1
|
Ostwald M, Gonzalez V, Chang C, Vitale N, Lucia M, Seltmann K. Toward a Functional Trait Approach to Bee Ecology. Ecol Evol 2024; 14:e70465. [PMID: 39429800 PMCID: PMC11487340 DOI: 10.1002/ece3.70465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/30/2024] [Indexed: 10/22/2024] Open
Abstract
Functional traits offer an informative framework for understanding ecosystem functioning and responses to global change. Trait data are abundant in the literature, yet many communities of practice lack data standards for trait measurement and data sharing, hindering data reuse that could reveal large-scale patterns in functional and evolutionary ecology. Here, we present a roadmap toward community data standards for trait-based research on bees, including a protocol for effective trait data sharing. We also review the state of bee functional trait research, highlighting common measurement approaches and knowledge gaps. These studies were overwhelmingly situated in agroecosystems and focused predominantly on morphological and behavioral traits, while phenological and physiological traits were infrequently measured. Studies investigating climate change effects were also uncommon. Along with our review, we present an aggregated morphological trait dataset compiled from our focal studies, representing more than 1600 bee species globally and serving as a template for standardized bee trait data presentation. We highlight obstacles to harmonizing this trait data, especially ambiguity in trait classes, methodology, and sampling metadata. Our framework for trait data sharing leverages common data standards to resolve these ambiguities and ensure interoperability between datasets, promoting accessibility and usability of trait data to advance bee ecological research.
Collapse
Affiliation(s)
- Madeleine M. Ostwald
- Cheadle Center for Biodiversity & Ecological RestorationUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Victor H. Gonzalez
- Undergraduate Biology Program and Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceKansasUSA
| | - Carrie Chang
- Cheadle Center for Biodiversity & Ecological RestorationUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| | - Nydia Vitale
- Instituto Argentino de Investigaciones de Las Zonas Áridas, CONICETMendozaArgentina
| | - Mariano Lucia
- División Entomología, Laboratorio Anexo Museo de La PlataUniversidad Nacional de La Plata, CONICETLa PlataArgentina
| | - Katja C. Seltmann
- Cheadle Center for Biodiversity & Ecological RestorationUniversity of CaliforniaSanta BarbaraCaliforniaUSA
| |
Collapse
|
2
|
Woodrow C, Jafferis N, Kang Y, Vallejo-Marín M. Buzz-pollinating bees deliver thoracic vibrations to flowers through periodic biting. Curr Biol 2024; 34:4104-4113.e3. [PMID: 39153483 DOI: 10.1016/j.cub.2024.07.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 08/19/2024]
Abstract
Pollinator behavior is vital to plant-pollinator interactions, affecting the acquisition of floral rewards, patterns of pollen transfer, and plant reproductive success. During buzz pollination, bees produce vibrations with their indirect flight muscles to extract pollen from tube-like flowers. Vibrations can be transmitted to the flower via the mandibles, abdomen, legs, or thorax directly. Vibration amplitude at the flower determines the rate of pollen release and should vary with the coupling of bee and flower. This coupling often occurs through anther biting, but no studies have quantified how biting affects flower vibration. Here, we used high-speed filmography to investigate how flower vibration amplitude changes during biting in Bombus terrestris visiting two species of buzz-pollinated flowering plants: Solanum dulcamara and Solanum rostratum (Solanaceae). We found that floral buzzing drives head vibrations up to 3 times greater than those of the thorax, which doubles the vibration amplitude of the anther during biting compared with indirect vibration transmission when not biting. However, the efficiency of this vibration transmission depends on the angle at which the bee bites the anther. Variation in transmission mechanisms, combined with the diversity of vibrations across bee species, yields a rich assortment of potential strategies that bees could employ to access rewards from buzz-pollinated flowers.
Collapse
Affiliation(s)
- Charlie Woodrow
- Department of Ecology and Genetics, Uppsala University, Evolutionary Biology Centre, Norbyvägen 18 D, 752 36 Uppsala, Sweden.
| | - Noah Jafferis
- Department of Electrical and Computer Engineering, University of Massachusetts, Lowell, MA 01854, USA
| | - Yuchen Kang
- Department of Electrical and Computer Engineering, University of Massachusetts, Lowell, MA 01854, USA
| | - Mario Vallejo-Marín
- Department of Ecology and Genetics, Uppsala University, Evolutionary Biology Centre, Norbyvägen 18 D, 752 36 Uppsala, Sweden
| |
Collapse
|
3
|
Rodríguez Ballesteros A, Desjonquères C, Hevia V, García Llorente M, Ulloa JS, Llusia D. Towards acoustic monitoring of bees: wingbeat sounds are related to species and individual traits. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230111. [PMID: 38705186 PMCID: PMC11070252 DOI: 10.1098/rstb.2023.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 02/28/2024] [Indexed: 05/07/2024] Open
Abstract
Global pollinator decline urgently requires effective methods to assess their trends, distribution and behaviour. Passive acoustics is a non-invasive and cost-efficient monitoring tool increasingly employed for monitoring animal communities. However, insect sounds remain highly unexplored, hindering the application of this technique for pollinators. To overcome this shortfall and support future developments, we recorded and characterized wingbeat sounds of a variety of Iberian domestic and wild bees and tested their relationship with taxonomic, morphological, behavioural and environmental traits at inter- and intra-specific levels. Using directional microphones and machine learning, we shed light on the acoustic signature of bee wingbeat sounds and their potential to be used for species identification and monitoring. Our results revealed that frequency of wingbeat sounds is negatively related with body size and environmental temperature (between-species analysis), while it is positively related with experimentally induced stress conditions (within-individual analysis). We also found a characteristic acoustic signature in the European honeybee that supported automated classification of this bee from a pool of wild bees, paving the way for passive acoustic monitoring of pollinators. Overall, these findings confirm that insect sounds during flight activity can provide insights on individual and species traits, and hence suggest novel and promising applications for this endangered animal group. This article is part of the theme issue 'Towards a toolkit for global insect biodiversity monitoring'.
