1
|
Wang H, Liu X, Liu Y, Yang C, Ye Y, Yu X, Sheng N, Zhang S, Mao B, Ma P. The E3 ubiquitin ligase RNF220 maintains hindbrain Hox expression patterns through regulation of WDR5 stability. eLife 2024; 13:RP94657. [PMID: 39526890 PMCID: PMC11554307 DOI: 10.7554/elife.94657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The spatial and temporal linear expression of Hox genes establishes a regional Hox code, which is crucial for the antero-posterior (A-P) patterning, segmentation, and neuronal circuit development of the hindbrain. RNF220, an E3 ubiquitin ligase, is widely involved in neural development via targeting of multiple substrates. Here, we found that the expression of Hox genes in the pons was markedly up-regulated at the late developmental stage (post-embryonic day E15.5) in Rnf220-/- and Rnf220+/- mouse embryos. Single-nucleus RNA sequencing (RNA-seq) analysis revealed different Hox de-repression profiles in different groups of neurons, including the pontine nuclei (PN). The Hox pattern was disrupted and the neural circuits were affected in the PN of Rnf220+/- mice. We showed that this phenomenon was mediated by WDR5, a key component of the TrxG complex, which can be polyubiquitinated and degraded by RNF220. Intrauterine injection of WDR5 inhibitor (WDR5-IN-4) and genetic ablation of Wdr5 in Rnf220+/- mice largely recovered the de-repressed Hox expression pattern in the hindbrain. In P19 embryonal carcinoma cells, the retinoic acid-induced Hox expression was further stimulated by Rnf220 knockdown, which can also be rescued by Wdr5 knockdown. In short, our data suggest a new role of RNF220/WDR5 in Hox pattern maintenance and pons development in mice.
Collapse
Affiliation(s)
- Huishan Wang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Xingyan Liu
- Academy of Mathematics and Systems Science, Chinese Academy of ScienceBeijingChina
- School of Mathematical Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Yamin Liu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Chencheng Yang
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Yaxin Ye
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Kunming College of Life Science, University of Chinese Academy of SciencesKunmingChina
| | - Xiaomei Yu
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Nengyin Sheng
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Animal Models and Human Disease Mechanisms of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Shihua Zhang
- Academy of Mathematics and Systems Science, Chinese Academy of ScienceBeijingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of SciencesHangzhouChina
| | - Bingyu Mao
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- National Resource Center for Non-Human Primates, Kunming Primate Research Center and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of SciencesKunmingChina
| | - Pengcheng Ma
- Key Laboratory of Genetic Evolution and Animal Models, Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| |
Collapse
|
2
|
Butts JC, Wu SR, Durham MA, Dhindsa RS, Revelli JP, Ljungberg MC, Saulnier O, McLaren ME, Taylor MD, Zoghbi HY. A single-cell transcriptomic map of the developing Atoh1 lineage identifies neural fate decisions and neuronal diversity in the hindbrain. Dev Cell 2024; 59:2171-2188.e7. [PMID: 39106860 DOI: 10.1016/j.devcel.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 07/09/2024] [Indexed: 08/09/2024]
Abstract
Proneural transcription factors establish molecular cascades to orchestrate neuronal diversity. One such transcription factor, Atonal homolog 1 (Atoh1), gives rise to cerebellar excitatory neurons and over 30 distinct nuclei in the brainstem critical for hearing, breathing, and balance. Although Atoh1 lineage neurons have been qualitatively described, the transcriptional programs that drive their fate decisions and the full extent of their diversity remain unknown. Here, we analyzed single-cell RNA sequencing and ATOH1 DNA binding in Atoh1 lineage neurons of the developing mouse hindbrain. This high-resolution dataset identified markers for specific brainstem nuclei and demonstrated that transcriptionally heterogeneous progenitors require ATOH1 for proper migration. Moreover, we identified a sizable population of proliferating unipolar brush cell progenitors in the mouse Atoh1 lineage, previously described in humans as the origin of one medulloblastoma subtype. Collectively, our data provide insights into the developing mouse hindbrain and markers for functional assessment of understudied neuronal populations.
Collapse
Affiliation(s)
- Jessica C Butts
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA.
| | - Sih-Rong Wu
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mark A Durham
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA; Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ryan S Dhindsa
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jean-Pierre Revelli
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - M Cecilia Ljungberg
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada; Genomics and Development of Childhood Cancers, Institut Curie, PSL University, 75005 Paris, France; INSERM U830, Cancer Heterogeneity Instability and Plasticity, Institut Curie, PSL University, 75005 Paris, France; SIREDO: Care, Innovation and Research for Children, Adolescents and Young Adults with Cancer, Institut Curie, 75005 Paris, France
| | - Madison E McLaren
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumor Research Centre, The Hospital for Sick Children, Toronto, ON, Canada; Department of Surgery, Department of Laboratory Medicine and Pathobiology, and Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, USA; Texas Children's Cancer and Hematology Center, Houston, TX 77030, USA; Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Huda Y Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Wellik DM. Hox genes and patterning the vertebrate body. Curr Top Dev Biol 2024; 159:1-27. [PMID: 38729674 DOI: 10.1016/bs.ctdb.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The diversity of vertebrate body plans is dizzying, yet stunning for the many things they have in common. Vertebrates have inhabited virtually every part of the earth from its coldest to warmest climates. They locomote by swimming, flying, walking, slithering, or climbing, or combinations of these behaviors. And they exist in many different sizes, from the smallest of frogs, fish and lizards to giraffes, elephants, and blue whales. Despite these differences, vertebrates follow a remarkably similar blueprint for the establishment of their body plan. Within the relatively small amount of time required to complete gastrulation, the process through which the three germ layers, ectoderm, mesoderm, and endoderm are created, the embryo also generates its body axis and is simultaneously patterned. For the length of this axis, the genes that distinguish the neck from the rib cage or the trunk from the sacrum are the Hox genes. In vertebrates, there was evolutionary pressure to maintain this set of genes in the organism. Over the past decades, much has been learned regarding the regulatory mechanisms that ensure the appropriate expression of these genes along the main body axes. Genetic functions continue to be explored though much has been learned. Much less has been discerned on the identity of co-factors used by Hox proteins for the specificity of transcriptional regulation or what downstream targets and pathways are critical for patterning events, though there are notable exceptions. Current work in the field is demonstrating that Hox genes continue to function in many organs long after directing early patterning events. It is hopeful continued research will shed light on remaining questions regarding mechanisms used by this important and conserved set of transcriptional regulators.
Collapse
Affiliation(s)
- Deneen M Wellik
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, WI, United States.
| |
Collapse
|
4
|
Hawkey AB, Shekey N, Dean C, Asrat H, Koburov R, Holloway ZR, Kullman SW, Levin ED. Developmental exposure to pesticides that disrupt retinoic acid signaling causes persistent retinoid and behavioral dysfunction in zebrafish. Toxicol Sci 2024; 198:246-259. [PMID: 38237923 DOI: 10.1093/toxsci/kfae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024] Open
Abstract
Early developmental exposure to environmental toxicants may play a role in the risk for developing autism. A variety of pesticides have direct effects on retinoic acid (RA) signaling and as RA signaling has important roles in neurodevelopment, such compounds may cause developmental neurotoxicity through an overlapping adverse outcome pathway. It is hypothesized that a pesticide's embryonic effects on retinoid function may correspond with neurobehavioral disruption later in development. In the current studies, we determined the effects of RA-acting pesticides on neurobehavioral development in zebrafish. Buprofezin and imazalil caused generalized hypoactivity in the larval motility test, whereas chlorothalonil and endosulfan I led to selective hypoactivity and hyperactivity, respectively. With buprofezin, chlorothalonil, and imazalil, hypoactivity and/or novel anxiety-like behaviors persisted in adulthood and buprofezin additionally decreased social attraction responses in adulthood. Endosulfan I did not produce significant adult behavioral effects. Using qPCR analyses of adult brain tissue, we observed treatment-induced alterations in RA synthesis or catabolic genes, indicating persistent changes in RA homeostasis. These changes were compound-specific, with respect to expression directionality, and potential patterns of homeostatic disruption. Results suggest the likely persistence of disruptions in RA signaling well into adulthood and may represent compensatory mechanisms following early life stage exposures. This study demonstrates that early developmental exposure to environmental toxicants that interfere with RA signaling causes short as well as long-term behavioral disruption in a well-established zebrafish behavioral model and expand upon the meaning of the RA adverse outcome pathway, indicating that observed effects likely correspond with the nature of underlying homeostatic effects.
