1
|
Mathers KL, Robinson CT, Hill M, Kowarik C, Heino J, Deacon C, Weber C. How effective are ecological metrics in supporting conservation and management in degraded streams? BIODIVERSITY AND CONSERVATION 2024; 33:3981-4002. [PMID: 39559549 PMCID: PMC11568992 DOI: 10.1007/s10531-024-02933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 11/20/2024]
Abstract
Biodiversity loss is increasing worldwide, necessitating effective approaches to counteract negative trends. Here, we assessed aquatic macroinvertebrate biodiversity in two river catchments in Switzerland; one significantly degraded and associated with urbanisation and instream barriers, and one in a near-natural condition. Contrary to our expectations, environmental heterogeneity was lower in the near-natural stream, with enhanced productivity in the degraded system resulting in a greater range of environmental conditions. At face value, commonly employed alpha, beta and gamma biodiversity metrics suggested both catchments constituted healthy systems, with greater richness or comparable values recorded in the degraded system relative to the near-natural one. Further, functional metrics considered to be early indicators for anthropogenic disturbance, demonstrated no anticipated differences between degraded and near-natural catchments. However, investigating the identity of the taxa unique to each river system showed that anthropogenic degradation led to replacement of specialist, sensitive species indicative of pristine rivers, by generalist, pollution tolerant species. These replacements reflect a major alteration in community composition in the degraded system compared with the near-natural system. Total nitrogen and fine sediment were important in distinguishing the respective communities. We urge caution in biodiversity studies that employ numerical biodiversity metrics alone. Assessing just one aspect of diversity, such as richness, is not sufficient to track biodiversity changes associated with environmental stress. We advocate that biodiversity monitoring for conservation and management purposes must go beyond traditional richness biodiversity metrics, to include indices that incorporate detailed nuances of biotic communities that relates to taxon identity. Supplementary Information The online version contains supplementary material available at 10.1007/s10531-024-02933-7.
Collapse
Affiliation(s)
- Kate L. Mathers
- Geography and Environment, Loughborough University, Loughborough, Leicestershire, LE11 3TU UK
- Department of Surface Waters Research and Management, Eawag (Swiss Federal Institute of Aquatic Science and Technology), 6047 Kastanienbaum, Switzerland
| | - Christopher T. Robinson
- Department of Aquatic Ecology, Eawag, 8600 Dübendorf, Switzerland
- Institute of Integrative Biology, ETH Zürich, 8092 Zurich, Switzerland
| | - Matthew Hill
- Department of Life and Environmental Sciences, Faculty of Science and Technology, Bournemouth University, Poole, Dorset, BH12 5BB UK
| | - Carmen Kowarik
- Department of Aquatic Ecology, Eawag, 8600 Dübendorf, Switzerland
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, Oulu, Finland
| | - Charl Deacon
- Department of Conservation Ecology and Entomology, Stellenbosch University, Stellenbosch, South Africa
| | - Christine Weber
- Department of Surface Waters Research and Management, Eawag (Swiss Federal Institute of Aquatic Science and Technology), 6047 Kastanienbaum, Switzerland
| |
Collapse
|
2
|
Larsen S, Joyce F, Vaughan IP, Durance I, Walter JA, Ormerod SJ. Climatic effects on the synchrony and stability of temperate headwater invertebrates over four decades. GLOBAL CHANGE BIOLOGY 2024; 30:e17017. [PMID: 37933478 DOI: 10.1111/gcb.17017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/28/2023] [Accepted: 10/20/2023] [Indexed: 11/08/2023]
Abstract
Important clues about the ecological effects of climate change can arise from understanding the influence of other Earth-system processes on ecosystem dynamics but few studies span the inter-decadal timescales required. We, therefore, examined how variation in annual weather patterns associated with the North Atlantic Oscillation (NAO) over four decades was linked to synchrony and stability in a metacommunity of stream invertebrates across multiple, contrasting headwaters in central Wales (UK). Prolonged warmer and wetter conditions during positive NAO winters appeared to synchronize variations in population and community composition among and within streams thereby reducing stability across levels of ecological organization. This climatically mediated synchronization occurred in all streams irrespective of acid-base status and land use, but was weaker where invertebrate communities were more functionally diverse. Wavelet linear models indicated that variation in the NAO explained up to 50% of overall synchrony in species abundances at a timescale of 4-6 years. The NAO appeared to affect ecological dynamics through local variations in temperature, precipitation and discharge, but increasing hydrochemical variability within sites during wetter winters might have contributed. Our findings illustrate how large-scale climatic fluctuations generated over the North Atlantic can affect population persistence and dynamics in inland freshwater ecosystems in ways that transcend local catchment character. Protecting and restoring functional diversity in stream communities might increase their stability against warmer, wetter conditions that are analogues of ongoing climate change. Catchment management could also dampen impacts and provide options for climate change adaptation.
