1
|
Librán-Embid F, Grass I, Emer C, Alarcón-Segura V, Behling H, Biagioni S, Ganuza C, Herrera-Krings C, Setyaningsih CA, Tscharntke T. Flower-bee versus pollen-bee metanetworks in fragmented landscapes. Proc Biol Sci 2024; 291:20232604. [PMID: 38807521 PMCID: PMC11338570 DOI: 10.1098/rspb.2023.2604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 03/30/2024] [Accepted: 04/15/2024] [Indexed: 05/30/2024] Open
Abstract
Understanding the organization of mutualistic networks at multiple spatial scales is key to ensure biological conservation and functionality in human-modified ecosystems. Yet, how changing habitat and landscape features affect pollen-bee interaction networks is still poorly understood. Here, we analysed how bee-flower visitation and bee-pollen-transport interactions respond to habitat fragmentation at the local network and regional metanetwork scales, combining data from 29 fragments of calcareous grasslands, an endangered biodiversity hotspot in central Europe. We found that only 37% of the total unique pairwise species interactions occurred in both pollen-transport and flower visitation networks, whereas 28% and 35% were exclusive to pollen-transport and flower visitation networks, respectively. At local level, network specialization was higher in pollen-transport networks, and was negatively related to the diversity of land cover types in both network types. At metanetwork level, pollen transport data revealed that the proportion of single-fragment interactions increased with landscape diversity. Our results show that the specialization of calcareous grasslands' plant-pollinator networks decreases with landscape diversity, but network specialization is underestimated when only based on flower visitation information. Pollen transport data, more than flower visitation, and multi-scale analyses of metanetworks are fundamental for understanding plant-pollinator interactions in human-dominated landscapes.
Collapse
Affiliation(s)
- Felipe Librán-Embid
- Agroecology, University of Göttingen, Göttingen37077, Germany
- Justus Liebig University of Gießen, Institute of Animal Ecology and Systematics, Heinrich-Buff-Ring 26, Gießen35390, Germany
| | - Ingo Grass
- Department of Ecology of Tropical Agricultural Systems, University of Hohenheim, Stuttgart70599, Germany
- Center for Biodiversity and Integrative Taxonomy (KomBioTa), University of Hohenheim, Stuttgart70599, Germany
| | - Carine Emer
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão, 915, Jardim Botânico, Rio de JaneiroCEP22460-030, Brazil
| | - Viviana Alarcón-Segura
- Agroecology, University of Göttingen, Göttingen37077, Germany
- Animal Ecology, Department of Biology, University of Marburg, Marburg35037, Germany
| | - Hermann Behling
- Department of Palynology and Climate Dynamics, Albrecht‐von‐Haller‐Institute for Plant Sciences, University of Göttingen, Göttingen37077, Germany
| | - Siria Biagioni
- Department of Palynology and Climate Dynamics, Albrecht‐von‐Haller‐Institute for Plant Sciences, University of Göttingen, Göttingen37077, Germany
| | - Cristina Ganuza
- Department of Animal Ecology and Tropical Biology, University of Würzburg, Würzburg97074, Germany
| | | | - Christina Ani Setyaningsih
- Department of Palynology and Climate Dynamics, Albrecht‐von‐Haller‐Institute for Plant Sciences, University of Göttingen, Göttingen37077, Germany
| | - Teja Tscharntke
- Agroecology, University of Göttingen, Göttingen37077, Germany
| |
Collapse
|
2
|
Crowley LM, Falk S. The genome sequence of the wood-carving leafcutter bee, Megachile ligniseca (Kirby, 1802). Wellcome Open Res 2024; 9:103. [PMID: 38903870 PMCID: PMC11187525 DOI: 10.12688/wellcomeopenres.21002.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 06/22/2024] Open
Abstract
We present a genome assembly from an individual female Megachile ligniseca (the wood-carving leafcutter bee; Arthropoda; Insecta; Hymenoptera; Megachilidae). The genome sequence is 290.0 megabases in span. Most of the assembly is scaffolded into 16 chromosomal pseudomolecules. The mitochondrial genome has also been assembled and is 23.71 kilobases in length. Gene annotation of this assembly on Ensembl 11,722 protein coding genes.
Collapse
Affiliation(s)
| | - Steven Falk
- Independent researcher, Kenilworth, England, UK
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Bell KL, Turo KJ, Lowe A, Nota K, Keller A, Encinas‐Viso F, Parducci L, Richardson RT, Leggett RM, Brosi BJ, Burgess KS, Suyama Y, de Vere N. Plants, pollinators and their interactions under global ecological change: The role of pollen DNA metabarcoding. Mol Ecol 2023; 32:6345-6362. [PMID: 36086900 PMCID: PMC10947134 DOI: 10.1111/mec.16689] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.
Collapse
Affiliation(s)
- Karen L. Bell
- CSIRO Health & Biosecurity and CSIRO Land & WaterFloreatWAAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Katherine J. Turo
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | | | - Kevin Nota
- Department of Ecology and GeneticsEvolutionary Biology Centre, Uppsala UniversityUppsalaSweden
| | - Alexander Keller
- Organismic and Cellular Networks, Faculty of BiologyBiocenter, Ludwig‐Maximilians‐Universität MünchenPlaneggGermany
| | - Francisco Encinas‐Viso
- Centre for Australian National Biodiversity ResearchCSIROBlack MountainAustralian Capital TerritoryAustralia
| | - Laura Parducci
- Department of Ecology and GeneticsEvolutionary Biology Centre, Uppsala UniversityUppsalaSweden
- Department of Environmental BiologySapienza University of RomeRomeItaly
| | - Rodney T. Richardson
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMarylandUSA
| | | | - Berry J. Brosi
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Kevin S. Burgess
- Department of BiologyCollege of Letters and Sciences, Columbus State University, University System of GeorgiaAtlantaGeorgiaUSA
| | - Yoshihisa Suyama
- Field Science CenterGraduate School of Agricultural Science, Tohoku UniversityOsakiMiyagiJapan
| | - Natasha de Vere
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
4
|
Dzekashu FF, Pirk CWW, Yusuf AA, Classen A, Kiatoko N, Steffan‐Dewenter I, Peters MK, Lattorff HMG. Seasonal and elevational changes of plant-pollinator interaction networks in East African mountains. Ecol Evol 2023; 13:e10060. [PMID: 37187966 PMCID: PMC10175727 DOI: 10.1002/ece3.10060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/06/2023] [Accepted: 04/22/2023] [Indexed: 05/17/2023] Open
Abstract
Across an elevation gradient, several biotic and abiotic factors influence community assemblages of interacting species leading to a shift in species distribution, functioning, and ultimately topologies of species interaction networks. However, empirical studies of climate-driven seasonal and elevational changes in plant-pollinator networks are rare, particularly in tropical ecosystems. Eastern Afromontane Biodiversity Hotspots in Kenya, East Africa. We recorded plant-bee interactions at 50 study sites between 515 and 2600 m asl for a full year, following all four major seasons in this region. We analysed elevational and seasonal network patterns using generalised additive models (GAMs) and quantified the influence of climate, floral resource availability, and bee diversity on network structures using a multimodel inference framework. We recorded 16,741 interactions among 186 bee and 314 plant species of which a majority involved interactions with honeybees. We found that nestedness and bee species specialisation of plant-bee interaction networks increased with elevation and that the relationships were consistent in the cold-dry and warm-wet seasons respectively. Link rewiring increased in the warm-wet season with elevation but remained indifferent in the cold-dry seasons. Conversely, network modularity and plant species were more specialised at lower elevations during both the cold-dry and warm-wet seasons, with higher values observed during the warm-wet seasons. We found flower and bee species diversity and abundance rather than direct effects of climate variables to best predict modularity, specialisation, and link rewiring in plant-bee-interaction networks. This study highlights changes in network architectures with elevation suggesting a potential sensitivity of plant-bee interactions with climate warming and changes in rainfall patterns along the elevation gradients of the Eastern Afromontane Biodiversity Hotspot.
