1
|
Liberty JT, Lin H, Kucha C, Sun S, Alsalman FB. Innovative approaches to food traceability with DNA barcoding: Beyond traditional labels and certifications. ECOLOGICAL GENETICS AND GENOMICS 2025; 34:100317. [DOI: 10.1016/j.egg.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
2
|
Kardailsky A, Durán-Vinet B, Nester G, Ayad ME, Raes EJ, Jeunen GJ, Miller AK, McVey P, Corrigan S, Fraser M, Goncalves P, Burnell S, Bennett A, Rauschert S, Bayer PE. Monitoring the Land and Sea: Enhancing Efficiency Through CRISPR-Cas Driven Depletion and Enrichment of Environmental DNA. CRISPR J 2025; 8:5-12. [PMID: 39761113 DOI: 10.1089/crispr.2024.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Characterizing biodiversity using environmental DNA (eDNA) represents a paradigm shift in our capacity for biomonitoring complex environments, both aquatic and terrestrial. However, eDNA biomonitoring is limited by biases toward certain species and the low taxonomic resolution of current metabarcoding approaches. Shotgun metagenomics of eDNA enables the collection of whole ecosystem data by sequencing all molecules present, allowing characterization and identification. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated proteins (Cas)-based methods have the potential to improve the efficiency of eDNA metagenomic sequencing of low-abundant target organisms and simplify data analysis by enrichment of target species or nontarget DNA depletion before sequencing. Implementation of CRISPR-Cas in eDNA has been limited due to a lack of interest and support in the past. This perspective synthesizes current approaches of CRISPR-Cas to study underrepresented taxa and advocate for further application and optimization of depletion and enrichment methods of eDNA using CRISPR-Cas, holding promise for eDNA biomonitoring.
Collapse
Affiliation(s)
| | | | - Georgia Nester
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Marcelle E Ayad
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Eric J Raes
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Gert-Jan Jeunen
- Marine Science Department, The University of Otago, Dunedin, New Zealand
| | - Allison K Miller
- Anatomy Department, The University of Otago, Dunedin, New Zealand
| | - Philip McVey
- OceanOmics, The Minderoo Foundation, Perth, Australia
| | - Shannon Corrigan
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Matthew Fraser
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Priscila Goncalves
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Stephen Burnell
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Adam Bennett
- OceanOmics, The Minderoo Foundation, Perth, Australia
| | - Sebastian Rauschert
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| | - Philipp E Bayer
- OceanOmics, The Minderoo Foundation, Perth, Australia
- The UWA Oceans Institute, The University of Western Australia, Crawley, Australia
| |
Collapse
|
3
|
Ejaz MR, Badr K, Hassan ZU, Al-Thani R, Jaoua S. Metagenomic approaches and opportunities in arid soil research. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176173. [PMID: 39260494 DOI: 10.1016/j.scitotenv.2024.176173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/04/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Arid soils present unique challenges and opportunities for studying microbial diversity and bioactive potential due to the extreme environmental conditions they bear. This review article investigates soil metagenomics as an emerging tool to explore complex microbial dynamics and unexplored bioactive potential in harsh environments. Utilizing advanced metagenomic techniques, diverse microbial populations that grow under extreme conditions such as high temperatures, salinity, high pH levels, and exposure to metals and radiation can be studied. The use of extremophiles to discover novel natural products and biocatalysts emphasizes the role of functional metagenomics in identifying enzymes and secondary metabolites for industrial and pharmaceutical purposes. Metagenomic sequencing uncovers a complex network of microbial diversity, offering significant potential for discovering new bioactive compounds. Functional metagenomics, connecting taxonomic diversity to genetic capabilities, provides a pathway to identify microbes' mechanisms to synthesize valuable secondary metabolites and other bioactive substances. Contrary to the common perception of desert soil as barren land, the metagenomic analysis reveals a rich diversity of life forms adept at extreme survival. It provides valuable findings into their resilience and potential applications in biotechnology. Moreover, the challenges associated with metagenomics in arid soils, such as low microbial biomass, high DNA degradation rates, and DNA extraction inhibitors and strategies to overcome these issues, outline the latest advancements in extraction methods, high-throughput sequencing, and bioinformatics. The importance of metagenomics for investigating diverse environments opens the way for future research to develop sustainable solutions in agriculture, industry, and medicine. Extensive studies are necessary to utilize the full potential of these powerful microbial communities. This research will significantly improve our understanding of microbial ecology and biotechnology in arid environments.