Collapse
Affiliation(s)
- Stefano Larsen
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all' Adige, Italy
| | - Fiona Joyce
- Water Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Ian P Vaughan
- Water Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Isabelle Durance
- Water Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Jonathan A Walter
- Center for Watershed Sciences, University of California, Davis, California, USA
- Department of Environmental Sciences, University of Virginia, Charlottesville, Virginia, USA
| | - Steve J Ormerod
- Water Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Gál B, Weiperth A, Farkas J, Schmera D. Road crossings change functional diversity and trait composition of stream-dwelling macroinvertebrate assemblages. Sci Rep 2023; 13:20698. [PMID: 38001350 PMCID: PMC10674018 DOI: 10.1038/s41598-023-47975-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023] Open
Abstract
Functional diversity is regarded as a key concept in understanding the link between ecosystem function and biodiversity, and is therefore widely investigated in relation to human-induced impacts. However, information on how the intersection of roads and streams (hereafter road crossings, representing a widespread habitat transformation in relation to human development), influences the functional diversity of stream-dwelling macroinvertebrates is still missing. The general aim of our study was to provide a comprehensible picture on the impacts of road crossing structures on multiple facets of the functional diversity of stream-dwelling macroinvertebrates. In addition, we also investigated changes in trait structure. Our research showed that road crossing structures had negative impacts on functional richness and dispersion; i.e., functional diversification. However, we found no significant impact on functional divergence and evenness components. We found a decrease in functional redundancy at road crossing structures. This indicates a reduced ability of the community to recover from disturbances. Finally, we found that road crossings drive stream habitat and hydrological changes in parallel with modification of the trait composition of stream-dwelling macroinvertebrate assemblages. All these results suggest that road crossings cause notable changes in the functional diversity of stream-dwelling macroinvertebrate assemblages.
Collapse
Affiliation(s)
- Blanka Gál
- Balaton Limnological Research Institute, Klebelsberg K. u. 3, 8237, Tihany, Hungary.
- National Laboratory for Water Science and Water Security, Balaton Limnological Research Institute, Klebelsberg K. u. 3, 8237, Tihany, Hungary.
| | - András Weiperth
- Department of Freshwater Fish Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1, Gödöllő, 2103, Hungary
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - János Farkas
- Department of Systematic Zoology and Ecology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary
| | - Dénes Schmera
- Balaton Limnological Research Institute, Klebelsberg K. u. 3, 8237, Tihany, Hungary
- National Laboratory for Water Science and Water Security, Balaton Limnological Research Institute, Klebelsberg K. u. 3, 8237, Tihany, Hungary
| |
Collapse
|
4
|
Enns D, Cunze S, Baker NJ, Oehlmann J, Jourdan J. Flushing away the future: The effects of wastewater treatment plants on aquatic invertebrates. WATER RESEARCH 2023; 243:120388. [PMID: 37517151 DOI: 10.1016/j.watres.2023.120388] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/27/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Wastewater treatment plants (WWTP) are essential infrastructure in our developing world. However, with the development and release of novel entities and without modern upgrades, they are ineffective at fully removing micropollutants before treated effluents are released back into aquatic environments. Thus, WWTPs may represent additional point source impacts to freshwater environments, further pressuring aquatic fauna and already vulnerable insect communities. Previous studies - mostly focusing on single WWTPs - have shown general trends of freshwater invertebrate communities becoming dominated by pollution tolerant taxa. To expand on these findings, the current study is the first to comprehensively investigate data on the effects of 170 WWTPs on invertebrate taxonomic composition. We compared data for several diversity and pollution indices, as well as the taxonomic composition both upstream and downstream of the WWTPs (366 sampling sites). In terms of abundance, the three most frequent and negatively impacted orders were the Plecoptera, Trichoptera and Gastropoda, while the Turbellaria, Hirudinea and Crustacea increased in abundance. Although strong changes in community composition were observed between upstream and downstream sites (mean species turnover of 61%), commonly used diversity indices were not sensitive to these changes, highlighting their potential inadequacy in accurately assessing ecological health. Our results indicate that WWTPs change downstream conditions in favour of pollution tolerant taxa to the detriment of sensitive taxa. Order-level taxonomic responses can be informative but should be interpreted with caution, since they can be driven by a few taxa, or opposing responses of species in the same group can result in an overall low order-level response. Upgrading WWTPs via additional treatment steps or merging may be beneficial, provided upstream sections are unimpacted and/or are in a good chemical and structural condition.