Collapse
Affiliation(s)
- Fairo F. Dzekashu
- International Centre of Insect Physiology and Ecology (icipe)NairobiKenya
- Social Insects Research Group, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - Christian W. W. Pirk
- Social Insects Research Group, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - Abdullahi A. Yusuf
- Social Insects Research Group, Department of Zoology and EntomologyUniversity of PretoriaPretoriaSouth Africa
| | - Alice Classen
- Department of Animal Ecology and Tropical Biology, BiocenterUniversity of WürzburgWürzburgGermany
| | - Nkoba Kiatoko
- International Centre of Insect Physiology and Ecology (icipe)NairobiKenya
| | - Ingolf Steffan‐Dewenter
- Department of Animal Ecology and Tropical Biology, BiocenterUniversity of WürzburgWürzburgGermany
| | - Marcell K. Peters
- Department of Animal Ecology and Tropical Biology, BiocenterUniversity of WürzburgWürzburgGermany
| | - H. Michael G. Lattorff
- International Centre of Insect Physiology and Ecology (icipe)NairobiKenya
- Present address:
Department of ChemistryUniversity of NairobiNairobiKenya
| |
Collapse
|
5
|
Kline O, Phan NT, Porras MF, Chavana J, Little CZ, Stemet L, Acharya RS, Biddinger DJ, Reddy GVP, Rajotte EG, Joshi NK. Biology, Genetic Diversity, and Conservation of Wild Bees in Tree Fruit Orchards. BIOLOGY 2022; 12:31. [PMID: 36671724 PMCID: PMC9854918 DOI: 10.3390/biology12010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/29/2022]
Abstract
Different species of bees provide essential ecosystem services by pollinating various agricultural crops, including tree fruits. Many fruits and nuts depend on insect pollination, primarily by wild and managed bees. In different geographical regions where orchard crops are grown, fruit growers rely on wild bees in the farmscape and use orchard bees as alternative pollinators. Orchard crops such as apples, pears, plums, apricots, etc., are mass-flowering crops and attract many different bee species during their bloom period. Many bee species found in orchards emerge from overwintering as the fruit trees start flowering in spring, and the active duration of these bees aligns very closely with the blooming time of fruit trees. In addition, most of the bees in orchards are short-range foragers and tend to stay close to the fruit crops. However, the importance of orchard bee communities is not well understood, and many challenges in maintaining their populations remain. This comprehensive review paper summarizes the different types of bees commonly found in tree fruit orchards in the fruit-growing regions of the United States, their bio-ecology, and genetic diversity. Additionally, recommendations for the management of orchard bees, different strategies for protecting them from multiple stressors, and providing suitable on-farm nesting and floral resource habitats for propagation and conservation are discussed.
Collapse
Affiliation(s)
- Olivia Kline
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Ngoc T. Phan
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Research Center for Tropical Bees and Beekeeping, Vietnam National University of Agriculture, Gia Lam, Hanoi 100000, Vietnam
| | - Mitzy F. Porras
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Joshua Chavana
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Coleman Z. Little
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| | - Lilia Stemet
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - Roshani S. Acharya
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| | - David J. Biddinger
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
- Penn State Fruit Research and Extension Center, Biglerville, PA 17307, USA
| | - Gadi V. P. Reddy
- USDA-ARS-Southern Insect Management Research Unite, 141 Experiment Station Rd., P.O. Box 346, Stoneville, MS 38776, USA
| | - Edwin G. Rajotte
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA
| | - Neelendra K. Joshi
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
6
|
Lunn K, Frøslev T, Rhodes M, Taylor L, Oliveira HFM, Gresty CEA, Clare EL. Non-target effects of agri-environmental schemes on solitary bees and fungi in the United Kingdom. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:734-744. [PMID: 36082699 DOI: 10.1017/s0007485322000414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Agri-environmental schemes (AES) are used to enhance pollinator diversity on agricultural farms within the UK. Though the impacts of these schemes on archetypal pollinator species such as the bumblebee (Bombus) and honeybee (Apis) are well-studied, the effects on non-target bee species like solitary bees, in the same environment, are generally lacking. One goal of AES is to alter floral provision and taxonomic composition of plant communities to provide better forage for pollinators, however, this may potentially impact other ecological communities such as fungal diversity associated with plant-bee communities. Fungi are integral in these bee communities as they can impact bee species both beneficially and detrimentally. We test the hypothesis that alteration of the environment through provision of novel plant communities has non-target effects on the fungi associated with solitary bee communities. We analyse fungal diversity and ecological networks formed between fungi and solitary bees present on 15 agricultural farms in the UK using samples from brood cells. The farms were allocated to two categories, low and high management, which differ in the number of agri-environmental measures implemented. Using internal transcribed spacer metabarcoding, we identified 456 fungal taxa that interact with solitary bees. Of these, 202 (approximately 44%) could be assigned to functional groups, the majority being pathotrophic and saprotrophic species. A large proportion was Ascosphaeraceae, a family of bee-specialist fungi. We considered the connectance, nestedness, modularity, nestedness overlap and decreasing fill, linkage density and fungal generality of the farms' bee-fungi ecological networks. We found no difference in the structure of bee-fungi ecological networks between low and high management farms, suggesting floral provision by AES has no significant impact on interactions between these two taxonomic groups. However, bee emergence was lower on the low management farms compared to high management, suggesting some limited non-target effects of AES. This study characterizes the fungal community associated with solitary bees and provides evidence that floral provision through AES does not impact fungal interactions.
