1
|
Frazão Santos C, Agardy T, Crowder LB, Day JC, Himes-Cornell A, Pinsky ML, Reimer JM, Gissi E. Ocean Planning and Conservation in the Age of Climate Change: A Roundtable Discussion. Integr Org Biol 2024; 6:obae037. [PMID: 39440138 PMCID: PMC11495413 DOI: 10.1093/iob/obae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Over recent years, recognition of the need to develop climate-smart marine spatial planning (MSP) has gained momentum globally. In this roundtable discussion, we use a question-and-answer format to leverage diverse perspectives and voices involved in the study of sustainable MSP and marine conservation under global environmental and social change. We intend this dialogue to serve as a stepping stone toward developing ocean planning initiatives that are sustainable, equitable, and climate-resilient around the globe.
Collapse
Affiliation(s)
- C Frazão Santos
- Department of Animal Biology, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- MARE–Marine and Environmental Sciences Center/ARNET–Aquatic Research Network, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- School of Geography and the Environment, University of Oxford, Oxford OX1 3QY, UK
| | - T Agardy
- Sound Seas, Bethesda, MD 20816, USA
| | - L B Crowder
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93959, USA
| | - J C Day
- College of Science & Engineering, James Cook University, Townsville, QLD 4815, Australia
| | - A Himes-Cornell
- Fisheries and Aquaculture Division, Food and Aquaculture Organization of the United Nations, 00153 Rome, Italy
| | - M L Pinsky
- Department of Ecology & Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95060, USA
- Department of Ecology, Evolution and Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - J M Reimer
- Department of Geography, Memorial University of Newfoundland and Labrador, St. John's, NL A1C 5S7, Canada
- Marine Planning & Conservation, Fisheries and Oceans Canada, Ottawa, ON K1A 0E6, Canada
| | - E Gissi
- Oceans Department, Hopkins Marine Station, Stanford University, Pacific Grove, CA 93959, USA
- National Research Council, Institute of Marine Sciences, 30122 Venice, Italy
- National Biodiversity Future Center, 90133 Palermo, Italy
| |
Collapse
|
2
|
Bai J, Yan Y, Cao Y, Cui Y, Chang IS, Wu J. Marine ecological security shelter in China: Concept, policy framework, mechanism and implementation obstacles. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119662. [PMID: 38043313 DOI: 10.1016/j.jenvman.2023.119662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 12/05/2023]
Abstract
Building a marine ecological security shelter (MESS) has become the main strategy to adapt marine ecological threats in China. As China's marine policy lacks a robust framework document, it is necessary to consider whether the policy system can effectively support the construction of MESS. However, the linkage between the construction measures of MESS and related policies is not clear. Therefore, the purpose of this paper is to clarify the concept of MESS and its connection with policy, by adopting the policy content analysis method to analyze the evolution process of MESS-related policy system. The legislative shortcomings and implementation obstacles of the MESS-related policy system are then summarized and discussed. The results show that from 1981 to 2021 the MESS-related policy system has been continuously improved. However, the policy system's support and guarantee capacity for building MESS still needs to be improved. (1) Due to the lack of basic laws and special laws, the coordination among governance subjects and among policies lacks legislative guarantee. (2) The construction of MESS continues the inter-regional and inter-department administrative barriers in collaborative governance of marine environment. To establish an effective collaborative governance model, it is essential to improve the governance structure and mechanism. (3) The government-led governance pattern faces the problem of mechanism failure. The command and control instrument accounts for more than 82%, and the public and enterprises lack strong policy guarantees to participate in marine governance. (4) The policy system's adaptability to emerging threats must be improved. Marine policies rarely involve emerging threats such as climate change and new pollutants. Meanwhile, the real-time supervision and monitoring mechanism is weak. The real-time supervision is only accounting for about 10%. Generally speaking, as a complex and long-term system engineering, the construction of MESS will inevitably encounter contradictions in politics, culture, and economy. China should deepen the construction of marine ecological civilization and form a governance concept based on ecosystems. Overall, this paper helps to understand the internal connection between MESS and policy comprehensively and provides a new perspective for improving China's marine governance capacity.
Collapse
Affiliation(s)
- Jiandong Bai
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yufei Yan
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yunmeng Cao
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yue Cui
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - I-Shin Chang
- School of Ecology and Environment, Inner Mongolia University, Hohhot, Inner Mongolia, 010021, China.
| | - Jing Wu
- College of Environment Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Parker LM, Scanes E, O'Connor WA, Dove M, Elizur A, Pörtner HO, Ross PM. Resilience against the impacts of climate change in an ecologically and economically significant native oyster. MARINE POLLUTION BULLETIN 2024; 198:115788. [PMID: 38056289 DOI: 10.1016/j.marpolbul.2023.115788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 11/08/2023] [Accepted: 11/11/2023] [Indexed: 12/08/2023]
Abstract
Climate change is acidifying and warming our oceans, at an unprecedented rate posing a challenge for marine invertebrates vital across the globe for ecological services and food security. Here we show it is possible for resilience to climate change in an ecologically and economically significant oyster without detrimental effects to the energy budget. We exposed 24 pair-mated genetically distinct families of the Sydney rock oyster, Saccostrea glomerata to ocean acidification and warming for 4w and measured their resilience. Resilience was identified as the capacity to defend their acid-base balance without a loss of energy available for Scope for Growth (SFG). Of the 24 families, 13 were better able to defend their acid-base balance while eight had no loss of energy availability with a positive SFG. This study has found oyster families with reslience against climate change without a loss of SFG, is an essential mitigation strategy, in a critical mollusc.
Collapse
Affiliation(s)
- Laura M Parker
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, Sydney, New South Wales 2052, Australia
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia; Climate Change Cluster, University of Technology, Ultimo, Sydney, New South Wales 2007, Australia
| | - Wayne A O'Connor
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Michael Dove
- NSW Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, New South Wales 2316, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, Queensland 4556, Australia
| | - Hans-Otto Pörtner
- Alfred Wegener Institute for Polar and Marine Research, Bremerhaven 27570, Germany
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
4
|
Fabbrizzi E, Munari M, Fraschetti S, Arena C, Chiarore A, Cannavacciuolo A, Colletti A, Costanzo G, Soler-Fajardo A, Nannini M, Savinelli B, Silvestrini C, Vitale E, Tamburello L. Canopy-forming macroalgae can adapt to marine heatwaves. ENVIRONMENTAL RESEARCH 2023; 238:117218. [PMID: 37778611 DOI: 10.1016/j.envres.2023.117218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/03/2023]
Abstract
Seawater warming and marine heatwaves (MHWs) have a major role on the fragmentation and loss of coastal marine habitats. Understanding the resilience and potential for adaptation of marine habitat forming species to ocean warming becomes pivotal for predicting future changes, improving present conservation and restoration strategies. In this study, a thermo-tolerance experiment was conducted to investigate the physiological effects of short vs long MHWs occurring at different timing on recruits of Gongolaria barbata, a canopy-forming species widespread in the Mediterranean Sea. The recruits were collected from a population of the Marine Protected Area of Porto Cesareo (Apulia, Ionian Sea). Recruits length, PSII maximal photochemical efficiency (Fv/Fm), photosynthetic pigments content, concentrations of antioxidant compounds and total antioxidant activity (DPPH) were the response variables measured during the experiment. Univariate asymmetrical analyses highlighted that all physiological variables were significantly affected by both the duration and the timing of the thermal stress with the only exception of recruits length. The higher Fv/Fm ratio, chlorophylls and carotenoids content, and antioxidant compounds concentration in recruits exposed to long-term stress likely indicate an acclimation of thalli to the new environmental conditions and hence, an increased tolerance of G. barbata to thermal stress. Results also suggest that the mechanisms of adaptation activated in response to thermal stress did not affect the natural growth rate of recruits. Overall, this study supports the hypothesis that canopy-forming species can adapt to future climate conditions demonstrating a physiological acclimation to cope with MHWs, providing strong evidence that adaptation of marine species to thermal stress is more frequent than expected, this contributing to design tailored conservation and restoration strategies for marine coastal habitat.
Collapse
Affiliation(s)
- Erika Fabbrizzi
- Department of Biology, University of Naples Federico II, Naples, Italy; Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy; CoNISMa, Rome, Italy
| | - Marco Munari
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy; Department of Biology, Stazione Idrobiologica Umberto D'Ancona, University of Padova, Chioggia (Venice), Italy
| | - Simonetta Fraschetti
- Department of Biology, University of Naples Federico II, Naples, Italy; CoNISMa, Rome, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy.