Collapse
Affiliation(s)
- Muhammad Riaz Ejaz
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Kareem Badr
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zahoor Ul Hassan
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Roda Al-Thani
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Samir Jaoua
- Environmental Science Program, Department of Biological and Environmental Sciences, College of Arts and Science, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Berteloot OH, Peusens G, Beliën T, De Clercq P, Van Leeuwen T. Unveiling the diet of two generalist stink bugs, Halyomorpha halys and Pentatoma rufipes (Hemiptera: Pentatomidae), through metabarcoding of the ITS2 region from gut content. PEST MANAGEMENT SCIENCE 2024; 80:5694-5705. [PMID: 39011841 DOI: 10.1002/ps.8287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/13/2024] [Accepted: 06/21/2024] [Indexed: 07/17/2024]
Abstract
BACKGROUND The use of DNA metabarcoding has become an increasingly popular technique to infer feeding relationships in polyphagous herbivores and predators. Understanding host plant preference of native and invasive herbivore insects can be helpful in establishing effective integrated pest management (IPM) strategies. The invasive Halyomorpha halys and native Pentatoma rufipes are piercing-sucking stink bug pests that are known to cause economic damage in commercial fruit orchards. RESULTS In this study, we performed molecular gut content analysis (MGCA) on field-collected specimens of these two herbivorous pentatomids using next-generation amplicon sequencing (NGAS) of the internal transcribed spacer 2 (ITS2) barcode region. Additionally, a laboratory experiment was set up where H. halys was switched from a mixed diet to a monotypic diet, allowing us to determine the detectability of the initial diet in a time series of ≤3 days after the diet switch. We detected 68 unique plant species from 54 genera in the diet of two stink bug species, with fewer genera found per sample and a smaller diet breadth for P. rufipes than for H. halys. Both stink bug species generally prefer deciduous trees over gymnosperms and herbaceous plants. Landscape type significantly impacted the observed genera in the diet of both stink bug species, whereas season only had a significant effect on the diet of H. halys. CONCLUSION This study provides further insights into the dietary composition of two polyphagous pentatomid pests and illustrates that metabarcoding can deliver a relevant species-level resolution of host plant preference. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Olivier Hendrik Berteloot
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University (UGent), Ghent, Belgium
| | - Gertie Peusens
- Zoology Department, Research Centre for Fruit Cultivation (PCFruit), Sint-Truiden, Belgium
| | - Tim Beliën
- Zoology Department, Research Centre for Fruit Cultivation (PCFruit), Sint-Truiden, Belgium
| | - Patrick De Clercq
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University (UGent), Ghent, Belgium
| | - Thomas Van Leeuwen
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University (UGent), Ghent, Belgium
| |
Collapse
|
5
|
Rajguru B, Shri M, Bhatt VD. Exploring microbial diversity in the rhizosphere: a comprehensive review of metagenomic approaches and their applications. 3 Biotech 2024; 14:224. [PMID: 39247454 PMCID: PMC11379838 DOI: 10.1007/s13205-024-04065-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
The rhizosphere, the soil region influenced by plant roots, represents a dynamic microenvironment where intricate interactions between plants and microorganisms shape soil health, nutrient cycling, and plant growth. Soil microorganisms are integral players in the transformation of materials, the dynamics of energy flows, and the intricate cycles of biogeochemistry. Considerable research has been dedicated to investigating the abundance, diversity, and intricacies of interactions among different microbes, as well as the relationships between plants and microbes present in the rhizosphere. Metagenomics, a powerful suite of techniques, has emerged as a transformative tool for dissecting the genetic repertoire of complex microbial communities inhabiting the rhizosphere. The review systematically navigates through various metagenomic approaches, ranging from shotgun metagenomics, enabling unbiased analysis of entire microbial genomes, to targeted sequencing of the 16S rRNA gene for taxonomic profiling. Each approach's strengths and limitations are critically evaluated, providing researchers with a nuanced understanding of their applicability in different research contexts. A central focus of the review lies in the practical applications of rhizosphere metagenomics in various fields including agriculture. By decoding the genomic content of rhizospheric microbes, researchers gain insights into their functional roles in nutrient acquisition, disease suppression, and overall plant health. The review also addresses the broader implications of metagenomic studies in advancing our understanding of microbial diversity and community dynamics in the rhizosphere. It serves as a comprehensive guide for researchers, agronomists, and policymakers, offering a roadmap for harnessing metagenomic approaches to unlock the full potential of the rhizosphere microbiome in promoting sustainable agriculture.