Collapse
Affiliation(s)
- Katherine Lunn
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Tobias Frøslev
- Globe Institute, University of Copenhagen, København, Denmark
| | - Madeleine Rhodes
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Leah Taylor
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | | | | | - Elizabeth L Clare
- School of Biological and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
- Department of Biology, York University, Toronto, Canada
| |
Collapse
|
7
|
Doublet V, Doyle T, Refoy I, Hedges S, Carvell C, Brown MJF, Wilfert L. Increasing flower species richness in agricultural landscapes alters insect pollinator networks: Implications for bee health and competition. Ecol Evol 2022; 12:e9442. [PMID: 36311409 PMCID: PMC9608809 DOI: 10.1002/ece3.9442] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/18/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
Ecological restoration programs are established to reverse land degradation, mitigate biodiversity loss, and reinstate ecosystem services. Following recent agricultural intensification that led to a decrease in flower diversity and density in rural areas and subsequently to the decline of many insects, conservation measures targeted at pollinators have been established, including sown wildflower strips (WFS) along field margins. Historically successful in establishing a high density of generalist bees and increasing pollinator diversity, the impact of enhanced flower provision on wider ecological interactions and the structure of pollinator networks has been rarely investigated. Here, we tested the effects of increasing flower species richness and flower density in agricultural landscapes on bee-plant interaction networks. We measured plant species richness and flower density and surveyed honeybee and bumblebee visits on flowers across a range of field margins on 10 UK farms that applied different pollinator conservation measures. We found that both flower species richness and flower density significantly increased bee abundance, in early and late summer, respectively. At the network level, we found that higher flower species richness did not significantly alter bee species' generality indices, but significantly reduced network connectance and marginally reduced niche overlap across honeybees and bumblebee species, a proxy for insect competition. While higher connectance and niche overlap is believed to strengthen network robustness and often is the aim for the restoration of pollinator networks, we argue that carefully designed WFS may benefit bees by partitioning their foraging niche, limiting competition for resources and the potential for disease transmission via shared floral use. We also discuss the need to extend WFS and their positive effects into spring when wild bee populations are established.
Collapse
Affiliation(s)
- Vincent Doublet
- College of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| | - Toby Doyle
- College of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Isobel Refoy
- College of Life and Environmental SciencesUniversity of ExeterPenrynUK
| | - Sophie Hedges
- College of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Department of Comparative Biomedical SciencesThe Royal Veterinary CollegeHatfieldUK
| | | | - Mark J. F. Brown
- Department of Biological SciencesRoyal Holloway University of LondonEghamUK
| | - Lena Wilfert
- College of Life and Environmental SciencesUniversity of ExeterPenrynUK
- Institute of Evolutionary Ecology and Conservation GenomicsUniversity of UlmUlmGermany
| |
Collapse
|
8
|
Jachuła J, Denisow B, Wrzesień M, Ziółkowska E. The need for weeds: Man-made, non-cropped habitats complement crops and natural habitats in providing honey bees and bumble bees with pollen resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156551. [PMID: 35688241 DOI: 10.1016/j.scitotenv.2022.156551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/30/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In Europe, honey bees and bumble bees are among the most important pollinators, and there is a growing interest in understanding the effects of floral resource availability on their survival. Yet, to date, data on nectar and pollen supplies available to bees in agricultural landscapes are still scarce. In this paper, we quantify species-, habitat- and landscape-scale pollen production in the Lublin Upland, SE Poland. The production per unit area was highest (mean = 2.2-2.6 g/m2) in non-forest woody vegetation, field margins and fallows, whilst significantly lower pollen amounts were shown to be available in road verges and railway embankments (mean = 1.3-1.6 g/m2). At landscape scale, natural and semi-natural areas (forests and meadows/pastures) offered ca. 44% of the total pollen resources during the year. Relatively high amounts of pollen (ca. 35% of the year-round total pollen resources) were from winter rape, but this resource was short-term. Man-made, non-cropped habitats added only ca. 18% of the total pollen mass offered for pollinators during flowering season. However, they provided 66-99% of pollen resources available from July to October. There exists an imbalance in the availability of pollen resources throughout the year. Hence, a diversity of natural, semi-natural and man-made, non-cropped areas is required to support the seasonal continuity of pollen resources for pollinators in an agricultural landscape. Efforts should be made to secure habitat heterogeneity to enhance the flower diversity and continual pollen availability for pollinators.
Collapse
Affiliation(s)
- Jacek Jachuła
- Department of Botany and Plant Physiology, Subdepartment of Plant Biology, University of Life Sciences, 15 Akademicka St., 20-950 Lublin, Poland; The National Institute of Horticultural Research, Konstytucji 3 Maja 1/3, 96-100 Skierniewice, Poland.
| | - Bożena Denisow
- Department of Botany and Plant Physiology, Subdepartment of Plant Biology, University of Life Sciences, 15 Akademicka St., 20-950 Lublin, Poland.
| | - Małgorzata Wrzesień
- Department of Botany, Mycology and Ecology, Maria Curie-Sklodowska University, 19 Akademicka St., 20-033 Lublin, Poland.
| | - Elżbieta Ziółkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| |
Collapse
|
9
|
Fernandes K, Prendergast K, Bateman PW, Saunders BJ, Gibberd M, Bunce M, Nevill P. DNA metabarcoding identifies urban foraging patterns of oligolectic and polylectic cavity-nesting bees. Oecologia 2022; 200:323-337. [PMID: 36098815 PMCID: PMC9675668 DOI: 10.1007/s00442-022-05254-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 09/01/2022] [Indexed: 12/03/2022]
Abstract
Urbanisation modifies natural landscapes resulting in built-up space that is covered by buildings or hard surfaces and managed green spaces that often substitute native plant species with exotics. Some native bee species have been able to adapt to urban environments, foraging and reproducing in these highly modified areas. However, little is known on how the foraging ecology of native bees is affected by urbanised environments, and whether impacts vary among species with different degrees of specialisation for pollen collection. Here, we aim to investigate the responses of native bee foraging behaviour to urbanisation, using DNA metabarcoding to identify the resources within nesting tubes. We targeted oligolectic (specialist) and polylectic (generalist) cavity-nesting bee species in residential gardens and remnant bushland habitats. We were able to identify 40 families, 50 genera, and 23 species of plants, including exotic species, from the contents of nesting tubes. Oligolectic bee species had higher diversity of plant pollen in their nesting tubes in residential gardens compared to bushland habitats, along with significantly different forage composition between the two habitats. This result implies a greater degree of forage flexibility for oligolectic bee species than previously thought. In contrast, the diversity and composition of plant forage in polylectic bee nesting tubes did not vary between the two habitat types. Our results suggest a complex response of cavity-nesting bees to urbanisation and support the need for additional research to understand how the shifts in foraging resources impact overall bee health.
