed: 10/31/2022] Open
Abstract
Spatially and temporally varying patterns of morphogen signals during development drive cell fate specification at the proper location and time. However, current in vitro methods typically do not allow for precise, dynamic spatiotemporal control of morphogen signaling and are thus insufficient to readily study how morphogen dynamics affect cell behavior. Here, we show that optogenetic Wnt/β-catenin pathway activation can be controlled at user-defined intensities, temporal sequences, and spatial patterns using engineered illumination devices for optogenetic photostimulation and light activation at variable amplitudes (LAVA). By patterning human embryonic stem cell (hESC) cultures with varying light intensities, LAVA devices enabled dose-responsive control of optoWnt activation and Brachyury expression. Furthermore, time-varying and spatially localized patterns of light revealed tissue patterning that models the embryonic presentation of Wnt signals in vitro. LAVA devices thus provide a low-cost, user-friendly method for high-throughput and spatiotemporal optogenetic control of cell signaling for applications in developmental and cell biology.
Collapse
Affiliation(s)
- Nicole A Repina
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Thomas McClave
- Department of Physics, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Hunter J Johnson
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Graduate Program in Bioengineering, University of California, San Francisco, San Francisco, CA, USA; Graduate Program in Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ravi S Kane
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
37
|
Sherwood DR. Basement membrane remodeling guides cell migration and cell morphogenesis during development. Curr Opin Cell Biol 2021; 72:19-27. [PMID: 34015751 DOI: 10.1016/j.ceb.2021.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/31/2023]
Abstract
Basement membranes (BMs) are thin, dense forms of extracellular matrix that underlie or surround most animal tissues. BMs are enormously complex and harbor numerous proteins that provide essential signaling, mechanical, and barrier support for tissues during their development and normal functioning. As BMs are found throughout animal tissues, cells frequently migrate, change shape, and extend processes along BMs. Although sometimes used only as passive surfaces by cells, studies in developmental contexts are finding that BMs are often actively modified to help guide cell motility and cell morphogenesis. Here, I provide an overview of recent work revealing how BMs are remodeled in remarkably diverse ways to direct cell migration, cell orientation, axon guidance, and dendrite branching events during animal development.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Regeneration Next, Duke University, Durham 27710, USA.
| |
Collapse
|
38
|
Minn KT, Dietmann S, Waye SE, Morris SA, Solnica-Krezel L. Gene expression dynamics underlying cell fate emergence in 2D micropatterned human embryonic stem cell gastruloids. Stem Cell Reports 2021; 16:1210-1227. [PMID: 33891870 PMCID: PMC8185470 DOI: 10.1016/j.stemcr.2021.03.031] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Human embryonic stem cells cultured in 2D micropatterns with BMP4 differentiate into a radial arrangement of germ layers and extraembryonic cells. Single-cell transcriptomes demonstrate generation of cell types transcriptionally similar to their in vivo counterparts in Carnegie stage 7 human gastrula. Time-course analyses indicate sequential differentiation, where the epiblast arises by 12 h between the prospective ectoderm in the center and the cells initiating differentiation toward extraembryonic fates at the edge. Extraembryonic and mesendoderm precursors arise from the epiblast by 24 h, while nascent mesoderm, endoderm, and primordial germ cell-like cells form by 44 h. Dynamic changes in transcripts encoding signaling components support a BMP, WNT, and Nodal hierarchy underlying germ-layer specification conserved across mammals, and FGF and HIPPO pathways being active throughout differentiation. This work also provides a resource for mining genes and pathways expressed in a stereotyped 2D gastruloid model, common with other species or unique to human gastrulation.
Collapse
Affiliation(s)
- Kyaw Thu Minn
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sarah E Waye
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
39
|
Abstract
AbstractAn important goal in the fight against cancer is to understand how tumors become invasive and metastatic. A crucial early step in metastasis is thought to be the epithelial mesenchymal transition (EMT), the process in which epithelial cells transition into a more migratory and invasive, mesenchymal state. Since the genetic regulatory networks driving EMT in tumors derive from those used in development, analysis of EMTs in genetic model organisms such as the vinegar fly, Drosophila melanogaster, can provide great insight into cancer. In this review I highlight the many ways in which studies in the fly are shedding light on cancer metastasis. The review covers both normal developmental events in which epithelial cells become migratory, as well as induced events, whereby normal epithelial cells become metastatic due to genetic manipulations. The ability to make such precise genetic perturbations in the context of a normal, in vivo environment, complete with a working innate immune system, is making the fly increasingly important in understanding metastasis.