Collapse
Affiliation(s)
- Bhumi Rajguru
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Manju Shri
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| | - Vaibhav D Bhatt
- School of Applied Sciences and Technology, Gujarat Technological University, Chandkheda, Ahmedabad, Gujarat India
| |
Collapse
|
6
|
Zavadska D, Henry N, Auladell A, Berney C, Richter DJ. Diverse patterns of correspondence between protist metabarcodes and protist metagenome-assembled genomes. PLoS One 2024; 19:e0303697. [PMID: 38843225 PMCID: PMC11156365 DOI: 10.1371/journal.pone.0303697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/29/2024] [Indexed: 06/09/2024] Open
Abstract
Two common approaches to study the composition of environmental protist communities are metabarcoding and metagenomics. Raw metabarcoding data are usually processed into Operational Taxonomic Units (OTUs) or amplicon sequence variants (ASVs) through clustering or denoising approaches, respectively. Analogous approaches are used to assemble metagenomic reads into metagenome-assembled genomes (MAGs). Understanding the correspondence between the data produced by these two approaches can help to integrate information between the datasets and to explain how metabarcoding OTUs and MAGs are related with the underlying biological entities they are hypothesised to represent. MAGs do not contain the commonly used barcoding loci, therefore sequence homology approaches cannot be used to match OTUs and MAGs. We made an attempt to match V9 metabarcoding OTUs from the 18S rRNA gene (V9 OTUs) and MAGs from the Tara Oceans expedition based on the correspondence of their relative abundances across the same set of samples. We evaluated several metrics for detecting correspondence between features in these two datasets and developed controls to filter artefacts of data structure and processing. After selecting the best-performing metrics, ranking the V9 OTU/MAG matches by their proportionality/correlation coefficients and applying a set of selection criteria, we identified candidate matches between V9 OTUs and MAGs. In some cases, V9 OTUs and MAGs could be matched with a one-to-one correspondence, implying that they likely represent the same underlying biological entity. More generally, matches we observed could be classified into 4 scenarios: one V9 OTU matches many MAGs; many V9 OTUs match many MAGs; many V9 OTUs match one MAG; one V9 OTU matches one MAG. Notably, we found some instances in which different OTU-MAG matches from the same taxonomic group were not classified in the same scenario, with all four scenarios possible even within the same taxonomic group, illustrating that factors beyond taxonomic lineage influence the relationship between OTUs and MAGs. Overall, each scenario produces a different interpretation of V9 OTUs, MAGs and how they compare in terms of the genomic and ecological diversity they represent.
Collapse
Affiliation(s)
- Daryna Zavadska
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Nicolas Henry
- CNRS, FR2424, ABiMS, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Adrià Auladell
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| | - Cédric Berney
- CNRS, UMR7144, AD2M, Station Biologique de Roscoff, Sorbonne Université, Roscoff, France
| | - Daniel J. Richter
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
| |
Collapse
|
7
|
San Martin G, Hautier L, Mingeot D, Dubois B. How reliable is metabarcoding for pollen identification? An evaluation of different taxonomic assignment strategies by cross-validation. PeerJ 2024; 12:e16567. [PMID: 38313030 PMCID: PMC10838070 DOI: 10.7717/peerj.16567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 11/12/2023] [Indexed: 02/06/2024] Open
Abstract
Metabarcoding is a powerful tool, increasingly used in many disciplines of environmental sciences. However, to assign a taxon to a DNA sequence, bioinformaticians need to choose between different strategies or parameter values and these choices sometimes seem rather arbitrary. In this work, we present a case study on ITS2 and rbcL databases used to identify pollen collected by bees in Belgium. We blasted a random sample of sequences from the reference database against the remainder of the database using different strategies and compared the known taxonomy with the predicted one. This in silico cross-validation (CV) approach proved to be an easy yet powerful way to (1) assess the relative accuracy