Collapse
Affiliation(s)
- Kristen Fernandes
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia. .,Section for Molecular Ecology and Evolution, Faculty of Health and Medical Sciences, Globe Institute, University of Copenhagen, Copenhagen K, Denmark. .,Food Agility CRC Ltd, 175 Pitt St, Sydney, NSW, 2000, Australia.
| | - Kit Prendergast
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Philip W Bateman
- Behavioural Ecology Lab, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.,MBioMe - Mine Site Biomonitoring using eDNA Research Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Benjamin J Saunders
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Mark Gibberd
- Centre for Crop and Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| | - Michael Bunce
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.,The Institute of Environmental Science and Research (ESR), Kenepuru, Porirua, 5022, New Zealand
| | - Paul Nevill
- Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia.,MBioMe - Mine Site Biomonitoring using eDNA Research Group, Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, WA, 6102, Australia
| |
Collapse
|
10
|
Hutchinson LA, Oliver TH, Breeze TD, Greenwell MP, Powney GD, Garratt MPD. Stability of crop pollinator occurrence is influenced by bee community composition. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.943309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bees provide a vital ecosystem service to agriculture by contributing to the pollination of many leading global crops. Human wellbeing depends not only on the quantity of agricultural yields, but also on the stability and resilience of crop production. Yet a broad understanding of how the diversity and composition of pollinator communities may influence crop pollination service has previously been hindered by a scarcity of standardized data. We used outputs from Bayesian occupancy detection models to examine patterns in the inter-annual occupancy dynamics of the bee pollinator communities of four contrasting crops (apples, field bean, oilseed and strawberries) in Great Britain between 1985 and 2015. We compared how the composition and species richness of different crop pollinator communities may affect the stability of crop pollinator occurrence. Across the four crops, we found that the inter-annual occupancy dynamics of the associated pollinator communities tended to be more similar in smaller communities with closely related pollinator species. Our results indicate that crop pollinator communities composed of a small number of closely related bee species show greater variance in mean occupancy compared to crops with more diverse pollinator communities. Lower variance in the occurrence of crop pollinating bee species may lead to more stable crop pollination services. Finally, whilst our results initially indicated some redundancy within most crop pollinator communities, with no, or little, increase in the variance of overall mean occupancy when species were initially removed, this was followed by a rapid acceleration in the variance of crop pollinator occurrence as each crop's bee pollinator community was increasingly depreciated. High inter-annual variations in pollination services have negative implications for crop production and food security. High bee diversity could ensure more stable and resilient crop pollination services, yet current agri-environment schemes predominantly benefit a limited suite of common species. Management may therefore benefit from targeting a wider diversity of solitary species in order to safeguard crop pollination service in the face of increasing environmental change.
Collapse
|
11
|
Jones J, Rader R. Pollinator nutrition and its role in merging the dual objectives of pollinator health and optimal crop production. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210170. [PMID: 35491607 PMCID: PMC9058521 DOI: 10.1098/rstb.2021.0170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Bee and non-bee insect pollinators play an integral role in the quantity and quality of production for many food crops, yet there is growing evidence that nutritional challenges to pollinators in agricultural landscapes are an important factor in the reduction of pollinator populations worldwide. Schemes to enhance crop pollinator health have historically focused on floral resource plantings aimed at increasing pollinator abundance and diversity by providing more foraging opportunities for bees. These efforts have demonstrated that improvements in bee diversity and abundance are achievable; however, goals of increasing crop pollination outcomes via these interventions are not consistently met. To support pollinator health and crop pollination outcomes in tandem, habitat enhancements must be tailored to meet the life-history needs of specific crop pollinators, including non-bees. This will require greater understanding of the nutritional demands of these taxa together with the supply of floral and non-floral food resources and how these interact in cropping environments. Understanding the mechanisms underlying crop pollination and pollinator health in unison across a range of taxa is clearly a win–win for industry and conservation, yet achievement of these goals will require new knowledge and novel, targeted methods. This article is part of the theme issue ‘Natural processes influencing pollinator health: from chemistry to landscapes’.
Collapse
Affiliation(s)
- Jeremy Jones
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| | - Romina Rader
- School of Environmental and Rural Science, University of New England, Armidale, NSW, Australia
| |
Collapse
|
12
|
Abstract
The identification of floral visitation by pollinators provides an opportunity to improve our understanding of the fine-scale ecological interactions between plants and pollinators, contributing to biodiversity conservation and promoting ecosystem health. In this review, we outline the various methods which can be used to identify floral visitation, including plant-focused and insect-focused methods. We reviewed the literature covering the ways in which DNA metabarcoding has been used to answer ecological questions relating to plant use by pollinators and discuss the findings of this research. We present detailed methodological considerations for each step of the metabarcoding workflow, from sampling through to amplification, and finally bioinformatic analysis. Detailed guidance is provided to researchers for utilisation of these techniques, emphasising the importance of standardisation of methods and improving the reliability of results. Future opportunities and directions of using molecular methods to analyse plant–pollinator interactions are then discussed.
