1
|
Liang YL, Hu YX, Li FF, You HM, Chen J, Liang C, Guo ZF, Jing Q. Adaptor protein Src-homology 2 domain containing E (SH2E) deficiency induces heart defect in zebrafish. Acta Pharmacol Sin 2025; 46:404-415. [PMID: 39313516 PMCID: PMC11747093 DOI: 10.1038/s41401-024-01392-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/25/2024] Open
Abstract
Adaptor proteins play crucial roles in signal transduction across diverse signaling pathways. Src-homology 2 domain-containing E (SH2E) is the adaptor protein highly expressed in vascular endothelial cells and myocardium during zebrafish embryogenesis. In this study we investigated the function and mechanisms of SH2E in cardiogenesis. We first analyzed the spatiotemporal expression of SH2E and then constructed zebrafish lines with SH2E deficiency using the CRISPR-Cas9 system. We showed that homozygous mutants developed progressive pericardial edema (PCE), dilated atrium, abnormal atrioventricular looping and thickened atrioventricular wall from 3 days post fertilization (dpf) until death; inducible overexpression of SH2E was able to partially rescue the PCE phenotype. Using transcriptome sequencing analysis, we demonstrated that the MAPK/ERK and NF-κB signaling pathways might be involved in SH2E-deficiency-caused PCE. This study underscores the pivotal role of SH2E in cardiogenesis, and might help to identify innovative diagnostic techniques and therapeutic strategies for congenital heart disease.
Collapse
Affiliation(s)
- Yu-Lai Liang
- Laboratory of Molecular Immunology, State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200438, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yang-Xi Hu
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
- Department of Pharmacy, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Fang-Fang Li
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China.
| | - Hong-Min You
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Jian Chen
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Chun Liang
- Department of Cardiology, Second Affiliated Hospital of Naval Medical University, Shanghai, 200003, China
| | - Zhi-Fu Guo
- Department of Cardiovascular Medicine, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Qing Jing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Innovation Center for Intervention of Chronic Disease and Promotion of Health, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
2
|
Dimasi CG, Darby JR, Holman SL, Quinn M, Meakin AS, Seed M, Wiese MD, Morrison JL. Cardiac growth patterns and metabolism before and after birth in swine: Role of miR in proliferation, hypertrophy and metabolism. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100084. [PMID: 39803591 PMCID: PMC11708124 DOI: 10.1016/j.jmccpl.2024.100084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 01/06/2025]
Abstract
The adult mammalian heart is unable to undergo cardiac repair, limiting potential treatment options after cardiac damage. However, the fetal heart is capable of cardiac repair. In preparation for birth, cardiomyocytes (CMs) undergo major maturational changes that include exit from the cell cycle, hypertrophic growth, and mitochondrial maturation. The timing and regulation of such events in large mammals is not fully understood. In the present study, we aimed to assess this critical CM transition period using pigs as a preclinically relevant model. Left ventricular myocardium from Large White cross Landrace gilts was collected at 91, 98, 106 and 111-113 days gestation (d GA; term = 115d GA) and in piglets at 0-1, 4-5, 14-18, 19-20 days after birth. We found that miR-133a, which has known roles in CM proliferation, was significantly downregulated before birth, before rising postnatally. Likewise, gene expression of PCNA and CDK1 was repressed until birth with a rise postnatally, suggesting a decline in proliferation during late gestation followed by the onset of multinucleation in postnatal life. The timing of the switch in myocardial metabolism was unclear; however, complexes within the electron transport chain and mitochondrial biogenesis followed a similar pattern of decreasing abundance during late gestation and then a rise postnatally. These data suggest that CM maturation events such as cell cycle arrest and mitochondrial maturation occur around birth. These results may prove important to consider for preclinical applications such as the development of new therapeutics for cardiac repair.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Jack R.T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Stacey L. Holman
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Megan Quinn
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Ashley S. Meakin
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Mike Seed
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- The Hospital for Sick Children, Division of Cardiology, Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children, 686 Bay Street, Toronto M5G0A4, Canada
| | - Michael D. Wiese
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Research Institute, The Hospital for Sick Children, 686 Bay Street, Toronto M5G0A4, Canada
| |
Collapse
|
3
|
Chakraborty S, Bhattacharya S, Meyers BA, Sepúlveda MS, Vlachos PP. Evolution of cardiac tissue and flow mechanics in developing Japanese Medaka. PLoS One 2024; 19:e0309018. [PMID: 39186731 PMCID: PMC11346936 DOI: 10.1371/journal.pone.0309018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 08/03/2024] [Indexed: 08/28/2024] Open
Abstract
The effects of pressure drop across cardiac valve cushion regions and endocardial wall strain in the early developmental stages of a teleost species heart are poorly understood. In the presented work, we utilize microscale particle image velocimetry (μPIV) flow measurements of developing medaka hearts from 3 to 14 dpf (n = 5 at each dpf) to quantify the pressure field and endocardial wall strain. Peak pressure drop at the atrioventricular canal (ΔPAVC) and outflow tract (ΔPOFT) show a steady increase with fish age progression. Pressure drops when non-dimensionalized with blood viscosity and heart rate at each dpf are comparable with measurements in zebrafish hearts. Retrograde flows captured at these regions display a negative pressure drop. A novel metric, Endocardial Work (EW), is introduced by analyzing the ΔPAVC-strain curves, which is a non-invasive measure of work required for ventricle filling. EW is a metric that can differentiate between the linear heart stage (< 100 Pa-%), cardiac looped chamber stage (< 300 Pa-%), and the fully formed chamber stage (> 300 Pa-%).
Collapse
Affiliation(s)
- Sreyashi Chakraborty
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Sayantan Bhattacharya
- Department of Mechanical Engineering, University of Maryland, Baltimore County, Baltimore, Maryland, United States of America
| | - Brett Albert Meyers
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Maria S. Sepúlveda
- Department of Forestry & Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Pavlos P. Vlachos
- Department of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
4
|
Männer J. The Functional Significance of Cardiac Looping: Comparative Embryology, Anatomy, and Physiology of the Looped Design of Vertebrate Hearts. J Cardiovasc Dev Dis 2024; 11:252. [PMID: 39195160 DOI: 10.3390/jcdd11080252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024] Open
Abstract
The flow path of vertebrate hearts has a looped configuration characterized by curved (sigmoid) and twisted (chiral) components. The looped heart design is phylogenetically conserved among vertebrates and is thought to represent a significant determinant of cardiac pumping function. It evolves during the embryonic period of development by a process called "cardiac looping". During the past decades, remarkable progress has been made in the uncovering of genetic, molecular, and biophysical factors contributing to cardiac looping. Our present knowledge of the functional consequences of cardiac looping lags behind this impressive progress. This article provides an overview and discussion of the currently available information on looped heart design and its implications for the pumping function. It is emphasized that: (1) looping seems to improve the pumping efficiency of the valveless embryonic heart. (2) bilaterally asymmetric (chiral) looping plays a central role in determining the alignment and separation of the pulmonary and systemic flow paths in the multi-chambered heart of tetrapods. (3) chiral looping is not needed for efficient pumping of the two-chambered hearts of fish. (4) it is the sigmoid curving of the flow path that may improve the pumping efficiency of lower as well as higher vertebrate hearts.
Collapse
Affiliation(s)
- Jörg Männer
- Group Cardio-Embryology, Institute of Anatomy and Cell Biology, UMG, Georg-August-University Goettingen, D-37075 Goettingen, Germany
| |
Collapse
|
5
|
Chen J, Wei Y, Zhou J, Cao X, Yuan R, Lu Y, Guo Y, Shao X, Sun W, Jia M, Chen X. Tributyltin-induced oxidative stress causes developmental damage in the cardiovascular system of zebrafish (Danio rerio). ENVIRONMENTAL RESEARCH 2024; 252:118811. [PMID: 38555090 DOI: 10.1016/j.envres.2024.118811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Tributyltin (TBT) can be used as an antifouling agent with anticorrosive, antiseptic and antifungal properties and is widely used in wood preservation and ship painting. However, it has recently been found that TBT can be harmful to aquatic organisms. In this study, to gain insight into the effects of TBT with respect to the development of the cardiovascular system in zebrafish embryos, zebrafish embryos were exposed to different concentrations of TBT solutions (0.2 μg/L, 1 μg/L, and 2 μg/L) at 2 h post-fertilization (hpf) TBT exposure resulted in decreased hatchability and heart rate, deformed features such as pericardial edema, yolk sac edema, and spinal curvature in zebrafish embryos, and impaired heart development. Expression of cardiac development-related genes (vmhc, myh6, nkx2.5, tbx5a, gata4, tbx2b, nppa) is dysregulated. Transgenic zebrafish Tg (fli1: EGFP) were used to explore the effects of TBT exposure on vascular development. It was found that TBT exposure could lead to impaired development of intersegmental vessels (ISVs), common cardinal vein (CCV), subintestinal vessels (SIVs) and cerebrovascular. The expression of vascular endothelial growth factor (VEGF) signaling pathway-related genes (flt1, flt4, kdr, vegfa) was downregulated. Biochemical indices showed that ROS and MDA levels were significantly elevated and that SOD and CAT activities were significantly reduced. The expression of key genes for prostacyclin synthesis (pla2, ptgs2a, ptgs2b, ptgis, ptgs1) is abnormal. Therefore, it is possible that oxidative stress induced by TBT exposure leads to the blockage of arachidonic acid (AA) production in zebrafish embryos, which affects prostacyclin synthesis and consequently the normal development of the heart and blood vessels in zebrafish embryos.
Collapse
Affiliation(s)
- Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yinyin Wei
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, China
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yaoyajie Lu
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Yi Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xue Shao
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Weidi Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Mengtao Jia
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
| | - Xiuli Chen
- Ecological Environment College, Baotou Teachers' College, Baotou, 014030, China.
| |
Collapse
|
6
|
Li J, Hu C, Zhao B, Li J, Chen L. Proteomic and cardiac dysregulation by representative perfluoroalkyl acids of different chemical speciation during early embryogenesis of zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172000. [PMID: 38552965 DOI: 10.1016/j.scitotenv.2024.172000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/11/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Perfluoroalkyl acids (PFAAs) of different chemical speciation were previously found to cause diverse toxicity. However, the toxicological mechanisms depending on chemical speciation are still largely unknown. In this follow-up study, zebrafish embryos were acutely exposed to only one concentration at 4.67 μM of the acid and salt of representative PFAAs, including perfluorooctanoic acid (PFOA), perfluorobutane carboxylic acid (PFBA), and perfluorobutanesulfonic acid (PFBS), till 96 h post-fertilization (hpf), aiming to gain more mechanistic insights. High-throughput proteomics found that PFAA acid and salt exerted discriminative effects on protein expression pattern. Bioinformatic analyses based on differentially expressed proteins underlined the developmental cardiotoxicity of PFOA acid with regard to cardiac muscle contraction, vascular smooth muscle contraction, adrenergic signaling in cardiomyocytes, and multiple terms related to myocardial contraction. PFOA salt and PFBS acid merely disrupted the cardiac muscle contraction pathway, while cardiac muscle cell differentiation was significantly enriched in PFBA acid-exposed zebrafish larvae. Consistently, under PFAA exposure, especially PFOA and PFBS acid forms, transcriptional levels of key genes for cardiogenesis and the concentrations of troponin and epinephrine associated with myocardial contraction were significantly dysregulated. Moreover, a transgenic line Tg (my17: GFP) expressing green fluorescent protein in myocardial cells was employed to visualize the histopathology of developing heart. PFOA acid concurrently caused multiple deficits in heart morphogenesis and function, which were characterized by the significant increase in sinus venosus and bulbus arteriosus distance (SV-BA distance), the induction of pericardial edema, and the decrease in heart rate, further confirming the stronger toxicity of PFOA acid than the salt counterpart on heart development. Overall, this study highlighted the developmental cardiotoxicity of PFAAs, with potency ranking PFOA > PFBS > PFBA. The acid forms of PFAAs induced stronger cardiac toxicity than their salt counterparts, providing an additional insight into the structure-toxicity relationship.