Collapse
Affiliation(s)
- Andrew B Hawkey
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
- Department of Biomedical Sciences, Midwestern University, Downers Grove, Illinois 60515, USA
| | - Nathan Shekey
- Toxicology Program, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Cassandra Dean
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Helina Asrat
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Reese Koburov
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Zade R Holloway
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| | - Seth W Kullman
- Toxicology Program, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina 27710, USA
| |
Collapse
|
5
|
Smith JJ, Kratsios P. Hox gene functions in the C. elegans nervous system: From early patterning to maintenance of neuronal identity. Semin Cell Dev Biol 2024; 152-153:58-69. [PMID: 36496326 PMCID: PMC10244487 DOI: 10.1016/j.semcdb.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/14/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
The nervous system emerges from a series of genetic programs that generate a remarkable array of neuronal cell types. Each cell type must acquire a distinct anatomical position, morphology, and function, enabling the generation of specialized circuits that drive animal behavior. How are these diverse cell types and circuits patterned along the anterior-posterior (A-P) axis of the animal body? Hox genes encode transcription factors that regulate cell fate and patterning events along the A-P axis of the nervous system. While most of our understanding of Hox-mediated control of neuronal development stems from studies in segmented animals like flies, mice, and zebrafish, important new themes are emerging from work in a non-segmented animal: the nematode Caenorhabditis elegans. Studies in C. elegans support the idea that Hox genes are needed continuously and across different life stages in the nervous system; they are not only required in dividing progenitor cells, but also in post-mitotic neurons during development and adult life. In C. elegans embryos and young larvae, Hox genes control progenitor cell specification, cell survival, and neuronal migration, consistent with their neural patterning roles in other animals. In late larvae and adults, C. elegans Hox genes control neuron type-specific identity features critical for neuronal function, thereby extending the Hox functional repertoire beyond early patterning. Here, we provide a comprehensive review of Hox studies in the C. elegans nervous system. To relate to readers outside the C. elegans community, we highlight conserved roles of Hox genes in patterning the nervous system of invertebrate and vertebrate animals. We end by calling attention to new functions in adult post-mitotic neurons for these paradigmatic regulators of cell fate.
Collapse
Affiliation(s)
- Jayson J Smith
- Department of Neurobiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, 947 East 58th Street, Chicago, IL 60637, USA.
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, 947 East 58th Street, Chicago, IL 60637, USA; University of Chicago Neuroscience Institute, 947 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
6
|
Honzel E, Hernandez-Morato I, Joshi A, Pennington-Fitzgerald W, Moayedi Y, Pitman MJ. Temporal Expression of Hox Genes and Phox2b in the Rat Nucleus Ambiguus During Development: Implications on Laryngeal Innervation. Laryngoscope 2023; 133:3462-3471. [PMID: 37350386 PMCID: PMC10907063 DOI: 10.1002/lary.30826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/02/2023] [Accepted: 06/05/2023] [Indexed: 06/24/2023]
Abstract
OBJECTIVES Recurrent laryngeal nerve (RLN) injury results in synkinetic reinnervation and vocal fold paralysis. Investigation of cues expressed in the developing brainstem that influence correct selective targeting of intrinsic laryngeal muscles may elucidate post-injury abnormalities contributing to non-functional reinnervation. Primary targets of interest were Hoxb1 and Hoxb2, members of the Hox family that create overlapping gradients in the developing brain, and their target Phox2b, a transcription factor necessary for cranial nerve branchio- and visceromotoneuron survival. METHODS Rat embryos at developmental days E14, E16, E18, and E20 (4 animals/age) were sectioned for RNA in situ hybridization to detect Hoxb1, Hoxb2, and Phox2b mRNA within the brainstem. Slides were costained with Islet1 antibody for identification of the nucleus ambiguus. Results were confirmed using immunohistochemistry. Sections were imaged on a confocal microscope. RNA and protein expressions were quantified using QuPath. Statistical analyses were performed using R. RESULTS Hoxb1, Hoxb2, and Phox2b expressions varied according to embryologic age. Hoxb1 and Hoxb2 expression peaked at E16, with significant decreases at E18 and E20 (one-way ANOVA p = 0.001 for both). Phox2b expression was highest at E14 and trended downward with increased embryologic age (one-way ANOVA p = 0.005). CONCLUSION Peak expression of Hoxb1 and Hoxb2 is observed at time points when the RLN arrives at the larynx and begins to branch toward individual muscles, positioning these gene products to be involved in cueing laryngeal motoneuron identity and target identification. Higher expression of Phox2b earlier in development suggests a role in laryngeal motoneuron formation. LEVEL OF EVIDENCE NA Laryngoscope, 133:3462-3471, 2023.
Collapse
Affiliation(s)
- Emily Honzel
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - Ignacio Hernandez-Morato
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - Abhinav Joshi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - William Pennington-Fitzgerald
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
| | - Yalda Moayedi
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
- Department of Neurology, Columbia University, New York, New York, U.S.A
| | - Michael J Pitman
- Department of Otolaryngology-Head & Neck Surgery, Columbia University College of Physicians and Surgeons, New York, New York, U.S.A
- Department of Neurology, Columbia University, New York, New York, U.S.A
| |
Collapse
|
7
|
Di Bonito M, Bourien J, Tizzano M, Harrus AG, Puel JL, Avallone B, Nouvian R, Studer M. Abnormal outer hair cell efferent innervation in Hoxb1-dependent sensorineural hearing loss. PLoS Genet 2023; 19:e1010933. [PMID: 37738262 PMCID: PMC10516434 DOI: 10.1371/journal.pgen.1010933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/22/2023] [Indexed: 09/24/2023] Open
Abstract
Autosomal recessive mutation of HOXB1 and Hoxb1 causes sensorineural hearing loss in patients and mice, respectively, characterized by the presence of higher auditory thresholds; however, the origin of the defects along the auditory pathway is still unknown. In this study, we assessed whether the abnormal auditory threshold and malformation of the sensory auditory cells, the outer hair cells, described in Hoxb1null mutants depend on the absence of efferent motor innervation, or alternatively, is due to altered sensory auditory components. By using a whole series of conditional mutant mice, which inactivate Hoxb1 in either rhombomere 4-derived sensory cochlear neurons or efferent motor neurons, we found that the hearing phenotype is mainly reproduced when efferent motor neurons are specifically affected. Our data strongly suggest that the interactions between olivocochlear motor neurons and outer hair cells during a critical postnatal period are crucial for both hair cell survival and the establishment of the cochlear amplification of sound.
Collapse
Affiliation(s)
- Maria Di Bonito
- Université Côte d’Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| | - Jérôme Bourien
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Monica Tizzano
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Anne-Gabrielle Harrus
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Jean-Luc Puel
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Bice Avallone
- University of Naples Federico II, Department of Biology, Naples, Italy
| | - Regis Nouvian
- University of Montpellier, Inserm, CNRS, Institute for Neurosciences of Montpellier (INM), Montpellier, France
| | - Michèle Studer
- Université Côte d’Azur (UCA), CNRS, Inserm, Institute of Biology Valrose (iBV), Nice, France
| |
Collapse
|
8
|
Feng W, Destain H, Smith JJ, Kratsios P. Maintenance of neurotransmitter identity by Hox proteins through a homeostatic mechanism. Nat Commun 2022; 13:6097. [PMID: 36243871 PMCID: PMC9569373 DOI: 10.1038/s41467-022-33781-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Hox transcription factors play fundamental roles during early patterning, but they are also expressed continuously, from embryonic stages through adulthood, in the nervous system. However, the functional significance of their sustained expression remains unclear. In C. elegans motor neurons (MNs), we find that LIN-39 (Scr/Dfd/Hox4-5) is continuously required during post-embryonic life to maintain neurotransmitter identity, a core element of neuronal function. LIN-39 acts directly to co-regulate genes that define cholinergic identity (e.g., unc-17/VAChT, cho-1/ChT). We further show that LIN-39, MAB-5 (Antp/Hox6-8) and the transcription factor UNC-3 (Collier/Ebf) operate in a positive feedforward loop to ensure continuous and robust expression of cholinergic identity genes. Finally, we identify a two-component design principle for homeostatic control of Hox gene expression in adult MNs: Hox transcriptional autoregulation is counterbalanced by negative UNC-3 feedback. These findings uncover a noncanonical role for Hox proteins during post-embryonic life, critically broadening their functional repertoire from early patterning to the control of neurotransmitter identity.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Honorine Destain
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| | - Jayson J Smith
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- University of Chicago Neuroscience Institute, Chicago, IL, USA
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, USA.