Collapse
Affiliation(s)
- Alberto Rodríguez Ballesteros
- Terrestrial Ecology Group, Departament of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Social-ecological Systems Laboratory, Department of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Camille Desjonquères
- Terrestrial Ecology Group, Departament of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000 Grenoble, France
| | - Violeta Hevia
- Social-ecological Systems Laboratory, Department of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Marina García Llorente
- Social-ecological Systems Laboratory, Department of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
| | - Juan S. Ulloa
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Paseo Bolívar 16-20, Bogotá, 111711, Colombia
| | - Diego Llusia
- Terrestrial Ecology Group, Departament of Ecology, Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, Darwin 2, 28049, Madrid, Spain
- Laboratório de Herpetologia e Comportamento Animal, Department of Ecology, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiás, Brazil 74690-900
| |
Collapse
|
4
|
Vallejo-Marin M, Field DL, Fornoni J, Montesinos D, Dominguez CA, Hernandez I, Vallejo GC, Woodrow C, Ayala Barajas R, Jafferis N. Biomechanical properties of non-flight vibrations produced by bees. J Exp Biol 2024; 227:jeb247330. [PMID: 38773949 DOI: 10.1242/jeb.247330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/10/2024] [Indexed: 05/24/2024]
Abstract
Bees use thoracic vibrations produced by their indirect flight muscles for powering wingbeats in flight, but also during mating, pollination, defence and nest building. Previous work on non-flight vibrations has mostly focused on acoustic (airborne vibrations) and spectral properties (frequency domain). However, mechanical properties such as the vibration's acceleration amplitude are important in some behaviours, e.g. during buzz pollination, where higher amplitude vibrations remove more pollen from flowers. Bee vibrations have been studied in only a handful of species and we know very little about how they vary among species. In this study, we conducted the largest survey to date of the biomechanical properties of non-flight bee buzzes. We focused on defence buzzes as they can be induced experimentally and provide a common currency to compare among taxa. We analysed 15,000 buzzes produced by 306 individuals in 65 species and six families from Mexico, Scotland and Australia. We found a strong association between body size and the acceleration amplitude of bee buzzes. Comparison of genera that buzz-pollinate and those that do not suggests that buzz-pollinating bees produce vibrations with higher acceleration amplitude. We found no relationship between bee size and the fundamental frequency of defence buzzes. Although our results suggest that body size is a major determinant of the amplitude of non-flight vibrations, we also observed considerable variation in vibration properties among bees of equivalent size and even within individuals. Both morphology and behaviour thus affect the biomechanical properties of non-flight buzzes.
Collapse
Affiliation(s)
- Mario Vallejo-Marin
- Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| | - David L Field
- Applied Biosciences, Macquarie University, Sydney, NSW 2109, Australia
- School of Science, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Juan Fornoni
- Instituto de Ecología, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Daniel Montesinos
- Australian Tropical Herbarium, James Cook University, Cairns, QLD 4870, Australia
- College of Science and Engineering, James Cook University, Cairns, QLD 4870, Australia
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - Cesar A Dominguez
- Instituto de Ecología, National Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Ivan Hernandez
- Independent researcher, San Felipe del Agua, Oaxaca, Mexico
| | | | - Charlie Woodrow
- Department of Ecology and Genetics, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Ricardo Ayala Barajas
- Estación de Biología Chamela, National Autonomous University of Mexico (UNAM), Jalisco, Mexico
| | - Noah Jafferis
- Department of Electrical and Computer Engineering, University of Massachusetts Lowell, Lowell, MA 01854, USA
| |
Collapse
|
5
|
Peralta G, CaraDonna PJ, Rakosy D, Fründ J, Pascual Tudanca MP, Dormann CF, Burkle LA, Kaiser-Bunbury CN, Knight TM, Resasco J, Winfree R, Blüthgen N, Castillo WJ, Vázquez DP. Predicting plant-pollinator interactions: concepts, methods, and challenges. Trends Ecol Evol 2024; 39:494-505. [PMID: 38262775 DOI: 10.1016/j.tree.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/25/2024]
Abstract
Plant-pollinator interactions are ecologically and economically important, and, as a result, their prediction is a crucial theoretical and applied goal for ecologists. Although various analytical methods are available, we still have a limited ability to predict plant-pollinator interactions. The predictive ability of different plant-pollinator interaction models depends on the specific definitions used to conceptualize and quantify species attributes (e.g., morphological traits), sampling effects (e.g., detection probabilities), and data resolution and availability. Progress in the study of plant-pollinator interactions requires conceptual and methodological advances concerning the mechanisms and species attributes governing interactions as well as improved modeling approaches to predict interactions. Current methods to predict plant-pollinator interactions present ample opportunities for improvement and spark new horizons for basic and applied research.
Collapse
Affiliation(s)
- Guadalupe Peralta
- Multidisciplinary Institute of Plant Biology, National Council for Scientific and Technical Research (CONICET)-National University of Córdoba, Córdoba, X5016GCN, Argentina.