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Naples, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Antonia Chiarore
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Antonio Cannavacciuolo
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Alberto Colletti
- Department of Biology, University of Naples Federico II, Naples, Italy; CoNISMa, Rome, Italy
| | - Giulia Costanzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Ana Soler-Fajardo
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | - Matteo Nannini
- Department of Integrative Marine Ecology, Ischia Marine Centre, Stazione Zoologica Anton Dohrn, Ischia (Naples), Italy
| | | | - Chiara Silvestrini
- Department of Biology, University of Naples Federico II, Naples, Italy; CoNISMa, Rome, Italy
| | | | - Laura Tamburello
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily, Lungomare Cristoforo Colombo (complesso Roosevelt), 90142 Palermo, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| |
Collapse
|
5
|
Buenafe KCV, Dunn DC, Everett JD, Brito-Morales I, Schoeman DS, Hanson JO, Dabalà A, Neubert S, Cannicci S, Kaschner K, Richardson AJ. A metric-based framework for climate-smart conservation planning. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2852. [PMID: 36946332 DOI: 10.1002/eap.2852] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 01/20/2023] [Accepted: 03/09/2023] [Indexed: 06/02/2023]
Abstract
Climate change is already having profound effects on biodiversity, but climate change adaptation has yet to be fully incorporated into area-based management tools used to conserve biodiversity, such as protected areas. One main obstacle is the lack of consensus regarding how impacts of climate change can be included in spatial conservation plans. We propose a climate-smart framework that prioritizes the protection of climate refugia-areas of low climate exposure and high biodiversity retention-using climate metrics. We explore four aspects of climate-smart conservation planning: (1) climate model ensembles; (2) multiple emission scenarios; (3) climate metrics; and (4) approaches to identifying climate refugia. We illustrate this framework in the Western Pacific Ocean, but it is equally applicable to terrestrial systems. We found that all aspects of climate-smart conservation planning considered affected the configuration of spatial plans. The choice of climate metrics and approaches to identifying refugia have large effects in the resulting climate-smart spatial plans, whereas the choice of climate models and emission scenarios have smaller effects. As the configuration of spatial plans depended on climate metrics used, a spatial plan based on a single measure of climate change (e.g., warming) will not necessarily be robust against other measures of climate change (e.g., ocean acidification). We therefore recommend using climate metrics most relevant for the biodiversity and region considered based on a single or multiple climate drivers. To include the uncertainty associated with different climate futures, we recommend using multiple climate models (i.e., an ensemble) and emission scenarios. Finally, we show that the approaches we used to identify climate refugia feature trade-offs between: (1) the degree to which they are climate-smart, and (2) their efficiency in meeting conservation targets. Hence, the choice of approach will depend on the relative value that stakeholders place on climate adaptation. By using this framework, protected areas can be designed with improved longevity and thus safeguard biodiversity against current and future climate change. We hope that the proposed climate-smart framework helps transition conservation planning toward climate-smart approaches.
Collapse
Affiliation(s)
- Kristine Camille V Buenafe
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
- Department of Biology, University of Florence, Florence, Italy
- The Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Daniel C Dunn
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science (CBCS), The University of Queensland, Brisbane, Queensland, Australia
| | - Jason D Everett
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Queensland Biosciences Precinct (QBP), St Lucia, Queensland, Australia
- Centre for Marine Science and Innovation (CMSI), The University of New South Wales, Sydney, New South Wales, Australia
| | - Isaac Brito-Morales
- Betty and Gordon Moore Center for Science, Conservation International, Arlington, Virginia, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - David S Schoeman
- Ocean Futures Research Cluster, School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia
- Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, Gqeberha, South Africa
| | - Jeffrey O Hanson
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Alvise Dabalà
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
- Systems Ecology and Resource Management, Department of Organism Biology, Faculté des Sciences, Université Libre de Bruxelles - ULB, Brussels, Belgium
- Ecology and Biodiversity, Laboratory of Plant Biology and Nature Management, Biology Department, Vrije Universiteit Brussel - VUB, Brussels, Belgium
| | - Sandra Neubert
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
- Institute of Computer Science, Leipzig University, Leipzig, Germany
| | - Stefano Cannicci
- Department of Biology, University of Florence, Florence, Italy
- The Swire Institute of Marine Science and Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Kristin Kaschner
- Department of Biometry and Environmental Systems Analysis, Albert-Ludwigs-University of Freiburg, Freiburg im Breisgau, Germany
| | - Anthony J Richardson
- School of Mathematics and Physics, The University of Queensland, Brisbane, Queensland, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Queensland Biosciences Precinct (QBP), St Lucia, Queensland, Australia
| |
Collapse
|
6
|
Nikolaou A, Tsirintanis K, Rilov G, Katsanevakis S. Invasive Fish and Sea Urchins Drive the Status of Canopy Forming Macroalgae in the Eastern Mediterranean. BIOLOGY 2023; 12:763. [PMID: 37372048 DOI: 10.3390/biology12060763] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/29/2023]
Abstract
Canopy-forming macroalgae, such as Cystoseira sensu lato, increase the three-dimensional complexity and spatial heterogeneity of rocky reefs, enhancing biodiversity and productivity in coastal areas. Extensive loss of canopy algae has been recorded in recent decades throughout the Mediterranean Sea due to various anthropogenic pressures. In this study, we assessed the biomass of fish assemblages, sea urchin density, and the vertical distribution of macroalgal communities in the Aegean and Levantine Seas. The herbivore fish biomass was significantly higher in the South Aegean and Levantine compared to the North Aegean. Very low sea urchin densities suggest local collapses in the South Aegean and the Levantine. In most sites in the South Aegean and the Levantine, the ecological status of macroalgal communities was low or very low at depths deeper than 2 m, with limited or no canopy algae. In many sites, canopy algae were restricted to a very narrow, shallow zone, where grazing pressure may be limited due to harsh hydrodynamic conditions. Using Generalized Linear Mixed Models, we demonstrated that the presence of canopy algae is negatively correlated with the biomass of the invasive Siganus spp. and sea urchins. The loss of Cystoseira s.l. forests is alarming, and urgent conservation actions are needed.
Collapse
Affiliation(s)
- Athanasios Nikolaou
- Department of Marine Sciences, University of the Aegean, 81100 Mytilene, Greece
| | | | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 31080, Israel
- The Leon H. Charney School of Marine Sciences, Marine Biology Department, University of Haifa, Mt. Carmel, Haifa 31905, Israel
| | | |
Collapse
|
7
|
Fariñas-Franco JM, Cook RL, Gell FR, Harries DB, Hirst N, Kent F, MacPherson R, Moore C, Mair JM, Porter JS, Sanderson WG. Are we there yet? Management baselines and biodiversity indicators for the protection and restoration of subtidal bivalve shellfish habitats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:161001. [PMID: 36539096 DOI: 10.1016/j.scitotenv.2022.161001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/08/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Biodiversity loss and degradation of natural habitats is increasing at an unprecedented rate. Of all marine habitats, biogenic reefs created by once-widespread shellfish, are now one of the most imperilled, and globally scarce. Conservation managers seek to protect and restore these habitats, but suitable baselines and indicators are required, and detailed scientific accounts are rare and inconsistent. In the present study the biodiversity of a model subtidal habitat, formed by the keystone horse mussel Modiolus modiolus (L.), was analysed across its Northeast Atlantic biogeographical range. Consistent samples of 'clumped' mussels were collected at 16 locations, covering a wide range of environmental conditions. Analysis of the associated macroscopic biota showed high biodiversity across all sites, cumulatively hosting 924 marine macroinvertebrate and algal taxa. There was a rapid increase in macroinvertebrate biodiversity (H') and community evenness (J) between 2 and 10 mussels per clump, reaching an asymptote at mussel densities of 10 per clump. Diversity declined at more northern latitudes, with depth and in coarser substrata with the fastest tidal flows. Diversity metrics corrected for species abundance were generally high across the habitats sampled, with significant latitudinal variability caused by current, depth and substrate type. Faunal community composition varied significantly between most sites and was difficult to assign to a 'typical' M. modiolus assemblage, being significantly influenced by regional environmental conditions, including the presence of algal turfs. Within the context of the rapid global increase in protection and restoration of bivalve shellfish habitats, site and density-specific values of diversity are probably the best targets for conservation management and upon which to base monitoring programmes.