Collapse
Affiliation(s)
- Jing Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China; Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chenyan Hu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430072, China
| | - Bin Zhao
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Jiali Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lianguo Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
7
|
Incardona JP, Linbo TL, Cameron JR, French BL, Bolton JL, Gregg JL, Donald CE, Hershberger PK, Scholz NL. Biological Responses of Pacific Herring Embryos to Crude Oil Are Quantifiable at Exposure Levels Below Conventional Limits of Quantitation for PAHs in Water and Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19214-19222. [PMID: 37963111 DOI: 10.1021/acs.est.3c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Pacific herring (Clupea pallasii), a cornerstone of marine food webs, generally spawn on marine macroalgae in shallow nearshore areas that are disproportionately at risk from oil spills. Herring embryos are also highly susceptible to toxicity from chemicals leaching from oil stranded in intertidal and subtidal zones. The water-soluble components of crude oil trigger an adverse outcome pathway that involves disruption of the physiological functions of cardiomyocytes in the embryonic herring heart. In previous studies, impaired ionoregulation (calcium and potassium cycling) in response to specific polycyclic aromatic hydrocarbons (PAHs) corresponds to lethal embryolarval heart failure or subtle chamber malformations at the high and low ends of the PAH exposure range, respectively. Sublethal cardiotoxicity, which involves an abnormal outgrowth (ballooning) of the cardiac ventricular chamber soon after hatching, subsequently compromises juvenile heart structure and function, leading to pathological hypertrophy of the ventricle and reduced individual fitness, measured as cardiorespiratory performance. Previous studies have not established a threshold for these sublethal and delayed-in-time effects, even with total (∑)PAH exposures as low as 29 ng/g of wet weight (tissue dose). Here, we extend these earlier findings showing that (1) cyp1a gene expression provides an oil exposure metric that is more sensitive than typical quantitation of PAHs via GC-MS and (2) heart morphometrics in herring embryos provide a similarly sensitive measure of toxic response. Early life stage injury to herring (impaired heart development) thus occurs below the quantitation limits for PAHs in both water and embryonic tissues as a conventional basis for assessing oil-induced losses to coastal marine ecosystems.
Collapse
Affiliation(s)
- John P Incardona
- National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, Seattle, Washington 98112, United States
| | - Tiffany L Linbo
- National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, Seattle, Washington 98112, United States
| | - James R Cameron
- National Oceanic and Atmospheric Administration, Saltwater, Inc., under Contract to Northwest Fisheries Science Center, Seattle, Washington 98112, United States
| | - Barbara L French
- National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, Seattle, Washington 98112, United States
| | - Jennie L Bolton
- National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, Seattle, Washington 98112, United States
| | - Jacob L Gregg
- Marrowstone Marine Field Station, US Geological Survey, Western Fisheries Research Center, Nordland, Washington 98358-9633, United States
| | - Carey E Donald
- Institute of Marine Research, Bergen, Nordnes 5817, Norway
| | - Paul K Hershberger
- Marrowstone Marine Field Station, US Geological Survey, Western Fisheries Research Center, Nordland, Washington 98358-9633, United States
| | - Nathaniel L Scholz
- National Oceanic and Atmospheric Administration, Northwest Fisheries Science Center, Seattle, Washington 98112, United States
| |
Collapse
|
8
|
Huang L, Han F, Huang Y, Liu J, Liao X, Cao Z, Li W. Sphk1 deficiency induces apoptosis and developmental defects and premature death in zebrafish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:737-750. [PMID: 37464180 DOI: 10.1007/s10695-023-01215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/24/2023] [Indexed: 07/20/2023]
Abstract
The sphk1 gene plays a crucial role in cell growth and signal transduction. However, the developmental functions of the sphk1 gene during early vertebrate zebrafish embryo remain not completely understood. In this study, we constructed zebrafish sphk1 mutants through CRISPR/Cas9 to investigate its role in zebrafish embryonic development. Knockout of the sphk1 gene was found to cause abnormal development in zebrafish embryos, such as darkening and atrophy of the head, trunk deformities, pericardial edema, retarded yolk sac development, reduced heart rate, and premature death. The acetylcholinesterase activity was significantly increased after the knockout of sphk1, and some of the neurodevelopmental genes and neurotransmission system-related genes were expressed abnormally. The deletion of sphk1 led to abnormal expression of immune genes, as well as a significant decrease in the number of hematopoietic stem cells and neutrophils. The mRNA levels of cardiac development-related genes were significantly decreased. In addition, cell apoptosis increases in the sphk1 mutants, and the proliferation of head cells decreases. Therefore, our study has shown that the sphk1 is a key gene for zebrafish embryonic survival and regulation of organ development. It deepened our understanding of its physiological function. Our study lays the foundation for investigating the mechanism of the sphk1 gene in early zebrafish embryonic development.
Collapse
Affiliation(s)
- Ling Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Fang Han
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Ying Huang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Jieping Liu
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Jiangxi Key Laboratory of Developmental Biology of Organs, College of Life Sciences, Jinggangshan University, Ji'an, China.
| | - Wanbo Li
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Jimei University, Xiamen, China.
| |
Collapse
|
9
|
Dimasi CG, Darby JRT, Morrison JL. A change of heart: understanding the mechanisms regulating cardiac proliferation and metabolism before and after birth. J Physiol 2023; 601:1319-1341. [PMID: 36872609 PMCID: PMC10952280 DOI: 10.1113/jp284137] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 02/17/2023] [Indexed: 03/07/2023] Open
Abstract
Mammalian cardiomyocytes undergo major maturational changes in preparation for birth and postnatal life. Immature cardiomyocytes contribute to cardiac growth via proliferation and thus the heart has the capacity to regenerate. To prepare for postnatal life, structural and metabolic changes associated with increased cardiac output and function must occur. This includes exit from the cell cycle, hypertrophic growth, mitochondrial maturation and sarcomeric protein isoform switching. However, these changes come at a price: the loss of cardiac regenerative capacity such that damage to the heart in postnatal life is permanent. This is a significant barrier to the development of new treatments for cardiac repair and contributes to heart failure. The transitional period of cardiomyocyte growth is a complex and multifaceted event. In this review, we focus on studies that have investigated this critical transition period as well as novel factors that may regulate and drive this process. We also discuss the potential use of new biomarkers for the detection of myocardial infarction and, in the broader sense, cardiovascular disease.
Collapse
Affiliation(s)
- Catherine G. Dimasi
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health SciencesUniversity of South AustraliaAdelaideSAAustralia
| |
Collapse
|
10
|
Wang Y, Ren Y, Ning X, Li G, Sang N. Environmental exposure to triazole fungicide causes left-right asymmetry defects and contributes to abnormal heart development in zebrafish embryos by activating PPARγ-coupled Wnt/β-catenin signaling pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160286. [PMID: 36403845 DOI: 10.1016/j.scitotenv.2022.160286] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/30/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Triazole fungicides have been widely used all over the world. However, their potential ecological safety and health risks remain unclear, especially their cardiac developmental toxicity. This study systematically investigated whether and how triazole fungicides could activate peroxisome proliferative activity receptor γ (PPARγ) to cause abnormal heart development. Among ten triazole fungicides, difenoconazole (DIF) exhibited the strongest agonistic activity and caused severe pericardial edema in zebrafish embryos, accompanied by a reduction in heart rate, blood flow and cardiac function. In vitro transcriptomic profile implicated that DIF inhibited the Wnt signaling pathway, and in vivo DIF exposure significantly increased the phosphorylation of β-catenin (p = 0.0002) and altered the expression of related genes in zebrafish embryos. Importantly, exposure to DIF could activate PPARγ and inhibit the Wnt/β-catenin signaling pathway, which changed the size of Kupffer's vesicle (KV) (p = 0.02), altered the expression of left-right (LR) asymmetry-related genes, caused cardiac LR asymmetry defect, and eventually led to abnormal heart development. These findings provide evidence for potential developmental toxicity of triazole fungicides and highlight the necessity of assessing their ecological safety and human health risks.
Collapse
Affiliation(s)
- Yue Wang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Ying Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Xia Ning
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| | - Guangke Li
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China.
| | - Nan Sang
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan, Shanxi 030006, PR China
| |
Collapse
|
11
|
Gong H, Du J, Xu J, Yang Y, Lu H, Xiao H. Perfluorononanoate and Perfluorobutane Sulfonate Induce Cardiotoxic Effects in Zebrafish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:2527-2536. [PMID: 35899994 PMCID: PMC9804353 DOI: 10.1002/etc.5447] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/04/2022] [Accepted: 07/22/2022] [Indexed: 05/14/2023]
Abstract
Globally, per- and polyfluoroalkyl substances are common artificial ingredients in industrial and consumer products. Recently, they have been shown to be an emerging human health risk. Perfluorononanoic acid (PFNA)/perfluorononanoate and perfluorobutane sulfonic acid (PFBS)/perfluorobutane sulfonate cause reproductive toxicity and hepatotoxicity, disrupt thyroid functions, and damage embryonic development in zebrafish. However, the cardiotoxic effects of PFNA and PFBS have not been fully established. We found that PFNA and PFBS exposures repress hatchability while increasing malformation and mortality in zebrafish embryos. Hematoxylin and eosin staining as well as assessment of the transgenic zebrafish line Tg(myl7:nDsRed) revealed that exposure of embryos to PFNA increases the occurrence of severe cardiac malformations relative to exposure to PFBS. Moreover, we evaluated the differential expressions of cardiac development-associated genes in response to PFNA and PFBS, which validated the potential cardiotoxic effects, consistent with cardiac dysfunctions. Overall, our findings reveal novel cardiotoxic effects of PFNA and PFBS in zebrafish, implying that they may exert some cardiotoxic effect in humans. To the best of our knowledge, ours is the first study to show that PFNA exerts more severe cardiotoxic effects in zebrafish when compared with PFBS. Based on these findings, studies should evaluate the mechanisms of their cardiotoxic effects. Environ Toxicol Chem 2022;41:2527-2536. © 2022 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Hongjian Gong
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| | - Juan Du
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| | - Jia Xu
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| | - Yuan Yang
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| | - Hui Lu
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| | - Han Xiao
- Clinical Research Center, Wuhan Children's Hospital (Wuhan Medical and Health Center for Women and Children), Tongji Medical CollegeHuazhong University of Science & TechnologyWuhanHubeiPeople's Republic of China
| |
Collapse
|
12
|
Suryanto ME, Saputra F, Kurnia KA, Vasquez RD, Roldan MJM, Chen KHC, Huang JC, Hsiao CD. Using DeepLabCut as a Real-Time and Markerless Tool for Cardiac Physiology Assessment in Zebrafish. BIOLOGY 2022; 11:1243. [PMID: 36009871 PMCID: PMC9405297 DOI: 10.3390/biology11081243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 11/21/2022]
Abstract
DeepLabCut (DLC) is a deep learning-based tool initially invented for markerless pose estimation in mammals. In this study, we explored the possibility of adopting this tool for conducting markerless cardiac physiology assessment in an important aquatic toxicology model of zebrafish (Danio rerio). Initially, high-definition videography was applied to capture heartbeat information at a frame rate of 30 frames per second (fps). Next, 20 videos from different individuals were used to perform convolutional neural network training by labeling the heart chamber (ventricle) with eight landmarks. Using Residual Network (ResNet) 152, a neural network with 152 convolutional neural network layers with 500,000 iterations, we successfully obtained a trained model that can track the heart chamber in a real-time manner. Later, we validated DLC performance with the previously published ImageJ Time Series Analysis (TSA) and Kymograph (KYM) methods. We also evaluated DLC performance by challenging experimental animals with ethanol and ponatinib to induce cardiac abnormality and heartbeat irregularity. The results showed that DLC is more accurate than the TSA method in several parameters tested. The DLC-trained model also detected the ventricle of zebrafish embryos even in the occurrence of heart abnormalities, such as pericardial edema. We believe that this tool is beneficial for research studies, especially for cardiac physiology assessment in zebrafish embryos.