| | - Paul J CaraDonna
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science and Action, Glencoe, IL 60022, USA; Plant Biology and Conservation, Northwestern University, Evanston, IL 60201, USA
| | - Demetra Rakosy
- Department for Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Leipzig 04318, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany
| | - Jochen Fründ
- Biometry and Environmental System Analysis, University of Freiburg, Freiburg 79098, Germany; Animal Network Ecology, Department of Biology, University of Hamburg, Hamburg 20148, Germany
| | - María P Pascual Tudanca
- Argentine Institute for Dryland Research, National Council for Scientific and Technical Research (CONICET)-National University of Cuyo, Mendoza 5500, Argentina
| | - Carsten F Dormann
- Biometry and Environmental System Analysis, University of Freiburg, Freiburg 79098, Germany
| | - Laura A Burkle
- Department of Ecology, Montana State University, Bozeman, MT 59717, USA
| | - Christopher N Kaiser-Bunbury
- Centre for Ecology and Conservation, Faculty of Environment, Science and Economy, University of Exeter, Penryn Campus, Penryn TR10 9FE, UK
| | - Tiffany M Knight
- Department for Community Ecology, Helmholtz Centre for Environmental Research (UFZ), Leipzig 04318, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig 04103, Germany; Institute of Biology, Martin Luther University Halle-Wittenberg, Halle (Saale) 06108, Germany
| | - Julian Resasco
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Rachael Winfree
- Department of Ecology, Evolution & Natural Resources, Rutgers University, New Brunswick, NJ 08901, USA
| | - Nico Blüthgen
- Ecological Networks Lab, Technische Universität Darmstadt, Darmstadt 64287, Germany
| | - William J Castillo
- Biometry and Environmental System Analysis, University of Freiburg, Freiburg 79098, Germany
| | - Diego P Vázquez
- Argentine Institute for Dryland Research, National Council for Scientific and Technical Research (CONICET)-National University of Cuyo, Mendoza 5500, Argentina; Faculty of Exact and Natural Sciences, National University of Cuyo, Mendoza M5502, Argentina.
| |
Collapse
|
6
|
Vallejo-Marin M, Russell AL. Harvesting pollen with vibrations: towards an integrative understanding of the proximate and ultimate reasons for buzz pollination. ANNALS OF BOTANY 2024; 133:379-398. [PMID: 38071461 PMCID: PMC11006549 DOI: 10.1093/aob/mcad189] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/08/2023] [Indexed: 04/12/2024]
Abstract
Buzz pollination, a type of interaction in which bees use vibrations to extract pollen from certain kinds of flowers, captures a close relationship between thousands of bee and plant species. In the last 120 years, studies of buzz pollination have contributed to our understanding of the natural history of buzz pollination, and basic properties of the vibrations produced by bees and applied to flowers in model systems. Yet, much remains to be done to establish its adaptive significance and the ecological and evolutionary dynamics of buzz pollination across diverse plant and bee systems. Here, we review for bees and plants the proximate (mechanism and ontogeny) and ultimate (adaptive significance and evolution) explanations for buzz pollination, focusing especially on integrating across these levels to synthesize and identify prominent gaps in our knowledge. Throughout, we highlight new technical and modelling approaches and the importance of considering morphology, biomechanics and behaviour in shaping our understanding of the adaptive significance of buzz pollination. We end by discussing the ecological context of buzz pollination and how a multilevel perspective can contribute to explain the proximate and evolutionary reasons for this ancient bee-plant interaction.
Collapse
Affiliation(s)
- Mario Vallejo-Marin
- Department of Ecology and Genetics, Uppsala University, Uppsala, 752 36, Sweden
| | - Avery L Russell
- Department of Biology, Missouri State University, Springfield, MO, 65897, USA
| |
Collapse
|
7
|
Barbosa BC, Delgado de Lima TD, Mota GV, Nogueira A. The role of intraspecific variation in bumblebee body size and behavior on buzz pollination of a tropical legume species. AMERICAN JOURNAL OF BOTANY 2023; 110:e16236. [PMID: 37661849 DOI: 10.1002/ajb2.16236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/05/2023]
Abstract
PREMISE The outcomes of generalized mutualisms rely on partner trait variation. In pollination mutualisms, although less explored, intraspecific variation in pollinator traits can be pivotal for successful pollination. We investigated the role of intraspecific body size and behavioral trait variations of bumblebee Bombus morio on the pollination of a buzz-pollinated legume species, Chamaecrista latistipula. METHODS To explore the impact of body size and behavior of B. morio on the pollination of C. latistipula, we observed visits to virgin flowers and quantified the pollen removal and deposition (pollination performance) and fruit and seed production (reproductive fitness). By analyzing video and sound recordings, we measured B. morio body size and behavior on each flower, including bee vibration descriptors. RESULTS We observed intraspecific behavioral differences among B. morio bumblebees associated with different body sizes. Larger bumblebees had half the handling time and vibrational pulses, less angular displacement within flowers, and larger relative peak amplitudes during vibrations than smaller bumblebees did. Regardless of their large variation in size and behavior, bumblebees were equally effective in removing pollen and pollinating flowers. The high female reproductive fitness was independent of bumblebee body size and behavior, likely due to the interaction between both. On the other hand, larger bumblebees visited flowers for shorter periods, probably promoting higher male reproductive fitness. CONCLUSIONS This study is the first to highlight the large intraspecific variation of bumblebee body size and behavior in buzz-pollinated flowers in the field. Together, body size and behavior effects unexpectedly cancel each other, generating a high buzz pollination efficiency.
Collapse
Affiliation(s)
- Bruna C Barbosa
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Programa de Pós-Graduação em Evolução e Diversidade, Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Tamiris D Delgado de Lima
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
- Programa de Graduação em Ciências Biológicas (Botânica), Instituto de Biociências, UNESP - Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Guilherme V Mota
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Anselmo Nogueira
- Laboratório de Interações Planta-Animal (LIPA), Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| |
Collapse
|
8
|
Virant-Doberlet M, Stritih-Peljhan N, Žunič-Kosi A, Polajnar J. Functional Diversity of Vibrational Signaling Systems in Insects. ANNUAL REVIEW OF ENTOMOLOGY 2023; 68:191-210. [PMID: 36198397 DOI: 10.1146/annurev-ento-120220-095459] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Communication by substrate-borne mechanical waves is widespread in insects. The specifics of vibrational communication are related to heterogeneous natural substrates that strongly influence signal transmission. Insects generate vibrational signals primarily by tremulation, drumming, stridulation, and tymbalation, most commonly during sexual behavior but also in agonistic, social, and mutualistic as well as defense interactions and as part of foraging strategies. Vibrational signals are often part of multimodal communication. Sensilla and organs detecting substrate vibration show great diversity and primarily occur in insect legs to optimize sensitivity and directionality. In the natural environment, signals from heterospecifics, as well as social and enemy interactions within vibrational communication networks, influence signaling and behavioral strategies. The exploitation of substrate-borne vibrational signaling offers a promising application for behavioral manipulation in pest control.