Collapse
Affiliation(s)
- Daniel Enns
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| | - Sarah Cunze
- Goethe University Frankfurt, Department of Integrative Parasitology and Zoophysiology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Nathan Jay Baker
- Nature Research Centre, Institute of Ecology, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Jörg Oehlmann
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany
| | - Jonas Jourdan
- Goethe University Frankfurt, Department Aquatic Ecotoxicology, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany; Kompetenzzentrum Wasser Hessen, Max-von-Laue-Straße 13, D-60438 Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Rolls RJ, Deane DC, Johnson SE, Heino J, Anderson MJ, Ellingsen KE. Biotic homogenisation and differentiation as directional change in beta diversity: synthesising driver-response relationships to develop conceptual models across ecosystems. Biol Rev Camb Philos Soc 2023; 98:1388-1423. [PMID: 37072381 DOI: 10.1111/brv.12958] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/20/2023]
Abstract
Biotic homogenisation is defined as decreasing dissimilarity among ecological assemblages sampled within a given spatial area over time. Biotic differentiation, in turn, is defined as increasing dissimilarity over time. Overall, changes in the spatial dissimilarities among assemblages (termed 'beta diversity') is an increasingly recognised feature of broader biodiversity change in the Anthropocene. Empirical evidence of biotic homogenisation and biotic differentiation remains scattered across different ecosystems. Most meta-analyses quantify the prevalence and direction of change in beta diversity, rather than attempting to identify underlying ecological drivers of such changes. By conceptualising the mechanisms that contribute to decreasing or increasing dissimilarity in the composition of ecological assemblages across space, environmental managers and conservation practitioners can make informed decisions about what interventions may be required to sustain biodiversity and can predict potential biodiversity outcomes of future disturbances. We systematically reviewed and synthesised published empirical evidence for ecological drivers of biotic homogenisation and differentiation across terrestrial, marine, and freshwater realms to derive conceptual models that explain changes in spatial beta diversity. We pursued five key themes in our review: (i) temporal environmental change; (ii) disturbance regime; (iii) connectivity alteration and species redistribution; (iv) habitat change; and (v) biotic and trophic interactions. Our first conceptual model highlights how biotic homogenisation and differentiation can occur as a function of changes in local (alpha) diversity or regional (gamma) diversity, independently of species invasions and losses due to changes in species occurrence among assemblages. Second, the direction and magnitude of change in beta diversity depends on the interaction between spatial variation (patchiness) and temporal variation (synchronicity) of disturbance events. Third, in the context of connectivity and species redistribution, divergent beta diversity outcomes occur as different species have different dispersal characteristics, and the magnitude of beta diversity change associated with species invasions also depends strongly on alpha and gamma diversity prior to species invasion. Fourth, beta diversity is positively linked with spatial environmental variability, such that biotic homogenisation and differentiation occur when environmental heterogeneity decreases or increases, respectively. Fifth, species interactions can influence beta diversity via habitat modification, disease, consumption (trophic dynamics), competition, and by altering ecosystem productivity. Our synthesis highlights the multitude of mechanisms that cause assemblages to be more or less spatially similar in composition (taxonomically, functionally, phylogenetically) through time. We consider that future studies should aim to enhance our collective understanding of ecological systems by clarifying the underlying mechanisms driving homogenisation or differentiation, rather than focusing only on reporting the prevalence and direction of change in beta diversity, per se.
Collapse
Affiliation(s)
- Robert J Rolls
- School of Environmental and Rural Sciences, University of New England, Armidale, New South Wales, 2351, Australia
| | - David C Deane
- School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Sarah E Johnson
- Natural Resources Department, Northland College, Ashland, WI, 54891, USA
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 8000, Oulu, FI-90014, Finland
| | - Marti J Anderson
- New Zealand Institute for Advanced Study (NZIAS), Massey University, Albany Campus, Auckland, New Zealand
| | - Kari E Ellingsen
- Norwegian Institute for Nature Research (NINA), Fram Centre, P.O. Box 6606 Langnes, Tromsø, 9296, Norway
| |
Collapse
|
6
|
Pharaoh E, Diamond M, Ormerod SJ, Rutt G, Vaughan IP. Evidence of biological recovery from gross pollution in English and Welsh rivers over three decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163107. [PMID: 36972879 DOI: 10.1016/j.scitotenv.2023.163107] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/24/2023] [Accepted: 03/23/2023] [Indexed: 05/13/2023]
Abstract
Uncertainty around the changing ecological status of European rivers reflects an evolving array of anthropogenic stressors, including climate change. Although previous studies have revealed some recovery from historical pollution in the 1990s and early-2000s, there are contrasting trends among pollutants across Europe and recovery may have stalled or been reversed. To provide more contemporary evidence on trends and status, here we investigate changes in English and Welsh river macroinvertebrate communities over almost 30 years (1991-2019) using a network of nearly 4000 survey locations. Analysis comprised: i) trends in taxonomic and functional richness, community composition and ecological traits, ii) gains, losses and turnover of taxa, and the overall homogeneity of macroinvertebrate communities nationally, and iii) an exploration of how temporal trends varied with catchment characteristics. Taxonomic richness increased, primarily in the 1990s, whilst a shift towards pollution-sensitive taxa continued throughout the study period, accompanied by a growing prevalence in traits such as preferences for fast-flowing conditions, coarser substrata, and 'shredding' or 'scraping' feeding strategies. Changes consistent with improvement occurred in both urbanised and agricultural catchments, but were more pronounced in urban rivers as they gained pollution sensitive taxa that were otherwise more prevalent in rural rivers. Overall, these results indicate continuing biological recovery from organic pollution, consistent with national scale trends in water quality. Results reemphasise the importance of looking at multiple facets of diversity, with periods of near-constant richness disguising changes in taxonomic and functional composition. Whilst this national-scale picture is broadly positive, we highlight the need to investigate more local variations or pollutants that depart from this aggregate picture.