of taxonomic predictions, (2) define rules to discard dubious taxonomic assignments and (3) provide a more objective basis to choose the best strategy. We obtained the best results with the best blast hit (best bit score) rather than by selecting the majority taxon from the top 10 hits. The predictions were further improved by favouring the most frequent taxon among those with tied best bit scores. We obtained better results with databases containing the full sequences available on NCBI rather than restricting the sequences to the region amplified by the primers chosen in our study. Leaked CV showed that when the true sequence is present in the database, blast might still struggle to match the right taxon at the species level, particularly with rbcL. Classical 10-fold CV-where the true sequence is removed from the database-offers a different yet more realistic view of the true error rates. Taxonomic predictions with this approach worked well up to the genus level, particularly for ITS2 (5-7% of errors). Using a database containing only the local flora of Belgium did not improve the predictions up to the genus level for local species and made them worse for foreign species. At the species level, using a database containing exclusively local species improved the predictions for local species by ∼12% but the error rate remained rather high: 25% for ITS2 and 42% for rbcL. Foreign species performed worse even when using a world database (59-79% of errors). We used classification trees and GLMs to model the % of errors vs. identity and consensus scores and determine appropriate thresholds below which the taxonomic assignment should be discarded. This resulted in a significant reduction in prediction errors, but at the cost of a much higher proportion of unassigned sequences. Despite this stringent filtering, at least 1/5 sequences deemed suitable for species-level identification ultimately proved to be misidentified. An examination of the variability in prediction accuracy between plant families showed that rbcL outperformed ITS2 for only two of the 27 families examined, and that the % correct species-level assignments were much better for some families (e.g. 95% for Sapindaceae) than for others (e.g. 35% for Salicaceae).
Collapse
Affiliation(s)
- Gilles San Martin
- Life Sciences Department, Plant and Forest Health Unit, Walloon Agricultural Research Centre, Gembloux, Belgium
| | - Louis Hautier
- Life Sciences Department, Plant and Forest Health Unit, Walloon Agricultural Research Centre, Gembloux, Belgium
| | - Dominique Mingeot
- Life Sciences Department, Bioengineering Unit, Walloon Agricultural Research Centre, Gembloux, Belgium
| | - Benjamin Dubois
- Life Sciences Department, Bioengineering Unit, Walloon Agricultural Research Centre, Gembloux, Belgium
| |
Collapse
|
8
|
Quaresma A, Ankenbrand MJ, Garcia CAY, Rufino J, Honrado M, Amaral J, Brodschneider R, Brusbardis V, Gratzer K, Hatjina F, Kilpinen O, Pietropaoli M, Roessink I, van der Steen J, Vejsnæs F, Pinto MA, Keller A. Semi-automated sequence curation for reliable reference datasets in ITS2 vascular plant DNA (meta-)barcoding. Sci Data 2024; 11:129. [PMID: 38272945 PMCID: PMC10810873 DOI: 10.1038/s41597-024-02962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
One of the most critical steps for accurate taxonomic identification in DNA (meta)-barcoding is to have an accurate DNA reference sequence dataset for the marker of choice. Therefore, developing such a dataset has been a long-term ambition, especially in the Viridiplantae kingdom. Typically, reference datasets are constructed with sequences downloaded from general public databases, which can carry taxonomic and other relevant errors. Herein, we constructed a curated (i) global dataset, (ii) European crop dataset, and (iii) 27 datasets for the EU countries for the ITS2 barcoding marker of vascular plants. To that end, we first developed a pipeline script that entails (i) an automated curation stage comprising five filters, (ii) manual taxonomic correction for misclassified taxa, and (iii) manual addition of newly sequenced species. The pipeline allows easy updating of the curated datasets. With this approach, 13% of the sequences, corresponding to 7% of species originally imported from GenBank, were discarded. Further, 259 sequences were manually added to the curated global dataset, which now comprises 307,977 sequences of 111,382 plant species.