Collapse
Affiliation(s)
- Meta Virant-Doberlet
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Nataša Stritih-Peljhan
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Alenka Žunič-Kosi
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| | - Jernej Polajnar
- Department of Organisms and Ecosystems Research, National Institute of Biology, Ljubljana, Slovenia;
| |
Collapse
|
9
|
Fitzgerald JL, Ogilvie JE, CaraDonna PJ. Ecological Drivers and Consequences of Bumble Bee Body Size Variation. ENVIRONMENTAL ENTOMOLOGY 2022; 51:1055-1068. [PMID: 36373400 DOI: 10.1093/ee/nvac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Body size is arguably one of the most important traits influencing the physiology and ecology of animals. Shifts in animal body size have been observed in response to climate change, including in bumble bees (Bombus spp. [Hymenoptera: Apidae]). Bumble bee size shifts have occurred concurrently with the precipitous population declines of several species, which appear to be related, in part, to their size. Body size variation is central to the ecology of bumble bees, from their social organization to the pollination services they provide to plants. If bumble bee size is shifted or constrained, there may be consequences for the pollination services they provide and for our ability to predict their responses to global change. Yet, there are still many aspects of the breadth and role of bumble bee body size variation that require more study. To this end, we review the current evidence of the ecological drivers of size variation in bumble bees and the consequences of that variation on bumble bee fitness, foraging, and species interactions. In total we review: (1) the proximate determinants and physiological consequences of size variation in bumble bees; (2) the environmental drivers and ecological consequences of size variation; and (3) synthesize our understanding of size variation in predicting how bumble bees will respond to future changes in climate and land use. As global change intensifies, a better understanding of the factors influencing the size distributions of bumble bees, and the consequences of those distributions, will allow us to better predict future responses of these pollinators.
Collapse
Affiliation(s)
- Jacquelyn L Fitzgerald
- Plant Biology and Conservation, Northwestern University, Evanston, IL 60201, USA
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science & Action, Glencoe, IL 60022, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Jane E Ogilvie
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Paul J CaraDonna
- Plant Biology and Conservation, Northwestern University, Evanston, IL 60201, USA
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science & Action, Glencoe, IL 60022, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
10
|
Hold tight or loosen up? Functional consequences of a shift in anther architecture depend substantially on bee body size. Oecologia 2022; 200:119-131. [DOI: 10.1007/s00442-022-05246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/13/2022] [Indexed: 10/15/2022]
|
11
|
Vallejo‐Marín M, Pereira Nunes CE, Russell AL. Anther cones increase pollen release in buzz-pollinated Solanum flowers. Evolution 2022; 76:931-945. [PMID: 35324004 PMCID: PMC9313847 DOI: 10.1111/evo.14485] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 02/21/2022] [Accepted: 03/13/2022] [Indexed: 01/22/2023]
Abstract
The widespread evolution of tube-like anthers releasing pollen from apical pores is associated with buzz pollination, in which bees vibrate flowers to remove pollen. The mechanical connection among anthers in buzz-pollinated species varies from loosely held conformations, to anthers tightly held together with trichomes or bioadhesives forming a functionally joined conical structure (anther cone). Joined anther cones in buzz-pollinated species have evolved independently across plant families and via different genetic mechanisms, yet their functional significance remains mostly untested. We used experimental manipulations to compare vibrational and functional (pollen release) consequences of joined anther cones in three buzz-pollinated species of Solanum (Solanaceae). We applied bee-like vibrations to focal anthers in flowers with ("joined") and without ("free") experimentally created joined anther cones, and characterized vibrations transmitted to other anthers and the amount of pollen released. We found that joined anther architectures cause nonfocal anthers to vibrate at higher amplitudes than free architectures. Moreover, in the two species with naturally loosely held anthers, anther fusion increases pollen release, whereas in the species with a free but naturally compact architecture it does not. We discuss hypotheses for the adaptive significance of the convergent evolution of joined anther cones.
Collapse
Affiliation(s)
- Mario Vallejo‐Marín
- Biological and Environmental SciencesUniversity of StirlingStirlingFK9 4LAUnited Kingdom
- Department of BiologyMissouri State UniversitySpringfieldMissouri65897
| | | | | |
Collapse
|
12
|
Jankauski M, Ferguson R, Russell A, Buchmann S. Structural dynamics of real and modelled Solanum stamens: implications for pollen ejection by buzzing bees. J R Soc Interface 2022; 19:20220040. [PMID: 35259960 PMCID: PMC8905162 DOI: 10.1098/rsif.2022.0040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
An estimated 10% of flowering plant species conceal their pollen within tube-like anthers that dehisce through small apical pores (poricidal anthers). Bees extract pollen from poricidal anthers through a complex motor routine called floral buzzing, whereby the bee applies vibratory forces to the flower stamen by rapidly contracting its flight muscles. The resulting deformation depends on the stamen's natural frequencies and vibration mode shapes, yet for most poricidal species, these properties have not been sufficiently characterized. We performed experimental modal analysis on Solanum elaeagnifolium stamens to quantify their natural frequencies and vibration modes. Based on morphometric and dynamic measurements, we developed a finite-element model of the stamen to identify how variable material properties, geometry and bee weight could affect its dynamics. In general, stamen natural frequencies fell outside the reported floral buzzing range, and variations in stamen geometry and material properties were unlikely to bring natural frequencies within this range. However, inclusion of bee mass reduced natural frequencies to within the floral buzzing frequency range and gave rise to an axial-bending vibration mode. We hypothesize that floral buzzing bees exploit the large vibration amplification factor of this mode to increase anther deformation, which may facilitate pollen ejection.