Collapse
Affiliation(s)
- Emma Pharaoh
- Water Research Institute and School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Mark Diamond
- Environment Agency, PO Box 12, Warrington WA4 1HG, UK
| | - Steve J Ormerod
- Water Research Institute and School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK
| | - Graham Rutt
- Natural Resources Wales, Southwest Area Environmental Assessment & Advice Team, Swansea University, Singleton Campus, Swansea SA2 8PP, UK
| | - Ian P Vaughan
- Water Research Institute and School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| |
Collapse
|
7
|
Haubrock PJ, Cuthbert RN, Haase P. Long-term trends and drivers of biological invasion in Central European streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162817. [PMID: 36924970 DOI: 10.1016/j.scitotenv.2023.162817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/19/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Rates of biological invasion continue to accelerate and threaten the structure and function of ecosystems worldwide. High habitat connectivity, multiple pathways, and inadequate monitoring have rendered aquatic ecosystems vulnerable to species introductions. Past riverine invasion dynamics were largely restricted to large rivers, leaving out smaller rivers that commonly harbour high freshwater biodiversity. Moreover, biodiversity time series have rarely been used to investigate invasions across larger spatial-temporal scales, limiting our understanding of aquatic invasion dynamics. Here, we used 6067 benthic invertebrate samples from streams and small rivers from the EU Water Framework Directive monitoring program collected across Central Europe between 2000 and 2018 to assess temporal changes to benthic invertebrate communities as well as non-native species. We assessed invasion rates according to temperature, precipitation, elevation, latitude, longitude, and stream type. Overall, average daily temperatures significantly increased by 0.02 °C per annum (0.34 °C in total) while annual precipitation significantly decreased by 0.01 mm per annum (-67.8 mm over the study period), paralleled with significant increases in overall species richness (12.3 %) and abundance (14.9 %); water quality was relatively stable. Non-native species richness increased 5-fold and abundance 40-fold, indicating an ongoing community shift from native to non-native species. The observed increase in invasions was stronger in low mountain rivers compared to low mountain streams, with the share of non-native species abundance and richness declining with increasing elevation and latitude but increasing with temperature. We found thermophilic non-native species invasion success was greatest in larger sized streams, at lower latitudes, lower elevations and higher temperatures. These results indicate that widespread environmental characteristics (i.e., temperature) could heighten invasion success and confer refuge effects (i.e., elevation and latitude) in higher sites. High altitude and latitude environments should be prioritised for prevention efforts, while biosecurity and management should be improved in lowland areas subject to greater anthropogenic pressure, where non-native introductions are more likely.
Collapse
Affiliation(s)
- Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic; Center for Applied Mathematics and Bioinformatics, Department of Mathematics and Natural Sciences, Gulf University for Science and Technology, Hawally, Kuwait.
| | - Ross N Cuthbert
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, BT9 5DL Belfast, UK
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of Duisburg-Essen, Faculty of Biology, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
8
|
Zhai M, Bojková J, Němejcová D, Polášek M, Syrovátka V, Horsák M. Climatically promoted taxonomic homogenization of macroinvertebrates in unaffected streams varies along the river continuum. Sci Rep 2023; 13:6292. [PMID: 37072510 PMCID: PMC10113374 DOI: 10.1038/s41598-023-32806-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/03/2023] [Indexed: 05/03/2023] Open
Abstract
Biotic homogenization appears to be a global consequence of anthropogenic change. However, the underlying environmental factors contributing to homogenization are difficult to identify because their effects usually interact and confound each other. This can be the reason why there is very little evidence on the role of climate warming in homogenization. By analysing macroinvertebrate assemblages in 65 streams that were as close to natural conditions as possible, we avoided the confounding effects of common anthropogenic stressors. This approach resulted in revealing a significant effect of increased temperature (both summer and winter) on changes in macroinvertebrate compositional over the past two decades. However, homogenization was significant only at opposite ends of the river continuum (submontane brooks, low-altitude rivers). Surprisingly, species of native origin predominated overall, increasing in frequency and abundance ("winners"), while only a minority of species declined or disappeared ("losers"). We hypothesise that undisturbed conditions mitigate species declines and thus homogenization, and that the temperature increase has so far been beneficial to most native species. Although we may have only captured a transitional state due to extinction debt, this underscores the importance of maintaining ecological conditions in stream to prevent species loss due to climate change.