Collapse
|
13
|
Bumble Bee Foraged Pollen Analyses in Spring Time in Southern Estonia Shows Abundant Food Sources. INSECTS 2021; 12:insects12100922. [PMID: 34680691 PMCID: PMC8538635 DOI: 10.3390/insects12100922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022]
Abstract
Simple Summary Pollinators make a strong contribution to ecosystem stability. However, nowadays, they also need protection and sustainable habitat to live and develop. Not all regions can provide suitable habitats due to agricultural intensification, urbanization, climate changes and corresponding impacts. Our study was conducted in the late spring in south Estonia where arable lands were surrounded by forest patches and rural areas. For better performance, we used both light microscopy and DNA metabarcoding methods for pollen identification. We found that bumble bees foraged on the diverse food sources showing preferences for several main plant families. Additionally, in our case, land-use types did not show important effects on bumble bee food choices and foraging decisions. Various landscape features can provide diverse food sources at the early development stages and support nest longevity. Here, we can say that a better understanding of pollinators’ food preferences can help in the application of more suitable measures for their conservation. Abstract Agricultural landscapes usually provide higher quantities of single-source food, which are noticeably lacking in diversity and might thus have low nutrient value for bumble bee colony development. Here, in this study, we analysed the pollen foraging preferences over a large territory of a heterogeneous agricultural landscape: southern Estonia. We aimed to assess the botanical diversity of bumble bee food plants in the spring time there. We looked for preferences for some food plants or signs of food shortage that could be associated with any particular landscape features. For this purpose, we took Bombus terrestris commercial hives to the landscape, performed microscopy analyses and improved the results with the innovative DNA metabarcoding technique to determine the botanical origin of bumble bee-collected pollen. We found high variability of forage plants with no strong relationship with any particular landscape features. Based on the low number of plant species in single flights, we deduce that the availability of main forage plants is sufficient indicating rich forage availabilities. Despite specific limitations, we saw strong correlations between microscopy and DNA metabarcoding data usable for quantification analyses. As a conclusion, we saw that the spring-time vegetation in southern Estonia can support bumble bee colony development regardless of the detailed landscape structure. The absence of clearly dominating food preference by the tested generalist bumble bee species B. terrestris makes us suggest that other bumble bee species, at least food generalists, should also find plenty of forage in their early development phase.
Collapse
|
14
|
Kolter A, Gemeinholzer B. Internal transcribed spacer primer evaluation for vascular plant metabarcoding. METABARCODING AND METAGENOMICS 2021. [DOI: 10.3897/mbmg.5.68155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The unprecedented ongoing biodiversity decline necessitates scalable means of monitoring in order to fully understand the underlying causes. DNA metabarcoding has the potential to provide a powerful tool for accurate and rapid biodiversity monitoring. Unfortunately, in many cases, a lack of universal standards undermines the widespread application of metabarcoding. One of the most important considerations in metabarcoding of plants, aside from selecting a potent barcode marker, is primer choice. Our study evaluates published ITS primers in silico and in vitro, through mock communities and presents newly designed primers. We were able to show that a large proportion of previously available ITS primers have unfavourable attributes. Our combined results support the recommendation of the introduced primers ITS-3p62plF1 and ITS-4unR1 as the best current universal plant specific ITS2 primer combination. We also found that PCR optimisation, such as the addition of 5% DMSO, is essential to obtain meaningful results in ITS2 metabarcoding. Finally, we conclude that continuous quality assurance is indispensable for reliable metabarcoding results.
Collapse
|
15
|
Lu H, Dou F, Hao Y, Li Y, Zhang K, Zhang H, Zhou Z, Zhu C, Huang D, Luo A. Metabarcoding Analysis of Pollen Species Foraged by Osmia excavata Alfken (Hymenoptera: Megachilidae) in China. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.730549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To meet the pollination need of economic crops, Osmia excavata has been successfully used to improve the pollination efficiency of Rosaceae and Brassicaceae plants. As a widely used pollinator of economic crops, a systematic study of flower-visiting species and diversities of O. excavata stocked in China was not found. To investigate the foraging pollen species and diversities of O. excavata, beebread from 20 experimental plots in China was collected by the trap-nesting method and analyzed by DNA metabarcoding technology. A total of 26 pollen plants in 14 genera and nine families were identified. A further analysis showed that the richness and abundance of the wild flowering plants in orchards and farmlands were lower than those in the nearby semi-natural habitats. The favorite pollen comes from economic crops apple and rape and wild flowering plants Juncus interior, Rosa gymnocarpa, and Rosa laevigata. Through a diversity index analysis, it was found that the Anhui region has the highest pollen plant diversity, while the Liaoning region has the lowest. Our results can provide a basis for flower-visiting species and diversities of O. excavata.
Collapse
|
16
|
Overview of Bee Pollination and Its Economic Value for Crop Production. INSECTS 2021; 12:insects12080688. [PMID: 34442255 PMCID: PMC8396518 DOI: 10.3390/insects12080688] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/13/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023]
Abstract
Simple Summary There is a rising demand for food security in the face of threats posed by a growing human population. Bees as an insect play a crucial role in crop pollination alongside other animal pollinators such as bats, birds, beetles, moths, hoverflies, wasps, thrips, and butterflies and other vectors such as wind and water. Bees contribute to the global food supply via pollinating a wide range of crops, including fruits, vegetables, oilseeds, legumes, etc. The economic benefit of bees to food production per year was reported including the cash crops, i.e., coffee, cocoa, almond and soybean, compared to self-pollination. Bee pollination improves the quality and quantity of fruits, nuts, and oils. Bee colonies are faced with many challenges that influence their growth, reproduction, and sustainability, particularly climate change, pesticides, land use, and management strength, so it is important to highlight these factors for the sake of gainful pollination. Abstract Pollination plays a significant role in the agriculture sector and serves as a basic pillar for crop production. Plants depend on vectors to move pollen, which can include water, wind, and animal pollinators like bats, moths, hoverflies, birds, bees, butterflies, wasps, thrips, and beetles. Cultivated plants are typically pollinated by animals. Animal-based pollination contributes to 30% of global food production, and bee-pollinated crops contribute to approximately one-third of the total human dietary supply. Bees are considered significant pollinators due to their effectiveness and wide availability. Bee pollination provides excellent value to crop quality and quantity, improving global economic and dietary outcomes. This review highlights the role played by bee pollination, which influences the economy, and enlists the different types of bees and other insects associated with pollination.
Collapse
|
17
|
Boff S, Scheiner R, Raizer J, Lupi D. Survival rate and changes in foraging performances of solitary bees exposed to a novel insecticide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111869. [PMID: 33450537 DOI: 10.1016/j.ecoenv.2020.111869] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Solitary bees are among the most important pollinators worldwide however population declines especially in croplands has been noticed. The novel pesticide sulfoxaflor is a competitive modulator of nicotinic acetylcholine receptors (nAChR) in insects. While there is evidence of a negative impact of neonicotinoids on bees of several social organization levels, our overall knowledge on the impact of sulfoxaflor on bees is poor. Here we present for the first time a study showing effects of field realistic doses of sulfoxaflor on solitary bees. Bees submitted to long term exposure of field realistic doses of sulfoxaflor (5 µg dm-3, 10 µg dm-3, 50 µg dm-3) and control were observed regarding their survival rate. Moreover, we recorded metrics related to flower visitation and flight performance. We discover that the highest field realistic dose is lethal to Osmia bicornis along five days of exposure. The effect of sulfoxaflor reduces the outcome of foraging, important features for fruit and seed production of cross-pollinated plant species. Bees exposed to pesticide visited flowers mostly walking rather than flying. Flight performance was also impaired by the pesticide.