Collapse
Affiliation(s)
- Mark Jankauski
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Riggs Ferguson
- Department of Mechanical and Industrial Engineering, Montana State University, Bozeman, MT, USA
| | - Avery Russell
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Stephen Buchmann
- Department of Ecology and Evolutionary Biology,, University of Arizona, Tucson, AZ, USA.,Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Valadão-Mendes LB, Rocha I, Meireles DAL, Leite FB, Sazima M, Maruyama PK, Brito VLG. Flower morphology and plant-bee pollinator interactions are related to stamen dimorphism in Melastomataceae. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:240-248. [PMID: 34741381 DOI: 10.1111/plb.13359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Approximately 20,000 species of flowering plant offer mainly pollen to their pollinators, generally bees. Stamen dimorphism, a floral trait commonly present in some pollen flowers, is thought to be associated with exclusive pollen provision for highly effective bee pollinators. Notwithstanding, little is known about how stamen dimorphism is related to other floral morphological traits and, consequently, plant-pollinator interactions at the community scale. Here we investigated the relationship between stamen dimorphism and other floral morphological traits, as well as the interactions with pollinators in plants of Melastomataceae. We characterized each plant species as stamen dimorphic or stamen isomorphic according to differences in size and shape between stamen sets. Data on interactions between the plants and their bee pollinators were analysed as quantitative bipartite networks. We found that petal and style size and shape were correlated to stamen dimorphism. Stamen dimorphic species present larger flowers and less variable style shapes than stamen isomorphic species. Furthermore, stamen dimorphism is associated with higher richness of visiting bees, i.e. higher ecological generalization. During the evolutionary history of Melastomataceae, the dependence on pollinators for fruit set has possibly favoured the evolution of larger flowers with dimorphic stamens, which in turn are able to make use of a larger spectrum of pollen-collecting bees, leading to ecological generalization.
Collapse
Affiliation(s)
- L B Valadão-Mendes
- Programa de Pós-Graduação em Ecologia, Conservação e Manejo de Vida Silvestre, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- Centro de Síntese Ecológica e Conservação, Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - I Rocha
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brasil
| | - D A L Meireles
- Programa de Pós-Graduação em Ecologia e Conservação dos Recursos Naturais, Universidade Federal de Uberlândia, Uberlândia, Brasil
- Departamento de Ecologia, Instituto de Ciências Biologicas, Universidade Federal de Goiás, Goiânia, Brasil
| | - F B Leite
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brasil
| | - M Sazima
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brasil
| | - P K Maruyama
- Centro de Síntese Ecológica e Conservação, Departamento de Genética, Ecologia e Evolução, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
| | - V L G Brito
- Instituto de Biologia, Universidade Federal de Uberlândia, Uberlândia, Brasil
- Programa de Pós-Graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brasil
| |
Collapse
|
14
|
Vallejo-Marín M. How and why do bees buzz? Implications for buzz pollination. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1080-1092. [PMID: 34537837 PMCID: PMC8866655 DOI: 10.1093/jxb/erab428] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Buzz pollination encompasses the evolutionary convergence of specialized floral morphologies and pollinator behaviour in which bees use vibrations (floral buzzes) to remove pollen. Floral buzzes are one of several types of vibrations produced by bees using their thoracic muscles. Here I review how bees can produce these different types of vibrations and discuss the implications of this mechanistic understanding for buzz pollination. I propose that bee buzzes can be categorized according to their mode of production and deployment into: (i) thermogenic, which generate heat with little mechanical vibration; (ii) flight buzzes which, combined with wing deployment and thoracic vibration, power flight; and (iii) non-flight buzzes in which the thorax vibrates but the wings remain mostly folded, and include floral, defence, mating, communication, and nest-building buzzes. I hypothesize that the characteristics of non-flight buzzes, including floral buzzes, can be modulated by bees via modification of the biomechanical properties of the thorax through activity of auxiliary muscles, changing the rate of activation of the indirect flight muscles, and modifying flower handling behaviours. Thus, bees should be able to fine-tune mechanical properties of their floral vibrations, including frequency and amplitude, depending on flower characteristics and pollen availability to optimize energy use and pollen collection.
Collapse
Affiliation(s)
- Mario Vallejo-Marín
- Biological and Environmental Sciences, University of Stirling, Stirling FK9 4LA, UK
| |
Collapse
|
15
|
Tayal M, Kariyat R. Examining the Role of Buzzing Time and Acoustics on Pollen Extraction of Solanum elaeagnifolium. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122592. [PMID: 34961064 PMCID: PMC8709443 DOI: 10.3390/plants10122592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/16/2021] [Accepted: 11/22/2021] [Indexed: 06/14/2023]
Abstract
Buzz pollination is a specialized pollination syndrome that requires vibrational energy to extract concealed pollen grains from poricidal anthers. Although a large body of work has examined the ecology of buzz pollination, whether acoustic properties of buzz pollinators affect pollen extraction is less understood, especially in weeds and invasive species. We examined the pollination biology of Silverleaf nightshade (Solanum elaeagnifolium), a worldwide invasive weed, in its native range in the Lower Rio Grande Valley (LRGV) in south Texas. Over two years, we documented the floral visitors on S. elaeagnifolium, their acoustic parameters (buzzing amplitude, frequency, and duration of buzzing) and estimated the effects of the latter two factors on pollen extraction. We found five major bee genera: Exomalopsis, Halictus, Megachile, Bombus, and Xylocopa, as the most common floral visitors on S. elaeagnifolium in the LRGV. Bee genera varied in their duration of total buzzing time, duration of each visit, and mass. While we did not find any significant differences in buzzing frequency among different genera, an artificial pollen collection experiment using an electric toothbrush showed that the amount of pollen extracted is significantly affected by the duration of buzzing. We conclude that regardless of buzzing frequency, buzzing duration is the most critical factor in pollen removal in this species.