Collapse
Affiliation(s)
- Michael J. Murray
- School of BioSciences, Faculty of Science, University of Melbourne, Victoria 3010, Melbourne, Australia
| |
Collapse
|
40
|
Benito-Kwiecinski S, Giandomenico SL, Sutcliffe M, Riis ES, Freire-Pritchett P, Kelava I, Wunderlich S, Martin U, Wray GA, McDole K, Lancaster MA. An early cell shape transition drives evolutionary expansion of the human forebrain. Cell 2021; 184:2084-2102.e19. [PMID: 33765444 PMCID: PMC8054913 DOI: 10.1016/j.cell.2021.02.050] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 12/10/2020] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
The human brain has undergone rapid expansion since humans diverged from other great apes, but the mechanism of this human-specific enlargement is still unknown. Here, we use cerebral organoids derived from human, gorilla, and chimpanzee cells to study developmental mechanisms driving evolutionary brain expansion. We find that neuroepithelial differentiation is a protracted process in apes, involving a previously unrecognized transition state characterized by a change in cell shape. Furthermore, we show that human organoids are larger due to a delay in this transition, associated with differences in interkinetic nuclear migration and cell cycle length. Comparative RNA sequencing (RNA-seq) reveals differences in expression dynamics of cell morphogenesis factors, including ZEB2, a known epithelial-mesenchymal transition regulator. We show that ZEB2 promotes neuroepithelial transition, and its manipulation and downstream signaling leads to acquisition of nonhuman ape architecture in the human context and vice versa, establishing an important role for neuroepithelial cell shape in human brain expansion. Human brain organoids are expanded relative to nonhuman apes prior to neurogenesis Ape neural progenitors go through a newly identified transition morphotype state Delayed morphological transition with shorter cell cycles underlie human expansion ZEB2 is as an evolutionary regulator of this transition
Collapse
Affiliation(s)
- Silvia Benito-Kwiecinski
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stefano L Giandomenico
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Magdalena Sutcliffe
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Erlend S Riis
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK
| | - Paula Freire-Pritchett
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Iva Kelava
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Stephanie Wunderlich
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Ulrich Martin
- Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), REBIRTH-Research Center for Translational and Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover Medical School, 30625 Hannover, Germany
| | - Gregory A Wray
- Department of Biology, Duke University, Biological Sciences Building, 124 Science Drive, Durham, NC 27708, USA
| | - Kate McDole
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
41
|
Tomoda K, Kime C. Synthetic embryology: Early mammalian embryo modeling systems from cell cultures. Dev Growth Differ 2021; 63:116-126. [PMID: 33540477 DOI: 10.1111/dgd.12713] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 12/20/2022]
Abstract
Recently, the fields of embryology, developmental biology, stem cell biology, and cell reprogramming, have intersected with synthetic embryo systems (SESs) from cultured cells. Among such SESs, several approaches have engaged early-embryo-like cells, cells with atypical potency, or assembled traditional in vitro stem cell populations with synergy, to advance life discovery systems that may yield emergent knowledge and biotechnical advance. Such models center on the competent generation of blastocyst-like and post-implantation embryo-like forms. Our group, and several others have recently pioneered unique SES strategies covering a broad spectrum of key early embryo-like developmental stages and features to seed an emerging SES field. Herein, we provide a comprehensive perspective of synthetic embryology and the powerful promise that excites us.