Collapse
Affiliation(s)
- Marie Zhai
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - Jindřiška Bojková
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Denisa Němejcová
- T. G. Masaryk Water Research Institute, p.r.i., Podbabská 2582/30, 160 00, Prague 6, Czech Republic
| | - Marek Polášek
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- T. G. Masaryk Water Research Institute, p.r.i., Podbabská 2582/30, 160 00, Prague 6, Czech Republic
| | - Vít Syrovátka
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| | - Michal Horsák
- Department of Botany and Zoology, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
| |
Collapse
|
9
|
Powell KE, Oliver TH, Johns T, González‐Suárez M, England J, Roy DB. Abundance trends for river macroinvertebrates vary across taxa, trophic group and river typology. GLOBAL CHANGE BIOLOGY 2023; 29:1282-1295. [PMID: 36462155 PMCID: PMC10107317 DOI: 10.1111/gcb.16549] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 11/10/2022] [Accepted: 11/25/2022] [Indexed: 05/26/2023]
Abstract
There is mounting evidence that terrestrial arthropods are declining rapidly in many areas of the world. It is unclear whether freshwater invertebrates, which are key providers of ecosystem services, are also declining. We addressed this question by analysing a long-term dataset of macroinvertebrate abundance collected from 2002 to 2019 across 5009 sampling sites in English rivers. Patterns varied markedly across taxonomic groups. Within trophic groups we detected increases in the abundance of carnivores by 19% and herbivores by 14.8%, while we estimated decomposers have declined by 21.7% in abundance since 2002. We also found heterogeneity in trends across rivers belonging to different typologies based on geological dominance and catchment altitude, with organic lowland rivers having generally higher rates of increase in abundance across taxa and trophic groups, with siliceous lowland rivers having the most declines. Our results reveal a complex picture of change in freshwater macroinvertebrate abundance between taxonomic groups, trophic levels and river typologies. Our analysis helps with identifying priority regions for action on potential environmental stressors where we discover macroinvertebrate abundance declines.
Collapse
Affiliation(s)
- Kathryn E. Powell
- UK Centre for Ecology and HydrologyWallingfordUK
- School of Biological SciencesUniversity of ReadingReadingUK
| | - Tom H. Oliver
- School of Biological SciencesUniversity of ReadingReadingUK
| | | | | | | | - David B. Roy
- UK Centre for Ecology and HydrologyWallingfordUK
| |
Collapse
|
10
|
Jeanneret P, Pozzi S, Martinez Nuñez C. Spiders indicate delivery of an agri-environment scheme at multiple diversity levels. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.866947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Agri-environment schemes (AES) are expected to counteract the negative impacts of intensive agriculture on biodiversity. These schemes were specifically designed to target farmland biodiversity and included, for instance, ecological focus areas (EFAs). In Switzerland, in order to qualify for direct payments, farmers must manage 7% or more of their land as biodiversity promotion areas (BPAs). BPAs encompass extensively managed and low intensity hay meadows, fallows (wildflower strips), traditional orchards with high-stem trees and hedgerows. Evaluation of AES delivery for biodiversity is of crucial importance but must be performed across several years and considering the various components of species diversity to avoid incomplete or wrong conclusions. From a complex study design comprising 478 fields in three regions and sampling over 7 years with four sampling times, spider assemblages of BPA habitats were compared to corresponding conventionally managed fields. A battery of investigations was performed including alpha- and beta-diversity analysis, multivariate dispersion, indicator species and species specificity to understand what BPAs deliver for spiders in the habitat scale and farming landscape. Results showed that alpha-diversity (average number of species) was usually higher in BPA habitats than in conventionally managed fields but the species composition (beta-diversity) had more power to perceive AES impact. Furthermore, the various environmental conditions of BPAs in the farming landscape led to highly diverse spider assemblages (multivariate dispersion) emphasizing that not only the agricultural management plays a role in determining species diversity but the environmental heterogeneity. Indicator (and rare) species were mostly found in woody BPAs (hedges and high-stem tree orchards) revealing the high importance of these BPA habitats for spider conservation. At regional scale, BPA hedges contributed most to the regional diversity of spiders in grassland and mixed regions while BPA meadows and wildflower strip BPAs were first delivering in the region of arable crops. Recommendations highlight the role of the woody habitats and of the environmental heterogeneity in the farming landscape as well as of regional planning to make AES effective.
Collapse
|
11
|
Harrison T, Winfree R, Genung M. Price equations for understanding the response of ecosystem function to community change. Am Nat 2022; 200:181-192. [DOI: 10.1086/720284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Pilotto F, Haubrock PJ, Sundermann A, Lorenz AW, Haase P. Decline in niche specialization and trait β-diversity in benthic invertebrate communities of Central European low-mountain streams over 25 years. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151770. [PMID: 34801496 DOI: 10.1016/j.scitotenv.2021.151770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/09/2021] [Accepted: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Biotic homogenization is one of the key aspects of the current biodiversity crisis. Here we analyzed the trends of three facets of niche homogenization, i.e. niche specialization, trait α-diversity and spatial β-diversity, over a period of 25 years (1990-2014) using a large dataset of 3782 stream benthic invertebrate samples collected from central European low-mountain streams. We studied a set of traits describing the ecological niche of species and their functions: body size, feeding groups, substrate preferences, flow preferences, stream zonation preferences and saprobity. Trait composition changed significantly during the study period, and we identified an overall increase in niche homogenization. Specifically, community niche specialization significantly decreased by 20.3% over the 25-year period, with declines ranging from -16.0 to -40.9% for zonation-, flow-, substrate-preferences, body size and feeding traits. Trait diversity did not change significantly, although we recorded significant decreases by -14.2% and -10.2% for flow- and substrate-preference and increases by 5.8% and 22.6% for feeding traits and zonation preference over the study period. Trait spatial β-diversity significantly decreased by -53.0%, with substrate-preference, feeding groups and flow-preference traits declining from -61.9% to -75.3% over the study period. This increased niche homogenization is likely driven by the increase of down-stream typical taxa, which are favored by warming temperatures. Further, it is in apparent contradiction with the recorded increase in abundance (+35.9%) and taxonomic richness (+39.2%) over the same period. Even such increases do not safeguard communities from undergoing niche homogenization, indicating that recovery processes may differ with regard to community taxonomic composition and traits. Our results emphasize the complexity of community responses to global change and warrant caution when founding conclusions based solely on single community metrics.