Collapse
Affiliation(s)
- Samuel Boff
- Animal Ecology and Tropical Biology, University of Würzburg, Würzburg 97074, Germany; Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan 20133, Italy.
| | - Ricarda Scheiner
- Behavioural Physiology and Sociobiology, University of Würzburg, Würzburg 97074, Germany
| | - Josué Raizer
- Faculty of Biological and Environmental Sciences, Federal University of Grande Dourados, Dourados 79840-970, Brazil
| | - Daniela Lupi
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan 20133, Italy
| |
Collapse
|
18
|
Dunker S, Motivans E, Rakosy D, Boho D, Mäder P, Hornick T, Knight TM. Pollen analysis using multispectral imaging flow cytometry and deep learning. THE NEW PHYTOLOGIST 2021; 229:593-606. [PMID: 32803754 DOI: 10.1111/nph.16882] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/28/2020] [Indexed: 05/24/2023]
Abstract
Pollen identification and quantification are crucial but challenging tasks in addressing a variety of evolutionary and ecological questions (pollination, paleobotany), but also for other fields of research (e.g. allergology, honey analysis or forensics). Researchers are exploring alternative methods to automate these tasks but, for several reasons, manual microscopy is still the gold standard. In this study, we present a new method for pollen analysis using multispectral imaging flow cytometry in combination with deep learning. We demonstrate that our method allows fast measurement while delivering high accuracy pollen identification. A dataset of 426 876 images depicting pollen from 35 plant species was used to train a convolutional neural network classifier. We found the best-performing classifier to yield a species-averaged accuracy of 96%. Even species that are difficult to differentiate using microscopy could be clearly separated. Our approach also allows a detailed determination of morphological pollen traits, such as size, symmetry or structure. Our phylogenetic analyses suggest phylogenetic conservatism in some of these traits. Given a comprehensive pollen reference database, we provide a powerful tool to be used in any pollen study with a need for rapid and accurate species identification, pollen grain quantification and trait extraction of recent pollen.
Collapse
Affiliation(s)
- Susanne Dunker
- Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, 04318, Germany
- German Centre for Integrative Biodiversity Research - iDiv, Deutscher Platz 5a, Leipzig, 04103, Germany
| | - Elena Motivans
- German Centre for Integrative Biodiversity Research - iDiv, Deutscher Platz 5a, Leipzig, 04103, Germany
- Helmholtz-Centre for Environmental Research - UFZ, Am Kirchtor 1, Halle (Saale), 06120, Germany
- Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), 06108, Germany
| | - Demetra Rakosy
- Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, 04318, Germany
- German Centre for Integrative Biodiversity Research - iDiv, Deutscher Platz 5a, Leipzig, 04103, Germany
| | - David Boho
- Software Engineering for Safety-Critical Systems Group, Technische Universität Ilmenau, Ilmenau, 98693, Germany
| | - Patrick Mäder
- Software Engineering for Safety-Critical Systems Group, Technische Universität Ilmenau, Ilmenau, 98693, Germany
| | - Thomas Hornick
- Helmholtz-Centre for Environmental Research - UFZ, Permoserstraße 15, Leipzig, 04318, Germany
- German Centre for Integrative Biodiversity Research - iDiv, Deutscher Platz 5a, Leipzig, 04103, Germany
| | - Tiffany M Knight
- German Centre for Integrative Biodiversity Research - iDiv, Deutscher Platz 5a, Leipzig, 04103, Germany
- Helmholtz-Centre for Environmental Research - UFZ, Am Kirchtor 1, Halle (Saale), 06120, Germany
- Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), 06108, Germany
| |
Collapse
|
19
|
Filipiak ZM, Filipiak M. The Scarcity of Specific Nutrients in Wild Bee Larval Food Negatively Influences Certain Life History Traits. BIOLOGY 2020; 9:E462. [PMID: 33322450 PMCID: PMC7764569 DOI: 10.3390/biology9120462] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 11/29/2022]
Abstract
Bee nutrition studies have focused on food quantity rather than quality, and on details of bee biology rather than on the functioning of bees in ecosystems. Ecological stoichiometry has been proposed for studies on bee nutritional ecology as an ecosystem-oriented approach complementary to traditional approaches. It uses atomic ratios of chemical elements in foods and organisms as metrics to ask ecological questions. However, information is needed on the fitness effects of nutritional mismatches between bee demand and the supply of specific elements in food. We performed the first laboratory feeding experiment on the wild bee Osmia bicornis, investigating the impact of Na, K, and Zn scarcity in larval food on fitness-related life history traits (mortality, cocoon development, and imago body mass). We showed that bee fitness is shaped by chemical element availability in larval food; this effect may be sex-specific, where Na might influence female body mass, while Zn influences male mortality and body mass, and the trade-off between K allocation in cocoons and adults may influence cocoon and body development. These results elucidate the nutritional mechanisms underlying the nutritional ecology, behavioral ecology, and population functioning of bees within the context of nutrient cycling in the food web.
Collapse
Affiliation(s)
- Zuzanna M. Filipiak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Michał Filipiak
- Faculty of Biology, Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
20
|
Drossart M, Gérard M. Beyond the Decline of Wild Bees: Optimizing Conservation Measures and Bringing Together the Actors. INSECTS 2020; 11:E649. [PMID: 32971790 PMCID: PMC7564822 DOI: 10.3390/insects11090649] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
Wild bees are facing a global decline mostly induced by numerous human factors for the last decades. In parallel, public interest for their conservation increased considerably, namely through numerous scientific studies relayed in the media. In spite of this broad interest, a lack of knowledge and understanding of the subject is blatant and reveals a gap between awareness and understanding. While their decline is extensively studied, information on conservation measures is often scattered in the literature. We are now beyond the precautionary principle and experts are calling for effective actions to promote wild bee diversity and the enhancement of environment quality. In this review, we draw a general and up-to-date assessment of the conservation methods, as well as their efficiency and the current projects that try to fill the gaps and optimize the conservation measures. Targeting bees, we focused our attention on (i) the protection and restoration of wild bee habitats, (ii) the conservation measures in anthropogenic habitats, (iii) the implementation of human made tools, (iv) how to deal with invasive alien species, and finally (v) how to communicate efficiently and accurately. This review can be considered as a needed catalyst to implement concrete and qualitative conversation actions for bees.