Collapse
Affiliation(s)
- Andreia Quaresma
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, S/N, Edifício FC4, 4169-007, Porto, Portugal
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661, Vairão, Vila do Conde, Portugal
- BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661, Vairão, Vila do Conde, Portugal
| | - Markus J Ankenbrand
- Center for Computational and Theoretical Biology, Faculty of Biology, Julius-Maximilians-Universität Würzburg, Klara-Oppenheimer-Weg 32, 97074, Würzburg, Germany
| | - Carlos Ariel Yadró Garcia
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - José Rufino
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Research Centre in Digitalization and Intelligent Robotics (CeDRI), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Mónica Honrado
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Joana Amaral
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Robert Brodschneider
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Valters Brusbardis
- Latvian Beekeepers' Association (LBA), Rigas iela 22, LV-3004, Jelgava, Latvia
| | - Kristina Gratzer
- Institute of Biology, University of Graz, Universitätsplatz 2, 8010, Graz, Austria
| | - Fani Hatjina
- Ellinikos Georgikos Organismos DIMITRA (ELGO- DIMITRA), Kourtidou 56-58, GR-11145, Athina, Greece
| | - Ole Kilpinen
- Danish Beekeepers Association (DBF), Fulbyvej 15, DK-4180, Sorø, Denmark
| | - Marco Pietropaoli
- Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri" (IZSLT), Via Appia Nuova 1411, IT-00178, Roma, Italy
| | - Ivo Roessink
- Wageningen Environmental Research, WageningenUniversity&Research, Droevendaalsesteeg 3, 6700 AA, Wageningen, Netherlands
| | | | - Flemming Vejsnæs
- Danish Beekeepers Association (DBF), Fulbyvej 15, DK-4180, Sorø, Denmark
| | - M Alice Pinto
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
| | - Alexander Keller
- Cellular and Organismic Interactions, Biocenter, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Str. 2-4, 82152, Planegg-Martinsried, Germany.
| |
Collapse
|
9
|
Bell KL, Turo KJ, Lowe A, Nota K, Keller A, Encinas‐Viso F, Parducci L, Richardson RT, Leggett RM, Brosi BJ, Burgess KS, Suyama Y, de Vere N. Plants, pollinators and their interactions under global ecological change: The role of pollen DNA metabarcoding. Mol Ecol 2023; 32:6345-6362. [PMID: 36086900 PMCID: PMC10947134 DOI: 10.1111/mec.16689] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
Anthropogenic activities are triggering global changes in the environment, causing entire communities of plants, pollinators and their interactions to restructure, and ultimately leading to species declines. To understand the mechanisms behind community shifts and declines, as well as monitoring and managing impacts, a global effort must be made to characterize plant-pollinator communities in detail, across different habitat types, latitudes, elevations, and levels and types of disturbances. Generating data of this scale will only be feasible with rapid, high-throughput methods. Pollen DNA metabarcoding provides advantages in throughput, efficiency and taxonomic resolution over traditional methods, such as microscopic pollen identification and visual observation of plant-pollinator interactions. This makes it ideal for understanding complex ecological networks and their responses to change. Pollen DNA metabarcoding is currently being applied to assess plant-pollinator interactions, survey ecosystem change and model the spatiotemporal distribution of allergenic pollen. Where samples are available from past collections, pollen DNA metabarcoding has been used to compare contemporary and past ecosystems. New avenues of research are possible with the expansion of pollen DNA metabarcoding to intraspecific identification, analysis of DNA in ancient pollen samples, and increased use of museum and herbarium specimens. Ongoing developments in sequencing technologies can accelerate progress towards these goals. Global ecological change is happening rapidly, and we anticipate that high-throughput methods such as pollen DNA metabarcoding are critical for understanding the evolutionary and ecological processes that support biodiversity, and predicting and responding to the impacts of change.