Collapse
Affiliation(s)
- Jose M Fariñas-Franco
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; Marine and Freshwater Research Centre and Department of Natural Resource and the Environment, School of Science and Computing, Atlantic Technological University, Old Dublin Road, Galway H91 T8NW, Ireland.
| | - Robert L Cook
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Fiona R Gell
- Fisheries Directorate, Department of Environment Food and Agriculture, Isle of Man Government, St John's, Isle of Man
| | - Dan B Harries
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Natalie Hirst
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Flora Kent
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK; Scottish Natural Heritage, Silvan House, 231 Corstorphine Rd, Edinburgh EH12 7AT, UK
| | - Rebecca MacPherson
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Colin Moore
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - James M Mair
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| | - Joanne S Porter
- International Centre for Island Technology, Heriot-Watt University, Franklin Road, Stromness, Orkney KW16 3AN, UK
| | - William G Sanderson
- Institute of Life and Earth Sciences, Heriot-Watt University, Edinburgh, Scotland EH14 4AS, UK
| |
Collapse
|
8
|
Invading the Greek Seas: Spatiotemporal Patterns of Marine Impactful Alien and Cryptogenic Species. DIVERSITY 2023. [DOI: 10.3390/d15030353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The Greek Seas are greatly exposed to the proliferation of marine alien species. At least 242 alien species have been reported within Greek territorial waters, three-quarters of which are considered established, while their rate of introduction is increasing. Some of these species exhibit high invasiveness, imposing severe impacts on native ecosystems and ecosystem services. The spatiotemporal proliferation of these species outside their natural boundaries depends on several parameters, including their biological characteristics, native distribution range, introduction pathway, and time of initial introduction. Knowing the current and potential alien species distribution is essential for the implementation of effective management actions. To investigate the distribution of impactful cryptogenic and alien species (ICAS) in the Greek Seas, we combined all records available until the end of 2020 from eight types of data sources: (1) scientific literature, (2) grey literature, (3) offline databases, (4) online scientific databases, (5) personal observations of independent researchers, (6) communications with divers and diving centers, (7) in situ underwater sampling, and (8) social networks. The results of 5478 georeferenced records refer to 60 marine ICAS belonging to 16 taxonomic groups. The number of records and the overall number of ICAS present an increasing trend from the northern to the southern parts of our study area, and there is a clear distinction in community composition between the northern and southern subregions. This latitudinal gradient is mainly due to the large number of thermophilous Lessepsian species of West Indo-Pacific origin, which reach the southern parts of the study area through unaided dispersal. On the other hand, transport stowaways appear to be more prevalent in areas located near large ports, which show significant differences in ICAS numbers and community composition compared to sites located far from ports. Most records (>40% of the total) were associated with rocky reefs, partly reflecting the preference of divers for this habitat type but also the presence of conspicuous, reef-associated impactful fish. The number of published records, as well as the number of reported ICAS, shows a dramatic increase with time, highlighting the urgent need for immediate proactive management actions and scientifically informed control measures.
Collapse
|
9
|
Wade MW, Fisher M, Matich P. Comparison of two machine learning frameworks for predicting aggregatory behavior of sharks. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Michael W. Wade
- Data Science Institute Vanderbilt University Nashville TN USA
| | - Mark Fisher
- Texas Parks and Wildlife Department, Coastal Fisheries Division, Rockport Marine Science Laboratory Rockport TX USA
| | | |
Collapse
|
10
|
Wineland SM, Neeson TM. Maximizing the spread of conservation initiatives in social networks. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12740] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Sean M. Wineland
- Department of Geography and Environmental Sustainability University of Oklahoma Norman Oklahoma USA
| | - Thomas M. Neeson
- Department of Geography and Environmental Sustainability University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
11
|
Vimercati G, Probert AF, Volery L, Bernardo-Madrid R, Bertolino S, Céspedes V, Essl F, Evans T, Gallardo B, Gallien L, González-Moreno P, Grange MC, Hui C, Jeschke JM, Katsanevakis S, Kühn I, Kumschick S, Pergl J, Pyšek P, Rieseberg L, Robinson TB, Saul WC, Sorte CJB, Vilà M, Wilson JRU, Bacher S. The EICAT+ framework enables classification of positive impacts of alien taxa on native biodiversity. PLoS Biol 2022; 20:e3001729. [PMID: 35972940 PMCID: PMC9380921 DOI: 10.1371/journal.pbio.3001729] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Species introduced through human-related activities beyond their native range, termed alien species, have various impacts worldwide. The IUCN Environmental Impact Classification for Alien Taxa (EICAT) is a global standard to assess negative impacts of alien species on native biodiversity. Alien species can also positively affect biodiversity (for instance, through food and habitat provisioning or dispersal facilitation) but there is currently no standardized and evidence-based system to classify positive impacts. We fill this gap by proposing EICAT+, which uses 5 semiquantitative scenarios to categorize the magnitude of positive impacts, and describes underlying mechanisms. EICAT+ can be applied to all alien taxa at different spatial and organizational scales. The application of EICAT+ expands our understanding of the consequences of biological invasions and can inform conservation decisions.
Collapse
Affiliation(s)
| | - Anna F. Probert
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Lara Volery
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ruben Bernardo-Madrid
- Department of Integrated Biology, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Torino, Italy
| | - Vanessa Céspedes
- Laboratory of Aquatic Ecology, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
| | - Franz Essl
- Bioinvasions, Global Change, Macroecology-Group, Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Thomas Evans
- Ecologie Systématique et Evolution, Université Paris-Saclay, Gif-sur-Yvette, France
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | | | - Laure Gallien
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, Grenoble, France
| | | | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Jonathan M. Jeschke
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | | | - Ingolf Kühn
- Department Community Ecology, Helmholtz Centre for Environmental Research—UFZ, Halle, Germany
- Department of Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Sabrina Kumschick
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, South Africa
| | - Jan Pergl
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Petr Pyšek
- Department of Invasion Ecology, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Loren Rieseberg
- Department of Botany and Biodiversity Research Centre, University of British Columbia, Vancouver, Canada
| | - Tamara B. Robinson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
| | - Wolf-Christian Saul
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
| | - Cascade J. B. Sorte
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| | - Montserrat Vilà
- Department of Integrated Biology, Estación Biológica de Doñana (EBD), CSIC, Sevilla, Spain
- Department of Plant Biology and Ecology, University of Sevilla, Sevilla, Spain
| | - John R. U. Wilson
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa
- Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, South Africa
| | - Sven Bacher
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
12
|
Doxa A, Almpanidou V, Katsanevakis S, Queirós AM, Kaschner K, Garilao C, Kesner-Reyes K, Mazaris AD. 4D marine conservation networks: Combining 3D prioritization of present and future biodiversity with climatic refugia. GLOBAL CHANGE BIOLOGY 2022; 28:4577-4588. [PMID: 35583810 DOI: 10.1111/gcb.16268] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
Given the accelerating rate of biodiversity loss, the need to prioritize marine areas for protection represents a major conservation challenge. The three-dimensionality of marine life and ecosystems is an inherent element of complexity for setting spatial conservation plans. Yet, the confidence of any recommendation largely depends on shifting climate, which triggers a global redistribution of biodiversity, suggesting the inclusion of time as a fourth dimension. Here, we developed a depth-specific prioritization analysis to inform the design of protected areas, further including metrics of climate-driven changes in the ocean. Climate change was captured in this analysis by considering the projected future distribution of >2000 benthic and pelagic species inhabiting the Mediterranean Sea, combined with climatic stability and heterogeneity metrics of the seascape. We identified important areas based on both biological and climatic criteria, where conservation focus should be given in priority when designing a three-dimensional, climate-smart protected area network. We detected spatially concise, conservation priority areas, distributed around the basin, that protected marine areas almost equally across all depth zones. Our approach highlights the importance of deep sea zones as priority areas to meet conservation targets for future marine biodiversity, while suggesting that spatial prioritization schemes, that focus on a static two-dimensional distribution of biodiversity data, might fail to englobe both the vertical properties of species distributions and the fine and larger-scale impacts associated with climate change.