- University of Chicago Neuroscience Institute, Chicago, IL, USA.
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
9
|
Chen X, Zhao T, Ke N, Qian Y, Wang W, Liu L, Liu C. In-vitro differentiation of human embryonic stem cells into spinal cord neural stem cells. Neuroreport 2022; 33:518-525. [PMID: 35882016 DOI: 10.1097/wnr.0000000000001812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In-vitro differentiation of human embryonic stem cells into spinal cord neural stem cells (NSCs) can help researchers better understand the cellular processes associated with spinal cord development and regeneration, and provide therapeutic strategies for spinal cord disorders. However, effective and consistent methods for the generation of human spinal cord NSCs are rare. Objective of the study is to establish methods for the in-vitro induction and long-term maintenance of human spinal cord NSCs. H9 cells were treated with neural induction medium for 10 days under single-cell seeding condition, followed by treatment with neural maintenance medium and replacement with NSC medium after five passages. The identity of the generated cells was determined by immunofluorescence, immunoblotting, and cleavage under targets and tagmentation (CUT&Tag) assays. After the neural induction, OCT4, an embryonic stem cell marker, was significantly reduced, whereas NESTIN and PAX6, two NSC markers, were clearly increased. After the neural maintenance, most of the H9-derived cells consistently expressed NESTIN and PAX6 together with SOX1 and HOXC9, two spinal cord markers. The Homer known motif enrichment results of the CUT&Tag assay confirmed the expression of HOXC9 in the H9-derived spinal cord NSCs, which can be maintained for more than 40 days under an in vitro culture system. This study sheds new light on effective induction and maintenance of human spinal cord NSCs.
Collapse
Affiliation(s)
- Xueying Chen
- School of Basic Medical Sciences, Anhui Medical University
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Anhui Medical University
| | - Tianyi Zhao
- School of Basic Medical Sciences, Anhui Medical University
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Anhui Medical University
| | - Naiyu Ke
- The First Clinical Medical College, Anhui Medical University
| | - Yutong Qian
- The First Clinical Medical College, Anhui Medical University
| | - Wanrong Wang
- The First Clinical Medical College, Anhui Medical University
| | - Lihua Liu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Chao Liu
- School of Basic Medical Sciences, Anhui Medical University
- Department of Histology and Embryology, Institute of Stem Cell and Tissue Engineering, Anhui Medical University
| |
Collapse
|
10
|
Feng W, Li Y, Kratsios P. Emerging Roles for Hox Proteins in the Last Steps of Neuronal Development in Worms, Flies, and Mice. Front Neurosci 2022; 15:801791. [PMID: 35185450 PMCID: PMC8855150 DOI: 10.3389/fnins.2021.801791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/31/2021] [Indexed: 12/28/2022] Open
Abstract
A remarkable diversity of cell types characterizes every animal nervous system. Previous studies provided important insights into how neurons commit to a particular fate, migrate to the right place and form precise axodendritic patterns. However, the mechanisms controlling later steps of neuronal development remain poorly understood. Hox proteins represent a conserved family of homeodomain transcription factors with well-established roles in anterior-posterior (A-P) patterning and the early steps of nervous system development, including progenitor cell specification, neuronal migration, cell survival, axon guidance and dendrite morphogenesis. This review highlights recent studies in Caenorhabditis elegans, Drosophila melanogaster and mice that suggest new roles for Hox proteins in processes occurring during later steps of neuronal development, such as synapse formation and acquisition of neuronal terminal identity features (e.g., expression of ion channels, neurotransmitter receptors, and neuropeptides). Moreover, we focus on exciting findings suggesting Hox proteins are required to maintain synaptic structures and neuronal terminal identity during post-embryonic life. Altogether, these studies, in three model systems, support the hypothesis that certain Hox proteins are continuously required, from early development throughout post-embryonic life, to build and maintain a functional nervous system, significantly expanding their functional repertoire beyond the control of early A-P patterning.
Collapse
Affiliation(s)
- Weidong Feng
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, United States
| | - Yinan Li
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
- Committee on Neurobiology, University of Chicago, Chicago, IL, United States
| | - Paschalis Kratsios
- Department of Neurobiology, University of Chicago, Chicago, IL, United States
- University of Chicago Neuroscience Institute, Chicago, IL, United States
| |
Collapse
|
11
|
Howard AGA, Nguyen AC, Tworig J, Ravisankar P, Singleton EW, Li C, Kotzur G, Waxman JS, Uribe RA. Elevated Hoxb5b Expands Vagal Neural Crest Pool and Blocks Enteric Neuronal Development in Zebrafish. Front Cell Dev Biol 2022; 9:803370. [PMID: 35174164 PMCID: PMC8841348 DOI: 10.3389/fcell.2021.803370] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
Neural crest cells (NCCs) are a migratory, transient, and multipotent stem cell population essential to vertebrate embryonic development, contributing to numerous cell lineages in the adult organism. While great strides have been made in elucidating molecular and cellular events that drive NCC specification, comprehensive knowledge of the genetic factors that orchestrate NCC developmental programs is still far from complete. We discovered that elevated Hoxb5b levels promoted an expansion of zebrafish NCCs, which persisted throughout multiple stages of development. Correspondingly, elevated Hoxb5b also specifically expanded expression domains of the vagal NCC markers foxd3 and phox2bb. Increases in NCCs were most apparent after pulsed ectopic Hoxb5b expression at early developmental stages, rather than later during differentiation stages, as determined using a novel transgenic zebrafish line. The increase in vagal NCCs early in development led to supernumerary Phox2b+ enteric neural progenitors, while leaving many other NCC-derived tissues without an overt phenotype. Surprisingly, these NCC-derived enteric progenitors failed to expand properly into sufficient quantities of enterically fated neurons and stalled in the gut tissue. These results suggest that while Hoxb5b participates in vagal NCC development as a driver of progenitor expansion, the supernumerary, ectopically localized NCC fail to initiate expansion programs in timely fashion in the gut. All together, these data point to a model in which Hoxb5b regulates NCCs both in a tissue specific and temporally restricted manner.
Collapse
Affiliation(s)
| | - Aaron C. Nguyen
- BioSciences Department, Rice University, Houston, TX, United States
| | - Joshua Tworig
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Priya Ravisankar
- Molecular Cardiovascular Biology Division, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Allen Institute of Immunology, Seattle, WA, United States
| | | | - Can Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Grayson Kotzur
- BioSciences Department, Rice University, Houston, TX, United States
| | - Joshua S. Waxman
- Molecular Cardiovascular Biology Division, Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Rosa A. Uribe
- BioSciences Department, Rice University, Houston, TX, United States
- *Correspondence: Rosa A. Uribe,
| |
Collapse
|
12
|
Ho R, Workman MJ, Mathkar P, Wu K, Kim KJ, O'Rourke JG, Kellogg M, Montel V, Banuelos MG, Arogundade OA, Diaz-Garcia S, Oheb D, Huang S, Khrebtukova I, Watson L, Ravits J, Taylor K, Baloh RH, Svendsen CN. Cross-Comparison of Human iPSC Motor Neuron Models of Familial and Sporadic ALS Reveals Early and Convergent Transcriptomic Disease Signatures. Cell Syst 2020; 12:159-175.e9. [PMID: 33382996 DOI: 10.1016/j.cels.2020.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/10/2020] [Accepted: 11/18/2020] [Indexed: 12/11/2022]
Abstract
Induced pluripotent stem cell (iPSC)-derived neural cultures from amyotrophic lateral sclerosis (ALS) patients can model disease phenotypes. However, heterogeneity arising from genetic and experimental variability limits their utility, impacting reproducibility and the ability to track cellular origins of pathogenesis. Here, we present methodologies using single-cell RNA sequencing (scRNA-seq) analysis to address these limitations. By repeatedly differentiating and applying scRNA-seq to motor neurons (MNs) from healthy, familial ALS, sporadic ALS, and genome-edited iPSC lines across multiple patients, batches, and platforms, we account for genetic and experimental variability toward identifying unified and reproducible ALS signatures. Combining HOX and developmental gene expression with global clustering, we anatomically classified cells into rostrocaudal, progenitor, and postmitotic identities. By relaxing statistical thresholds, we discovered genes in iPSC-MNs that were concordantly dysregulated in postmortem MNs and yielded predictive ALS markers in other human and mouse models. Our approach thus revealed early, convergent, and MN-resolved signatures of ALS.