Collapse
Affiliation(s)
- Karen L. Bell
- CSIRO Health & Biosecurity and CSIRO Land & WaterFloreatWAAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWAAustralia
| | - Katherine J. Turo
- Department of Ecology, Evolution, and Natural ResourcesRutgers UniversityNew BrunswickNew JerseyUSA
| | | | - Kevin Nota
- Department of Ecology and GeneticsEvolutionary Biology Centre, Uppsala UniversityUppsalaSweden
| | - Alexander Keller
- Organismic and Cellular Networks, Faculty of BiologyBiocenter, Ludwig‐Maximilians‐Universität MünchenPlaneggGermany
| | - Francisco Encinas‐Viso
- Centre for Australian National Biodiversity ResearchCSIROBlack MountainAustralian Capital TerritoryAustralia
| | - Laura Parducci
- Department of Ecology and GeneticsEvolutionary Biology Centre, Uppsala UniversityUppsalaSweden
- Department of Environmental BiologySapienza University of RomeRomeItaly
| | - Rodney T. Richardson
- Appalachian LaboratoryUniversity of Maryland Center for Environmental ScienceFrostburgMarylandUSA
| | | | - Berry J. Brosi
- Department of BiologyUniversity of WashingtonSeattleWashingtonUSA
| | - Kevin S. Burgess
- Department of BiologyCollege of Letters and Sciences, Columbus State University, University System of GeorgiaAtlantaGeorgiaUSA
| | - Yoshihisa Suyama
- Field Science CenterGraduate School of Agricultural Science, Tohoku UniversityOsakiMiyagiJapan
| | - Natasha de Vere
- Natural History Museum of DenmarkUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
10
|
Ficetola GF, Taberlet P. Towards exhaustive community ecology via DNA metabarcoding. Mol Ecol 2023; 32:6320-6329. [PMID: 36762839 DOI: 10.1111/mec.16881] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023]
Abstract
Exhaustive biodiversity data, covering all the taxa in an environment, would be fundamental to understand how global changes influence organisms living at different trophic levels, and to evaluate impacts on interspecific interactions. Molecular approaches such as DNA metabarcoding are boosting our ability to perform biodiversity inventories. Nevertheless, even though a few studies have recently attempted exhaustive reconstructions of communities, holistic assessments remain rare. The majority of metabarcoding studies published in the last years used just one or two markers and analysed a limited number of taxonomic groups. Here, we provide an overview of emerging approaches that can allow all-taxa biological inventories. Exhaustive biodiversity assessments can be attempted by combining a large number of specific primers, by exploiting the power of universal primers, or by combining specific and universal primers to obtain good information on key taxa while limiting the overlooked biodiversity. Multiplexes of primers, shotgun sequencing and capture enrichment may provide a better coverage of biodiversity compared to standard metabarcoding, but still require major methodological advances. Here, we identify the strengths and limitations of different approaches, and suggest new development lines that might improve broad scale biodiversity analyses in the near future. More holistic reconstructions of ecological communities can greatly increase the value of metabarcoding studies, improving understanding of the consequences of ongoing environmental changes on the multiple components of biodiversity.
Collapse
Affiliation(s)
- Gentile Francesco Ficetola
- Department of Environmental Science and Policy, Università degli Studi di Milano, Milan, Italy
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Écologie Alpine, Grenoble, France
| | - Pierre Taberlet
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LECA, Laboratoire d'Écologie Alpine, Grenoble, France
- UiT - The Arctic University of Norway, Tromsø Museum, Tromsø, Norway
| |
Collapse
|
11
|
Mohamadzade Namin S, Ghosh S, Jung C. Honey Quality Control: Review of Methodologies for Determining Entomological Origin. Molecules 2023; 28:4232. [PMID: 37241972 PMCID: PMC10223528 DOI: 10.3390/molecules28104232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023] Open
Abstract
Honey is a widely consumed natural product, and its entomological origin can significantly influence its market value. Therefore, traceability of the entomological origin of honey should also be considered in honey quality control protocols. Although several methods exist, such as physicochemical characterization and bioactivity profiling of honey of different entomological origins, the most promising three methods for entomological authentication of honey include protein-based identification, chemical profiling, and a DNA-based method. All of these methods can be applied for reliable identification of the entomological origin of honey. However, as the honey is a complex matrix, the inconsistency of the results obtained by these methods is a pragmatic challenge, and therefore, the use of each method in all the cases is questionable. Most of these methodologies can be used for authentication of newly harvested honey and it is worth understanding the possibility of using these methods for authentication of relatively old samples. Most probably, using DNA-based methods targeting small fragments of DNA can provide the best result in old samples, however, the species-specific primers targeting short fragments are limited and not available for all species. Therefore, using universal primers in combination with a DNA metabarcoding approach can be a good solution that requires further investigation. This present article describes the applications of different methods, their pros, and their cons to identify honey based on entomological origin.