Collapse
Affiliation(s)
- Kiichiro Tomoda
- Gladstone Institutes, San Francisco, CA, USA.,Center for iPS Cell Research and Application, Kyoto, Japan.,Osaka Medical College, Osaka, Japan
| | - Cody Kime
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
42
|
Nahaboo W, Saykali B, Mathiah N, Migeotte I. Visualizing Mouse Embryo Gastrulation Epithelial-Mesenchymal Transition Through Single Cell Labeling Followed by Ex Vivo Whole Embryo Live Imaging. Methods Mol Biol 2021; 2179:135-144. [PMID: 32939718 DOI: 10.1007/978-1-0716-0779-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is often studied in pathological contexts, such as cancer or fibrosis. This chapter focuses on physiological EMT that allows the separation of germ layers during mouse embryo gastrulation. In order to record individual cells behavior with high spatial and temporal resolution live imaging as they undergo EMT, it is very helpful to label the cells of interest in a mosaic fashion so as to facilitate cell segmentation and quantitative image analysis. This protocol describes the isolation, culture, and live imaging of E6.5-E7.5 mouse embryos mosaically labeled in the epiblast, the epithelium from which mesoderm and endoderm layers arise through EMT at gastrulation.
Collapse
Affiliation(s)
- Wallis Nahaboo
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Isabelle Migeotte
- IRIBHM, Université Libre de Bruxelles, Brussels, Belgium.
- WELBIO, Wavre, Belgium.
| |
Collapse
|
43
|
Knudsen TB, Pierro JD, Baker NC. Retinoid signaling in skeletal development: Scoping the system for predictive toxicology. Reprod Toxicol 2021; 99:109-130. [PMID: 33202217 PMCID: PMC11451096 DOI: 10.1016/j.reprotox.2020.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/15/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
All-trans retinoic acid (ATRA), the biologically active form of vitamin A, is instrumental in regulating the patterning and specification of the vertebrate embryo. Various animal models demonstrate adverse developmental phenotypes following experimental retinoid depletion or excess during pregnancy. Windows of vulnerability for altered skeletal patterning coincide with early specification of the body plan (gastrulation) and regional specification of precursor cell populations forming the facial skeleton (cranial neural crest), vertebral column (somites), and limbs (lateral plate mesoderm) during organogenesis. A common theme in physiological roles of ATRA signaling is mutual antagonism with FGF signaling. Consequences of genetic errors or environmental disruption of retinoid signaling include stage- and region-specific homeotic transformations to severe deficiencies for various skeletal elements. This review derives from an annex in Detailed Review Paper (DRP) of the OECD Test Guidelines Programme (Project 4.97) to support recommendations regarding assay development for the retinoid system and the use of resulting data in a regulatory context for developmental and reproductive toxicity (DART) testing.
Collapse
Affiliation(s)
- Thomas B Knudsen
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Jocylin D Pierro
- Center for Computational Toxicology and Exposure (CCTE), Biomolecular and Computational Toxicology Division (BCTD), Computational Toxicology and Bioinformatics Branch (CTBB), Office of Research and Development (ORD), U.S. Environmental Protection Agency (USEPA), Research Triangle Park, NC, 27711, United States.
| | - Nancy C Baker
- Leidos, Contractor to CCTE, Research Triangle Park, NC, 27711, United States.
| |
Collapse
|
44
|
Minn KT, Fu YC, He S, Dietmann S, George SC, Anastasio MA, Morris SA, Solnica-Krezel L. High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human ESC gastruloid cultures. eLife 2020. [PMID: 33206048 DOI: 10.1101/2020.1101.1122.915777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
During mammalian gastrulation, germ layers arise and are shaped into the body plan while extraembryonic layers sustain the embryo. Human embryonic stem cells, cultured with BMP4 on extracellular matrix micro-discs, reproducibly differentiate into gastruloids, expressing markers of germ layers and extraembryonic cells in radial arrangement. Using single-cell RNA sequencing and cross-species comparisons with mouse, cynomolgus monkey gastrulae, and post-implantation human embryos, we reveal that gastruloids contain cells transcriptionally similar to epiblast, ectoderm, mesoderm, endoderm, primordial germ cells, trophectoderm, and amnion. Upon gastruloid dissociation, single cells reseeded onto micro-discs were motile and aggregated with the same but segregated from distinct cell types. Ectodermal cells segregated from endodermal and extraembryonic but mixed with mesodermal cells. Our work demonstrates that the gastruloid system models primate-specific features of embryogenesis, and that gastruloid cells exhibit evolutionarily conserved sorting behaviors. This work generates a resource for transcriptomes of human extraembryonic and embryonic germ layers differentiated in a stereotyped arrangement.