Collapse
Affiliation(s)
- Michael Edbert Suryanto
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ferry Saputra
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Kevin Adi Kurnia
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| | - Ross D. Vasquez
- Department of Pharmacy, Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila 1008, Philippines
| | - Marri Jmelou M. Roldan
- Faculty of Pharmacy, The Graduate School, University of Santo Tomas, Manila 1008, Philippines
| | - Kelvin H.-C. Chen
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Jong-Chin Huang
- Department of Applied Chemistry, National Pingtung University, Pingtung 90003, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
- Research Center for Aquatic Toxicology and Pharmacology, Chung Yuan Christian University, Taoyuan 320314, Taiwan
| |
Collapse
|
13
|
Pentachloronitrobenzene Reduces the Proliferative Capacity of Zebrafish Embryonic Cardiomyocytes via Oxidative Stress. TOXICS 2022; 10:toxics10060299. [PMID: 35736907 PMCID: PMC9231182 DOI: 10.3390/toxics10060299] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 12/10/2022]
Abstract
Pentachloronitrobenzene (PCNB) is an organochlorine protective fungicide mainly used as a soil and seed fungicide. Currently, there are few reports on the toxicity of PCNB to zebrafish embryo. Here, we evaluated the toxicity of PCNB in aquatic vertebrates using a zebrafish model. Exposure of zebrafish embryos to PCNB at concentrations of 0.25 mg/L, 0.5 mg/L, and 0.75 mg/L from 6 hpf to 72 hpf resulted in abnormal embryonic development, including cardiac malformation, pericardial edema, decreased heart rate, decreased blood flow velocity, deposition at yolk sac, shortened body length, and increased distance between venous sinus and arterial bulb (SV-BA). The expression of genes related to cardiac development was disordered. However, due to the unstable embryo status in the 0.75 mg/L exposure concentration group, the effect of PCNB on the expression levels of cardiac-related genes was not concentration-dependent. We found that PCNB increased reactive oxygen species stress levels in zebrafish, increased malondialdehyde (MDA) content and catalase (CAT) activity, and decreased superoxide dismutase (SOD) activity. The increased level of oxidative stress reduced the proliferation ability of zebrafish cardiomyocytes, and the expressions of zebrafish proliferation-related genes such as cdk-2, cdk-6, ccnd1, and ccne1 were significantly down-regulated. Astaxanthin (AST) attenuates PCNB-induced reduction in zebrafish cardiomyocyte proliferation by reducing oxidative stress levels. Our study shows that PCNB can cause severe oxidative stress in zebrafish, thereby reducing the proliferative capacity of cardiomyocytes, resulting in zebrafish cardiotoxicity.
Collapse
|
14
|
de Sena-Tomás C, Aleman AG, Ford C, Varshney A, Yao D, Harrington JK, Saúde L, Ramialison M, Targoff KL. Activation of Nkx2.5 transcriptional program is required for adult myocardial repair. Nat Commun 2022; 13:2970. [PMID: 35624100 PMCID: PMC9142600 DOI: 10.1038/s41467-022-30468-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
The cardiac developmental network has been associated with myocardial regenerative potential. However, the embryonic signals triggered following injury have yet to be fully elucidated. Nkx2.5 is a key causative transcription factor associated with human congenital heart disease and one of the earliest markers of cardiac progenitors, thus it serves as a promising candidate. Here, we show that cardiac-specific RNA-sequencing studies reveal a disrupted embryonic transcriptional profile in the adult Nkx2.5 loss-of-function myocardium. nkx2.5-/- fish exhibit an impaired ability to recover following ventricular apex amputation with diminished dedifferentiation and proliferation. Complex network analyses illuminate that Nkx2.5 is required to provoke proteolytic pathways necessary for sarcomere disassembly and to mount a proliferative response for cardiomyocyte renewal. Moreover, Nkx2.5 targets embedded in these distinct gene regulatory modules coordinate appropriate, multi-faceted injury responses. Altogether, our findings support a previously unrecognized, Nkx2.5-dependent regenerative circuit that invokes myocardial cell cycle re-entry, proteolysis, and mitochondrial metabolism to ensure effective regeneration in the teleost heart.
Collapse
Affiliation(s)
- Carmen de Sena-Tomás
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Angelika G Aleman
- Department of Physiology & Cellular Biophysics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Caitlin Ford
- Department of Genetics & Development, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Akriti Varshney
- Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
- Australian Regenerative Medicine Institute & Systems Biology Institute Australia, Monash University, Clayton, VIC, 3800, Australia
| | - Di Yao
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Jamie K Harrington
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA
| | - Leonor Saúde
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028, Lisboa, Portugal
| | - Mirana Ramialison
- Australian Regenerative Medicine Institute & Systems Biology Institute Australia, Monash University, Clayton, VIC, 3800, Australia
- Murdoch Children's Research Institute & Department of Peadiatrics, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Kimara L Targoff
- Division of Cardiology, Department of Pediatrics, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA.
- Columbia Stem Cell Initiative, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
15
|
Park H, Yun BH, Lim W, Song G. Dinitramine induces cardiotoxicity and morphological alterations on zebrafish embryo development. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 240:105982. [PMID: 34598048 DOI: 10.1016/j.aquatox.2021.105982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/17/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Dinitramine (DN), an herbicide in the dinitroaniline family, is used in agricultural areas to prevent unwanted plant growth. Dinitroaniline herbicides inhibit cell division by preventing microtubulin synthesis. They are strongly absorbed by the soil and can contaminate groundwater; however, the mode of action of these herbicides in non-target organisms remains unclear. In this study, we examined the developmental toxicity of DN in zebrafish embryos exposed to 1.6, 3.2, and 6.4 mg/L DN, compared to embryos exposed to DMSO (control) for 96 h. Visual assessments using transgenic zebrafish (fli1:eGFP) indicated abnormal cardiac development with enlarged ventricles and atria, decreased heartbeats, and impaired cardiac function. Along with cardiac development, vessel formation and angiogenesis were suppressed through activation of the inflammatory response. In addition, exposure to 6.4 mg/L DN for 96 h induced cell death, with upregulation of genes related to apoptosis. Our results showed that DN induced morphological changes and triggered an inflammatory response and apoptotic cell death that can impair embryonic growth and survival, providing an important mechanism of DN in aquatic organisms.
Collapse
Affiliation(s)
- Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Bo Hyun Yun
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Whasun Lim
- Department of Food and Nutrition, Kookmin University, Seoul, 02707, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
16
|
Chakraborty S, Allmon E, Sepúlveda MS, Vlachos PP. Haemodynamic dependence of mechano-genetic evolution of the cardiovascular system in Japanese medaka. J R Soc Interface 2021; 18:20210752. [PMID: 34699728 PMCID: PMC8548083 DOI: 10.1098/rsif.2021.0752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 09/30/2021] [Indexed: 11/12/2022] Open
Abstract
The progression of cardiac gene expression-wall shear stress (WSS) interplay is critical to identifying developmental defects during cardiovascular morphogenesis. However, mechano-genetics from the embryonic to larval stages are poorly understood in vertebrates. We quantified peak WSS in the heart and tail vessels of Japanese medaka from 3 days post fertilization (dpf) to 14 dpf using in vivo micro-particle image velocimetry flow measurements, and in parallel analysed the expression of five cardiac genes (fgf8, hoxb6b, bmp4, nkx2.5, smyd1). Here, we report that WSS in the atrioventricular canal (AVC), ventricular outflow tract (OFT), and the caudal vessels in medaka peak with inflection points at 6 dpf and 10-11 dpf instead of a monotonic trend. Retrograde flows are captured at the AVC and OFT of the medaka heart for the first time. In addition, all genes were upregulated at 3 dpf and 7 dpf, indicating a possible correlation between the two, with the cardiac gene upregulation preceding WSS increase in order to facilitate cardiac wall remodelling.
Collapse
Affiliation(s)
- Sreyashi Chakraborty
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Elizabeth Allmon
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Maria S. Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Pavlos P. Vlachos
- Department of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
17
|
Zhao Y, Chen C, Yun M, Issa T, Lin A, Nguyen TP. Constructing Adult Zebrafish Einthoven's Triangle to Define Electrical Heart Axes. Front Physiol 2021; 12:708938. [PMID: 34366897 PMCID: PMC8342992 DOI: 10.3389/fphys.2021.708938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
Zebrafish is a popular high-throughput vertebrate model to study human cardiac electrophysiology, arrhythmias, and myopathies. One reason for this popularity is the purported striking similarities between zebrafish and human electrocardiograms (ECGs). However, zebrafish electrical heart axes were unknown. It is impossible to define heart axis based on single-lead ECG because determination of an electrical heart axis in the frontal plane requires the use of the hexaxial reference system (or Cabrera system) derived from Einthoven’s triangle. Construction of Einthoven’s triangle requires simultaneous ECG recording from at least two Einthoven bipolar leads. Therefore, we systematically constructed the first zebrafish Einthoven’s triangle by simultaneous bipolar dual-lead ECG recording to determine for the first time the three frontal electrical heart axes using the Cabrera system. Comparing zebrafish with human Einthoven’s triangle reveals that their normal frontal electrical axes were reflections of each other across 0° in the Cabrera system. The responsible mechanisms involve zebrafish vs. human cardiac activation propagating in the same direction along the heart horizontal axis but in opposite directions along the heart longitudinal axis. The same observations are true for zebrafish vs. human cardiac repolarization. This study marks a technical breakthrough in the first bipolar dual-lead ECG recording in live adult zebrafish to construct for the first time zebrafish Einthoven’s triangle. This first systematic analysis of the actual differences and similarities between normal adult zebrafish and human Einthoven’s triangles unmasked differences and similarities in the underlying cardiac axis mechanisms. Insights of the live adult zebrafish main heart axis and its three frontal electrical heart axes provide critical contextual framework to interpret the clinical relevance of the adult zebrafish heart as model for human cardiac electrophysiology.