Collapse
Affiliation(s)
- Mandeep Tayal
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA;
| | - Rupesh Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- School of Earth, Environment and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
16
|
Ribeiro AP, da Silva NFF, Mesquita FN, Araújo PDCS, Rosa TC, Mesquita-Neto JN. Machine learning approach for automatic recognition of tomato-pollinating bees based on their buzzing-sounds. PLoS Comput Biol 2021; 17:e1009426. [PMID: 34529654 PMCID: PMC8478199 DOI: 10.1371/journal.pcbi.1009426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/28/2021] [Accepted: 09/06/2021] [Indexed: 11/18/2022] Open
Abstract
Bee-mediated pollination greatly increases the size and weight of tomato fruits. Therefore, distinguishing between the local set of bees–those that are efficient pollinators–is essential to improve the economic returns for farmers. To achieve this, it is important to know the identity of the visiting bees. Nevertheless, the traditional taxonomic identification of bees is not an easy task, requiring the participation of experts and the use of specialized equipment. Due to these limitations, the development and implementation of new technologies for the automatic recognition of bees become relevant. Hence, we aim to verify the capacity of Machine Learning (ML) algorithms in recognizing the taxonomic identity of visiting bees to tomato flowers based on the characteristics of their buzzing sounds. We compared the performance of the ML algorithms combined with the Mel Frequency Cepstral Coefficients (MFCC) and with classifications based solely on the fundamental frequency, leading to a direct comparison between the two approaches. In fact, some classifiers powered by the MFCC–especially the SVM–achieved better performance compared to the randomized and sound frequency-based trials. Moreover, the buzzing sounds produced during sonication were more relevant for the taxonomic recognition of bee species than analysis based on flight sounds alone. On the other hand, the ML classifiers performed better in recognizing bees genera based on flight sounds. Despite that, the maximum accuracy obtained here (73.39% by SVM) is still low compared to ML standards. Further studies analyzing larger recording samples, and applying unsupervised learning systems may yield better classification performance. Therefore, ML techniques could be used to automate the taxonomic recognition of flower-visiting bees of the cultivated tomato and other buzz-pollinated crops. This would be an interesting option for farmers and other professionals who have no experience in bee taxonomy but are interested in improving crop yields by increasing pollination. Bees are the most important pollinators of cultivated tomatoes. We also know that the distinct species of bees have different performances as pollinators, and these performances are directly related to the size and weight of the fruits. Moreover, the characteristics of the buzzing sounds tend to vary between the bee species. However, the buzzing sounds are complex and can widely vary over time, making the analysis of this data difficult using the usual statistical methods in Ecology. In the face of this problem, we proposed to automatically recognize pollinating bees of tomato flowers based on their buzzing sounds using Machine Learning (ML) tools. In fact, we found that the ML algorithms are capable of recognizing bees just based on their buzzing sounds. This could lead to automating the recognition of flower-visiting bees of the cultivated tomato, which would be a nice option for farmers and other professionals who have no experience in bee taxonomy but are interested in improving crop yields. On the other hand, this encourages the farmer to adopt sustainable agricultural practices for the conservation of native tomato pollinators. To achieve this goal, the next step is to develop applications compatible with smartphones capable of recognizing bees by their buzzing sounds.
Collapse
Affiliation(s)
| | | | | | | | - Thierson Couto Rosa
- Instituto de Informática, Universidade Federal de Goiás, Goiánia, Goiás, Brazil
| | - José Neiva Mesquita-Neto
- Centro de Investigación en Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- * E-mail:
| |
Collapse
|
17
|
Pollinator effectiveness is affected by intraindividual behavioral variation. Oecologia 2021; 197:189-200. [PMID: 34392412 DOI: 10.1007/s00442-021-05016-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Variation in pollinator quality is fundamental to the evolution of plant-pollinator mutualisms and such variation frequently results from differences in foraging behavior. Surprisingly, despite substantial intraindividual variation in pollinator foraging behavior, the consequences for pollen removal and deposition on flowers are largely unknown. We asked how two pollen foraging behaviors of a generalist pollinator (Bombus impatiens) affect removal and deposition of heterospecific and conspecific pollen, key aspects of pollinator quality, for multiple plant species. In addition, we examined how bee body size and pollen placement among body parts shaped pollen movement. We manipulated foraging behavior types using artificial flowers, which donated pollen that captive bees then deposited on three recipient plant species. While body size primarily affected donor pollen removal, foraging behavior primarily affected donor pollen deposition. How behavior affected donor pollen deposition depended on the plant species and the quantity of donor pollen on the bee's abdomen. Plant species with smaller stigmas received significantly less pollen and fewer bees successfully transferred pollen to them. For a single plant species, heterospecific pollen interfered with conspecific pollen deposition, such that more heterospecific pollen on the bee's abdomen resulted in less conspecific pollen deposition on the flower. Thus, intraindividual variation in foraging behavior and its interaction with the amount and placement of acquired pollen and with floral morphology can affect pollinator quality and may shape plant fitness via both conspecific and heterospecific pollen transfer.
Collapse
|
18
|
Nevard L, Russell AL, Foord K, Vallejo-Marín M. Transmission of bee-like vibrations in buzz-pollinated plants with different stamen architectures. Sci Rep 2021; 11:13541. [PMID: 34188153 PMCID: PMC8241880 DOI: 10.1038/s41598-021-93029-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/16/2021] [Indexed: 11/28/2022] Open
Abstract
In buzz-pollinated plants, bees apply thoracic vibrations to the flower, causing pollen release from anthers, often through apical pores. Bees grasp one or more anthers with their mandibles, and vibrations are transmitted to this focal anther(s), adjacent anthers, and the whole flower. Pollen release depends on anther vibration, and thus it should be affected by vibration transmission through flowers with distinct morphologies, as found among buzz-pollinated taxa. We compare vibration transmission between focal and non-focal anthers in four species with contrasting stamen architectures: Cyclamen persicum, Exacum affine, Solanum dulcamara and S. houstonii. We used a mechanical transducer to apply bee-like vibrations to focal anthers, measuring the vibration frequency and displacement amplitude at focal and non-focal anther tips simultaneously using high-speed video analysis (6000 frames per second). In flowers in which anthers are tightly arranged (C. persicum and S. dulcamara), vibrations in focal and non-focal anthers are indistinguishable in both frequency and displacement amplitude. In contrast, flowers with loosely arranged anthers (E. affine) including those with differentiated stamens (heterantherous S. houstonii), show the same frequency but higher displacement amplitude in non-focal anthers compared to focal anthers. We suggest that stamen architecture modulates vibration transmission, potentially affecting pollen release and bee behaviour.