Collapse
Affiliation(s)
- Kyaw Thu Minn
- Department of Biomedical Engineering, Washington University, St. Louis, United States
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| | - Yuheng C Fu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, United States
| | - Shenghua He
- Department of Computer Science & Engineering, Washington University, St. Louis, United States
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
- Division of Nephrology, Washington University School of Medicine, St. Louis, United States
- Institute for Informatics, Washington University School of Medicine, St. Louis, United States
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, United States
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington University, St. Louis, United States
- Department of Bioengineering, University of Illinois, Urbana-Champaign, United States
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
- Department of Genetics, Washington University School of Medicine, St. Louis, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, United States
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
45
|
Minn KT, Fu YC, He S, Dietmann S, George SC, Anastasio MA, Morris SA, Solnica-Krezel L. High-resolution transcriptional and morphogenetic profiling of cells from micropatterned human ESC gastruloid cultures. eLife 2020; 9:e59445. [PMID: 33206048 PMCID: PMC7728446 DOI: 10.7554/elife.59445] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 11/17/2020] [Indexed: 12/29/2022] Open
Abstract
During mammalian gastrulation, germ layers arise and are shaped into the body plan while extraembryonic layers sustain the embryo. Human embryonic stem cells, cultured with BMP4 on extracellular matrix micro-discs, reproducibly differentiate into gastruloids, expressing markers of germ layers and extraembryonic cells in radial arrangement. Using single-cell RNA sequencing and cross-species comparisons with mouse, cynomolgus monkey gastrulae, and post-implantation human embryos, we reveal that gastruloids contain cells transcriptionally similar to epiblast, ectoderm, mesoderm, endoderm, primordial germ cells, trophectoderm, and amnion. Upon gastruloid dissociation, single cells reseeded onto micro-discs were motile and aggregated with the same but segregated from distinct cell types. Ectodermal cells segregated from endodermal and extraembryonic but mixed with mesodermal cells. Our work demonstrates that the gastruloid system models primate-specific features of embryogenesis, and that gastruloid cells exhibit evolutionarily conserved sorting behaviors. This work generates a resource for transcriptomes of human extraembryonic and embryonic germ layers differentiated in a stereotyped arrangement.
Collapse
Affiliation(s)
- Kyaw Thu Minn
- Department of Biomedical Engineering, Washington UniversitySt. LouisUnited States
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
| | - Yuheng C Fu
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Shenghua He
- Department of Computer Science & Engineering, Washington UniversitySt. LouisUnited States
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Division of Nephrology, Washington University School of MedicineSt. LouisUnited States
- Institute for Informatics, Washington University School of MedicineSt. LouisUnited States
| | - Steven C George
- Department of Biomedical Engineering, University of California, DavisDavisUnited States
| | - Mark A Anastasio
- Department of Biomedical Engineering, Washington UniversitySt. LouisUnited States
- Department of Bioengineering, University of IllinoisUrbana-ChampaignUnited States
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Department of Genetics, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of MedicineSt. LouisUnited States
- Center of Regenerative Medicine, Washington University School of MedicineSt. LouisUnited States
| |
Collapse
|
46
|
Mathiah N, Despin-Guitard E, Stower M, Nahaboo W, Eski ES, Singh SP, Srinivas S, Migeotte I. Asymmetry in the frequency and position of mitosis in the mouse embryo epiblast at gastrulation. EMBO Rep 2020; 21:e50944. [PMID: 33016470 DOI: 10.15252/embr.202050944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/19/2020] [Accepted: 09/09/2020] [Indexed: 01/06/2023] Open
Abstract
At gastrulation, a subpopulation of epiblast cells constitutes a transient posteriorly located structure called the primitive streak, where cells that undergo epithelial-mesenchymal transition make up the mesoderm and endoderm lineages. Mouse embryo epiblast cells were labelled ubiquitously or in a mosaic fashion. Cell shape, packing, organization and division were recorded through live imaging during primitive streak formation. Posterior epiblast displays a higher frequency of rosettes, some of which associate with a central cell undergoing mitosis. Cells at the primitive streak, in particular delaminating cells, undergo mitosis more frequently than other epiblast cells. In pseudostratified epithelia, mitosis takes place at the apical side of the epithelium. However, mitosis is not restricted to the apical side of the epiblast, particularly on its posterior side. Non-apical mitosis occurs specifically in the streak even when ectopically located. Posterior non-apical mitosis results in one or two daughter cells leaving the epiblast layer. Cell rearrangement associated with mitotic cell rounding in posterior epiblast, in particular when non-apical, might thus facilitate cell ingression and transition to a mesenchymal phenotype.