Collapse
Affiliation(s)
- Aggeliki Doxa
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology-Hellas (FORTH), Ν. Plastira 100, Vassilika Vouton, Heraklion, Crete, Greece
| | - Vasiliki Almpanidou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | | | - Kristin Kaschner
- Department of Biometry and Environmental Systems Analysis, Albert-Ludwigs University, Freiburg im Breisgau, Germany
| | | | - Kathleen Kesner-Reyes
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
- Quantitative Aquatics, Los Baños, Philippines
| | - Antonios D Mazaris
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
13
|
Last snail standing? superior thermal resilience of an alien tropical intertidal gastropod over natives in an ocean-warming hotspot. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02871-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Fraschetti S, Fabbrizzi E, Tamburello L, Uyarra MC, Micheli F, Sala E, Pipitone C, Badalamenti F, Bevilacqua S, Boada J, Cebrian E, Ceccherelli G, Chiantore M, D'Anna G, Di Franco A, Farina S, Giakoumi S, Gissi E, Guala I, Guidetti P, Katsanevakis S, Manea E, Montefalcone M, Sini M, Asnaghi V, Calò A, Di Lorenzo M, Garrabou J, Musco L, Oprandi A, Rilov G, Borja A. An integrated assessment of the Good Environmental Status of Mediterranean Marine Protected Areas. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114370. [PMID: 34968935 DOI: 10.1016/j.jenvman.2021.114370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/12/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Local, regional and global targets have been set to halt marine biodiversity loss. Europe has set its own policy targets to achieve Good Environmental Status (GES) of marine ecosystems by implementing the Marine Strategy Framework Directive (MSFD) across member states. We combined an extensive dataset across five Mediterranean ecoregions including 26 Marine Protected Areas (MPAs), their reference unprotected areas, and a no-trawl case study. Our aim was to assess if MPAs reach GES, if their effects are local or can be detected at ecoregion level or up to a Mediterranean scale, and which are the ecosystem components driving GES achievement. This was undertaken by using the analytical tool NEAT (Nested Environmental status Assessment Tool), which allows an integrated assessment of the status of marine systems. We adopted an ecosystem approach by integrating data from several ecosystem components: the seagrass Posidonia oceanica, macroalgae, sea urchins and fish. Thresholds to define the GES were set by dedicated workshops and literature review. In the Western Mediterranean, most MPAs are in good/high status, with P. oceanica and fish driving this result within MPAs. However, GES is achieved only at a local level, and the Mediterranean Sea, as a whole, results in a moderate environmental status. Macroalgal forests are overall in bad condition, confirming their status at risk. The results are significantly affected by the assumption that discrete observations over small spatial scales are representative of the total extension investigated. This calls for large-scale, dedicated assessments to realistically detect environmental status changes under different conditions. Understanding MPAs effectiveness in reaching GES is crucial to assess their role as sentinel observatories of marine systems. MPAs and trawling bans can locally contribute to the attainment of GES and to the fulfillment of the MSFD objectives. Building confidence in setting thresholds between GES and non-GES, investing in long-term monitoring, increasing the spatial extent of sampling areas, rethinking and broadening the scope of complementary tools of protection (e.g., Natura 2000 Sites), are indicated as solutions to ameliorate the status of the basin.
Collapse
Affiliation(s)
- Simonetta Fraschetti
- Department of Biology, University of Naples Federico II, Naples, Italy; CoNISMa, Rome, Italy.
| | - Erika Fabbrizzi
- Department of Biology, University of Naples Federico II, Naples, Italy; Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Laura Tamburello
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - María C Uyarra
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea S/n, 20110, Pasaia, Spain
| | - Fiorenza Micheli
- Hopkins Marine Station and Center for Ocean Solutions, Stanford University, Pacific Grove, CA, United States
| | - Enric Sala
- National Geographic Society, Washington, DC, United States
| | - Carlo Pipitone
- CNR-IAS, Lungomare Cristoforo Colombo 4521, 90149, Palermo, Italy
| | - Fabio Badalamenti
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; CNR-IAS, Lungomare Cristoforo Colombo 4521, 90149, Palermo, Italy
| | | | - Jordi Boada
- GrMAR Institut d'Ecologia Aquàtica, Universitat de Girona, 17003, Girona, Spain
| | - Emma Cebrian
- GrMAR Institut d'Ecologia Aquàtica, Universitat de Girona, 17003, Girona, Spain; Centre d'estudis Avançats de Blanes CEAB-CSIC, Blanes, 17300, Girona, Spain
| | - Giulia Ceccherelli
- Department of Chemistry and Pharmacy, University of Sassari, via Piandanna 4, 07100, Sassari, Italy
| | - Mariachiara Chiantore
- DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Giovanni D'Anna
- CNR-IAS, via Giovanni da Verrazzano 17, 91014, Castellammare del Golfo, Italy
| | - Antonio Di Franco
- Department of Integrative Marine Ecology, Sicily, Stazione Zoologica Anton Dohrn, Lungomare Cristoforo Colombo, 90149, Palermo, Italy
| | - Simone Farina
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Sylvaine Giakoumi
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy
| | - Elena Gissi
- Hopkins Marine Station, Stanford University, 120 Ocean View Boulevard, Pacific Grove, CA, 93950, USA; National Research Council, Institute of Marine Science, CNR ISMAR, Arsenale, Tesa 104 - Castello 2737/F, 30122, Venice, Italy
| | - Ivan Guala
- IMC - International Marine Centre, Loc. Sa Mardini, Torregrande, Oristano, Italy
| | - Paolo Guidetti
- ECOSEAS UMR 7035, Université Côte d'Azur, CNRS, Parc Valrose, 28 Avenue Valrose, 06108, Nice, France; Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Genoa Marine Centre, 16126, Genoa, Italy
| | - Stelios Katsanevakis
- Department of Marine Sciences, University of the Aegean, 81100, Mytilene, Greece
| | - Elisabetta Manea
- Institute of Marine Sciences, National Research Council (ISMAR-CNR), Arsenale, Tesa 104, Castello 2737/F, 30122, Venice, Italy
| | - Monica Montefalcone
- DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Maria Sini
- Department of Marine Sciences, University of the Aegean, 81100, Mytilene, Greece
| | - Valentina Asnaghi
- DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Antonio Calò
- Department of Earth and Marine Sciences (DiSTeM), University of Palermo, via Archirafi 20-22, 90123, Palermo, Italy
| | - Manfredi Di Lorenzo
- Institute for Biological Resources and Marine Biotechnologies, National Research Council (IRBIM-CNR), Via L. Vaccara, Mazara del Vallo 61, 91026, Italy
| | | | - Luigi Musco
- Department of Integrative Marine Ecology (EMI), Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Naples, Italy; Laboratory of Marine Biology and Zoology, DiSTeBA, University of Salento, Lecce, Italy
| | - Alice Oprandi
- DiSTAV, Department of Earth, Environment and Life Sciences, University of Genoa, Corso Europa 26, 16132, Genoa, Italy
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), PO Box 8030, Haifa, 31080, Israel
| | - Angel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea S/n, 20110, Pasaia, Spain; King Abdulaziz University, Faculty of Marine Sciences, Jeddah, Saudi Arabia
| |
Collapse
|
15
|
Queirós AM, Talbot E, Beaumont NJ, Somerfield PJ, Kay S, Pascoe C, Dedman S, Fernandes JA, Jueterbock A, Miller PI, Sailley SF, Sará G, Carr LM, Austen MC, Widdicombe S, Rilov G, Levin LA, Hull SC, Walmsley SF, Nic Aonghusa C. Bright spots as climate-smart marine spatial planning tools for conservation and blue growth. GLOBAL CHANGE BIOLOGY 2021; 27:5514-5531. [PMID: 34486773 PMCID: PMC9291121 DOI: 10.1111/gcb.15827] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 07/09/2021] [Accepted: 08/02/2021] [Indexed: 05/04/2023]
Abstract
Marine spatial planning that addresses ocean climate-driven change ('climate-smart MSP') is a global aspiration to support economic growth, food security and ecosystem sustainability. Ocean climate change ('CC') modelling may become a key decision-support tool for MSP, but traditional modelling analysis and communication challenges prevent their broad uptake. We employed MSP-specific ocean climate modelling analyses to inform a real-life MSP process; addressing how nature conservation and fisheries could be adapted to CC. We found that the currently planned distribution of these activities may become unsustainable during the policy's implementation due to CC, leading to a shortfall in its sustainability and blue growth targets. Significant, climate-driven ecosystem-level shifts in ocean components underpinning designated sites and fishing activity were estimated, reflecting different magnitudes of shifts in benthic versus pelagic, and inshore versus offshore habitats. Supporting adaptation, we then identified: CC refugia (areas where the ecosystem remains within the boundaries of its present state); CC hotspots (where climate drives the ecosystem towards a new state, inconsistent with each sectors' present use distribution); and for the first time, identified bright spots (areas where oceanographic processes drive range expansion opportunities that may support sustainable growth in the medium term). We thus create the means to: identify where sector-relevant ecosystem change is attributable to CC; incorporate resilient delivery of conservation and sustainable ecosystem management aims into MSP; and to harness opportunities for blue growth where they exist. Capturing CC bright spots alongside refugia within protected areas may present important opportunities to meet sustainability targets while helping support the fishing sector in a changing climate. By capitalizing on the natural distribution of climate resilience within ocean ecosystems, such climate-adaptive spatial management strategies could be seen as nature-based solutions to limit the impact of CC on ocean ecosystems and dependent blue economy sectors, paving the way for climate-smart MSP.