Collapse
Affiliation(s)
- Yali Zhao
- The Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Connie Chen
- The Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Morgan Yun
- The Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Thomas Issa
- The Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Andrew Lin
- The Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| | - Thao P Nguyen
- The Cardiovascular Research Laboratory, Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
18
|
Murphy LB, Santos-Ledo A, Dhanaseelan T, Eley L, Burns D, Henderson DJ, Chaudhry B. Exercise, programmed cell death and exhaustion of cardiomyocyte proliferation in aging zebrafish. Dis Model Mech 2021; 14:dmm049013. [PMID: 34296752 PMCID: PMC8319546 DOI: 10.1242/dmm.049013] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/01/2021] [Indexed: 12/26/2022] Open
Abstract
Exercise may ameliorate the eventual heart failure inherent in human aging. In this study, we use zebrafish to understand how aging and exercise affect cardiomyocyte turnover and myocardial remodelling. We show that cardiomyocyte proliferation remains constant throughout life but that onset of fibrosis is associated with a late increase in apoptosis. These findings correlate with decreases in voluntary swimming activity, critical swimming speed (Ucrit), and increases in biomarkers of cardiac insufficiency. The ability to respond to severe physiological stress is also impaired with age. Although young adult fish respond with robust cardiomyocyte proliferation in response to enforced swimming, this is dramatically impaired in older fish and served by a smaller proliferation-competent cardiomyocyte population. Finally, we show that these aging responses can be improved through increased activity throughout adulthood. However, despite improvement in Ucrit and the proliferative response to stress, the size of the proliferating cardiomyocyte population remained unchanged. The zebrafish heart models human aging and reveals the important trade-off between preserving cardiovascular fitness through exercise at the expense of accelerated fibrotic change.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bill Chaudhry
- Biosciences Institute, Faculty of Biomedical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
19
|
Smith KA, Uribe V. Getting to the Heart of Left-Right Asymmetry: Contributions from the Zebrafish Model. J Cardiovasc Dev Dis 2021; 8:64. [PMID: 34199828 PMCID: PMC8230053 DOI: 10.3390/jcdd8060064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/28/2022] Open
Abstract
The heart is laterally asymmetric. Not only is it positioned on the left side of the body but the organ itself is asymmetric. This patterning occurs across scales: at the organism level, through left-right axis patterning; at the organ level, where the heart itself exhibits left-right asymmetry; at the cellular level, where gene expression, deposition of matrix and proteins and cell behaviour are asymmetric; and at the molecular level, with chirality of molecules. Defective left-right patterning has dire consequences on multiple organs; however, mortality and morbidity arising from disrupted laterality is usually attributed to complex cardiac defects, bringing into focus the particulars of left-right patterning of the heart. Laterality defects impact how the heart integrates and connects with neighbouring organs, but the anatomy of the heart is also affected because of its asymmetry. Genetic studies have demonstrated that cardiac asymmetry is influenced by left-right axis patterning and yet the heart also possesses intrinsic laterality, reinforcing the patterning of this organ. These inputs into cardiac patterning are established at the very onset of left-right patterning (formation of the left-right organiser) and continue through propagation of left-right signals across animal axes, asymmetric differentiation of the cardiac fields, lateralised tube formation and asymmetric looping morphogenesis. In this review, we will discuss how left-right asymmetry is established and how that influences subsequent asymmetric development of the early embryonic heart. In keeping with the theme of this issue, we will focus on advancements made through studies using the zebrafish model and describe how its use has contributed considerable knowledge to our understanding of the patterning of the heart.
Collapse
Affiliation(s)
- Kelly A. Smith
- Department of Physiology, The University of Melbourne, Parkville, VIC 3010, Australia;
| | | |
Collapse
|
20
|
Singleman C, Holtzman NG. PCB and TCDD derived embryonic cardiac defects result from a novel AhR pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105794. [PMID: 33662880 DOI: 10.1016/j.aquatox.2021.105794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 01/30/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
Polychlorinated biphenyls (PCBs) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) are environmental contaminants known to impact cardiac development, a key step in the embryonic development of most animals. To date, little is understood of the molecular mechanism driving the observed cardiac defects in exposed fishes. The literature shows PCB & TCDD derived cardiac defects are concurrent with, but not caused by, expression of cyp1A, due to activation of the aryl hydrocarbon receptor (AhR) gene activation pathway. However, in this study, detailed visualization of fish hearts exposed to PCBs and TCDD show that, in addition to a failure of cardiac looping in early heart development, the inner endocardial lining of the heart fails to maintain proper cell adhesion and tissue integrity. The resulting gap between the endocardium and myocardium in both zebrafish and Atlantic sturgeon suggested functional faults in endothelial adherens junction formation. Thus, we explored the molecular mechanism triggering cardiac defects using immunohistochemistry to identify the location and phosphorylation state of key regulatory and adhesion molecules. We hypothesized that PCB and TCDD activates AhR, phosphorylating Src, which then phosphorylates the endothelial adherens junction protein, VEcadherin. When phosphorylated, VEcadherin dimers, found in the endocardium and vasculature, separate, reducing tissue integrity. In zebrafish, treatment with PCB and TCDD contaminants leads to higher phosphorylation of VEcadherin in cardiac tissue suggesting that these cells have reduced connectivity. Small molecule inhibition of Src phosphorylation prevents contaminant stimulated phosphorylation of VEcadherin and rescues both cardiac function and gross morphology. Atlantic sturgeon hearts show parallels to contaminant exposed zebrafish cardiac phenotype at the tissue level. These data suggest that the mechanism for PCB and TCDD action in the heart is, in part, distinct from the canonical mechanism described in the literature and that cardiac defects are impacted by this nongenomic mechanism.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd, Queens NY 11367-1597, USA; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, 65-30 Kissena Blvd, Queens NY 11367-1597, USA; The Graduate Center, City University of New York, 365 Fifth Avenue, New York, NY 10016, USA.
| |
Collapse
|
21
|
Mousavi SE, Purser GJ, Patil JG. Embryonic Onset of Sexually Dimorphic Heart Rates in the Viviparous Fish, Gambusia holbrooki. Biomedicines 2021; 9:165. [PMID: 33567532 PMCID: PMC7915484 DOI: 10.3390/biomedicines9020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022] Open
Abstract
In fish, little is known about sex-specific differences in physiology and performance of the heart and whether these differences manifest during development. Here for the first time, the sex-specific heart rates during embryogenesis of Gambusia holbrooki, from the onset of the heart rates (HRs) to just prior to parturition, was investigated using light cardiogram. The genetic sex of the embryos was post-verified using a sex-specific genetic marker. Results reveal that heart rates and resting time significantly increase (p < 0.05) with progressive embryonic development. Furthermore, both ventricular and atrial frequencies of female embryos were significantly higher (p < 0.05) than those of their male sibs at the corresponding developmental stages and remained so at all later developmental stages (p < 0.05). In concurrence, the heart rate and ventricular size of the adult females were also significantly (p < 0.05) higher and larger respectively than those of males. Collectively, the results suggest that the cardiac sex-dimorphism manifests as early as late-organogenesis and persists through adulthood in this species. These findings suggest that the cardiac measurements can be employed to non-invasively sex the developing embryos, well in advance of when their phenotypic sex is discernible. In addition, G. holbrooki could serve as a better model to study comparative vertebrate cardiovascular development as well as to investigate anthropogenic and climatic impacts on heart physiology of this species, that may be sex influenced.
Collapse
Affiliation(s)
- Seyed Ehsan Mousavi
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - G. John Purser
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
| | - Jawahar G. Patil
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Taroona, TAS 7053, Australia;
- Inland Fisheries Service, New Norfolk, TAS 7140, Australia
| |
Collapse
|
22
|
Endothelial mechanotransduction in cardiovascular development and regeneration: emerging approaches and animal models. CURRENT TOPICS IN MEMBRANES 2021; 87:131-151. [PMID: 34696883 PMCID: PMC9113082 DOI: 10.1016/bs.ctm.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Living cells are exposed to multiple mechanical stimuli from the extracellular matrix or from surrounding cells. Mechanoreceptors are molecules that display status changes in response to mechanical stimulation, transforming physical cues into biological responses to help the cells adapt to dynamic changes of the microenvironment. Mechanical stimuli are responsible for shaping the tridimensional development and patterning of the organs in early embryonic stages. The development of the heart is one of the first morphogenetic events that occur in embryos. As the circulation is established, the vascular system is exposed to constant shear stress, which is the force created by the movement of blood. Both spatial and temporal variations in shear stress differentially modulate critical steps in heart development, such as trabeculation and compaction of the ventricular wall and the formation of the heart valves. Zebrafish embryos are small, transparent, have a short developmental period and allow for real-time visualization of a variety of fluorescently labeled proteins to recapitulate developmental dynamics. In this review, we will highlight the application of zebrafish models as a genetically tractable model for investigating cardiovascular development and regeneration. We will introduce our approaches to manipulate mechanical forces during critical stages of zebrafish heart development and in a model of vascular regeneration, as well as advances in imaging technologies to capture these processes at high resolution. Finally, we will discuss the role of molecules of the Plexin family and Piezo cation channels as major mechanosensors recently implicated in cardiac morphogenesis.
Collapse
|
23
|
Wei Y, Meng Y, Huang Y, Liu Z, Zhong K, Ma J, Zhang W, Li Y, Lu H. Development toxicity and cardiotoxicity in zebrafish from exposure to iprodione. CHEMOSPHERE 2021; 263:127860. [PMID: 32829219 DOI: 10.1016/j.chemosphere.2020.127860] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Iprodione is a highly effective broad-spectrum fungicide commonly used for early disease control in fruit trees and vegetables. Pesticides often flow into watercourses due to rainfall, causing toxicity in non-target organisms, eventually entering the food chain. However, little information is available in the current literature about the toxicity of iprodione to cardiac development. The present study aimed to investigate the effect of iprodione on early embryonic development and its cardiotoxicity in aquatic animals, using zebrafish as a model. At 6-72 h post-fertilization (hpf), zebrafish were exposed to concentrations of 15 mg/L, 20 mg/L, and 25 mg/L (72 h-LC50 = 21.15 mg/L). We found that exposure to iprodione resulted in yolk edema, increased mortality, and shortened body length in zebrafish embryos. In addition, iprodione was also found to induce edema in the pericardium of zebrafish, decrease heart rate, and cause the failure of cardiac cyclization. Exposure to iprodione significantly increased the accumulation of ROS and altered the activity of antioxidant enzymes (MDA, CAT) in zebrafish embryos. Moreover, iprodione induced changes in the transcription levels of heart developmental-related genes and apoptosis-related genes. In addition, Astaxanthin (antioxidant) can partially rescue the toxic phenotype caused by iprodione. Apoptosis-related genes and heart developmental-related genes were rescued after astaxanazin treatment. The results suggest that iprodione induces developmental and cardiac toxicity in zebrafish embryos, which provides new evidence of the toxicity of iprodione to organisms in aquatic ecosystems and assessing human health risks.
Collapse
Affiliation(s)
- You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zehui Liu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Weixin Zhang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yibao Li
- College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China.
| |
Collapse
|
24
|
Singleman C, Zimmerman A, Harrison E, Roy NK, Wirgin I, Holtzman NG. Toxic Effects of Polychlorinated Biphenyl Congeners and Aroclors on Embryonic Growth and Development. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:187-201. [PMID: 33118622 DOI: 10.1002/etc.4908] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/19/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Polychlorinated biphenyls (PCBs) cause significant health and reproductive problems in many vertebrates. Exposure during embryogenesis likely leads to defects in organ development, compromising survival and growth through adulthood. The present study identifies the impact of PCBs on the embryonic development of key organs and resulting consequences on survival and growth. Zebrafish embryos were treated with individual PCB congeners (126 or 104) or one of 4 Aroclor mixtures (1016, 1242, 1254, or 1260) and analyzed for changes in gross embryonic morphology. Specific organs were assessed for defects during embryonic development, using a variety of transgenic zebrafish to improve organ visualization. Resulting larvae were grown to adulthood while survival and growth were assayed. Embryonic gross development on PCB treatment was abnormal, with defects presenting in a concentration-dependent manner in the liver, pancreas, heart, and blood vessel organization. Polychlorinated biphenyl 126 treatment resulted in the most consistently severe and fatal phenotypes, whereas treatments with PCB 104 and Aroclors resulted in a range of more subtle organ defects. Survival of fish was highly variable although the growth rates of surviving fish were relatively normal, suggesting that maturing PCB-treated fish that survive develop compensatory strategies needed to reach adulthood. Life span analyses of fish from embryogenesis through adulthood, as in the present study, are scarce but important for the field because they help identify foci for further studies. Environ Toxicol Chem 2021;40:187-201. © 2020 SETAC.