Collapse
Affiliation(s)
- Lucy Nevard
- Biological & Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK.
| | - Avery L Russell
- Department of Biology, Missouri State University, Springfield, MO, 65897, USA
| | - Karl Foord
- Minnesota Extension, University of Minnesota, St Paul, MN, 55108, USA
| | - Mario Vallejo-Marín
- Biological & Environmental Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
19
|
Mesquita-Neto JN, Vieira ALC, Schlindwein C. Minimum size threshold of visiting bees of a buzz-pollinated plant species: consequences for pollination efficiency. AMERICAN JOURNAL OF BOTANY 2021; 108:1006-1015. [PMID: 34114214 DOI: 10.1002/ajb2.1681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
PREMISE Flowering plants with poricidal anthers are commonly visited by buzzing bees, which vibrate flowers to extract pollen. However, not all flower visitors are in fact pollinators, and features such as body size and duration of flower visits are important factors in determining pollination effectiveness. We tested whether bee-to-flower size relationships predict the pollination effectiveness of flower visitors of a buzz-pollinated species (Chamaecrista ramosa, Fabaceae). METHODS We sorted 13 bee taxa into three groups: smaller than, equivalent to ("fit-size"), and larger than flower herkogamy (spatial separation between anthers and stigma). We expected the latter two groups to touch the stigmas, which would be an indicator of pollination effectiveness, more frequently than the first group. To test this hypothesis, we assessed contact with stigmas, foraging behavior, and duration of visits for the three size groups of bees. RESULTS Our data reveal that small bees scarcely touched the stigmas, while large and fit-size bees were the most efficient pollinators, achieving high stigma-touching rates, conducting much shorter flower visits, and visiting flowers and conspecific plants at high rates during foraging bouts. CONCLUSIONS The results did not show size-matching among bees and flowers, as expected, but rather a minimum size threshold of efficient pollinators. The finding of such a threshold is a nonarbitrary approach to predicting pollination effectiveness of visitors to herkogamous flowers with poricidal anthers.
Collapse
Affiliation(s)
- José N Mesquita-Neto
- Centro de Investigación en Estudios Avanzados del Maule, Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca, Chile
- Programa de Pós-graduação em Biologia Vegetal, Universidade Federal de Minas Gerais, Grupo Plebeia-Ecologia de Abelhas e da Polinização, Av. Presidente Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Ana Luísa C Vieira
- Programa de Pós-graduação em Biologia Vegetal, Universidade Federal de Minas Gerais, Grupo Plebeia-Ecologia de Abelhas e da Polinização, Av. Presidente Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| | - Clemens Schlindwein
- Departamento de Botânica, Grupo Plebeia-Ecologia de Abelhas e da Polinização, Universidade Federal de Minas Gerais, Av. Presidente Antônio Carlos, 6627, Caixa Postal 486, Belo Horizonte, Minas Gerais, CEP 31270-901, Brazil
| |
Collapse
|
20
|
Kemp JE, Vallejo-Marín M. Pollen dispensing schedules in buzz-pollinated plants: experimental comparison of species with contrasting floral morphologies. AMERICAN JOURNAL OF BOTANY 2021; 108:993-1005. [PMID: 34196392 DOI: 10.1002/ajb2.1680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/12/2021] [Indexed: 06/13/2023]
Abstract
PREMISE Plants can mitigate the fitness costs associated with pollen consumption by floral visitors by optimizing pollen release rates. In buzz-pollinated plants, bees apply vibrations to remove pollen from anthers with small pores. These poricidal anthers potentially function as mechanism staggering pollen release, but this has rarely been tested across plant species differing in anther morphology. METHODS In Solanum Section Androceras, three pairs of buzz-pollinated species have undergone independent evolutionary shifts between large- and small-flowers, which are accompanied by replicate changes in anther morphology. We used these shifts in anther morphology to characterize the association between anther morphology and pollen dispensing schedules. We applied simulated bee-like vibrations to anthers to elicit pollen release, and compared pollen dispensing schedules across anther morphologies. We also investigated how vibration velocity affects pollen release. RESULTS Replicate transitions in Solanum anther morphology are associated with consistent changes in pollen dispensing schedules. We found that small-flowered taxa release their pollen at higher rates than their large-flowered counterparts. Higher vibration velocities resulted in quicker pollen dispensing and more total pollen released. Finally, both the pollen dispensing rate and the amount of pollen released in the first vibration were negatively related to anther wall area, but we did not observe any association between pore size and pollen dispensing. CONCLUSIONS Our results provide the first empirical demonstration that the pollen dispensing properties of poricidal anthers depend on both floral characteristics and bee vibration properties. Morphological modification of anthers could thus provide a mechanism to exploit different pollination environments.