Collapse
Affiliation(s)
- Maxime Drossart
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons (UMONS), Place du Parc 20, B-7000 Mons, Belgium
| | - Maxence Gérard
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons (UMONS), Place du Parc 20, B-7000 Mons, Belgium
| |
Collapse
|
21
|
Boff S, Raizer J, Lupi D. Environmental Display Can Buffer the Effect of Pesticides on Solitary Bees. INSECTS 2020; 11:E417. [PMID: 32635667 PMCID: PMC7412123 DOI: 10.3390/insects11070417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/25/2020] [Accepted: 07/03/2020] [Indexed: 02/07/2023]
Abstract
Environmental quality (e.g., diversity of resource availability, nesting sites, environmental display) plays an important role in an animal's life. While homogeneous environments can restrict organisms from developing activities such as food seeking (behavioral impairment), more complex environments allow animals to perform activities with learning and behavioral perfecting outcomes. Pesticides are known to affect the learning and foraging behaviors of bees; however, little is known about the counterbalance displayed by the environment. Herein, we conducted two experiments that simulated distinct environmental displays, in which the effects of a fungicide (IndarTM 5EW-febunconazole) on solitary bee foraging activities were tested. We found that the fungicide only impaired the activities of bees in one of the studied environments. The difference in visitation rates and flower exploitation of bees between the two different environmental displays led to changes in metrics of bee-flower networks across environments. Linkage density, a metric associated with pollination efficiency that is known to be impacted by different environments, differed across environments. Our results showed that ecological interaction network metrics can differ regarding the different environmental displays. This study indicates that environmental complexity helps balance the negative effects of pesticides on solitary bees and highlights the potential use of solitary bees as model organisms for experimental simulations of environmental change.
Collapse
Affiliation(s)
- Samuel Boff
- University of Milan, Department of Food Environmental and Nutritional Sciences, 20133 Milan, Italy;
| | - Josué Raizer
- Universidade Federal da Grande Dourados, Faculdade de Ciências Biológicas e Ambientais, Dourados 79840-970, Brazil;
| | - Daniela Lupi
- University of Milan, Department of Food Environmental and Nutritional Sciences, 20133 Milan, Italy;
| |
Collapse
|
22
|
Cariveau DP, Bruninga-Socolar B, Pardee GL. A review of the challenges and opportunities for restoring animal-mediated pollination of native plants. Emerg Top Life Sci 2020; 4:ETLS20190073. [PMID: 32556128 PMCID: PMC7326338 DOI: 10.1042/etls20190073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
Ecological restoration is increasingly implemented to reverse habitat loss and concomitant declines in biological diversity. Typically, restoration success is evaluated by measuring the abundance and/or diversity of a single taxon. However, for a restoration to be successful and persistent, critical ecosystem functions such as animal-mediated pollination must be maintained. In this review, we focus on three aspects of pollination within ecological restorations. First, we address the need to measure pollination directly in restored habitats. Proxies such as pollinator abundance and richness do not always accurately assess pollination function. Pollen supplementation experiments, pollen deposition studies, and pollen transport networks are more robust methods for assessing pollination function within restorations. Second, we highlight how local-scale management and landscape-level factors may influence pollination within restorations. Local-scale management actions such as prescribed fire and removal of non-native species can have large impacts on pollinator communities and ultimately on pollination services. In addition, landscape context including proximity and connectivity to natural habitats may be an important factor for land managers and conservation practitioners to consider to maximize restoration success. Third, as climate change is predicted to be a primary driver of future loss in biodiversity, we discuss the potential effects climate change may have on animal-mediated pollination within restorations. An increased mechanistic understanding of how climate change affects pollination and incorporation of climate change predictions will help practitioners design stable, functioning restorations into the future.
Collapse
Affiliation(s)
- Daniel P Cariveau
- Department of Entomology, University of Minnesota, St. Paul, MN, U.S.A
| | | | | |
Collapse
|
23
|
Rader R, Cunningham SA, Howlett BG, Inouye DW. Non-Bee Insects as Visitors and Pollinators of Crops: Biology, Ecology, and Management. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:391-407. [PMID: 31610136 DOI: 10.1146/annurev-ento-011019-025055] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Insects other than bees (i.e., non-bees) have been acknowledged as important crop pollinators, but our understanding of which crop plants they visit and how effective they are as crop pollinators is limited. To compare visitation and efficiency of crop-pollinating bees and non-bees at a global scale, we review the literature published from 1950 to 2018 concerning the visitors and pollinators of 105 global food crops that are known to benefit from animal pollinators. Of the 105 animal-pollinated crops, a significant proportion are visited by both bee and non-bee taxa (n = 82; 77%), with a total gross domestic product (GDP) value of US$780.8 billion. For crops with a narrower range of visitors, those that favor non-bees (n = 8) have a value of US$1.2 billion, compared to those that favor bees (n = 15), with a value of US$19.0 billion. Limited pollinator efficiency data were available for one or more taxa in only half of the crops (n = 61; 58%). Among the non-bees, some families were recorded visiting a wide range of crops (>12), including six families of flies (Syrphidae, Calliphoridae, Muscidae, Sarcophagidae, Tachinidae, and Bombyliidae), two beetle families (Coccinelidae and Nitidulidae), ants (Formicidae), wasps (Vespidae), and four families of moths and butterflies (Hesperiidae, Lycaenidae, Nymphalidae, and Pieridae). Among the non-bees, taxa within the dipteran families Syrphidae and Calliphoridae were the most common visitors to the most crops, but this may be an artifact of the limited data available. The diversity of species and life histories in these groups of lesser-known pollinators indicates that diet, larval requirements, and other reproductive needs will require alternative habitat management practices to bees.