Collapse
Affiliation(s)
- Ritchie Ho
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| | - Michael J Workman
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Pranav Mathkar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kathryn Wu
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kevin J Kim
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jacqueline G O'Rourke
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | - Maria G Banuelos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | - Sandra Diaz-Garcia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Daniel Oheb
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steven Huang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | - John Ravits
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Robert H Baloh
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
13
|
Zou Y, Ma D, Shen H, Zhao Y, Xu B, Fan Y, Sun Z, Chen B, Xue W, Shi Y, Xiao Z, Gu R, Dai J. Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair. Biomater Sci 2020; 8:5145-5156. [PMID: 32832944 DOI: 10.1039/d0bm00431f] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Neural stem/progenitor cell (NSPC)-based spinal cord injury (SCI) therapy is expected to bridge the lesion site by transplanting exogenous NSPCs for replacement of lost cells. The transplanted NSPCs produce a microenvironment conducive to neuronal regeneration, and ultimately, functional recovery. Although both human fetal brain- and spinal cord- derived NSPCs (hbNSPCs and hscNSPCs, respectively) have been used for SCI repair, it remains unclear whether hscNSPCs are a more appropriate stem cell source for transplantation than hbNSPCs. Therefore, in this study, we transplanted hbNSPCs or hscNSPCs into rats with complete transection SCI to monitor their differences in SCI treatment. An aligned collagen sponge scaffold (ACSS) was used here for cell retention. Aligned biomaterial scaffolds provide a support platform and favorable morphology for cell growth and differentiation, and guide axial axonal extension. The ACSS fabricated by our group has been previously reported to improve spinal cord repair by promoting neuronal regeneration and remyelination. Compared with the hbNSPC-ACSS, the hscNSPC-ACSS effectively promoted long-term cell survival and neuronal differentiation and improved the SCI microenvironment by reducing inflammation and glial scar formation. Furthermore, the transplanted hscNSPC-ACSS improved recovery of locomotor functions. Therefore, hscNSPCs appear to be a superior cell source to hbNSPCs for SCI cell therapy with greater potential clinical applications.
Collapse
Affiliation(s)
- Yunlong Zou
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lozzi B, Huang TW, Sardar D, Huang AYS, Deneen B. Regionally Distinct Astrocytes Display Unique Transcription Factor Profiles in the Adult Brain. Front Neurosci 2020; 14:61. [PMID: 32153350 PMCID: PMC7046629 DOI: 10.3389/fnins.2020.00061] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/15/2020] [Indexed: 12/19/2022] Open
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system and perform a myriad of vital functions, however, the nature of their diversity remains a longstanding question in neuroscience. Using transcription factor motif discovery analysis on region-specific gene signatures from astrocytes we uncovered universal and region-specific transcription factor expression profiles. This analysis revealed that motifs for Nuclear Factor-I (NFI) are present in genes enriched in astrocytes from all regions, with NFIB and NFIX exhibiting pan-astrocyte expression in the olfactory bulb, hippocampus, cortex, and brainstem. Further analysis into region-specific motif patterns, identified Nkx3-1, Stat4, Pgr, and Nkx6-1 as prospective region-specific transcription factors. Validation studies revealed that Nkx6-1 is exclusively expressed in astrocytes in the brainstem and associates with the promoters of several brainstem specific target genes. These studies illustrate the presence of multiple transcriptional layers in astrocytes across diverse brain regions and provide a new entry point for examining how astrocyte diversity is specified and maintained.
Collapse
Affiliation(s)
- Brittney Lozzi
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Teng-Wei Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Debosmita Sardar
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States
| | - Anna Yu-Szu Huang
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, United States.,Program in Developmental Biology, Baylor College of Medicine, Houston, TX, United States.,Department of Neurosurgery, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
15
|
Díaz C, Puelles L. Segmental Analysis of the Vestibular Nerve and the Efferents of the Vestibular Complex. Anat Rec (Hoboken) 2018; 302:472-484. [DOI: 10.1002/ar.23828] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Carmen Díaz
- Department of Medical Sciences, School of Medicine/Institute for Research in Neurological Disabilities; University of Castilla-La Mancha; Albacete 02006 Spain
| | - Luis Puelles
- Department of Human Anatomy and Psychobiology and IMIB-Arrixaca Institute, School of Medicine; University of Murcia; Murcia E30071 Spain
| |
Collapse
|
16
|
Glover JC, Elliott KL, Erives A, Chizhikov VV, Fritzsch B. Wilhelm His' lasting insights into hindbrain and cranial ganglia development and evolution. Dev Biol 2018; 444 Suppl 1:S14-S24. [PMID: 29447907 DOI: 10.1016/j.ydbio.2018.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/03/2018] [Accepted: 02/04/2018] [Indexed: 01/04/2023]
Abstract
Wilhelm His (1831-1904) provided lasting insights into the development of the central and peripheral nervous system using innovative technologies such as the microtome, which he invented. 150 years after his resurrection of the classical germ layer theory of Wolff, von Baer and Remak, his description of the developmental origin of cranial and spinal ganglia from a distinct cell population, now known as the neural crest, has stood the test of time and more recently sparked tremendous advances regarding the molecular development of these important cells. In addition to his 1868 treatise on 'Zwischenstrang' (now neural crest), his work on the development of the human hindbrain published in 1890 provided novel ideas that more than 100 years later form the basis for penetrating molecular investigations of the regionalization of the hindbrain neural tube and of the migration and differentiation of its constituent neuron populations. In the first part of this review we briefly summarize the major discoveries of Wilhelm His and his impact on the field of embryology. In the second part we relate His' observations to current knowledge about the molecular underpinnings of hindbrain development and evolution. We conclude with the proposition, present already in rudimentary form in the writings of His, that a primordial spinal cord-like organization has been molecularly supplemented to generate hindbrain 'neomorphs' such as the cerebellum and the auditory and vestibular nuclei and their associated afferents and sensory organs.
Collapse
Affiliation(s)
- Joel C Glover
- Department of Molecular Medicine, University of Oslo, Oslo, Norway; Norwegian Center for Stem Cell Research, Oslo University Hospital, Oslo, Norway; Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| | - Karen L Elliott
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Albert Erives
- Department of Biology, University of Iowa, Iowa, IA 52242, USA
| | - Victor V Chizhikov
- The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Bernd Fritzsch
- Department of Biology, University of Iowa, Iowa, IA 52242, USA.
| |
Collapse
|
17
|
Lizen B, Moens C, Mouheiche J, Sacré T, Ahn MT, Jeannotte L, Salti A, Gofflot F. Conditional Loss of Hoxa5 Function Early after Birth Impacts on Expression of Genes with Synaptic Function. Front Mol Neurosci 2017; 10:369. [PMID: 29187810 PMCID: PMC5695161 DOI: 10.3389/fnmol.2017.00369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 10/26/2017] [Indexed: 12/24/2022] Open
Abstract
Hoxa5 is a member of the Hox gene family that plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. In the mouse, Hoxa5 was recently shown to be expressed in the medulla oblongata and the pons from fetal stages to adulthood. In these territories, Hoxa5 transcripts are enriched in many precerebellar neurons and several nuclei involved in autonomic functions, while the HOXA5 protein is detected mainly in glutamatergic and GABAergic neurons. However, whether HOXA5 is functionally required in these neurons after birth remains unknown. As a first approach to tackle this question, we aimed at determining the molecular programs downstream of the HOXA5 transcription factor in the context of the postnatal brainstem. A comparative transcriptomic analysis was performed in combination with gene expression localization, using a conditional postnatal Hoxa5 loss-of-function mouse model. After inactivation of Hoxa5 at postnatal days (P)1–P4, we established the transcriptome of the brainstem from P21 Hoxa5 conditional mutants using RNA-Seq analysis. One major finding was the downregulation of several genes associated with synaptic function in Hoxa5 mutant specimens including different actors involved in glutamatergic synapse, calcium signaling pathway, and GABAergic synapse. Data were confirmed and extended by reverse transcription quantitative polymerase chain reaction analysis, and the expression of several HOXA5 candidate targets was shown to co-localize with Hoxa5 transcripts in precerebellar nuclei. Together, these new results revealed that HOXA5, through the regulation of key actors of the glutamatergic/GABAergic synapses and calcium signaling, might be involved in synaptogenesis, synaptic transmission, and synaptic plasticity of the cortico-ponto-cerebellar circuitry in the postnatal brainstem.