Collapse
Affiliation(s)
- Francesca Pilotto
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious Studies, Umeå University, Biblioteksgränd 3, 907 36 Umeå, Sweden; Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany.
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25 Vodňany, Czech Republic
| | - Andrea Sundermann
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; Goethe University Frankfurt am Main, Faculty of Biology, Department Aquatic Ecotoxicology, Max-von-Laue-Str. 13, 60438 Frankfurt am Main, Germany
| | - Armin W Lorenz
- University of Duisburg-Essen, Faculty of Biology, Department Aquatic Ecology, Universitätsstrasse 5, 45141 Essen, Germany
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571 Gelnhausen, Germany; University of Duisburg-Essen, Faculty of Biology, Universitätsstrasse 5, 45141 Essen, Germany
| |
Collapse
|
13
|
Sire L, Yáñez PS, Wang C, Bézier A, Courtial B, Cours J, Fontaneto D, Larrieu L, Bouget C, Thorn S, Müller J, Yu DW, Monaghan MT, Herniou EA, Lopez-Vaamonde C. Climate-induced forest dieback drives compositional changes in insect communities that are more pronounced for rare species. Commun Biol 2022; 5:57. [PMID: 35042989 PMCID: PMC8766456 DOI: 10.1038/s42003-021-02968-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/07/2021] [Indexed: 12/26/2022] Open
Abstract
Species richness, abundance and biomass of insects have recently undergone marked declines in Europe. We metabarcoded 211 Malaise-trap samples to investigate whether drought-induced forest dieback and subsequent salvage logging had an impact on ca. 3000 species of flying insects in silver fir Pyrenean forests. While forest dieback had no measurable impact on species richness, there were significant changes in community composition that were consistent with those observed during natural forest succession. Importantly, most observed changes were driven by rare species. Variation was explained primarily by canopy openness at the local scale, and the tree-related microhabitat diversity and deadwood amount at landscape scales. The levels of salvage logging in our study did not explain compositional changes. We conclude that forest dieback drives changes in species assemblages that mimic natural forest succession, and markedly increases the risk of catastrophic loss of rare species through homogenization of environmental conditions.
Collapse
Affiliation(s)
- Lucas Sire
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS-Université de Tours, Tours, France.
| | - Paul Schmidt Yáñez
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
| | - Cai Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, China
| | - Annie Bézier
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS-Université de Tours, Tours, France
| | | | - Jérémy Cours
- INRAE 'Forest Ecosystems' Research Unit - Biodiversity team Domaine des Barres, F-45290, Nogent-sur-Vernisson, France
| | - Diego Fontaneto
- Water Research Institute, National Research Council of Italy, CNR-IRSA, Largo Tonolli 50, 28922, Verbania Pallanza, Italy
| | - Laurent Larrieu
- Université de Toulouse, INRAE, UMR DYNAFOR, Castanet-Tolosan, France
- CRPF Occitanie, Tarbes, France
| | - Christophe Bouget
- INRAE 'Forest Ecosystems' Research Unit - Biodiversity team Domaine des Barres, F-45290, Nogent-sur-Vernisson, France
| | - Simon Thorn
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
| | - Jörg Müller
- Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstraße 5, 96181, Rauhenebrach, Germany
- Bavarian Forest National Park, Freyunger Str. 2, 94481, Grafenau, Germany
| | - Douglas W Yu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, Norfolk, NR47TJ, UK
| | - Michael T Monaghan
- Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Müggelseedamm 301, 12587, Berlin, Germany
- Institut für Biologie, Freie Universität Berlin, Königin-Luise-Straße. 1-3, 12489, Berlin, Germany
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS-Université de Tours, Tours, France
| | - Carlos Lopez-Vaamonde
- Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS-Université de Tours, Tours, France
- INRAE, Zoologie Forestière, F-45075, Orléans, France
| |
Collapse
|
14
|
Baker NJ, Pilotto F, Haubrock PJ, Beudert B, Haase P. Multidecadal changes in functional diversity lag behind the recovery of taxonomic diversity. Ecol Evol 2021; 11:17471-17484. [PMID: 34938522 PMCID: PMC8668763 DOI: 10.1002/ece3.8381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
While there has been increasing interest in how taxonomic diversity is changing over time, less is known about how long-term taxonomic changes may affect ecosystem functioning and resilience. Exploring long-term patterns of functional diversity can provide key insights into the capacity of a community to carry out ecological processes and the redundancy of species' roles. We focus on a protected freshwater system located in a national park in southeast Germany. We use a high-resolution benthic macroinvertebrate dataset spanning 32 years (1983-2014) and test whether changes in functional diversity are reflected in taxonomic diversity using a multidimensional trait-based approach and regression analyses. Specifically, we asked: (i) How has functional diversity changed over time? (ii) How functionally distinct are the community's taxa? (iii) Are changes in functional diversity concurrent with taxonomic diversity? And (iv) what is the extent of community functional redundancy? Resultant from acidification mitigation, macroinvertebrate taxonomic diversity increased over the study period. Recovery of functional diversity was less pronounced, lagging behind responses of taxonomic diversity. Over multidecadal timescales, the macroinvertebrate community has become more homogenous with a high degree of functional redundancy, despite being isolated from direct anthropogenic activity. While taxonomic diversity increased over time, functional diversity has yet to catch up. These results demonstrate that anthropogenic pressures can remain a threat to biotic communities even in protected areas. The differences in taxonomic and functional recovery processes highlight the need to incorporate functional traits in assessments of biodiversity responses to global change.