Collapse
Affiliation(s)
- Corinna Singleman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| | - Alison Zimmerman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Elise Harrison
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
| | - Nirmal K Roy
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Isaac Wirgin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
| | - Nathalia G Holtzman
- Department of Biology, Queens College, City University of New York, Queens, New York, USA
- The Graduate Center, City University of New York, New York, New York, USA
| |
Collapse
|
25
|
Mef2c factors are required for early but not late addition of cardiomyocytes to the ventricle. Dev Biol 2020; 470:95-107. [PMID: 33245870 PMCID: PMC7819464 DOI: 10.1016/j.ydbio.2020.11.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 11/15/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
During heart formation, the heart grows and undergoes dramatic morphogenesis to achieve efficient embryonic function. Both in fish and amniotes, much of the growth occurring after initial heart tube formation arises from second heart field (SHF)-derived progenitor cell addition to the arterial pole, allowing chamber formation. In zebrafish, this process has been extensively studied during embryonic life, but it is unclear how larval cardiac growth occurs beyond 3 days post-fertilisation (dpf). By quantifying zebrafish myocardial growth using live imaging of GFP-labelled myocardium we show that the heart grows extensively between 3 and 5 dpf. Using methods to assess cell division, cellular development timing assay and Kaede photoconversion, we demonstrate that proliferation, CM addition, and hypertrophy contribute to ventricle growth. Mechanistically, we show that reduction in Mef2c activity (mef2ca+/-;mef2cb-/-), downstream or in parallel with Nkx2.5 and upstream of Ltbp3, prevents some CM addition and differentiation, resulting in a significantly smaller ventricle by 3 dpf. After 3 dpf, however, CM addition in mef2ca+/-;mef2cb-/- mutants recovers to a normal pace, and the heart size gap between mutants and their siblings diminishes into adulthood. Thus, as in mice, there is an early time window when SHF contribution to the myocardium is particularly sensitive to loss of Mef2c activity.
Collapse
|
26
|
Dimitriadi A, Geladakis G, Koumoundouros G. 3D heart morphological changes in response to developmental temperature in zebrafish: More than ventricle roundness. J Morphol 2020; 282:80-87. [PMID: 33617037 DOI: 10.1002/jmor.21283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/11/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022]
Abstract
A new, three-dimensional geometric morphometric approach was assessed to study the effect of developmental temperature on fish heart shape utilizing geometric morphometrics of three-dimensional landmarks captured on digitally reconstructed zebrafish hearts. This study reports the first three-dimensional analysis of the fish heart and demonstrates significant shape modifications occurring after three developmental temperature treatments (TD = 24, 28 or 32°C) at two distinct developmental stages (juvenile and adult fish). Elevation of TD induced ventricle roundness in juveniles, males and females. Furthermore, significant differences that have not been described so far in heart morphometric indices (i.e., ventricle sphericity, bulbus arteriosus elongation and relative location, heart asymmetry) were identified. Sex proved to be a significant regulating factor of heart shape plasticity in response to TD. This methodology offers unique benefits by providing a more precise representation of heart shape changes in response to developmental temperature that are otherwise not discernable with the previously described two-dimensional methods. Our work provides the first evidence of three-dimensional shape alterations of the zebrafish heart adding to the emerging rationale of temperature-driven plastic responses of global warming and seasonal temperature disturbances in wild fish populations and in other ectothermic vertebrates as well (amphibians and reptiles).
Collapse
|
27
|
Huang Y, Ma J, Meng Y, Wei Y, Xie S, Jiang P, Wang Z, Chen X, Liu Z, Zhong K, Cao Z, Liao X, Xiao J, Lu H. Exposure to Oxadiazon-Butachlor causes cardiac toxicity in zebrafish embryos. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:114775. [PMID: 32504889 DOI: 10.1016/j.envpol.2020.114775] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Oxadiazon-Butachlor (OB) is a widely used herbicide for controlling most annual weeds in rice fields. However, its potential toxicity in aquatic organisms has not been evaluated so far. We used the zebrafish embryo model to assess the toxicity of OB, and found that it affected early cardiac development and caused extensive cardiac damage. Mechanistically, OB significantly increased oxidative stress in the embryos by inhibiting antioxidant enzymes that resulted in excessive production of reactive oxygen species (ROS), eventually leading to cardiomyocyte apoptosis. In addition, OB also inhibited the WNT signaling pathway and downregulated its target genes includinglef1, axin2 and β-catenin. Reactivation of this pathway by the Wnt activator BML-284 and the antioxidant astaxanthin rescued the embryos form the cardiotoxic effects of OB, indicating that oxidative stress, and inhibition of WNT target genes are the mechanistic basis of OB-induced damage in zebrafish. Our study shows that OB exposure causes cardiotoxicity in zebrafish embryos and may be potentially toxic to other aquatic life and even humans.
Collapse
Affiliation(s)
- Yong Huang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Jinze Ma
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Yunlong Meng
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - You Wei
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Shuling Xie
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ping Jiang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Ziqin Wang
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Xiaobei Chen
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zehui Liu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Keyuan Zhong
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China
| | - Zigang Cao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China
| | - Juhua Xiao
- Department of Ultrasound, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, 330006, Jiangxi, China
| | - Huiqiang Lu
- Center for Drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, 341000, Jiangxi, China; Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Ji'an, 343009, Jiangxi, China.
| |
Collapse
|
28
|
Shrestha R, Lieberth J, Tillman S, Natalizio J, Bloomekatz J. Using Zebrafish to Analyze the Genetic and Environmental Etiologies of Congenital Heart Defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1236:189-223. [PMID: 32304074 DOI: 10.1007/978-981-15-2389-2_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Congenital heart defects (CHDs) are among the most common human birth defects. However, the etiology of a large proportion of CHDs remains undefined. Studies identifying the molecular and cellular mechanisms that underlie cardiac development have been critical to elucidating the origin of CHDs. Building upon this knowledge to understand the pathogenesis of CHDs requires examining how genetic or environmental stress changes normal cardiac development. Due to strong molecular conservation to humans and unique technical advantages, studies using zebrafish have elucidated both fundamental principles of cardiac development and have been used to create cardiac disease models. In this chapter we examine the unique toolset available to zebrafish researchers and how those tools are used to interrogate the genetic and environmental contributions to CHDs.
Collapse
Affiliation(s)
- Rabina Shrestha
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Jaret Lieberth
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Savanna Tillman
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | - Joseph Natalizio
- Department of Biology, University of Mississippi, Oxford, MS, USA
| | | |
Collapse
|
29
|
Lombardo VA, Heise M, Moghtadaei M, Bornhorst D, Männer J, Abdelilah-Seyfried S. Morphogenetic control of zebrafish cardiac looping by Bmp signaling. Development 2019; 146:dev.180091. [PMID: 31628109 DOI: 10.1242/dev.180091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 10/15/2019] [Indexed: 12/23/2022]
Abstract
Cardiac looping is an essential and highly conserved morphogenetic process that places the different regions of the developing vertebrate heart tube into proximity of their final topographical positions. High-resolution 4D live imaging of mosaically labelled cardiomyocytes reveals distinct cardiomyocyte behaviors that contribute to the deformation of the entire heart tube. Cardiomyocytes acquire a conical cell shape, which is most pronounced at the superior wall of the atrioventricular canal and contributes to S-shaped bending. Torsional deformation close to the outflow tract contributes to a torque-like winding of the entire heart tube between its two poles. Anisotropic growth of cardiomyocytes based on their positions reinforces S-shaping of the heart. During cardiac looping, bone morphogenetic protein pathway signaling is strongest at the future superior wall of the atrioventricular canal. Upon pharmacological or genetic inhibition of bone morphogenetic protein signaling, myocardial cells at the superior wall of the atrioventricular canal maintain cuboidal cell shapes and S-shaped bending is impaired. This description of cellular rearrangements and cardiac looping regulation may also be relevant for understanding the etiology of human congenital heart defects.
Collapse
Affiliation(s)
- Verónica A Lombardo
- Instituto de Biología Molecular y Celular de Rosario, Consejo Nacional de Investigaciones Científicas y Técnicas and Universidad Nacional de Rosario, 2000 Rosario, Argentina .,Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, 2000 Rosario, Argentina
| | - Melina Heise
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany
| | - Motahareh Moghtadaei
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany.,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Dorothee Bornhorst
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany.,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| | - Jörg Männer
- Institute of Anatomy and Embryology, UMG, Göttingen University, D-37075 Göttingen, Germany
| | - Salim Abdelilah-Seyfried
- Institute of Molecular Biology, Hannover Medical School, D-30625 Hannover, Germany .,Institute of Biochemistry and Biology, Potsdam University, D-14476 Potsdam, Germany
| |
Collapse
|
30
|
Sarantis P, Gaitanaki C, Beis D. Ventricular remodeling of single-chambered myh6 -/- adult zebrafish hearts occurs via a hyperplastic response and is accompanied by elastin deposition in the atrium. Cell Tissue Res 2019; 378:279-288. [PMID: 31129720 DOI: 10.1007/s00441-019-03044-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
Abstract
Zebrafish (Danio rerio) is widely used as an animal model to understand the pathophysiology of cardiovascular diseases. Here, we present the adult cardiac phenotype of weak atrium, myh6-/-, which carry mutations in the zebrafish atrial myosin heavy chain. Homozygous mutants survive to adulthood and are fertile despite their initial weak atrial beat. In adult mutants, the atrium remains hypoplastic and shows elastin deposition while mutant ventricles exhibit increased size. In mammals, hypertrophy is the most common mechanism resulting in cardiomegaly. Using immunohistochemistry and confocal microscopy to measure cardiomyocyte cell size, density and proliferation, we show that the enlargement of the myh6-/- ventricle is predominantly due to hyperplasia. However, we identified similar transcriptional profiles to the mammalian hypertrophy response via RT-PCR of the hyperplastic ventricles. Furthermore, we show activation of the ER-stress pathway by western blot analysis. In conclusion, we can assume, based on our model, that molecular signaling pathways associated with hypertrophy in mammals, in combination with ER-stress activation, result in hyperplasia in zebrafish. In addition, to our knowledge, this is the first time to report elastin deposition in the atrium.
Collapse
Affiliation(s)
- Panagiotis Sarantis
- Zebrafish Disease Models lab, Center for Clinical Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece
- Department of Animal & Human Physiology, School of Biology, National and Kapodistrian University of Athens, University Campus, 157 84, Athens, Greece
| | - Catherine Gaitanaki
- Department of Animal & Human Physiology, School of Biology, National and Kapodistrian University of Athens, University Campus, 157 84, Athens, Greece
| | - Dimitris Beis
- Zebrafish Disease Models lab, Center for Clinical Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, 11527, Athens, Greece.
| |
Collapse
|
31
|
Schulz A, Brendler J, Blaschuk O, Landgraf K, Krueger M, Ricken AM. Non-pathological Chondrogenic Features of Valve Interstitial Cells in Normal Adult Zebrafish. J Histochem Cytochem 2019; 67:361-373. [PMID: 30620237 DOI: 10.1369/0022155418824083] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the heart, unidirectional blood flow depends on proper heart valve function. As, in mammals, regulatory mechanisms of early heart valve and bone development are shown to contribute to adult heart valve pathologies, we used the animal model zebrafish (ZF, Danio rerio) to investigate the microarchitecture and differentiation of cardiac valve interstitial cells in the transition from juvenile (35 days) to end of adult breeding (2.5 years) stages. Of note, light microscopy and immunohistochemistry revealed major differences in ZF heart valve microarchitecture when compared with adult mice. We demonstrate evidence for rather chondrogenic features of valvular interstitial cells by histological staining and immunodetection of SOX-9, aggrecan, and type 2a1 collagen. Collagen depositions are enriched in a thin layer at the atrial aspect of atrioventricular valves and the ventricular aspect of bulboventricular valves, respectively. At the ultrastructural level, the collagen fibrils are lacking obvious periodicity and orientation throughout the entire valve.