Collapse
Affiliation(s)
- Benoit Lizen
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Charlotte Moens
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jinane Mouheiche
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Thomas Sacré
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Marie-Thérèse Ahn
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Lucie Jeannotte
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec City, QC, Canada.,Centre de Recherche sur le Cancer, Université Laval, Quebec City, QC, Canada.,Centre de Recherche, Centre Hospitalier Universitaire de Québec, Université Laval, Quebec City, QC, Canada
| | - Ahmad Salti
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Institut des Sciences de la Vie, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
18
|
Schormair B, Zhao C, Bell S, Tilch E, Salminen AV, Pütz B, Dauvilliers Y, Stefani A, Högl B, Poewe W, Kemlink D, Sonka K, Bachmann CG, Paulus W, Trenkwalder C, Oertel WH, Hornyak M, Teder-Laving M, Metspalu A, Hadjigeorgiou GM, Polo O, Fietze I, Ross OA, Wszolek Z, Butterworth AS, Soranzo N, Ouwehand WH, Roberts DJ, Danesh J, Allen RP, Earley CJ, Ondo WG, Xiong L, Montplaisir J, Gan-Or Z, Perola M, Vodicka P, Dina C, Franke A, Tittmann L, Stewart AFR, Shah SH, Gieger C, Peters A, Rouleau GA, Berger K, Oexle K, Di Angelantonio E, Hinds DA, Müller-Myhsok B, Winkelmann J. Identification of novel risk loci for restless legs syndrome in genome-wide association studies in individuals of European ancestry: a meta-analysis. Lancet Neurol 2017; 16:898-907. [PMID: 29029846 PMCID: PMC5755468 DOI: 10.1016/s1474-4422(17)30327-7] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 02/02/2023]
Abstract
BACKGROUND Restless legs syndrome is a prevalent chronic neurological disorder with potentially severe mental and physical health consequences. Clearer understanding of the underlying pathophysiology is needed to improve treatment options. We did a meta-analysis of genome-wide association studies (GWASs) to identify potential molecular targets. METHODS In the discovery stage, we combined three GWAS datasets (EU-RLS GENE, INTERVAL, and 23andMe) with diagnosis data collected from 2003 to 2017, in face-to-face interviews or via questionnaires, and involving 15 126 cases and 95 725 controls of European ancestry. We identified common variants by fixed-effect inverse-variance meta-analysis. Significant genome-wide signals (p≤5 × 10-8) were tested for replication in an independent GWAS of 30 770 cases and 286 913 controls, followed by a joint analysis of the discovery and replication stages. We did gene annotation, pathway, and gene-set-enrichment analyses and studied the genetic correlations between restless legs syndrome and traits of interest. FINDINGS We identified and replicated 13 new risk loci for restless legs syndrome and confirmed the previously identified six risk loci. MEIS1 was confirmed as the strongest genetic risk factor for restless legs syndrome (odds ratio 1·92, 95% CI 1·85-1·99). Gene prioritisation, enrichment, and genetic correlation analyses showed that identified pathways were related to neurodevelopment and highlighted genes linked to axon guidance (associated with SEMA6D), synapse formation (NTNG1), and neuronal specification (HOXB cluster family and MYT1). INTERPRETATION Identification of new candidate genes and associated pathways will inform future functional research. Advances in understanding of the molecular mechanisms that underlie restless legs syndrome could lead to new treatment options. We focused on common variants; thus, additional studies are needed to dissect the roles of rare and structural variations. FUNDING Deutsche Forschungsgemeinschaft, Helmholtz Zentrum München-Deutsches Forschungszentrum für Gesundheit und Umwelt, National Research Institutions, NHS Blood and Transplant, National Institute for Health Research, British Heart Foundation, European Commission, European Research Council, National Institutes of Health, National Institute of Neurological Disorders and Stroke, NIH Research Cambridge Biomedical Research Centre, and UK Medical Research Council.
Collapse
Affiliation(s)
- Barbara Schormair
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Steven Bell
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK
| | - Erik Tilch
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Aaro V Salminen
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Benno Pütz
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Yves Dauvilliers
- Sleep-Wake Disorders Centre, Department of Neurology, Hôpital Gui-de-Chauliac, INSERM U1061, CHU Montpellier, France
| | - Ambra Stefani
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Högl
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Werner Poewe
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - David Kemlink
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czech Republic
| | - Karel Sonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of Medicine and General University Hospital in Prague, Charles University, Prague, Czech Republic
| | | | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Centre, Georg August University Göttingen, Göttingen, Germany
| | - Claudia Trenkwalder
- Clinic for Neurosurgery, University Medical Centre, Georg August University Göttingen, Göttingen, Germany; Paracelsus-Elena Hospital, Centre of Parkinsonism and Movement Disorders, Kassel, Germany
| | - Wolfgang H Oertel
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany; Department of Neurology, Philipps University Marburg, Marburg, Germany
| | - Magdolna Hornyak
- Department of Neurology, University of Ulm, Ulm, Germany; Neuropsychiatry Centre Erding/München, Erding, Germany
| | - Maris Teder-Laving
- Estonian Genome Centre, University of Tartu and Estonian Biocentre, Tartu, Estonia
| | - Andres Metspalu
- Estonian Genome Centre, University of Tartu and Estonian Biocentre, Tartu, Estonia
| | - Georgios M Hadjigeorgiou
- Laboratory of Neurogenetics, Department of Neurology, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Larissa, Greece
| | - Olli Polo
- Unesta Research Centre, Tampere, Finland; Department of Pulmonary Diseases, Tampere University Hospital, Tampere, Finland
| | - Ingo Fietze
- Department of Cardiology and Angiology, Centre of Sleep Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Adam S Butterworth
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | - Nicole Soranzo
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Willem H Ouwehand
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; Department of Haematology, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; NHS Blood and Transplant, Cambridge, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK; Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - David J Roberts
- NHS Blood and Transplant, Oxford, UK; Radcliffe Department of Medicine, BRC Haematology Theme and NHS Blood and Transplant, John Radcliffe Hospital, Headington, Oxford, UK; Department of Haematology and BRC Haematology Theme, Churchill Hospital, Oxford, UK
| | - John Danesh
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK; Department of Human Genetics, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Richard P Allen
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher J Earley
- Center for Restless Legs Study, Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - William G Ondo
- Department of Neurology, Methodist Neurological Institute, Houston, TX, USA
| | - Lan Xiong
- Laboratoire de Neurogénétique, Centre de Recherche, Institut Universitaire en Santé Mentale de Montréal, Montréal, QC, Canada; Département de Psychiatrie, Université de Montréal, Montréal, QC, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Jacques Montplaisir
- Département de Psychiatrie, Université de Montréal, Montréal, QC, Canada; Hôpital du Sacré-Coeur de Montréal, 67120, Center for Advanced Research in Sleep Medicine, Montréal, QC, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Markus Perola
- Department of Health, National Institute for Health and Welfare, Helsinki, Finland; Institute of Molecular Medicine FIMM, University of Helsinki, Helsinki, Finland
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Academy of Science of Czech Republic, Prague, Czech Republic; Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Pilsen, Czech Republic
| | - Christian Dina
- Inserm UMR1087, CNRS UMR 6291, Institut du Thorax, Nantes, France; Centre Hospitalier Universitaire (CHU) Nantes, Université de Nantes, France
| | - Andre Franke
- Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
| | - Lukas Tittmann
- PopGen Biobank and Institute of Epidemiology, Christian Albrechts University Kiel, Kiel, Germany
| | - Alexandre F R Stewart
- John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Svati H Shah
- Department of Medicine, Duke University School of Medicine, Durham, NC, USA; Duke Clinical Research Institute, Duke University School of Medicine, Durham, NC, USA
| | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany; Research Unit of Molecular Epidemiology, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany; German Centre for Diabetes Research (DZD), Neuherberg, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany; German Centre for Diabetes Research (DZD), Neuherberg, Germany; German Centre for Cardiovascular Disease Research (DZHK), Berlin, Germany
| | - Guy A Rouleau
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada; Department of Human Genetics, McGill University, Montréal, QC, Canada; Montreal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Konrad Oexle
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany
| | - Emanuele Di Angelantonio
- National Institute for Health Research Blood and Transplant Unit in Donor Health and Genomics at the University of Cambridge, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, Strangeways Research Laboratory, University of Cambridge, Cambridge, UK; NHS Blood and Transplant, Cambridge, UK; National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, UK; British Heart Foundation Centre of Excellence, Division of Cardiovascular Medicine, Addenbrooke's Hospital, Cambridge, UK
| | | | - Bertram Müller-Myhsok
- Max Planck Institute of Psychiatry, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, German Research Centre for Environmental Health, Neuherberg, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany; Neurologische Klinik und Poliklinik, Klinikum rechts der Isar der Technischen Universität München, Munich, Germany.