Collapse
Affiliation(s)
- R Rader
- School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia;
| | - S A Cunningham
- Fenner School of Environment and Society, College of Science, The Australian National University, Canberra ACT 2601, Australia
| | - B G Howlett
- The New Zealand Institute for Plant and Food Research Limited, Christchurch 8140, New Zealand
| | - D W Inouye
- Department of Biology, University of Maryland, College Park, Maryland 20742, USA
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado 81224, USA
| |
Collapse
|
24
|
Foraging strategies are maintained despite workforce reduction: A multidisciplinary survey on the pollen collected by a social pollinator. PLoS One 2019; 14:e0224037. [PMID: 31693676 PMCID: PMC6834249 DOI: 10.1371/journal.pone.0224037] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 10/03/2019] [Indexed: 01/13/2023] Open
Abstract
The way pollinators gather resources may play a key role for buffering their population declines. Social pollinators like bumblebees could adjust their foraging after significant workforce reductions to keep provisions to the colony optimal, especially in terms of pollen diversity and quantity. To test what effects a workforce reduction causes on the foraging for pollen, commercially-acquired colonies of the bumblebee Bombus terrestris were allowed to forage in the field and they were experimentally manipulated by removing half the number of workers. For each bumblebee, the pollen pellets were taxonomically identified with DNA metabarcoding of the ITS2 region followed by a statistical filtering based on ROC curves to filter out underrepresented OTUs. Video cameras and network analyses were employed to investigate changes in foraging strategies and behaviour. After filtering out the false-positives, HTS metabarcoding yielded a high plant diversity in the pollen pellets; for plant identity and pollen quantity traits no differences emerged between samples from treated and from control colonies, suggesting that plant choice was influenced mainly by external factors such as the plant phenology. The colonies responded to the removal of 50% of their workers by increasing the foraging activity of the remaining workers, while only negligible changes were found in diet breadth and indices describing the structure of the pollen transport network. Therefore, a consistency in the bumblebees’ feeding strategies emerges in the short term despite the lowered workforce.
Collapse
|
25
|
Csikai E, Andrejkovics M, Balajthy-Hidegh B, Hofgárt G, Kardos L, Diószegi Á, Rostás R, Czuriga-Kovács KR, Csongrádi É, Csiba L. Influence of angiotensin-converting enzyme inhibition on reversibility of alterations in arterial wall and cognitive performance associated with early hypertension: A follow-up study. Medicine (Baltimore) 2019; 98:e16966. [PMID: 31441902 PMCID: PMC6716754 DOI: 10.1097/md.0000000000016966] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The importance of optimal blood pressure control for preventing or reducing the impairment of vascular and cognitive functions is well known. However, the reversibility of early alterations in vascular and cognitive functions through antihypertensive agents is under-investigated. In this study, we evaluated the influence of 3 months of angiotensin-converting enzyme (ACE) inhibition treatment on the morphological and functional arterial wall and cognitive performance changes in 30 newly diagnosed primary hypertensive patients.Common carotid intima-media thickness (IMT) and brachial artery flow-mediated dilatation (FMD) were detected by ultrasonography. Arterial stiffness indicated by augmentation index (AIx) and pulse wave velocity (PWV) was assessed by arteriography. Cognitive functions were assessed by neuropsychological examination.The executive function overall score was significantly higher at 3-month follow-up than at baseline (median, 0.233 (IQR, 0.447) vs -0.038 (0.936); P = .001). Three-month ACE inhibition did not produce significant improvement in IMT, FMD, AIx and PWV values. Significant negative associations were revealed between IMT and complex attention (r = -0.598, P = .0008), executive function (r = -0.617, P = .0005), and immediate memory (r = -0.420, P = .026) overall scores at follow-up. AIx had significant negative correlations with complex attention (r = -0.568, P = .001), executive function (r = -0.374, P = .046), and immediate memory (r = -0.507, P = .005). PWV correlated significantly and negatively with complex attention (r = -0.490, P = .007).Timely and effective antihypertensive therapy with ACE inhibitors has significant beneficial effects on cognitive performance in as few as 3 months. Early ACE inhibition may have an important role in the reversal of initial impairments of cognitive function associated with hypertension-induced vascular alterations.
Collapse
Affiliation(s)
- Enikő Csikai
- Institute of Behavioural Sciences, Faculty of Public Health
| | | | | | - Gergely Hofgárt
- Department of Neurology, Faculty of Medicine, University of Debrecen
| | | | - Ágnes Diószegi
- Department of Medicine, Faculty of Medicine, University of Debrecen
| | - Róbert Rostás
- Department of Neurology, Faculty of Medicine, University of Debrecen
| | | | - Éva Csongrádi
- Department of Neurology, Faculty of Medicine, University of Debrecen
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary
| | - László Csiba
- Department of Neurology, Faculty of Medicine, University of Debrecen
- MTA-DE Cerebrovascular and Neurodegenerative Research Group, Debrecen, Hungary
| |
Collapse
|
26
|
Belsky J, Joshi NK. Impact of Biotic and Abiotic Stressors on Managed and Feral Bees. INSECTS 2019; 10:E233. [PMID: 31374933 PMCID: PMC6723792 DOI: 10.3390/insects10080233] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 01/14/2023]
Abstract
Large-scale declines in bee abundance and species richness over the last decade have sounded an alarm, given the crucial pollination services that bees provide. Population dips have specifically been noted for both managed and feral bee species. The simultaneous increased cultivation of bee-dependent agricultural crops has given rise to additional concern. As a result, there has been a surge in scientific research investigating the potential stressors impacting bees. A group of environmental and anthropogenic stressors negatively impacting bees has been isolated. Habitat destruction has diminished the availability of bee floral resources and nest habitats, while massive monoculture plantings have limited bee access to a variety of pollens and nectars. The rapid spread and increased resistance buildup of various bee parasites, pathogens, and pests to current control methods are implicated in deteriorating bee health. Similarly, many pesticides that are widely applied on agricultural crops and within beehives are toxic to bees. The global distribution of honey bee colonies (including queens with attendant bees) and bumble bee colonies from crop to crop for pollination events has been linked with increased pathogen stress and increased competition with native bee species for limited resources. Climatic alterations have disrupted synchronous bee emergence with flower blooming and reduced the availability of diverse floral resources, leading to bee physiological adaptations. Interactions amongst multiple stressors have created colossal maladies hitting bees at one time, and in some cases delivering additive impacts. Initiatives including the development of wild flower plantings and assessment of pesticide toxicity to bees have been undertaken in efforts to ameliorate current bee declines. In this review, recent findings regarding the impact of these stressors on bees and strategies for mitigating them are discussed.
Collapse
Affiliation(s)
- Joseph Belsky
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA
| | - Neelendra K Joshi
- Department of Entomology, University of Arkansas, 319 Agricultural Building, Fayetteville, AR 72701, USA.
| |
Collapse
|
27
|
Filipiak M. Key pollen host plants provide balanced diets for wild bee larvae: A lesson for planting flower strips and hedgerows. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13383] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Michał Filipiak
- Institute of Environmental SciencesJagiellonian University Kraków Poland
| |
Collapse
|