Collapse
Affiliation(s)
| | | | - Matthew Stower
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Wallis Nahaboo
- Université Libre de Bruxelles, IRIBHM, Brussels, Belgium
| | - Elif Sema Eski
- Université Libre de Bruxelles, IRIBHM, Brussels, Belgium
| | | | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | | |
Collapse
|
47
|
Fagotto F. Tissue segregation in the early vertebrate embryo. Semin Cell Dev Biol 2020; 107:130-146. [DOI: 10.1016/j.semcdb.2020.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022]
|
48
|
Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020; 163:103617. [PMID: 32473204 PMCID: PMC7534585 DOI: 10.1016/j.mod.2020.103617] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
During mouse embryonic development a mass of pluripotent epiblast tissue is transformed during gastrulation to generate the three definitive germ layers: endoderm, mesoderm, and ectoderm. During gastrulation, a spatiotemporally controlled sequence of events results in the generation of organ progenitors and positions them in a stereotypical fashion throughout the embryo. Key to the correct specification and differentiation of these cell fates is the establishment of an axial coordinate system along with the integration of multiple signals by individual epiblast cells to produce distinct outcomes. These signaling domains evolve as the anterior-posterior axis is established and the embryo grows in size. Gastrulation is initiated at the posteriorly positioned primitive streak, from which nascent mesoderm and endoderm progenitors ingress and begin to diversify. Advances in technology have facilitated the elaboration of landmark findings that originally described the epiblast fate map and signaling pathways required to execute those fates. Here we will discuss the current state of the field and reflect on how our understanding has shifted in recent years.
Collapse
Affiliation(s)
- Evan S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
49
|
Downs KM. Is extra-embryonic endoderm a source of placental blood cells? Exp Hematol 2020; 89:37-42. [PMID: 32735907 DOI: 10.1016/j.exphem.2020.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/17/2020] [Accepted: 07/24/2020] [Indexed: 11/18/2022]
Abstract
The extra-embryonic hypoblast/visceral endoderm of Placentalia carries out a variety of functions during gestation, including hematopoietic induction. Results of decades-old and recent experiments have provided compelling evidence that, in addition to its inducing properties, hypoblast/visceral endoderm itself is a source of placental blood cells. Those observations that highlight extra-embryonic endoderm's role as an overlooked source of placental blood cells across species are briefly discussed here, with suggestions for future exploration.
Collapse
Affiliation(s)
- Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
50
|
Serrano Nájera G, Weijer CJ. Cellular processes driving gastrulation in the avian embryo. Mech Dev 2020; 163:103624. [PMID: 32562871 PMCID: PMC7511600 DOI: 10.1016/j.mod.2020.103624] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/18/2020] [Accepted: 05/28/2020] [Indexed: 01/18/2023]
Abstract
Gastrulation consists in the dramatic reorganisation of the epiblast, a one-cell thick epithelial sheet, into a multilayered embryo. In chick, the formation of the internal layers requires the generation of a macroscopic convection-like flow, which involves up to 50,000 epithelial cells in the epiblast. These cell movements locate the mesendoderm precursors into the midline of the epiblast to form the primitive streak. There they acquire a mesenchymal phenotype, ingress into the embryo and migrate outward to populate the inner embryonic layers. This review covers what is currently understood about how cell behaviours ultimately cause these morphogenetic events and how they are regulated. We discuss 1) how the biochemical patterning of the embryo before gastrulation creates compartments of differential cell behaviours, 2) how the global epithelial flows arise from the coordinated actions of individual cells, 3) how the cells delaminate individually from the epiblast during the ingression, and 4) how cells move after the ingression following stereotypical migration routes. We conclude by exploring new technical advances that will facilitate future research in the chick model system.
Collapse
Affiliation(s)
- Guillermo Serrano Nájera
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Cornelis J Weijer
- Division of Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| |
Collapse
|