| |
Collapse
|
19
|
Nuclear derivatives and axonal projections originating from rhombomere 4 in the mouse hindbrain. Brain Struct Funct 2017; 222:3509-3542. [PMID: 28470551 PMCID: PMC5676809 DOI: 10.1007/s00429-017-1416-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/27/2017] [Indexed: 01/13/2023]
Abstract
The r4-derived territory is located in the pontine region of the brainstem, forming a wedge-shaped slice that broadens from the choroidal roof to the ventral midline. R4-derived neuronal populations migrate radially inside and tangentially outside this rhombomere, forming nuclei of the sensorimotor auditory, vestibular, trigeminal and reticular systems. R4-derived fibre tracts contribute to the lateral lemniscus, the trigeminothalamic tracts, the medial tegmental tract and the medial forebrain bundle, which variously project to the midbrain, thalamus, hypothalamus and telencephalon. Other tracts such as the trigeminocerebellar and vestibulocerebellar tracts reach the cerebellum, while the medial and lateral vestibulospinal tracts, and the reticulospinal and trigeminal oro-spinal tracts extend into the spinal cord. Many r4-derived fibres are crossed; they decussate to the contralateral side traversing the midline through the cerebellar, collicular and intercollicular commissures, as well as the supraoptic decussation. Moreover, some fibres enter into the posterior and anterior commissures and some terminals reach the septum. Overall, this study provides an overview of all r4 neuronal populations and axonal tracts from their embryonic origin to the adult final location and target.
Collapse
|
20
|
Di Bonito M, Studer M. Cellular and Molecular Underpinnings of Neuronal Assembly in the Central Auditory System during Mouse Development. Front Neural Circuits 2017; 11:18. [PMID: 28469562 PMCID: PMC5395578 DOI: 10.3389/fncir.2017.00018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/01/2017] [Indexed: 11/13/2022] Open
Abstract
During development, the organization of the auditory system into distinct functional subcircuits depends on the spatially and temporally ordered sequence of neuronal specification, differentiation, migration and connectivity. Regional patterning along the antero-posterior axis and neuronal subtype specification along the dorso-ventral axis intersect to determine proper neuronal fate and assembly of rhombomere-specific auditory subcircuits. By taking advantage of the increasing number of transgenic mouse lines, recent studies have expanded the knowledge of developmental mechanisms involved in the formation and refinement of the auditory system. Here, we summarize several findings dealing with the molecular and cellular mechanisms that underlie the assembly of central auditory subcircuits during mouse development, focusing primarily on the rhombomeric and dorso-ventral origin of auditory nuclei and their associated molecular genetic pathways.
Collapse
|
21
|
Carucci N, Cacci E, Nisi PS, Licursi V, Paul YL, Biagioni S, Negri R, Rugg-Gunn PJ, Lupo G. Transcriptional response of Hoxb genes to retinoid signalling is regionally restricted along the neural tube rostrocaudal axis. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160913. [PMID: 28484611 PMCID: PMC5414248 DOI: 10.1098/rsos.160913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
During vertebrate neural development, positional information is largely specified by extracellular morphogens. Their distribution, however, is very dynamic due to the multiple roles played by the same signals in the developing and adult neural tissue. This suggests that neural progenitors are able to modify their competence to respond to morphogen signalling and autonomously maintain positional identities after their initial specification. In this work, we take advantage of in vitro culture systems of mouse neural stem/progenitor cells (NSPCs) to show that NSPCs isolated from rostral or caudal regions of the mouse neural tube are differentially responsive to retinoic acid (RA), a pivotal morphogen for the specification of posterior neural fates. Hoxb genes are among the best known RA direct targets in the neural tissue, yet we found that RA could promote their transcription only in caudal but not in rostral NSPCs. Correlating with these effects, key RA-responsive regulatory regions in the Hoxb cluster displayed opposite enrichment of activating or repressing histone marks in rostral and caudal NSPCs. Finally, RA was able to strengthen Hoxb chromatin activation in caudal NSPCs, but was ineffective on the repressed Hoxb chromatin of rostral NSPCs. These results suggest that the response of NSPCs to morphogen signalling across the rostrocaudal axis of the neural tube may be gated by the epigenetic configuration of target patterning genes, allowing long-term maintenance of intrinsic positional values in spite of continuously changing extrinsic signals.
Collapse
Affiliation(s)
- Nicoletta Carucci
- Department of Biology and Biotechnology ‘C. Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Emanuele Cacci
- Department of Biology and Biotechnology ‘C. Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Paola S. Nisi
- Department of Biology and Biotechnology ‘C. Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Valerio Licursi
- Department of Biology and Biotechnology ‘C. Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Yu-Lee Paul
- Epigenetics Programme, The Babraham Institute, Cambridge CB22 3AT, UK
| | - Stefano Biagioni
- Department of Biology and Biotechnology ‘C. Darwin’, Sapienza University of Rome, 00185 Rome, Italy
| | - Rodolfo Negri
- Department of Biology and Biotechnology ‘C. Darwin’, Sapienza University of Rome, 00185 Rome, Italy
- Istituto Pasteur— Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
| | | | - Giuseppe Lupo
- Istituto Pasteur— Fondazione Cenci Bolognetti, Sapienza University of Rome, 00185 Rome, Italy
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
22
|
Lizen B, Hutlet B, Bissen D, Sauvegarde D, Hermant M, Ahn MT, Gofflot F. HOXA5 localization in postnatal and adult mouse brain is suggestive of regulatory roles in postmitotic neurons. J Comp Neurol 2016; 525:1155-1175. [PMID: 27650319 DOI: 10.1002/cne.24123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 01/13/2023]
Abstract
Hoxa5 is a member of the Hox gene family, which plays critical roles in successive steps of the central nervous system formation during embryonic and fetal development. Hoxa5 expression in the adult mouse brain has been reported, suggesting that this gene may be functionally required in the brain after birth. To provide further insight into the Hoxa5 expression pattern and potential functions in the brain, we have characterized its neuroanatomical profile from embryonic stages to adulthood. While most Hox mapping studies have been based solely on transcript analysis, we extended our analysis to HOXA5 protein localization in adulthood using specific antibodies. Our results show that Hoxa5 expression appears in the most caudal part of the hindbrain at fetal stages, where it is maintained until adulthood. In the medulla oblongata and pons, we detected Hoxa5 expression in many precerebellar neurons and in several nuclei implicated in the control of autonomic functions. In these territories, the HOXA5 protein is present solely in neurons, specifically in γ-aminobutyric acid (GABA)ergic, glutamatergic, and catecholaminergic neurons. Finally, we also detected Hoxa5 transcripts, but not the HOXA5 protein, in the thalamus and the cortex, from postnatal stages to adult stages, and in the cerebellum at adulthood. We provide evidence that some larger variants of Hoxa5 transcripts are present in these territories. Our mapping analysis allowed us to build hypotheses regarding HOXA5 functions in the nervous system after birth, such as a potential role in the establishment and refinement/plasticity of precerebellar circuits during postnatal and adult life. J. Comp. Neurol. 525:1155-1175, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Benoit Lizen
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Bertrand Hutlet
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Diane Bissen
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Deborah Sauvegarde
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Maryse Hermant
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Marie-Thérèse Ahn
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| | - Françoise Gofflot
- Institute of Life Sciences, Catholic University of Louvain, 1348, Louvain-la-Neuve, Belgium
| |
Collapse
|
23
|
Leijnse JN, D'Herde K. Revisiting the segmental organization of the human spinal cord. J Anat 2016; 229:384-93. [PMID: 27173936 DOI: 10.1111/joa.12493] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2016] [Indexed: 11/30/2022] Open
Abstract
In classic anatomic atlases, the spinal cord is standardly represented in its anatomical form with symmetrically emerging anterior and posterior roots, which at the level of the intervertebral foramen combine into the spinal nerves. The parts of the cord delimited by the boundaries of the roots are called segments or myelomeres. Associated with their regular repetitive appearance is the notion that the cord is segmentally organized. This segmental view is reinforced by clinical practice. Spinal cord roots innervate specific body parts. The level of cord trauma is diagnosed by the de-innervation symptoms of these parts. However, systemically, the case for a segmentally organized cord is not so clear. To date, developmental and genetic research points to a regionally rather than a segmentally organized cord. In the present study, to what degree the fila radicularia are segmentally implanted along the cord was investigated. The research hypothesis was that if the fila radicularia were non-segmentally implanted at the cord surface, it would be unlikely that the internal neuron stratum would be segmented. The visual segmented aspect of the myelomeres would then be the consequence of the necessary bundling of axons towards the vertebral foramen as the only exits of the vertebral canal, rather than of an underlying segment organization of the cord itself. To investigate the research hypothesis, the fila radicularia in the cervical-upper thoracic part of five spinal cords were detached from their spinal nerves and dissected in detail. The principal research question was if the fila radicularia are separated from their spinal nerves and dissected from their connective tissues up to the cord, would it be possible to reconstruct the original spinal segments from the morphology and interspaces of the fila? The dissections revealed that the anterior fila radicularia emerge from the cord at regular regionally modulated interspaces without systematic segmental delineations. The posterior fila radicularia are somewhat more segmentally implanted, but the pattern is individually inconsistent. The posterior and anterior roots have notable morphological differences, and hypotheses are presented to help explain these. The macroscopic observations are consistent with a regionally but not a segmentally organized cord. This conclusion was visually summarized in photographs of spinal cords with ipsilateral intact roots and contralateral individually dissected fila radicularia. It was suggested that this dual view of the spinal cord be added to the standard anatomic textbooks to counterbalance the current possibly biased view of a segmented cord.