Collapse
Affiliation(s)
- Saeed Mohamadzade Namin
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Republic of Korea
| | - Sampat Ghosh
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Republic of Korea
| | - Chuleui Jung
- Agricultural Science and Technology Institute, Andong National University, Andong 36729, Republic of Korea
- Department of Plant Medicals, Andong National University, Andong 36729, Republic of Korea
| |
Collapse
|
12
|
Prudnikow L, Pannicke B, Wünschiers R. A primer on pollen assignment by nanopore-based DNA sequencing. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1112929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023] Open
Abstract
The possibility to identify plants based on the taxonomic information coming from their pollen grains offers many applications within various biological disciplines. In the past and depending on the application or research in question, pollen origin was analyzed by microscopy, usually preceded by chemical treatment methods. This procedure for identification of pollen grains is both time-consuming and requires expert knowledge of morphological features. Additionally, these microscopically recognizable features usually have a low resolution at species-level. Since a few decades, DNA has been used for the identification of pollen taxa, as sequencing technologies evolved both in their handling and affordability. We discuss advantages and challenges of pollen DNA analyses compared to traditional methods. With readers with little experience in this field in mind, we present a hands-on primer for genetic pollen analysis by nanopore sequencing. As our lab mainly works with pollen collected within agroecological research projects, we focus on pollen collected by pollinating insects. We briefly consider sample collection, storage and processing in the laboratory as well as bioinformatic aspects. Currently, pollen metabarcoding is mostly conducted with next-generation sequencing methods that generate short sequence reads (<1 kb). Increasingly, however, pollen DNA analysis is carried out using the long-read generating (several kb), low-budget and mobile MinION nanopore sequencing platform by Oxford Nanopore Technologies. Therefore, we are focusing on aspects for palynology with the MinION DNA sequencing device.
Collapse
|
13
|
Zhu X, Alden EN, Edwards JS. Using Pet Food as the Subject to Investigate the Effectiveness of Whole-Genome Sequencing in the Authentication of Highly Processed Complex Food. ACS FOOD SCIENCE & TECHNOLOGY 2023; 3:50-60. [DOI: 10.1021/acsfoodscitech.2c00265] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Affiliation(s)
- Xuechen Zhu
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Emily N. Alden
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Jeremy S. Edwards
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
14
|
Pavloudi C, Zafeiropoulos H. Deciphering the community structure and the functional potential of a hypersaline marsh microbial mat community. FEMS Microbiol Ecol 2022; 98:6843573. [PMID: 36416806 DOI: 10.1093/femsec/fiac141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Microbial mats are vertically stratified communities of microorganisms characterized by pronounced physiochemical gradients allowing for high species diversity and a wide range of metabolic capabilities. High Throughput Sequencing has the potential to reveal the biodiversity and function of such ecosystems in the cycling of elements. The present study combines 16S rRNA amplicon sequencing and shotgun metagenomics on a hypersaline marsh in Tristomo bay (Karpathos, Greece). Samples were collected in July 2018 and November 2019 from microbial mats, deeper sediment, aggregates observed in the water overlying the sediment, as well as sediment samples with no apparent layering. Metagenomic samples' coassembly and binning revealed 250 bacterial and 39 archaeal metagenome-assembled genomes, with completeness estimates higher than 70% and contamination less than 5%. All MAGs had KEGG Orthology terms related to osmoadaptation, with the 'salt in' strategy ones being prominent. Halobacteria and Bacteroidetes were the most abundant taxa in the mats. Photosynthesis was most likely performed by purple sulphur and nonsulphur bacteria. All samples had the capacity for sulphate reduction, dissimilatory arsenic reduction, and conversion of pyruvate to oxaloacetate. Overall, both sequencing methodologies resulted in similar taxonomic compositions and revealed that the formation of the microbial mat in this marsh exhibits seasonal variation.