Collapse
Affiliation(s)
- Alina Schulz
- Institute of Anatomy, Faculty of Medicine.,University of Leipzig, Leipzig, Germany
| | - Jana Brendler
- Institute of Anatomy, Faculty of Medicine.,University of Leipzig, Leipzig, Germany
| | - Orest Blaschuk
- Division of Urology, Department of Surgery, McGill University, Montreal, Québec, Canada.,University of Leipzig, Leipzig, Germany
| | - Kathrin Landgraf
- Center for Pediatric Research Leipzig, University Hospital for Children & Adolescents and Integrated Research and Treatment Centre Adiposity Diseases.,University of Leipzig, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Faculty of Medicine.,University of Leipzig, Leipzig, Germany
| | - Albert M Ricken
- Institute of Anatomy, Faculty of Medicine.,University of Leipzig, Leipzig, Germany
| |
Collapse
|
32
|
Gardner LD, Peck KA, Goetz GW, Linbo TL, Cameron J, Scholz NL, Block BA, Incardona JP. Cardiac remodeling in response to embryonic crude oil exposure involves unconventional NKX family members and innate immunity genes. J Exp Biol 2019; 222:jeb.205567. [DOI: 10.1242/jeb.205567] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/04/2019] [Indexed: 01/08/2023]
Abstract
Cardiac remodeling results from both physiological and pathological stimuli. Compared to mammals, fish hearts show a broader array of remodeling changes in response to environmental influences, providing exceptional models for dissecting the molecular and cellular bases of cardiac remodeling. We recently characterized a form of pathological remodeling in juvenile pink salmon (Oncorhynchus gorbuscha) in response to crude oil exposure during embryonic cardiogenesis. In the absence of overt pathology (cardiomyocyte death or inflammatory infiltrate), cardiac ventricles in exposed fish showed altered shape, reduced thickness of compact myocardium, and hypertrophic changes in spongy, trabeculated myocardium. Here we used RNA sequencing to characterize molecular pathways underlying these defects. In juvenile ventricular cardiomyocytes, antecedent embryonic oil exposure led to dose-dependent up-regulation of genes involved in innate immunity and two NKX homeobox transcription factors not previously associated with cardiomyocytes, nkx2.3 and nkx3.3. Absent from mammalian genomes, the latter is largely uncharacterized. In zebrafish embryos nkx3.3 demonstrated a potent effect on cardiac morphogenesis, equivalent to nkx2.5, the primary transcription factor associated with ventricular cardiomyocyte identity. The role of nkx3.3 in heart growth is potentially linked to the unique regenerative capacity of fish and amphibians. Moreover, these findings support a cardiomyocyte-intrinsic role for innate immune response genes in pathological hypertrophy. This study demonstrates how an expanding mechanistic understanding of environmental pollution impacts – i.e., the chemical perturbation of biological systems – can ultimately yield new insights into fundamental biological processes.
Collapse
Affiliation(s)
- Luke D. Gardner
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - Karen A. Peck
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Giles W. Goetz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Tiffany L. Linbo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - James Cameron
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Nathaniel L. Scholz
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Barbara A. Block
- Hopkins Marine Station, Department of Biology, Stanford University, Pacific Grove, CA 93950, USA
| | - John P. Incardona
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
33
|
Lock MC, Tellam RL, Botting KJ, Wang KCW, Selvanayagam JB, Brooks DA, Seed M, Morrison JL. The role of miRNA regulation in fetal cardiomyocytes, cardiac maturation and the risk of heart disease in adults. J Physiol 2018; 596:5625-5640. [PMID: 29785790 PMCID: PMC6265572 DOI: 10.1113/jp276072] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/15/2018] [Indexed: 12/14/2022] Open
Abstract
Myocardial infarction is a primary contributor towards the global burden of cardiovascular disease. Rather than repairing the existing damage of myocardial infarction, current treatments only address the symptoms of the disease and reducing the risk of a secondary infarction. Cardiac regenerative capacity is dependent on cardiomyocyte proliferation, which concludes soon after birth in humans and precocial species such as sheep. Human fetal cardiac tissue has some ability to repair following tissue damage, whereas a fully matured human heart has minimal capacity for cellular regeneration. This is in contrast to neonatal mice and adult zebrafish hearts, which retain the ability to undergo cardiomyocyte proliferation and can regenerate cardiac tissue after birth. In mice and zebrafish models, microRNAs (miRNAs) have been implicated in the regulation of genes involved in cardiac cell cycle progression and regeneration. However, the significance of miRNA regulation in cardiomyocyte proliferation for humans and other large mammals, where the timing of heart development in relation to birth is similar, remains unclear. miRNAs may be valuable targets for therapies that promote cardiac repair after injury. Therefore, elucidating the role of specific miRNAs in large animals, where heart development closely resembles that of humans, remains vitally important for identifying therapeutic targets that may be translated into clinical practice focused on tissue repair.
Collapse
Affiliation(s)
- Mitchell C. Lock
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Ross L. Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Kimberley J. Botting
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Kimberley C. W. Wang
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
- School of Human SciencesUniversity of Western AustraliaCrawleyWA 6009Australia
| | - Joseph B. Selvanayagam
- Cardiac Imaging Research Group, Department of Heart HealthSouth Australian Health & Medical Research Institute, and Flinders UniversityGPO Box 2100AdelaideSA 5001Australia
| | - Doug A. Brooks
- Mechanisms in Cell Biology and Disease Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| | - Mike Seed
- Hospital for Sick Children, Division of Cardiology555 University AvenueTorontoON M5G 1X8Canada
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy & Medical SciencesUniversity of South AustraliaAdelaideSA 5001Australia
| |
Collapse
|
34
|
Dvornikov AV, de Tombe PP, Xu X. Phenotyping cardiomyopathy in adult zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:116-125. [PMID: 29884423 PMCID: PMC6269218 DOI: 10.1016/j.pbiomolbio.2018.05.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/26/2018] [Accepted: 05/29/2018] [Indexed: 12/21/2022]
Abstract
Hypertrophic cardiomyopathy (HCM) is usually manifested by increased myofilament Ca2+ sensitivity, excessive contractility, and impaired relaxation. In contrast, dilated cardiomyopathy (DCM) originates from insufficient sarcomere contractility and reduced cardiac pump function, subsequently resulting in heart failure. The zebrafish has emerged as a new model of human cardiomyopathy with high-throughput screening, which will facilitate the discovery of novel genetic factors and the development of new therapies. Given the small hearts of zebrafish, better phenotyping tools are needed to discern different types of cardiomyopathy, such as HCM and DCM. This article reviews the existing models of cardiomyopathy, available morphologic and functional methods, and current understanding of the different types of cardiomyopathy in adult zebrafish.
Collapse
Affiliation(s)
- Alexey V Dvornikov
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| | - Pieter P de Tombe
- University of Illinois at Chicago, Department of Physiology and Biophysics, Chicago, IL, USA; Magdi Yacoub Institute, Cardiac Biophysics Division, Harefield, UK; Imperial College, Heart and Lung Institute, London, UK; Freiburg University, Institute for Experimental Cardiovascular Medicine, Germany
| | - Xiaolei Xu
- Department of Biochemistry and Molecular Biology, Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
35
|
Using Zebrafish for Investigating the Molecular Mechanisms of Drug-Induced Cardiotoxicity. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1642684. [PMID: 30363733 PMCID: PMC6180974 DOI: 10.1155/2018/1642684] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/31/2018] [Accepted: 08/18/2018] [Indexed: 01/09/2023]
Abstract
Over the last decade, the zebrafish (Danio rerio) has emerged as a model organism for cardiovascular research. Zebrafish have several advantages over mammalian models. For instance, the experimental cost of using zebrafish is comparatively low; the embryos are transparent, develop externally, and have high fecundity making them suitable for large-scale genetic screening. More recently, zebrafish embryos have been used for the screening of a variety of toxic agents, particularly for cardiotoxicity testing. Zebrafish has been shown to exhibit physiological responses that are similar to mammals after exposure to medicinal drugs including xenobiotics, hormones, cancer drugs, and also environmental pollutants, including pesticides and heavy metals. In this review, we provided a summary for recent studies that have used zebrafish to investigate the molecular mechanisms of drug-induced cardiotoxicity. More specifically, we focused on the techniques that were exploited by us and others for cardiovascular toxicity assessment and described several microscopic imaging and analysis protocols that are being used for the estimation of a variety of cardiac hemodynamic parameters.
Collapse
|
36
|
Shifatu O, Glasshagel-Chilson S, Nelson HM, Patel P, Tomamichel W, Higginbotham C, Evans PK, Lafontant GS, Burns AR, Lafontant PJ. Heart Development, Coronary Vascularization and Ventricular Maturation in a Giant Danio ( Devario malabaricus). J Dev Biol 2018; 6:jdb6030019. [PMID: 30037066 PMCID: PMC6162710 DOI: 10.3390/jdb6030019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 12/17/2022] Open
Abstract
Giant danios (genus Devario), like zebrafish, are teleosts belonging to the danioninae subfamily of cyprinids. Adult giant danios are used in a variety of investigations aimed at understanding cellular and physiological processes, including heart regeneration. Despite their importance, little is known about development and growth in giant danios, or their cardiac and coronary vessels development. To address this scarcity of knowledge, we performed a systematic study of a giant danio (Devario malabaricus), focusing on its cardiac development, from the segmentation period to ten months post-fertilization. Using light and scanning electron microscopy, we documented that its cardiovascular development and maturation proceed along well defined dynamic and conserved morphogenic patterns. The overall size and cardiovascular expansion of this species was significantly impacted by environmental parameters such as rearing densities. The coronary vasculature began to emerge in the late larval stage. More importantly, we documented two possible loci of initiation of the coronary vasculature in this species, and compared the emergence of the coronaries to that of zebrafish and gourami. This is the first comprehensive study of the cardiac growth in a Devario species, and our findings serve as an important reference for further investigations of cardiac biology using this species.
Collapse
Affiliation(s)
- Olubusola Shifatu
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | | | - Hannah M Nelson
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Purva Patel
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Wendy Tomamichel
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Clay Higginbotham
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | - Paula K Evans
- Department of Biology, DePauw University, Greencastle, IN 46135, USA.
| | | | - Alan R Burns
- College of Optometry, University of Houston, Houston, TX 77204, USA.
| | | |
Collapse
|
37
|
Xing Q, Huynh V, Parolari TG, Maurer-Morelli CV, Peixoto N, Wei Q. Zebrafish larvae heartbeat detection from body deformation in low resolution and low frequency video. Med Biol Eng Comput 2018; 56:2353-2365. [PMID: 29967932 DOI: 10.1007/s11517-018-1863-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 06/17/2018] [Indexed: 12/23/2022]
Abstract
Zebrafish (Danio rerio) is a powerful animal model used in many areas of genetics and disease research. Despite its advantages for cardiac research, the heartbeat pattern of zebrafish larvae under different stress conditions is not well documented quantitatively. Several effective automated heartbeat detection methods have been developed to reduce the workload for larva heartbeat analysis. However, most require complex experimental setups and necessitate direct observation of the larva heart. In this paper, we propose the Zebrafish Heart Rate Automatic Method (Z-HRAM), which detects and tracks the heartbeats of immobilized, ventrally positioned zebrafish larvae without direct larva heart observation. Z-HRAM tracks localized larva body deformation that is highly correlated with heart movement. Multiresolution dense optical flow-based motion tracking and principal component analysis are used to identify heartbeats. Here, we present results of Z-HRAM on estimating heart rate from video recordings of seizure-induced larvae, which were of low resolution (1024 × 760) and low frame rate (3 to 4 fps). Heartbeats detected from Z-HRAM were shown to correlate reliably with those determined through corresponding electrocardiogram and manual video inspection. We conclude that Z-HRAM is a robust, computationally efficient, and easily applicable tool for studying larva cardiac function in general laboratory conditions. Graphical abstract Flowchart of the automatic zebrafish heartbeat detection.