Collapse
Affiliation(s)
- J N Leijnse
- Department of Anatomy and Embryology, University of Ghent, Ghent, Belgium
| | - K D'Herde
- Department of Anatomy and Embryology, University of Ghent, Ghent, Belgium
| |
Collapse
|
24
|
Currie KW, Brown DDR, Zhu S, Xu C, Voisin V, Bader GD, Pearson BJ. HOX gene complement and expression in the planarian Schmidtea mediterranea. EvoDevo 2016; 7:7. [PMID: 27034770 PMCID: PMC4815179 DOI: 10.1186/s13227-016-0044-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/09/2016] [Indexed: 12/21/2022] Open
Abstract
Background Freshwater planarians are well known for their regenerative abilities. Less well known is how planarians maintain spatial patterning in long-lived adult animals or how they re-pattern tissues during regeneration. HOX genes are good candidates to regulate planarian spatial patterning, yet the full complement or genomic clustering of planarian HOX genes has not yet been described, primarily because only a few have been detectable by in situ hybridization, and none have given morphological phenotypes when knocked down by RNAi. Results Because the planarian Schmidteamediterranea (S. mediterranea) is unsegmented, appendage less, and morphologically simple, it has been proposed that it may have a simplified HOX gene complement. Here, we argue against this hypothesis and show that S. mediterranea has a total of 13 HOX genes, which represent homologs to all major axial categories, and can be detected by whole-mount in situ hybridization using a highly sensitive method. In addition, we show that planarian HOX genes do not cluster in the genome, yet 5/13 have retained aspects of axially restricted expression. Finally, we confirm HOX gene axial expression by RNA deep-sequencing 6 anterior–posterior “zones” of the animal, which we provide as a dataset to the community to discover other axially restricted transcripts. Conclusions Freshwater planarians have an unappreciated HOX gene complexity, with all major axial categories represented. However, we conclude based on adult expression patterns that planarians have a derived body plan and their asexual lifestyle may have allowed for large changes in HOX expression from the last common ancestor between arthropods, flatworms, and vertebrates. Using our in situ method and axial zone RNAseq data, it should be possible to further understand the pathways that pattern the anterior–posterior axis of adult planarians. Electronic supplementary material The online version of this article (doi:10.1186/s13227-016-0044-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ko W Currie
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G10A4 Canada ; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G10A4 Canada
| | - David D R Brown
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G10A4 Canada ; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G10A4 Canada
| | - Shujun Zhu
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G10A4 Canada ; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G10A4 Canada
| | - ChangJiang Xu
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON M5G10A4 Canada
| | - Veronique Voisin
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON M5G10A4 Canada
| | - Gary D Bader
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G10A4 Canada ; Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON M5G10A4 Canada
| | - Bret J Pearson
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, ON M5G10A4 Canada ; Department of Molecular Genetics, University of Toronto, Toronto, ON M5G10A4 Canada ; Ontario Institute for Cancer Research, Toronto, ON M5G10A4 Canada
| |
Collapse
|
25
|
Evolution of mammalian sound localization circuits: A developmental perspective. Prog Neurobiol 2016; 141:1-24. [PMID: 27032475 DOI: 10.1016/j.pneurobio.2016.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/27/2016] [Accepted: 02/27/2016] [Indexed: 01/06/2023]
Abstract
Localization of sound sources is a central aspect of auditory processing. A unique feature of mammals is the smooth, tonotopically organized extension of the hearing range to high frequencies (HF) above 10kHz, which likely induced positive selection for novel mechanisms of sound localization. How this change in the auditory periphery is accompanied by changes in the central auditory system is unresolved. I will argue that the major VGlut2(+) excitatory projection neurons of sound localization circuits (dorsal cochlear nucleus (DCN), lateral and medial superior olive (LSO and MSO)) represent serial homologs with modifications, thus being paramorphs. This assumption is based on common embryonic origin from an Atoh1(+)/Wnt1(+) cell lineage in the rhombic lip of r5, same cell birth, a fusiform cell morphology, shared genetic components such as Lhx2 and Lhx9 transcription factors, and similar projection patterns. Such a parsimonious evolutionary mechanism likely accelerated the emergence of neurons for sound localization in all three dimensions. Genetic analyses indicate that auditory nuclei in fish, birds, and mammals receive contributions from the same progenitor lineages. Anatomical and physiological differences and the independent evolution of tympanic ears in vertebrate groups, however, argue for convergent evolution of sound localization circuits in tetrapods (amphibians, reptiles, birds, and mammals). These disparate findings are discussed in the context of the genetic architecture of the developing hindbrain, which facilitates convergent evolution. Yet, it will be critical to decipher the gene regulatory networks underlying development of auditory neurons across vertebrates to explore the possibility of homologous neuronal populations.
Collapse
|
26
|
|
27
|
Loss of Projections, Functional Compensation, and Residual Deficits in the Mammalian Vestibulospinal System of Hoxb1-Deficient Mice. eNeuro 2015; 2:eN-NWR-0096-15. [PMID: 26730404 PMCID: PMC4697082 DOI: 10.1523/eneuro.0096-15.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/02/2015] [Accepted: 11/12/2015] [Indexed: 11/21/2022] Open
Abstract
The genetic mechanisms underlying the developmental and functional specification of brainstem projection neurons are poorly understood. Here, we use transgenic mouse tools to investigate the role of the gene Hoxb1 in the developmental patterning of vestibular projection neurons, with particular focus on the lateral vestibulospinal tract (LVST). The LVST is the principal pathway that conveys vestibular information to limb-related spinal motor circuits and arose early during vertebrate evolution. We show that the segmental hindbrain expression domain uniquely defined by the rhombomere 4 (r4) Hoxb1 enhancer is the origin of essentially all LVST neurons, but also gives rise to subpopulations of contralateral medial vestibulospinal tract (cMVST) neurons, vestibulo-ocular neurons, and reticulospinal (RS) neurons. In newborn mice homozygous for a Hoxb1-null mutation, the r4-derived LVST and cMVST subpopulations fail to form and the r4-derived RS neurons are depleted. Several general motor skills appear unimpaired, but hindlimb vestibulospinal reflexes, which are mediated by the LVST, are greatly reduced. This functional deficit recovers, however, during the second postnatal week, indicating a substantial compensation for the missing LVST. Despite the compensatory plasticity in balance, adult Hoxb1-null mice exhibit other behavioral deficits that manifest particularly in proprioception and interlimb coordination during locomotor tasks. Our results provide a comprehensive account of the developmental role of Hoxb1 in patterning the vestibular system and evidence for a remarkable developmental plasticity in the descending control of reflex limb movements. They also suggest an involvement of the lateral vestibulospinal tract in proprioception and in ensuring limb alternation generated by locomotor circuitry.