Collapse
Affiliation(s)
| | | | | | | | - Susan Kay
- Plymouth Marine LaboratoryPlymouthUK
| | | | - Simon Dedman
- Hopkins Marine StationStanford UniversityStanfordCaliforniaUSA
| | - Jose A. Fernandes
- AZTI‐Tecnalia, Marine ResearchBasque Research and Technology Alliance (BRTA)BizkaiaSpain
| | | | | | | | - Gianluca Sará
- Department of Earth and Marine ScienceLaboratory of EcologyUniversity of PalermoPalermoItaly
| | | | | | | | - Gil Rilov
- National Institute of OceanographyIsrael Oceanographic and Limnological Research InstituteHaifaIsrael
| | - Lisa A. Levin
- Scripps Institution of OceanographyUniversity of CaliforniaSan DiegoCaliforniaUSA
| | | | | | | |
Collapse
|
16
|
Boulanger E, Benestan L, Guerin PE, Dalongeville A, Mouillot D, Manel S. Climate differently influences the genomic patterns of two sympatric marine fish species. J Anim Ecol 2021; 91:1180-1195. [PMID: 34716929 DOI: 10.1111/1365-2656.13623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 10/21/2021] [Indexed: 12/19/2022]
Abstract
Climate influences population genetic variation in marine species. Capturing these impacts remains challenging for marine fishes which disperse over large geographical scales spanning steep environmental gradients. It requires the extensive spatial sampling of individuals or populations, representative of seascape heterogeneity, combined with a set of highly informative molecular markers capable of revealing climatic-associated genetic variations. We explored how space, dispersal and environment shape the genomic patterns of two sympatric fish species in the Mediterranean Sea, which ranks among the oceanic basins most affected by climate change and human pressure. We hypothesized that the population structure and climate-associated genomic signatures of selection would be stronger in the less mobile species, as restricted gene flow tends to facilitate the fixation of locally adapted alleles. To test our hypothesis, we genotyped two species with contrasting dispersal abilities: the white seabream Diplodus sargus and the striped red mullet Mullus surmuletus. We collected 823 individuals and used genotyping by sequencing (GBS) to detect 8,206 single nucleotide polymorphisms (SNPs) for the seabream and 2,794 for the mullet. For each species, we identified highly differentiated genomic regions (i.e. outliers) and disentangled the relative contribution of space, dispersal and environmental variables (climate, marine primary productivity) on the outliers' genetic structure to test the prevalence of gene flow and local adaptation. We observed contrasting patterns of gene flow and adaptive genetic variation between the two species. The seabream showed a distinct Alboran sea population and panmixia across the Mediterranean Sea. The mullet revealed additional differentiation within the Mediterranean Sea that was significantly correlated to summer and winter temperatures, as well as marine primary productivity. Functional annotation of the climate-associated outlier SNPs then identified candidate genes involved in heat tolerance that could be examined to further predict species' responses to climate change. Our results illustrate the key steps of a comparative seascape genomics study aiming to unravel the evolutionary processes at play in marine species, to better anticipate their response to climate change. Defining population adaptation capacities and environmental niches can then serve to incorporate evolutionary processes into species conservation planning.
Collapse
Affiliation(s)
- Emilie Boulanger
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France.,MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France
| | - Laura Benestan
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | - Pierre-Edouard Guerin
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| | | | - David Mouillot
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, Montpellier, France.,Institut Universitaire de France, Paris, France
| | - Stéphanie Manel
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Montpellier, France
| |
Collapse
|
17
|
Rilov G, David N, Guy-Haim T, Golomb D, Arav R, Filin S. Sea level rise can severely reduce biodiversity and community net production on rocky shores. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148377. [PMID: 34412382 DOI: 10.1016/j.scitotenv.2021.148377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/29/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Sea level rise (SLR), driven by anthropogenic climate change, can be a major threat to coastal ecosystems. Among the most biologically diverse but SLR-threatened coastal ecosystems are rocky shores, especially in regions with a small tidal range. Nonetheless, the impacts of SLR on rocky shore biodiversity, community structure and ecosystem functions have rarely been studied. Here, we use the biogenic intertidal ecosystem, Mediterranean vermetid reefs on the Israeli coast, as case study for testing the potential impact of SLR on reef communities, with surveys, 3D topographic mapping plus SLR simulations, and a manipulative community translocation experiment. We show that: (1) biodiversity is much lower on very shallow, permanently submerged, horizontal rocky surfaces compared to that on intertidal reef platforms, (2) the extensive intertidal platforms will permanently drown under even modest SLR scenarios, (3) the rich intertidal community will transform, when permanently submerged, either to a very different but still rich community when protected from grazing by highly abundant invasive fish (rabbitfish), or to a much poorer turf community when exposed to such fish grazing, and (4) the reef community net production will drastically drop under permanent submersion. Because the main ecosystem engineer of the vermetid reefs, Dendropoma anguliferum (Monterosato, 1878), is nearly extinct in the southeast Levant, it is unlikely that new reefs will be formed higher on the shore in the future, presumably resulting in extensive coastal ecological shifts. Considerable coastal community shifts are forecasted for many regions globally due to SLR, as many shorelines are predicted to suffer from "coastal squeeze". Hence, similar manipulative experiments are encouraged in other regions to test for generality vs. context dependency in SLR ecological impacts. We suggest that in cases where essential/unique intertidal habitats like vermetid reefs are expected to vanish by SLR, constructing carefully-planned, ecologically friendly, artificial alternatives should be considered.
Collapse
Affiliation(s)
- Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, PO Box 8030, Haifa 31080, Israel; Marine Biology Department, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel.
| | - Niv David
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, PO Box 8030, Haifa 31080, Israel; Marine Biology Department, Leon H. Charney School of Marine Sciences, University of Haifa, Haifa 3498838, Israel
| | - Tamar Guy-Haim
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, PO Box 8030, Haifa 31080, Israel
| | - Dar Golomb
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, PO Box 8030, Haifa 31080, Israel
| | - Reuma Arav
- Mapping and Geoinformation Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| | - Sagi Filin
- Mapping and Geoinformation Engineering, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
18
|
Bevilacqua S, Airoldi L, Ballesteros E, Benedetti-Cecchi L, Boero F, Bulleri F, Cebrian E, Cerrano C, Claudet J, Colloca F, Coppari M, Di Franco A, Fraschetti S, Garrabou J, Guarnieri G, Guerranti C, Guidetti P, Halpern BS, Katsanevakis S, Mangano MC, Micheli F, Milazzo M, Pusceddu A, Renzi M, Rilov G, Sarà G, Terlizzi A. Mediterranean rocky reefs in the Anthropocene: Present status and future concerns. ADVANCES IN MARINE BIOLOGY 2021; 89:1-51. [PMID: 34583814 DOI: 10.1016/bs.amb.2021.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Global change is striking harder and faster in the Mediterranean Sea than elsewhere, where high levels of human pressure and proneness to climate change interact in modifying the structure and disrupting regulative mechanisms of marine ecosystems. Rocky reefs are particularly exposed to such environmental changes with ongoing trends of degradation being impressive. Due to the variety of habitat types and associated marine biodiversity, rocky reefs are critical for the functioning of marine ecosystems, and their decline could profoundly affect the provision of essential goods and services which human populations in coastal areas rely upon. Here, we provide an up-to-date overview of the status of rocky reefs, trends in human-driven changes undermining their integrity, and current and upcoming management and conservation strategies, attempting a projection on what could be the future of this essential component of Mediterranean marine ecosystems.