Collapse
Affiliation(s)
- Qi Xing
- Department of Computer Science, George Mason University, Fairfax, VA, USA
| | - Victor Huynh
- Bioengineering Department, George Mason University, Fairfax, VA, USA
| | - Thales Guimaraes Parolari
- Department of Medical Genetics, School of Medical Sciences, University of Campinas, Campinas, Brazil
| | | | | | - Qi Wei
- Bioengineering Department, George Mason University, Fairfax, VA, USA.
| |
Collapse
|
38
|
Dimitriadi A, Beis D, Arvanitidis C, Adriaens D, Koumoundouros G. Developmental temperature has persistent, sexually dimorphic effects on zebrafish cardiac anatomy. Sci Rep 2018; 8:8125. [PMID: 29802254 PMCID: PMC5970236 DOI: 10.1038/s41598-018-25991-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 04/23/2018] [Indexed: 11/08/2022] Open
Abstract
Over the next century, climate change of anthropogenic origin is a major threat to global biodiversity. We show here that developmental temperature can have significant effects on zebrafish cardiac anatomy and swimming performance. Zebrafish embryos were subjected to three developmental temperature treatments (TD = 24, 28 or 32 °C) up to metamorphosis and then all maintained under common conditions (28 °C) to adulthood. We found that developmental temperature affected cardiac anatomy of juveniles and adults even eight months after the different thermal treatments had been applied. The elevation of TD induced a significant increase of the ventricle roundness in juvenile (10% increase) and male (22% increase), but not in female zebrafish. The aerobic exercise performance of adult zebrafish was significantly decreased as TD elevated from 24 to 32 °C. Gene expression analysis that was performed at the end of the temperature treatments revealed significant up-regulation of nppa, myh7 and mybpc3 genes at the colder temperature. Our work provides the first evidence for a direct link between developmental temperature and cardiac form at later life-stages. Our results also add to the emerging rationale for understanding the potential effects of global warming on how fish will perform in their natural environment.
Collapse
Affiliation(s)
| | - Dimitris Beis
- Developmental Biology, Biomedical Research Foundation Academy of Athens, Athens, Greece
| | - Christos Arvanitidis
- Institute for Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Heraklion, Crete, Greece
| | - Dominique Adriaens
- Research Group Evolutionary Morphology of Vertebrates, Ghent University, Gent, Belgium
| | | |
Collapse
|
39
|
Roy NK, Candelmo A, DellaTorre M, Chambers RC, Nádas A, Wirgin I. Characterization of AHR2 and CYP1A expression in Atlantic sturgeon and shortnose sturgeon treated with coplanar PCBs and TCDD. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2018; 197:19-31. [PMID: 29427830 PMCID: PMC5855079 DOI: 10.1016/j.aquatox.2018.01.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 05/25/2023]
Abstract
Atlantic sturgeon and shortnose sturgeon co-occur in many estuaries along the Atlantic Coast of North America. Both species are protected under the U.S. Endangered Species Act and internationally on the IUCN Red list and by CITES. Early life-stages of both sturgeons may be exposed to persistent aromatic hydrocarbon contaminants such as PCBs and PCDD/Fs which are at high levels in the sediments of impacted spawning rivers. Our objective was to compare the PCBs and TCDD sensitivities of both species with those of other fishes and to determine if environmental concentrations of these contaminants approach those that induce toxicity to their young life-stages under controlled laboratory conditions. Because our previous studies suggested that young life-stages of North American sturgeons are among the more sensitive of fishes to coplanar PCB and TCDD-induced toxicities, we were interested in identifying the molecular bases of this vulnerability. It is known that activation of the aryl hydrocarbon receptor 2 (AHR2) in fishes mediates most toxicities to these contaminants and transcriptional activation of xenobiotic metabolizing enzymes such as cytochrome P4501A (CYP1A). Previous studies demonstrated that structural and functional variations in AHRs are the bases for differing sensitivities of several vertebrate taxa to aromatic hydrocarbons. Therefore, in this study we characterized AHR2 and its expression in both sturgeons as an initial step in understanding the mechanistic bases of their sensitivities to these contaminants. We also used CYP1A expression as an endpoint to develop Toxicity Equivalency Factors (TEFs) for these sturgeons. We found that critical amino acid residues in the ligand binding domain of AHR2 in both sturgeons were identical to those of the aromatic hydrocarbon-sensitive white sturgeon, and differed from the less sensitive lake sturgeon. AHR2 expression was induced by TCDD (up to 6-fold) and by three of four tested coplanar PCB congeners (3-5-fold) in Atlantic sturgeon, but less so in shortnose sturgeon. We found that expression of AHR2 and CYP1A mRNA significantly covaried after exposure to TCDD and PCB77, PCB81, PCB126, but not PCB169 in both sturgeons. We also determined TEFs for the four coplanar PCBs in shortnose sturgeon based on comparison of CYP1A mRNA expression across all doses. Surprisingly, the TEFs for all four coplanar PCBs in shortnose sturgeon were much higher (6.4-162 times) than previously adopted for fishes by the WHO.
Collapse
Affiliation(s)
- Nirmal K Roy
- Department of Environmental Medicine, NYU School of Medicine, United States
| | - Allison Candelmo
- Department of Environmental Medicine, NYU School of Medicine, United States; Northeast Fisheries Science Center, NOAA Fisheries, United States
| | - Melissa DellaTorre
- Department of Environmental Medicine, NYU School of Medicine, United States
| | | | - Arthur Nádas
- Department of Environmental Medicine, NYU School of Medicine, United States
| | - Isaac Wirgin
- Department of Environmental Medicine, NYU School of Medicine, United States.
| |
Collapse
|
40
|
Kinking and Torsion Can Significantly Improve the Efficiency of Valveless Pumping in Periodically Compressed Tubular Conduits. Implications for Understanding of the Form-Function Relationship of Embryonic Heart Tubes. J Cardiovasc Dev Dis 2017; 4:jcdd4040019. [PMID: 29367548 PMCID: PMC5753120 DOI: 10.3390/jcdd4040019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/14/2017] [Accepted: 11/15/2017] [Indexed: 01/01/2023] Open
Abstract
Valveless pumping phenomena (peristalsis, Liebau-effect) can generate unidirectional fluid flow in periodically compressed tubular conduits. Early embryonic hearts are tubular conduits acting as valveless pumps. It is unclear whether such hearts work as peristaltic or Liebau-effect pumps. During the initial phase of its pumping activity, the originally straight embryonic heart is subjected to deforming forces that produce bending, twisting, kinking, and coiling. This deformation process is called cardiac looping. Its function is traditionally seen as generating a configuration needed for establishment of correct alignments of pulmonary and systemic flow pathways in the mature heart of lung-breathing vertebrates. This idea conflicts with the fact that cardiac looping occurs in all vertebrates, including gill-breathing fishes. We speculate that looping morphogenesis may improve the efficiency of valveless pumping. To test the physical plausibility of this hypothesis, we analyzed the pumping performance of a Liebau-effect pump in straight and looped (kinked) configurations. Compared to the straight configuration, the looped configuration significantly improved the pumping performance of our pump. This shows that looping can improve the efficiency of valveless pumping driven by the Liebau-effect. Further studies are needed to clarify whether this finding may have implications for understanding of the form-function relationship of embryonic hearts.
Collapse
|
41
|
Perrichon P, Grosell M, Burggren WW. Heart Performance Determination by Visualization in Larval Fishes: Influence of Alternative Models for Heart Shape and Volume. Front Physiol 2017; 8:464. [PMID: 28725199 PMCID: PMC5495860 DOI: 10.3389/fphys.2017.00464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/16/2017] [Indexed: 11/13/2022] Open
Abstract
Understanding cardiac function in developing larval fishes is crucial for assessing their physiological condition and overall health. Cardiac output measurements in transparent fish larvae and other vertebrates have long been made by analyzing videos of the beating heart, and modeling this structure using a conventional simple prolate spheroid shape model. However, the larval fish heart changes shape during early development and subsequent maturation, but no consideration has been made of the effect of different heart geometries on cardiac output estimation. The present study assessed the validity of three different heart models (the "standard" prolate spheroid model as well as a cylinder and cone tip + cylinder model) applied to digital images of complete cardiac cycles in larval mahi-mahi and red drum. The inherent error of each model was determined to allow for more precise calculation of stroke volume and cardiac output. The conventional prolate spheroid and cone tip + cylinder models yielded significantly different stroke volume values at 56 hpf in red drum and from 56 to 104 hpf in mahi. End-diastolic and stroke volumes modeled by just a simple cylinder shape were 30-50% higher compared to the conventional prolate spheroid. However, when these values of stroke volume multiplied by heart rate to calculate cardiac output, no significant differences between models emerged because of considerable variability in heart rate. Essentially, the conventional prolate spheroid shape model provides the simplest measurement with lowest variability of stroke volume and cardiac output. However, assessment of heart function-especially if stroke volume is the focus of the study-should consider larval heart shape, with different models being applied on a species-by-species and developmental stage-by-stage basis for best estimation of cardiac output.
Collapse
Affiliation(s)
- Prescilla Perrichon
- Developmental Integrative Biology Research Cluster, Department of Biological Sciences, University of North TexasDenton, TX, United States
| | - Martin Grosell
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of MiamiMiami, FL, United States
| | - Warren W. Burggren
- Developmental Integrative Biology Research Cluster, Department of Biological Sciences, University of North TexasDenton, TX, United States
| |
Collapse
|
42
|
Stevanovic M, Gasic S, Pipal M, Blahova L, Brkic D, Neskovic N, Hilscherova K. Toxicity of clomazone and its formulations to zebrafish embryos (Danio rerio). AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 188:54-63. [PMID: 28458150 DOI: 10.1016/j.aquatox.2017.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 04/06/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
Herbicides are the most widely used group of pesticides but after reaching water bodies they are able to cause adverse effects on non-target organisms. Different formulations using the same active ingredient are frequently available, which raises the issue of potential influence of different formulation types on herbicide toxicity. The present study evaluated the toxicity and teratogenic effects of the active ingredient clomazone and its two formulations (Rampa® EC and GAT Cenit 36 CS, both containing 360g a.i./l of clomazone) on zebrafish embryos. The crucial difference between the two formulation types is the way of active substance release. This investigation is the first report on zebrafish embryotoxicity of both clomazone and its formulations. The technical active ingredient and formulations caused mortality and diverse teratogenic effects, showing different levels of toxicity. The LC50 values for the technical ingredient, Rampa® EC and GAT Cenit 36 CS were 61.4, 9.6 and 92.5mg a.i./l, respectively. Spontaneous movements in 22 hpf embryos decreased under exposure to both the technical ingredient and formulations. A significant number of underdeveloped embryos was detected after exposure to clomazone and Rampa® EC, while no underdevelopment was noted in embryos exposed to GAT Cenit 36 CS. Exposure to the technical ingredient and formulations led also to a series of morphological changes and interfered with the growth of zebrafish embryos. The EC50 based on detection of edemas, spine and tail tip deformations and gas bladder absence (120hpf) was 12.1, 10.1 and 24.1mg/l for technical clomazone, Rampa® EC and GAT Cenit 36 CS, while teratogenicity index (TI) based on LC50/EC50 ratio was 5.1, 1 and 3.8, respectively. The data in this study showed that the emulsifiable concentrate formulation (Rampa® EC) caused statistically significantly higher toxicity, and the aqueous capsule suspension (GAT Cenit 36 CS) lower toxicity than technical clomazone. It indicates that different formulations with the same active ingredient may have different environmental impacts, which is why risk assessment based only on active ingredient toxicity might not be sufficient in terms of preventing formulation effects on the environment.