Collapse
|
28
|
The emerging framework of mammalian auditory hindbrain development. Cell Tissue Res 2015; 361:33-48. [DOI: 10.1007/s00441-014-2110-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 12/22/2014] [Indexed: 02/06/2023]
|
29
|
Hutlet B, Theys N, Coste C, Ahn MT, Doshishti-Agolli K, Lizen B, Gofflot F. Systematic expression analysis of Hox genes at adulthood reveals novel patterns in the central nervous system. Brain Struct Funct 2014; 221:1223-43. [PMID: 25527350 DOI: 10.1007/s00429-014-0965-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 12/10/2014] [Indexed: 12/30/2022]
Abstract
Hox proteins are key regulators of animal development, providing positional identity and patterning information to cells along the rostrocaudal axis of the embryo. Although their embryonic expression and function are well characterized, their presence and biological importance in adulthood remains poorly investigated. We provide here the first detailed quantitative and neuroanatomical characterization of the expression of the 39 Hox genes in the adult mouse brain. Using RT-qPCR we determined the expression of 24 Hox genes mainly in the brainstem of the adult brain, with low expression of a few genes in the cerebellum and the forebrain. Using in situ hybridization (ISH) we have demonstrated that expression of Hox genes is maintained in territories derived from the early segmental Hox expression domains in the hindbrain. Indeed, we show that expression of genes belonging to paralogy groups PG2-8 is maintained in the hindbrain derivatives at adulthood. The spatial colinearity, which characterizes the early embryonic expression of Hox genes, is still observed in sequential antero-posterior boundaries of expression. Moreover, the main mossy and climbing fibres precerebellar nuclei express PG2-8 Hox genes according to their migration origins. Second, ISH confirms the presence of Hox gene transcripts in territories where they are not detected during development, suggesting neo-expression in these territories in adulthood. Within the forebrain, we have mapped Hoxb1, Hoxb3, Hoxb4, Hoxd3 and Hoxa5 expression in restricted areas of the sensory cerebral cortices as well as in specific thalamic relay nuclei. Our data thus suggest a requirement of Hox genes beyond their role of patterning genes, providing a new dimension to their functional relevance in the central nervous system.
Collapse
Affiliation(s)
- Bertrand Hutlet
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Nicolas Theys
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Cécile Coste
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium.,Laboratory of Developmental Neurobiology, GIGA-Neurosciences Research Center, University of Liège, 4000, Liège, Belgium
| | - Marie-Thérèse Ahn
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | | | - Benoît Lizen
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium
| | - Françoise Gofflot
- Institut des Sciences de la Vie, Université catholique de Louvain, 1348, Louvain-La-Neuve, Belgium.
| |
Collapse
|
30
|
Mandalos N, Rhinn M, Granchi Z, Karampelas I, Mitsiadis T, Economides AN, Dollé P, Remboutsika E. Sox2 acts as a rheostat of epithelial to mesenchymal transition during neural crest development. Front Physiol 2014; 5:345. [PMID: 25309446 PMCID: PMC4162359 DOI: 10.3389/fphys.2014.00345] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 08/22/2014] [Indexed: 12/19/2022] Open
Abstract
Precise control of self-renewal and differentiation of progenitor cells into the cranial neural crest (CNC) pool ensures proper head development, guided by signaling pathways such as BMPs, FGFs, Shh and Notch. Here, we show that murine Sox2 plays an essential role in controlling progenitor cell behavior during craniofacial development. A “Conditional by Inversion” Sox2 allele (Sox2COIN) has been employed to generate an epiblast ablation of Sox2 function (Sox2EpINV). Sox2EpINV/+(H) haploinsufficient and conditional (Sox2EpINV/mosaic) mutant embryos proceed beyond gastrulation and die around E11. These mutant embryos exhibit severe anterior malformations, with hydrocephaly and frontonasal truncations, which could be attributed to the deregulation of CNC progenitor cells during their epithelial to mesenchymal transition. This irregularity results in an exacerbated and aberrant migration of Sox10+ NCC in the branchial arches and frontonasal process of the Sox2 mutant embryos. These results suggest a novel role for Sox2 as a regulator of the epithelial to mesenchymal transitions (EMT) that are important for the cell flow in the developing head.
Collapse
Affiliation(s)
- Nikolaos Mandalos
- Stem Cell Biology Laboratory, Division of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece
| | - Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR7104, Université de Strasbourg Illkirch, France
| | - Zoraide Granchi
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, University of Zurich, ZZM Zurich, Switzerland
| | - Ioannis Karampelas
- Stem Cell Biology Laboratory, Division of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece ; Department of Neurosurgery, University Hospitals Case Medical Center Cleveland, OH, USA
| | - Thimios Mitsiadis
- Orofacial Development and Regeneration Unit, Faculty of Medicine, Institute of Oral Biology, University of Zurich, ZZM Zurich, Switzerland
| | | | - Pascal Dollé
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR7104, Université de Strasbourg Illkirch, France
| | - Eumorphia Remboutsika
- Stem Cell Biology Laboratory, Division of Molecular Biology and Genetics, Biomedical Sciences Research Centre "Alexander Fleming" Vari-Attica, Greece
| |
Collapse
|
31
|
Sivertsen MS, Glover JC, Perreault MC. Organization of pontine reticulospinal inputs to motoneurons controlling axial and limb muscles in the neonatal mouse. J Neurophysiol 2014; 112:1628-43. [PMID: 24944221 DOI: 10.1152/jn.00820.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using optical recording of synaptically mediated calcium transients and selective spinal lesions, we investigated the pattern of activation of spinal motoneurons (MNs) by the pontine reticulospinal projection in isolated brain stem-spinal cord preparations from the neonatal mouse. Stimulation sites throughout the region where the pontine reticulospinal neurons reside reliably activated MNs at cervical, thoracic, and lumbar levels. Activation was similar in MNs ipsi- and contralateral to the stimulation site, similar in medial and lateral motor columns that contain trunk and limb MNs, respectively, and similar in the L2 and L5 segments that predominantly contain flexor and extensor MNs, respectively. In nonlesioned preparations, responses in both ipsi- and contralateral MNs followed individual stimuli in stimulus trains nearly one-to-one (with few failures). After unilateral hemisection at C1 on the same side as the stimulation, responses had substantially smaller magnitudes and longer latencies and no longer followed individual stimuli. After unilateral hemisection at C1 on the side opposite to the stimulation, the responses were also smaller, but their latencies were not affected. Thus we distinguish two pontine reticulospinal pathways to spinal MNs, one uncrossed and the other crossed, of which the uncrossed pathway transmits more faithfully and appears to be more direct.
Collapse
Affiliation(s)
- Magne S Sivertsen
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; and
| | - Joel C Glover
- Laboratory of Neural Development and Optical Recording (NDEVOR), Department of Physiology, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway; and
| | | |
Collapse
|
32
|
Straka H, Fritzsch B, Glover JC. Connecting ears to eye muscles: evolution of a 'simple' reflex arc. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:162-75. [PMID: 24776996 DOI: 10.1159/000357833] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 12/05/2013] [Indexed: 11/19/2022]
Abstract
Developmental and evolutionary data from vertebrates are beginning to elucidate the origin of the sensorimotor pathway that links gravity and motion detection to image-stabilizing eye movements--the vestibulo-ocular reflex (VOR). Conserved transcription factors coordinate the development of the vertebrate ear into three functional sensory compartments (graviception/translational linear acceleration, angular acceleration and sound perception). These sensory components connect to specific populations of vestibular and auditory projection neurons in the dorsal hindbrain through undetermined molecular mechanisms. In contrast, a molecular basis for the patterning of the vestibular projection neurons is beginning to emerge. These are organized through the actions of rostrocaudally and dorsoventrally restricted transcription factors into a 'hodological mosaic' within which coherent and largely segregated subgroups are specified to project to different targets in the spinal cord and brain stem. A specific set of these regionally diverse vestibular projection neurons functions as the central element that transforms vestibular sensory signals generated by active and passive head and body movements into motor output through the extraocular muscles. The large dynamic range of motion-related sensory signals requires an organization of VOR pathways as parallel, frequency-tuned, hierarchical connections from the sensory periphery to the motor output. We suggest that eyes, ears and functional connections subserving the VOR are vertebrate novelties that evolved into a functionally coherent motor control system in an almost stereotypic organization across vertebrate taxa.
Collapse
Affiliation(s)
- Hans Straka
- Department of Biology II, Ludwig Maximilians University Munich, Planegg, Germany
| | | | | |
Collapse
|