Collapse
Affiliation(s)
- Stanislao Bevilacqua
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy.
| | - Laura Airoldi
- Stazione Idrobiologica di Chioggia "Umberto D'Ancona", Dipartimento di Biologia, University of Padova, Padova, Italy; Dipartimento di Beni Culturali, University of Bologna, Ravenna, Italy
| | | | - Lisandro Benedetti-Cecchi
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Ferdinando Boero
- Dipartimento di Biologia, University of Napoli Federico II, Napoli, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy; National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy
| | - Fabio Bulleri
- Dipartimento di Biologia, University of Pisa, Pisa, Italy
| | - Emma Cebrian
- Centre d'Estudis Avançats de Blanes-CSIC, Girona, Spain
| | - Carlo Cerrano
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy; Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy
| | - Joachim Claudet
- National Center for Scientific Research, PSL Université Paris, CRIOBE, USR 3278 CNRS-EPHE-UPVD, Maison des Océans, Paris, France
| | - Francesco Colloca
- Department of Integrative Ecology, Stazione Zoologica A. Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Rome, Italy
| | - Martina Coppari
- Dipartimento di Scienze della Vita e dell'Ambiente, Polytechnic University of Marche, Ancona, Italy
| | - Antonio Di Franco
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily, Palermo, Italy
| | - Simonetta Fraschetti
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Biologia, University of Napoli Federico II, Napoli, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Joaquim Garrabou
- Institut de Ciències del Mar, CSIC, Barcelona, Spain; Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO, Marseille, France
| | - Giuseppe Guarnieri
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, University of Salento, Lecce, Italy
| | | | - Paolo Guidetti
- National Research Council, Institute for the Study of Anthropic Impact and Sustainability in the Marine Environment (CNR-IAS), Genoa, Italy; Department of Integrative Marine Ecology, Stazione Zoologica A. Dohrn-National Institute of Marine Biology, Ecology and Biotechnology, Naples, Italy
| | - Benjamin S Halpern
- National Center for Ecological Analysis & Synthesis, University of California, Santa Barbara, CA, United States; Bren School of Environmental Science and Management, University of California, Santa Barbara, CA, United States
| | | | - Maria Cristina Mangano
- Department of Integrative Marine Ecology, Stazione Zoologica Anton Dohrn, Sicily, Palermo, Italy
| | - Fiorenza Micheli
- Hopkins Marine Station and Center for Ocean Solutions, Stanford University, Pacific Grove, CA, United States
| | - Marco Milazzo
- Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Antonio Pusceddu
- Dipartimento di Scienze della Vita e dell'Ambiente, University of Cagliari, Cagliari, Italy
| | - Monia Renzi
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel
| | - Gianluca Sarà
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
| | - Antonio Terlizzi
- Dipartimento di Scienze della Vita, University of Trieste, Trieste, Italy; Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
19
|
Nielsen ES, Henriques R, Beger M, von der Heyden S. Distinct interspecific and intraspecific vulnerability of coastal species to global change. GLOBAL CHANGE BIOLOGY 2021; 27:3415-3431. [PMID: 33904200 DOI: 10.1111/gcb.15651] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
Characterising and predicting species responses to anthropogenic global change is one of the key challenges in contemporary ecology and conservation. The sensitivity of marine species to climate change is increasingly being described with forecasted species distributions, yet these rarely account for population level processes such as genomic variation and local adaptation. This study compares inter- and intraspecific patterns of biological composition to determine how vulnerability to climate change, and its environmental drivers, vary across species and populations. We compare species trajectories for three ecologically important southern African marine invertebrates at two time points in the future, both at the species level, with correlative species distribution models, and at the population level, with gradient forest models. Reported range shifts are species-specific and include both predicted range gains and losses. Forecasted species responses to climate change are strongly influenced by changes in a suite of environmental variables, from sea surface salinity and sea surface temperature, to minimum air temperature. Our results further suggest a mismatch between future habitat suitability (where species can remain in their ecological niche) and genomic vulnerability (where populations retain their genomic composition), highlighting the inter- and intraspecific variability in species' sensitivity to global change. Overall, this study demonstrates the importance of considering species and population level climatic vulnerability when proactively managing coastal marine ecosystems in the Anthropocene.
Collapse
Affiliation(s)
- Erica S Nielsen
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa
| | - Romina Henriques
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa
- Section for Marine Living Resources, Technical University of Denmark, National Institute of Aquatic Resources, Silkeborg, Denmark
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Sophie von der Heyden
- Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Matieland, South Africa
| |
Collapse
|
20
|
Assis J, Fragkopoulou E, Serrão EA, Horta E Costa B, Gandra M, Abecasis D. Weak biodiversity connectivity in the European network of no-take marine protected areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145664. [PMID: 33940752 DOI: 10.1016/j.scitotenv.2021.145664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/20/2021] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The need for international cooperation in marine resource management and conservation has been reflected in the increasing number of agreements aiming for effective and well-connected networks of Marine Protected Areas (MPAs). However, the extent to which individual MPAs are connected remains mostly unknown. Here, we use a biophysical model tuned with empirical data on species dispersal ecology to predict connectivity of a vast spectrum of biodiversity in the European network of marine reserves (i.e., no-take MPAs). Our results highlight the correlation between empirical propagule duration data and connectivity potential and show weak network connectivity and strong isolation for major ecological groups, resulting from the lack of direct connectivity corridors between reserves over vast regions. The particularly high isolation predicted for ecosystem structuring species (e.g., corals, sponges, macroalgae and seagrass) might potentially undermine biodiversity conservation efforts if local retention is insufficient and unmanaged populations are at risk. Isolation might also be problematic for populations' persistence in the light of climate change and expected species range shifts. Our findings provide novel insights for management directives, highlighting the location of regions requiring additional marine reserves to function as stepping-stone connectivity corridors.
Collapse
Affiliation(s)
- J Assis
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal.
| | - E Fragkopoulou
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - E A Serrão
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - B Horta E Costa
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - M Gandra
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| | - D Abecasis
- CCMAR - Centre of Marine Sciences, University of Algarve, 8005-139 Faro, Portugal
| |
Collapse
|
21
|
Carlucci R, Manea E, Ricci P, Cipriano G, Fanizza C, Maglietta R, Gissi E. Managing multiple pressures for cetaceans' conservation with an Ecosystem-Based Marine Spatial Planning approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 287:112240. [PMID: 33740744 DOI: 10.1016/j.jenvman.2021.112240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 06/12/2023]
Abstract
Despite the recognized important ecological role that cetaceans play in the marine environment, their protection is still scarcely enforced in the Mediterranean Sea even though this area is strongly threatened by local human pressures and climate change. The piecemeal of knowledge related to cetaceans' ecology and distribution in the basin undermines the capacity of addressing cetaceans' protection and identifying effective conservation strategies. In this study, an Ecosystem-Based Marine Spatial Planning (EB-MSP) approach is applied to assess human pressures on cetaceans and guide the designation of a conservation area in the Gulf of Taranto, Northern Ionian Sea (Central-eastern Mediterranean Sea). The Gulf of Taranto hosts different cetacean species that accomplish important phases of their life in the area. Despite this fact, the gulf does not fall within any area-based management tools (ABMTs) for cetacean conservation. We pin down the Gulf of Taranto being eligible for the designation of diverse ABMTs for conservation, both legally and non-legally binding. Through a risk-based approach, this study explores the cause-effect relationships that link any human activities and pressures exerted in the study area to potential effects on cetaceans, by identifying major drivers of potential impacts. These were found to be underwater noise, marine litter, ship collision, and competition and disturbance on preys. We draw some recommendations based on different sources of available knowledge produced so far in the area (i.e., empirical evidence, scientific and grey literature, and expert judgement) to boost cetaceans' conservation. Finally, we stress the need of sectoral coordination for the management of human activities by applying an EB-MSP approach and valuing the establishment of an ABMT in the Gulf of Taranto.