Collapse
Affiliation(s)
- Christina Pavloudi
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biological Sciences, The George Washington University, 2029 G St NW, Bell Hall 302, Washington DC 20052, United States
| | - Haris Zafeiropoulos
- Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), Hellenic Centre for Marine Research (HCMR), P.O. Box 2214, 71003, Heraklion, Crete, Greece.,Department of Biology, University of Crete, Voutes University Campus, P.O. Box 2208, 70013, Heraklion, Crete, Greece.,Laboratory of Molecular Bacteriology, Rega Institute for Medical Research, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, box 1028, 3000 Leuven, Belgium
| |
Collapse
|
15
|
Díaz-Torres O, Lugo-Melchor OY, de Anda J, Orozco-Nunnelly DA, Gradilla-Hernández MS, Senés-Guerrero C. Characterizing a subtropical hypereutrophic lake: From physicochemical variables to shotgun metagenomic data. Front Microbiol 2022; 13:1037626. [DOI: 10.3389/fmicb.2022.1037626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/05/2022] Open
Abstract
Lake Cajititlán is a subtropical and endorheic lake, which is heavily impacted by nutrient pollution. Agricultural runoff and poorly treated wastewater have entered this reservoir at alarming rates during past rainy seasons, causing the cultural eutrophication of this body of water and resulting in several massive fish kill events. In this study, shotgun metagenomic sequencing was used to examine the taxonomic and functional structure of microbial communities in Lake Cajititlán during the rainy season. Several water quality features and their interactions with microbial communities were also assessed to identify the major factors affecting the water quality and biota, specifically fish species. According to current water quality regulations, most of the physicochemical variables analyzed (dissolved oxygen, pH, Secchi disk, NH4+, NO3−, blue-green algae, total phosphorus, and chlorophyll-a) were outside of the permissible limits. Planktothrix agardhii and Microcystis aeruginosa were the most abundant phytoplankton species, and the dominant bacterial genera were Pseudomonas, Streptomyces, and Flavobacterium, with Pseudomonas fluorescens, Stenotrophomonas maltophilia, and Aeromonas veronii representing the most abundant bacterial species. All of these microorganisms have been reported to be potentially harmful to fish, and the latter three (P. fluorescens, S. maltophilia, A. veronii) also contain genes associated with pathogenicity in fish mortality (fur, luxS, aer, act, aha, exu, lip, ser). Genetic evidence from the microbial communities analyzed herein reveals that anthropogenic sources of nutrients in the lake altered genes involved in nitrogen, phosphorus, sulfur, and carbon metabolism, mainly at the beginning of the rainy season. These findings suggest that abiotic factors influence the structure of the microbial communities, along with the major biogeochemical cycles of Lake Cajititlán, resulting in temporal variations and an excess of microorganisms that can thrive in high-nutrient and low-oxygen environments. After reviewing the literature, this appears to be the first study that focuses on characterizing the water quality of a subtropical hypereutrophic lake through associations between physicochemical variables and shotgun metagenomic data. In addition, there are few studies that have coupled the metabolism of aquatic ecosystems with nutrient cycles.
Collapse
|
16
|
Wang Y, Korneliussen TS, Holman LE, Manica A, Pedersen MW.
ngs
LCA
—A toolkit for fast and flexible lowest common ancestor inference and taxonomic profiling of metagenomic data. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.14006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yucheng Wang
- Department of Zoology University of Cambridge Cambridge UK
- Lundbeck Foundation GeoGenetics Centre, Globe Institute University of Copenhagen Copenhagen K Denmark
- ALPHA, State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER) Institute of Tibetan Plateau Research (ITPCAS), Chinese Academy of Sciences (CAS) Beijing China
- BGI BGI‐Shenzhen Shanghai China
| | | | - Luke E. Holman
- School of Ocean and Earth Science, National Oceanography Centre Southampton University of Southampton Southampton UK
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, Globe Institute University of Copenhagen Copenhagen Denmark
| | - Andrea Manica
- Department of Zoology University of Cambridge Cambridge UK
| | - Mikkel Winther Pedersen
- Lundbeck Foundation GeoGenetics Centre, Globe Institute University of Copenhagen Copenhagen K Denmark
| |
Collapse
|
17
|
Abstract
The identification of floral visitation by pollinators provides an opportunity to improve our understanding of the fine-scale ecological interactions between plants and pollinators, contributing to biodiversity conservation and promoting ecosystem health. In this review, we outline the various methods which can be used to identify floral visitation, including plant-focused and insect-focused methods. We reviewed the literature covering the ways in which DNA metabarcoding has been used to answer ecological questions relating to plant use by pollinators and discuss the findings of this research. We present detailed methodological considerations for each step of the metabarcoding workflow, from sampling through to amplification, and finally bioinformatic analysis. Detailed guidance is provided to researchers for utilisation of these techniques, emphasising the importance of standardisation of methods and improving the reliability of results. Future opportunities and directions of using molecular methods to analyse plant–pollinator interactions are then discussed.
Collapse
|