Collapse
Affiliation(s)
- Nathan Jay Baker
- Department of River Ecology and ConservationSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
| | - Francesca Pilotto
- Department of Historical, Philosophical and Religious StudiesEnvironmental Archaeology LabUmeå UniversityUmeåSweden
| | - Phillip Joschka Haubrock
- Department of River Ecology and ConservationSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Faculty of Fisheries and Protection of WatersSouth Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Burkhard Beudert
- Department of Conservation and ResearchBavarian Forest National ParkGrafenauGermany
| | - Peter Haase
- Department of River Ecology and ConservationSenckenberg Research Institute and Natural History Museum FrankfurtGelnhausenGermany
- Faculty of BiologyUniversity of Duisburg‐EssenEssenGermany
| |
Collapse
|
15
|
Tinoco BA, Latta SC, Astudillo PX, Nieto A, Graham CH. Temporal stability in species richness but reordering in species abundances within avian assemblages of a tropical Andes conservation hot spot. Biotropica 2021; 53:1673-1684. [PMID: 35874905 PMCID: PMC9293307 DOI: 10.1111/btp.13016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 07/13/2021] [Accepted: 08/30/2021] [Indexed: 11/28/2022]
Affiliation(s)
| | - Steven C. Latta
- National Aviary Allegheny Commons West Pittsburgh Pennsylvania USA
| | | | - Andrea Nieto
- Escuela de Biología Universidad del Azuay Cuenca Ecuador
| | | |
Collapse
|
16
|
Nunn CL, Vining AQ, Chakraborty D, Reiskind MH, Young HS. Effects of host extinction and vector preferences on vector-borne disease risk in phylogenetically structured host-hector communities. PLoS One 2021; 16:e0256456. [PMID: 34424937 PMCID: PMC8382198 DOI: 10.1371/journal.pone.0256456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 08/08/2021] [Indexed: 11/26/2022] Open
Abstract
Anthropogenic disturbance impacts the phylogenetic composition and diversity of ecological communities. While changes in diversity are known to dramatically change species interactions and alter disease dynamics, the effects of phylogenetic changes in host and vector communities on disease have been relatively poorly studied. Using a theoretical model, we investigated how phylogeny and extinction influence network structural characteristics relevant to disease transmission in disturbed environments. We modelled a multi-host, multi-vector community as a bipartite ecological network, where nodes represent host and vector species and edges represent connections among them through vector feeding, and we simulated vector preferences and threat status on host and parasite phylogenies. We then simulated loss of hosts, including phylogenetically clustered losses, to investigate how extinction influences network structure. We compared effects of phylogeny and extinction to those of host specificity, which we predicted to strongly increase network modularity and reduce disease prevalence. The simulations revealed that extinction often increased modularity, with higher modularity as species loss increased, although not as much as increasing host specificity did. These results suggest that extinction itself, all else being equal, may reduce disease prevalence in disturbed communities. However, in real communities, systematic patterns in species loss (e.g. favoring high competence species) or changes in abundance may counteract these effects. Unexpectedly, we found that effects of phylogenetic signal in host and vector traits were relatively weak, and only important when phylogenetic signal of host and vector traits were similar, or when these traits both varied.