Collapse
Affiliation(s)
- Roberto Carlucci
- Department of Biology, University of Bari, Via Orabona 4, 70125, Bari, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Elisabetta Manea
- Institute of Marine Sciences, National Research Council, ISMAR-CNR, Arsenale, Tesa 104, Castello 2737/F, 30122, Venice, Italy.
| | - Pasquale Ricci
- Department of Biology, University of Bari, Via Orabona 4, 70125, Bari, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Giulia Cipriano
- Department of Biology, University of Bari, Via Orabona 4, 70125, Bari, Italy; CoNISMa, Piazzale Flaminio 9, 00196, Rome, Italy
| | - Carmelo Fanizza
- Jonian Dolphin Conservation, Viale Virgilio 102, 74121, Taranto, Italy
| | - Rosalia Maglietta
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing, National Research Council, Via Amendola 122 D/O, 70126, Bari, Italy
| | - Elena Gissi
- Institute of Marine Sciences, National Research Council, ISMAR-CNR, Arsenale, Tesa 104, Castello 2737/F, 30122, Venice, Italy; University Iuav of Venice, Tolentini, Santa Croce 191, 30135, Venice, Italy
| |
Collapse
|
22
|
Ani CJ, Robson B. Responses of marine ecosystems to climate change impacts and their treatment in biogeochemical ecosystem models. MARINE POLLUTION BULLETIN 2021; 166:112223. [PMID: 33730556 DOI: 10.1016/j.marpolbul.2021.112223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 06/12/2023]
Abstract
To predict the effects of climate change on marine ecosystems and the effectiveness of intervention and mitigation strategies, we need reliable marine ecosystem response models such as biogeochemical models that reproduce climate change effects. We reviewed marine ecosystem parameters and processes that are modified by climate change and examined their representations in biogeochemical ecosystem models. The interactions among important aspects of marine ecosystem modelling are not often considered due to complexity: these include the use of multiple IPCC scenarios, ensemble modelling approach, independent calibration datasets, the consideration of changes in cloud cover, ocean currents, wind speed, sea-level rise, storm frequency, storm intensity, and the incorporation of species adaptation to changing environmental conditions. Including our recommendations in future marine modelling studies could help improve the accuracy and reliability of model predictions of climate change impacts on marine ecosystems.
Collapse
Affiliation(s)
- Chinenye J Ani
- College of Science and Engineering, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Marine Science, Townsville, PMB3, Townsville, QLD 4810, Australia; AIMS@JCU, Australian Institute of Marine Science, College of Science and Engineering, James Cook University, Townsville, QLD, 4811, Australia.
| | - Barbara Robson
- Australian Institute of Marine Science, Townsville, PMB3, Townsville, QLD 4810, Australia
| |
Collapse
|
23
|
Huveneers C, Jaine FRA, Barnett A, Butcher PA, Clarke TM, Currey-Randall LM, Dwyer RG, Ferreira LC, Gleiss AC, Hoenner X, Ierodiaconou D, Lédée EJI, Meekan MG, Pederson H, Rizzari JR, van Ruth PD, Semmens JM, Taylor MD, Udyawer V, Walsh P, Heupel MR, Harcourt R. The power of national acoustic tracking networks to assess the impacts of human activity on marine organisms during the COVID-19 pandemic. BIOLOGICAL CONSERVATION 2021; 256:108995. [PMID: 34580542 PMCID: PMC8457752 DOI: 10.1016/j.biocon.2021.108995] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/22/2020] [Accepted: 01/16/2021] [Indexed: 05/16/2023]
Abstract
COVID-19 restrictions have led to an unprecedented global hiatus in anthropogenic activities, providing a unique opportunity to assess human impact on biological systems. Here, we describe how a national network of acoustic tracking receivers can be leveraged to assess the effects of human activity on animal movement and space use during such global disruptions. We outline variation in restrictions on human activity across Australian states and describe four mechanisms affecting human interactions with the marine environment: 1) reduction in economy and trade changing shipping traffic; 2) changes in export markets affecting commercial fisheries; 3) alterations in recreational activities; and 4) decline in tourism. We develop a roadmap for the analysis of acoustic tracking data across various scales using Australia's national Integrated Marine Observing System (IMOS) Animal Tracking Facility as a case study. We illustrate the benefit of sustained observing systems and monitoring programs by assessing how a 51-day break in white shark (Carcharodon carcharias) cage-diving tourism due to COVID-19 restrictions affected the behaviour and space use of two resident species. This cessation of tourism activities represents the longest break since cage-diving vessels started day trips in this area in 2007. Long-term monitoring of the local environment reveals that the activity space of yellowtail kingfish (Seriola lalandi) was reduced when cage-diving boats were absent compared to periods following standard tourism operations. However, white shark residency and movements were not affected. Our roadmap is globally applicable and will assist researchers in designing studies to assess how anthropogenic activities can impact animal movement and distributions during regional, short-term through to major, unexpected disruptions like the COVID-19 pandemic.
Collapse
Affiliation(s)
- Charlie Huveneers
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | - Fabrice R A Jaine
- Integrated Marine Observing System (IMOS) Animal Tracking Facility, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| | - Adam Barnett
- College of Science & Engineering James Cook University, Cairns, QLD, 4878, Australia
| | - Paul A Butcher
- NSW Department of Primary Industries, National Marine Science Centre, Coffs Harbour, NSW 2450, Australia
| | - Thomas M Clarke
- Southern Shark Ecology Group, College of Science and Engineering, Flinders University, Adelaide, SA 5042, Australia
| | | | - Ross G Dwyer
- Global Change Ecology Research Group, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | | | - Adrian C Gleiss
- College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
- Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, WA 6150, Australia
| | - Xavier Hoenner
- CSIRO Oceans and Atmosphere, CSIRO, Hobart, TAS 7000, Australia
| | - Daniel Ierodiaconou
- School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Warrnambool, VIC 3280, Australia
| | - Elodie J I Lédée
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Mark G Meekan
- Australian Institute of Marine Science, Perth, WA 6009, Australia
| | | | - Justin R Rizzari
- School of Life and Environmental Sciences, Deakin University, Queenscliff, VIC, 3225, Australia
| | - Paul D van Ruth
- South Australian Research and Development Institute - Aquatic Sciences, West Beach, SA 5024, Australia
| | - Jayson M Semmens
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Matthew D Taylor
- Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Locked Bag 1, Nelson Bay, NSW 2315, Australia
| | - Vinay Udyawer
- Australian Institute of Marine Science, Darwin, NT 0810, Australia
| | - Peter Walsh
- Fisheries and Aquaculture Centre, Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, TAS 7001, Australia
| | - Michelle R Heupel
- Integrated Marine Observing System (IMOS), University of Tasmania, Hobart, TAS 7000, Australia
| | - Robert Harcourt
- Integrated Marine Observing System (IMOS) Animal Tracking Facility, Sydney Institute of Marine Science, Mosman, NSW 2088, Australia
- Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia
| |
Collapse
|
24
|
Gissi E, Manea E, Mazaris AD, Fraschetti S, Almpanidou V, Bevilacqua S, Coll M, Guarnieri G, Lloret-Lloret E, Pascual M, Petza D, Rilov G, Schonwald M, Stelzenmüller V, Katsanevakis S. A review of the combined effects of climate change and other local human stressors on the marine environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142564. [PMID: 33035971 DOI: 10.1016/j.scitotenv.2020.142564] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 09/11/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
Climate change (CC) is a key, global driver of change of marine ecosystems. At local and regional scales, other local human stressors (LS) can interact with CC and modify its effects on marine ecosystems. Understanding the response of the marine environment to the combined effects of CC and LS is crucial to inform marine ecosystem-based management and planning, yet our knowledge of the potential effects of such interactions is fragmented. At a global scale, we explored how cumulative effect assessments (CEAs) have addressed CC in the marine realm and discuss progress and shortcomings of current approaches. For this we conducted a systematic review on how CEAs investigated at different levels of biological organization ecological responses, functional aspects, and the combined effect of CC and HS. Globally, the effects of 52 LS and of 27 CC-related stressors on the marine environment have been studied in combination, such as industrial fisheries with change in temperature, or sea level rise with artisanal fisheries, marine litter, change in sediment load and introduced alien species. CC generally intensified the effects of LS at species level. At trophic groups and ecosystem levels, the effects of CC either intensified or mitigated the effects of other HS depending on the trophic groups or the environmental conditions involved, thus suggesting that the combined effects of CC and LS are context-dependent and vary among and within ecosystems. Our results highlight that large-scale assessments on the spatial interaction and combined effects of CC and LS remain limited. More importantly, our results strengthen the urgent need of CEAs to capture local-scale effects of stressors that can exacerbate climate-induced changes. Ultimately, this will allow identifying management measures that aid counteracting CC effects at relevant scales.