Collapse
Affiliation(s)
- Marija Stevanovic
- Institute for Pesticides and Environmental Protection, Banatska 31b, 11000 Belgrade, Serbia
| | - Slavica Gasic
- Institute for Pesticides and Environmental Protection, Banatska 31b, 11000 Belgrade, Serbia
| | - Marek Pipal
- Research Center for Toxic Compounds in Environment, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Lucie Blahova
- Research Center for Toxic Compounds in Environment, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Dragica Brkic
- Institute for Pesticides and Environmental Protection, Banatska 31b, 11000 Belgrade, Serbia
| | - Nesko Neskovic
- Institute for Pesticides and Environmental Protection, Banatska 31b, 11000 Belgrade, Serbia
| | - Klara Hilscherova
- Research Center for Toxic Compounds in Environment, Kamenice 753/5, 62500 Brno, Czech Republic.
| |
Collapse
|
43
|
O'Reilly-Pol T, Kniepkamp K, Johnson SL. Three-Dimensional Printed Fish Graders: A Tool to Rapidly and Reliably Size Select Zebrafish. Zebrafish 2017; 14:280-283. [PMID: 28287927 PMCID: PMC5466055 DOI: 10.1089/zeb.2016.1414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research into adult zebrafish often requires fish to be of a specific size. Currently, fish must be individually measured to achieve this goal. Here, we design and utilize fish graders to quickly sort fish by width. We characterize graders individually for the length of fish they discriminate between and we also analyze graders in pairs to define the range of lengths for a retained population of fish. We note that a 1 mm increase of fish width increases fish length by 6.2-7.2 mm. We provide the schematics to print a series of eight retention widths, and note that graders of any desired retention width can easily be printed by slightly modifying our design files.
Collapse
Affiliation(s)
- Thomas O'Reilly-Pol
- Department of Genetics, Washington University in St. Louis , St. Louis, Missouri
| | - Kyle Kniepkamp
- Department of Genetics, Washington University in St. Louis , St. Louis, Missouri
| | - Stephen L Johnson
- Department of Genetics, Washington University in St. Louis , St. Louis, Missouri
| |
Collapse
|
44
|
Rasouli SJ, Stainier DYR. Regulation of cardiomyocyte behavior in zebrafish trabeculation by Neuregulin 2a signaling. Nat Commun 2017; 8:15281. [PMID: 28485381 PMCID: PMC5477525 DOI: 10.1038/ncomms15281] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/15/2017] [Indexed: 12/16/2022] Open
Abstract
Trabeculation is crucial for cardiac muscle growth in vertebrates. This process requires the Erbb2/4 ligand Neuregulin (Nrg), secreted by the endocardium, as well as blood flow/cardiac contractility. Here, we address two fundamental, yet unresolved, questions about cardiac trabeculation: why does it initially occur in the ventricle and not the atrium, and how is it modulated by blood flow/contractility. Using loss-of-function approaches, we first show that zebrafish Nrg2a is required for trabeculation, and using a protein-trap line, find that it is expressed in both cardiac chambers albeit with different spatiotemporal patterns. Through gain-of-function experiments, we show that atrial cardiomyocytes can also respond to Nrg2a signalling, suggesting that the cardiac jelly, which remains prominent in the atrium, represents a barrier to Erbb2/4 activation. Furthermore, we find that blood flow/contractility is required for Nrg2a expression, and that while non-contractile hearts fail to trabeculate, non-contractile cardiomyocytes are also competent to respond to Nrg2a/Erbb2 signalling. Cardiac trabeculae (which are sponge-like muscular structures) form mostly as a result of cardiomyocyte (CM) delamination in zebrafish. Here, the authors identify Nrg2a in zebrafish as a key regulator of trabeculation, and atrial and non-contractile CMs also respond to Nrg2a despite not forming trabeculae.
Collapse
Affiliation(s)
- S Javad Rasouli
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
45
|
|
46
|
Brown DR, Samsa LA, Qian L, Liu J. Advances in the Study of Heart Development and Disease Using Zebrafish. J Cardiovasc Dev Dis 2016; 3. [PMID: 27335817 PMCID: PMC4913704 DOI: 10.3390/jcdd3020013] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Animal models of cardiovascular disease are key players in the translational medicine pipeline used to define the conserved genetic and molecular basis of disease. Congenital heart diseases (CHDs) are the most common type of human birth defect and feature structural abnormalities that arise during cardiac development and maturation. The zebrafish, Danio rerio, is a valuable vertebrate model organism, offering advantages over traditional mammalian models. These advantages include the rapid, stereotyped and external development of transparent embryos produced in large numbers from inexpensively housed adults, vast capacity for genetic manipulation, and amenability to high-throughput screening. With the help of modern genetics and a sequenced genome, zebrafish have led to insights in cardiovascular diseases ranging from CHDs to arrhythmia and cardiomyopathy. Here, we discuss the utility of zebrafish as a model system and summarize zebrafish cardiac morphogenesis with emphasis on parallels to human heart diseases. Additionally, we discuss the specific tools and experimental platforms utilized in the zebrafish model including forward screens, functional characterization of candidate genes, and high throughput applications.
Collapse
Affiliation(s)
- Daniel R. Brown
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leigh Ann Samsa
- Department of Cell Biology and Physiology; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Li Qian
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jiandong Liu
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; (D.R.B.); (L.Q.)
- McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: ; Tel.: +1-919-962-0326; Fax: +1-919- 843-2063
| |
Collapse
|
47
|
Abstract
As the processes of embryogenesis become increasingly well understood, there is growing interest in the development that occurs at later, postembryonic stages. Postembryonic development holds tremendous potential for discoveries of both fundamental and translational importance. Zebrafish, which are small, rapidly and externally developing, and which boast a wealth of genetic resources, are an outstanding model of vertebrate postembryonic development. Nonetheless, there are specific challenges posed by working with zebrafish at these stages, and this chapter is meant to serve as a primer for those working with larval and juvenile zebrafish. Since accurate staging is critical for high-quality results and experimental reproducibility, we outline best practices for reporting postembryonic developmental progress. Emphasizing the importance of accurate staging, we present new data showing that rates of growth and size-stage relationships can differ even between wild-type strains. Finally, since rapid and uniform development is particularly critical when working at postembryonic stages, we briefly describe methods that we use to achieve high rates of growth and developmental uniformity through postembryonic stages in both wild-type and growth-compromised zebrafish.
Collapse
Affiliation(s)
- S K McMenamin
- University of Massachusetts, Lowell, MA, United States; University of Washington, Seattle, WA, United States
| | - M N Chandless
- University of Washington, Seattle, WA, United States
| | - D M Parichy
- University of Washington, Seattle, WA, United States
| |
Collapse
|
48
|
Very low embryonic crude oil exposures cause lasting cardiac defects in salmon and herring. Sci Rep 2015; 5:13499. [PMID: 26345607 PMCID: PMC4561892 DOI: 10.1038/srep13499] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 07/28/2015] [Indexed: 12/25/2022] Open
Abstract
The 1989 Exxon Valdez disaster exposed embryos of pink salmon and Pacific herring to crude oil in shoreline spawning habitats throughout Prince William Sound, Alaska. The herring fishery collapsed four years later. The role of the spill, if any, in this decline remains one of the most controversial unanswered questions in modern natural resource injury assessment. Crude oil disrupts excitation-contraction coupling in fish heart muscle cells, and we show here that salmon and herring exposed as embryos to trace levels of crude oil grow into juveniles with abnormal hearts and reduced cardiorespiratory function, the latter a key determinant of individual survival and population recruitment. Oil exposure during cardiogenesis led to specific defects in the outflow tract and compact myocardium, and a hypertrophic response in spongy myocardium, evident in juveniles 7 to 9 months after exposure. The thresholds for developmental cardiotoxicity were remarkably low, suggesting the scale of the Exxon Valdez impact in shoreline spawning habitats was much greater than previously appreciated. Moreover, an irreversible loss of cardiac fitness and consequent increases in delayed mortality in oil-exposed cohorts may have been important contributors to the delayed decline of pink salmon and herring stocks in Prince William Sound.
Collapse
|
49
|
Cooper TK, Spitsbergen JM. Valvular and Mural Endocardiosis in Aging Zebrafish (Danio rerio). Vet Pathol 2015; 53:504-9. [DOI: 10.1177/0300985815594853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Endocardiosis or myxomatous degeneration of the cardiac valves is a well-described age-related change in humans and dogs. Lesions consist of polypoid nodular proliferations of loose extracellular matrix and valvular interstitial cells, most commonly affecting the mitral valve. This entity has not been previously described in fish. Herein we report the appearance, location, and occurrence of valvular and mural endocardiosis in a retrospective survey of aging laboratory zebrafish. Endocardiosis was present in 59 of 777 fish (7.59%), most commonly affecting the sinoatrial (34 fish; 57.6%) and atrioventricular (33 fish; 55.9%) valves. Lesions were more common in fish raised in recirculating water systems and fed commercial diets (52/230 fish; 22.6%) versus flow-through systems with fish fed semi-purified diets (4/234; 1.71%). Lesions were overrepresented in fish heterozygous for a mutant smoothened allele (34/61 fish, 55.7% vs 17/168, 10.1% wild type). There was no association between endocardiosis and intestinal carcinoids. Valvular endocardiosis is a significant age- and husbandry-related background finding in zebrafish and should be considered in the design and interpretation of research studies.
Collapse
Affiliation(s)
- T. K. Cooper
- Penn State Hershey Medical Center, Departments of Comparative Medicine and Pathology, Hershey, PA, USA
| | | |
Collapse
|
50
|
Matrone G, Wilson KS, Mullins JJ, Tucker CS, Denvir MA. Temporal cohesion of the structural, functional and molecular characteristics of the developing zebrafish heart. Differentiation 2015; 89:117-27. [PMID: 26095446 DOI: 10.1016/j.diff.2015.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Revised: 04/06/2015] [Accepted: 05/10/2015] [Indexed: 11/25/2022]
Abstract
Heart formation is a complex, dynamic and highly coordinated process of molecular, morphogenetic and functional factors with each interacting and contributing to formation of the mature organ. Cardiac abnormalities in early life can be lethal in mammals but not in the zebrafish embryo which has been widely used to study the developing heart. While early cardiac development in the zebrafish has been well characterized, functional changes during development and how these relate to architectural, cellular and molecular aspects of development have not been well described previously. To address this we have carefully characterised cardiac structure, function, cardiomyocyte proliferation and cardiac-specific gene expression between 48 and 120 hpf in the zebrafish. We show that the zebrafish heart increases in volume and changes shape significantly between 48 and 72 hpf accompanied by a 40% increase in cardiomyocyte number. Between 96 and 120 hpf, while external heart expansion slows, there is rapid formation of a mature and extensive trabecular network within the ventricle chamber. While ejection fraction does not change during the course of development other determinants of contractile function increase significantly particularly between 72 and 96 hpf leading to an increase in cardinal vein blood flow. This study has revealed a number of novel aspects of cardiac developmental dynamics with striking temporal orchestration of structure and function within the first few days of development. These changes are associated with changes in expression of developmental and maturational genes. This study provides important insights into the complex temporal relationship between structure and function of the developing zebrafish heart.
Collapse
Affiliation(s)
- Gianfranco Matrone
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom.
| | - Kathryn S Wilson
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - John J Mullins
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Carl S Tucker
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| | - Martin A Denvir
- University of Edinburgh/British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|