Collapse
Affiliation(s)
- Jurene E Kemp
- Department of Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom, FK9 4LA
| | - Mario Vallejo-Marín
- Department of Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom, FK9 4LA
| |
Collapse
|
21
|
Theodorou P, Baltz LM, Paxton RJ, Soro A. Urbanization is associated with shifts in bumblebee body size, with cascading effects on pollination. Evol Appl 2021; 14:53-68. [PMID: 33519956 PMCID: PMC7819558 DOI: 10.1111/eva.13087] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Urbanization is a global phenomenon with major effects on species, the structure of community functional traits and ecological interactions. Body size is a key species trait linked to metabolism, life-history and dispersal as well as a major determinant of ecological networks. Here, using a well-replicated urban-rural sampling design in Central Europe, we investigate the direction of change of body size in response to urbanization in three common bumblebee species, Bombus lapidarius, Bombus pascuorum and Bombus terrestris, and potential knock-on effects on pollination service provision. We found foragers of B. terrestris to be larger in cities and the body size of all species to be positively correlated with road density (albeit at different, species-specific scales); these are expected consequences of habitat fragmentation resulting from urbanization. High ambient temperature at sampling was associated with both a small body size and an increase in variation of body size in all three species. At the community level, the community-weighted mean body size and its variation increased with urbanization. Urbanization had an indirect positive effect on pollination services through its effects not only on flower visitation rate but also on community-weighted mean body size and its variation. We discuss the eco-evolutionary implications of the effect of urbanization on body size, and the relevance of these findings for the key ecosystem service of pollination.
Collapse
Affiliation(s)
- Panagiotis Theodorou
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Lucie M. Baltz
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Robert J. Paxton
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Antonella Soro
- General ZoologyInstitute of BiologyMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
22
|
Vallejo‐Marín M, Vallejo GC. Comparison of defence buzzes in hoverflies and buzz‐pollinating bees. J Zool (1987) 2020. [DOI: 10.1111/jzo.12857] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M. Vallejo‐Marín
- Department of Biological and Environmental Sciences University of Stirling Stirling UK
| | - G. C. Vallejo
- Natural Power Consultants Ochil House Springkerse Business Park Stirling UK
| |
Collapse
|
23
|
Pritchard DJ, Vallejo-Marín M. Floral vibrations by buzz-pollinating bees achieve higher frequency, velocity and acceleration than flight and defence vibrations. J Exp Biol 2020; 223:jeb220541. [PMID: 32366691 DOI: 10.1242/jeb.220541] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/23/2020] [Indexed: 01/17/2023]
Abstract
Vibrations play an important role in insect behaviour. In bees, vibrations are used in a variety of contexts including communication, as a warning signal to deter predators and during pollen foraging. However, little is known about how the biomechanical properties of bee vibrations vary across multiple behaviours within a species. In this study, we compared the properties of vibrations produced by Bombus terrestris audax (Hymenoptera: Apidae) workers in three contexts: during flight, during defensive buzzing, and in floral vibrations produced during pollen foraging on two buzz-pollinated plants (Solanum, Solanaceae). Using laser vibrometry, we were able to obtain contactless measures of both the frequency and amplitude of the thoracic vibrations of bees across the three behaviours. Despite all three types of vibrations being produced by the same power flight muscles, we found clear differences in the mechanical properties of the vibrations produced in different contexts. Both floral and defensive buzzes had higher frequency and amplitude velocity, acceleration and displacement than the vibrations produced during flight. Floral vibrations had the highest frequency, amplitude velocity and acceleration of all the behaviours studied. Vibration amplitude, and in particular acceleration, of floral vibrations has been suggested as the key property for removing pollen from buzz-pollinated anthers. By increasing frequency and amplitude velocity and acceleration of their vibrations during vibratory pollen collection, foraging bees may be able to maximise pollen removal from flowers, although their foraging decisions are likely to be influenced by the presumably high cost of producing floral vibrations.
Collapse
Affiliation(s)
- David J Pritchard
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| | - Mario Vallejo-Marín
- Department of Biological and Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA, UK
| |
Collapse
|
24
|
Tayal M, Chavana J, Kariyat RR. Efficiency of using electric toothbrush as an alternative to a tuning fork for artificial buzz pollination is independent of instrument buzzing frequency. BMC Ecol 2020; 20:8. [PMID: 32039719 PMCID: PMC7008546 DOI: 10.1186/s12898-020-00278-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breeding programs and research activities where artificial buzz-pollinations are required to have primarily relied upon using tuning forks, and bumble bees. However, these methods can be expensive, unreliable, and inefficient. To find an alternative, we tested the efficiency of pollen collection using electric toothbrushes and compared it with tuning forks at three vibration frequencies-low, medium, and high and two extraction times at 3 s and 16 s- from two buzz-pollinated species (Solanum lycopersicum and Solanum elaeagnifolium). RESULTS Our results show that species, and extraction time significantly influenced pollen extraction, while there were no significant differences for the different vibration frequencies and more importantly, the use of a toothbrush over tuning fork. More pollen was extracted from S. elaeagnifolium when compared to S. lycopersicum, and at longer buzzing time regardless of the instrument used. CONCLUSIONS Our results suggest that electric toothbrushes can be a viable and inexpensive alternative to tuning forks, and regardless of the instrument used and buzzing frequency, length of buzzing time is also critical in pollen extraction.
Collapse
Affiliation(s)
- Mandeep Tayal
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA
| | - Jesus Chavana
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA
| | - Rupesh R Kariyat
- Department of Biology, The University of Texas Rio Grande Valley, Edinburg, TX, 78541, USA.
| |
Collapse
|
25
|
Chole H, Woodard SH, Bloch G. Body size variation in bees: regulation, mechanisms, and relationship to social organization. CURRENT OPINION IN INSECT SCIENCE 2019; 35:77-87. [PMID: 31426016 DOI: 10.1016/j.cois.2019.07.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/03/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Size polymorphism is common in bees, and is determined by environmental factors such as temperature, brood cell size, and the diet provided to developing larvae. In social bees, these factors are further influenced by intricate interactions between the queen, workers, and the developing brood which eventually determine the final size and caste of developing larvae. Environmental and social factors act in part on juvenile hormone and ecdysteroids, which are key hormonal regulators of body size and caste determination. In some social bees, body size variation is central for social organization because it structures reproductive division of labor, task allocation among workers, or both. At ecological scales, body size also impacts bee-mediated pollination services in solitary and social species by influencing floral visitation and pollination efficacy.
Collapse
Affiliation(s)
- Hanna Chole
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Sarah Hollis Woodard
- Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Guy Bloch
- Department of Ecology, Evolution, and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.
| |
Collapse
|