Collapse
Affiliation(s)
- Elena Gissi
- IUAV University of Venice, Tolentini 191, Santa Croce, 30135 Venice, Italy.
| | - Elisabetta Manea
- IUAV University of Venice, Tolentini 191, Santa Croce, 30135 Venice, Italy
| | - Antonios D Mazaris
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Simonetta Fraschetti
- Università Federico II di Napoli, Napoli, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy; Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - Vasiliki Almpanidou
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stanislao Bevilacqua
- Department of Life Sciences, University of Trieste, Trieste, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy
| | - Marta Coll
- Institute of Marine Science, ICM-CSIC, Passeig Marítim de la Barceloneta, no 37-49, 08003 Barcelona, Spain; Ecopath International Initiative, Barcelona, Spain
| | - Giuseppe Guarnieri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy; Consorzio Universitario per le Scienze del Mare, P.le Flaminio 9, 00196 Rome, Italy
| | - Elena Lloret-Lloret
- Institute of Marine Science, ICM-CSIC, Passeig Marítim de la Barceloneta, no 37-49, 08003 Barcelona, Spain; Ecopath International Initiative, Barcelona, Spain
| | - Marta Pascual
- Basque Centre for Climate Change (BC3), Edificio Sede N°1 Planta 1/Parque Científico UPV-EHU, Barrio Sarriena, s/n, 48940 Leioa, Bizkaia, Spain
| | - Dimitra Petza
- Department of Marine Sciences, University of the Aegean, University Hill, 81100 Mytilene, Greece; Directorate for Fisheries Policy & Fishery Resources Utilisation, Directorate General for Fisheries, Ministry of Rural Development & Food, 150 Syggrou Avenue, 17671 Athens, Greece
| | - Gil Rilov
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa 31080, Israel
| | - Maura Schonwald
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, P.O. Box 8030, Haifa 31080, Israel
| | | | - Stelios Katsanevakis
- Department of Marine Sciences, University of the Aegean, University Hill, 81100 Mytilene, Greece
| |
Collapse
|
25
|
Albano PG, Steger J, Bošnjak M, Dunne B, Guifarro Z, Turapova E, Hua Q, Kaufman DS, Rilov G, Zuschin M. Native biodiversity collapse in the eastern Mediterranean. Proc Biol Sci 2021; 288:20202469. [PMID: 33402072 PMCID: PMC7892420 DOI: 10.1098/rspb.2020.2469] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Global warming causes the poleward shift of the trailing edges of marine ectotherm species distributions. In the semi-enclosed Mediterranean Sea, continental masses and oceanographic barriers do not allow natural connectivity with thermophilic species pools: as trailing edges retreat, a net diversity loss occurs. We quantify this loss on the Israeli shelf, among the warmest areas in the Mediterranean, by comparing current native molluscan richness with the historical one obtained from surficial death assemblages. We recorded only 12% and 5% of historically present native species on shallow subtidal soft and hard substrates, respectively. This is the largest climate-driven regional-scale diversity loss in the oceans documented to date. By contrast, assemblages in the intertidal, more tolerant to climatic extremes, and in the cooler mesophotic zone show approximately 50% of the historical native richness. Importantly, approximately 60% of the recorded shallow subtidal native species do not reach reproductive size, making the shallow shelf a demographic sink. We predict that, as climate warms, this native biodiversity collapse will intensify and expand geographically, counteracted only by Indo-Pacific species entering from the Suez Canal. These assemblages, shaped by climate warming and biological invasions, give rise to a 'novel ecosystem' whose restoration to historical baselines is not achievable.
Collapse
Affiliation(s)
- Paolo G. Albano
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Jan Steger
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Marija Bošnjak
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
- Croatian Natural History Museum, Demetrova 1, Zagreb, Croatia
| | - Beata Dunne
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Zara Guifarro
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Elina Turapova
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Quan Hua
- Australian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales 2232, Australia
| | - Darrell S. Kaufman
- School of Earth and Sustainability, Northern Arizona University, Flagstaff, AZ 86011, USA
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), Haifa 3108001, Israel
| | - Martin Zuschin
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
26
|
Carr H, Abas M, Boutahar L, Caretti ON, Chan WY, Chapman ASA, de Mendonça SN, Engleman A, Ferrario F, Simmons KR, Verdura J, Zivian A. The Aichi Biodiversity Targets: achievements for marine conservation and priorities beyond 2020. PeerJ 2020; 8:e9743. [PMID: 33391861 PMCID: PMC7759131 DOI: 10.7717/peerj.9743] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 07/27/2020] [Indexed: 11/20/2022] Open
Abstract
In 2010 the Conference of the Parties (COP) for the Convention on Biological Diversity revised and updated a Strategic Plan for Biodiversity 2011–2020, which included the Aichi Biodiversity Targets. Here a group of early career researchers mentored by senior scientists, convened as part of the 4th World Conference on Marine Biodiversity, reflects on the accomplishments and shortfalls under four of the Aichi Targets considered highly relevant to marine conservation: target 6 (sustainable fisheries), 11 (protection measures), 15 (ecosystem restoration and resilience) and 19 (knowledge, science and technology). We conclude that although progress has been made towards the targets, these have not been fully achieved for the marine environment by the 2020 deadline. The progress made, however, lays the foundations for further work beyond 2020 to work towards the 2050 Vision for Biodiversity. We identify key priorities that must be addressed to better enable marine biodiversity conservation efforts moving forward.
Collapse
Affiliation(s)
- Hannah Carr
- The Joint Nature Conservation Committee, Peterborough, Cambridgeshire, UK
| | - Marina Abas
- Departamento de Ciencias Marinas y Costeras, Universidad Autónoma de Baja California Sur, La Paz, Baja California Sur, Mexico
| | - Loubna Boutahar
- BioBio Research Center, BioEcoGen Laboratory, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco.,Laboratorío de Biología Marina, Departamento de Zoología, Universidad de Sevilla, Sevilla, Spain
| | - Olivia N Caretti
- Department of Marine, Earth, & Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
| | - Wing Yan Chan
- Australian Institute of Marine Science, Townsville, QLD, Australia.,School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Abbie S A Chapman
- School of Ocean and Earth Science, University of Southampton, Southampton, Hampshire, UK.,Centre for Biodiversity and Environment Research, University College London, London, UK
| | | | - Abigail Engleman
- Department of Biological Sciences, Florida State University, Tallahassee, FL, USA
| | - Filippo Ferrario
- Québec-Ocean and Département de Biologie, Université Laval, Québec, QC, Canada
| | - Kayelyn R Simmons
- Department of Marine, Earth, & Atmospheric Sciences, North Carolina State University, Raleigh, NC, USA
| | - Jana Verdura
- Institut d'Ecologia Aquàtica, Facultat de Ciències, Universitat de Girona, Girona, Spain
| | | |
Collapse
|
27
|
Albano PG, Azzarone M, Amati B, Bogi C, Sabelli B, Rilov G. Low diversity or poorly explored? Mesophotic molluscs highlight undersampling in the Eastern Mediterranean. BIODIVERSITY AND CONSERVATION 2020; 29:4059-4072. [PMID: 33191987 PMCID: PMC7658090 DOI: 10.1007/s10531-020-02063-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/23/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
Mesophotic assemblages are the next frontier of marine exploration in the Mediterranean Sea. Located below recreational scuba diving depths, they are difficult to access but host a diverse array of habitats structured by large invertebrate species. The Eastern Mediterranean has been much less explored than the western part of the basin and its mesophotic habitats are virtually unknown. We here describe two mesophotic (77-92 m depth) molluscan assemblages at a rocky reef and on a soft substrate off northern Israel. We record 172 species, of which 43 (25%) are first records for Israel and increase its overall marine molluscan diversity by 7%. Only five of these species have been reported in recent surveys of the nearby Lebanon, suggesting that our results are robust at a broader scale than our study area and that the reported west-to-east declining diversity gradient in the Mediterranean needs a reappraisal based on proper sampling of the eastern basin. We found only four (2%) non-indigenous species, represented by seven (0.5%) specimens. These results suggest that pristine native assemblages still thrive at this depth in Israel, in contrast to the shallow subtidal heavily affected by global warming and biological invasions, calling for strong conservation actions for these valuable but vulnerable habitats.
Collapse
Affiliation(s)
- Paolo G. Albano
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Michele Azzarone
- Department of Palaeontology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Bruno Amati
- Largo Giuseppe Veratti, 37/D, 00146 Rome, Italy
| | - Cesare Bogi
- Gruppo Malacologico Livornese, c/o Museo di Storia Naturale del Mediterraneo, via Roma 234, 57127 Livorno, Italy
| | - Bruno Sabelli
- Museo di Zoologia dell’Università di Bologna, via Selmi 3, 40126 Bologna, Italy
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research (IOLR), 3108001 Haifa, Israel
| |
Collapse
|
28
|
Integrated ocean management for a sustainable ocean economy. Nat Ecol Evol 2020; 4:1451-1458. [DOI: 10.1038/s41559-020-1259-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/26/2020] [Indexed: 11/08/2022]
|