Collapse
Affiliation(s)
- Charles L. Nunn
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Duke Global Health Institute, Durham, North Carolina, United States of America
| | - Alexander Q. Vining
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- Graduate Program in Animal Behavior, UC Davis, Davis, California, United States of America
| | - Debapriyo Chakraborty
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, United States of America
- INRAE ENVT IHAP, National Veterinary School of Toulouse, Toulouse, France
| | - Michael H. Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Hillary S. Young
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, California, United States of America
| |
Collapse
|
17
|
Larson EI, Poff NL, Funk WC, Harrington RA, Kondratieff BC, Morton SG, Flecker AS. A unifying framework for analyzing temporal changes in functional and taxonomic diversity along disturbance gradients. Ecology 2021; 102:e03503. [PMID: 34314030 DOI: 10.1002/ecy.3503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 05/24/2021] [Accepted: 06/10/2021] [Indexed: 01/29/2023]
Abstract
Frameworks exclusively considering functional diversity are gaining popularity, as they complement and extend the information provided by taxonomic diversity metrics, particularly in response to disturbance. Taxonomic diversity should be included in functional diversity frameworks to uncover the functional mechanisms causing species loss following disturbance events. We present and test a predictive framework that considers temporal functional and taxonomic diversity responses along disturbance gradients. Our proposed framework allows us to test different multidimensional metrics of taxonomic diversity that can be directly compared to calculated multidimensional functional diversity metrics. It builds on existing functional diversity-disturbance frameworks both by using a gradient approach and by jointly considering taxonomic and functional diversity. We used previously unpublished stream insect community data collected prior to, and for the two years following, an extreme flood event that occurred in 2013. Using 14 northern Colorado mountain streams, we tested our framework and determined that taxonomic diversity metrics calculated using multidimensional methods resulted in concordance between taxonomic and functional diversity responses. By considering functional and taxonomic diversity together and using a gradient approach, we were able to identify some of the mechanisms driving species losses following this extreme disturbance event.
Collapse
Affiliation(s)
- Erin I Larson
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA.,Institute for Culture and Environment, Alaska Pacific University, Anchorage, Alaska, 99508, USA
| | - N LeRoy Poff
- Department of Biology & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA.,Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, 2617, Australia
| | - W Chris Funk
- Department of Biology & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Rachel A Harrington
- Office of Wetlands, Oceans and Watersheds, U.S. Environmental Protection Agency, Washington, D.C., 20460, USA
| | - Boris C Kondratieff
- Department of Bioagricultural Sciences and Pest Management & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Scott G Morton
- Department of Biology & Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Alexander S Flecker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, 14853, USA
| |
Collapse
|
18
|
Petsch DK, Blowes SA, Melo AS, Chase JM. A synthesis of land use impacts on stream biodiversity across metrics and scales. Ecology 2021; 102:e03498. [PMID: 34314043 DOI: 10.1002/ecy.3498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/14/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023]
Abstract
While land use intensification is a major driver of biodiversity change in streams, the nature of such changes, and at which scales they occur, have not been synthesized. To synthesize how land use change has altered multiple components of stream biodiversity across scales, we compiled data from 37 studies where comparative data were available for species' total and relative abundances from multiple locations including reference (less impacted) streams to those surrounded by different land use types (urban, forestry, and agriculture). We found that each type of land use reduced multiple components of within-stream biodiversity across scales, but that urbanization consistently had the strongest effects. However, we found that β-diversity among streams in modified landscapes did not differ from β-diversity observed among reference streams, suggesting little evidence for biotic homogenization. Nevertheless, assemblage composition did experience considerable species turnover between reference and modified streams. Our results emphasize that to understand how anthropogenic factors such as land use alter biodiversity, multiple components of biodiversity within and among sites must be simultaneously considered at multiple scales.
Collapse
Affiliation(s)
- Danielle K Petsch
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, GO, Brazil.,Departamento de Biologia, Centro de Ciências Biológicas, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Shane A Blowes
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.,Department of Computer Science, Martin Luther University, Halle-Wittenberg, Halle (Saale), 06099, Germany
| | - Adriano S Melo
- Departamento de Ecologia, ICB, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.,Department of Computer Science, Martin Luther University, Halle-Wittenberg, Halle (Saale), 06099, Germany
| |
Collapse
|
19
|
Dudgeon D, Ng LCY, Tsang TPN. Shifts in aquatic insect composition in a tropical forest stream after three decades of climatic warming. GLOBAL CHANGE BIOLOGY 2020; 26:6399-6412. [PMID: 32866325 DOI: 10.1111/gcb.15325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 08/03/2020] [Accepted: 08/16/2020] [Indexed: 06/11/2023]
Abstract
The effects of climatic warming on tropical streams have received little attention, and field studies of such changes are generally lacking. Drifting insects from a Hong Kong forest stream were sampled for 36 months between 2013 and 2016, and compared with samples collected using identical methods in 1983-84. Mean air temperatures rose by ~0.5°C (0.17°C per decade) over this period. The stream drained an uninhabited protected area, so no climate-change effects were confounded by anthropogenic disturbance. In total, 105 taxa and >77,000 individuals were collected. Richness of samples in the historic and contemporary datasets did not differ, but true diversity of drifting insects was highest in 1983-84, and declined between 2013-14 and 2015-16. There was considerable disparity in assemblage composition between 1983-84 and 2013-16, and smaller between-year changes in the contemporary dataset. Nine indicator species of the historic dataset were identified. Most were mayflies, particularly Baetidae, which were greatly reduced in relative abundance in 2013-16. Diptera became more numerous, and tanypodine chironomids were the sole contemporary indicator taxon. Relative abundance of eight of 19 drifting species (comprising 60% of total insects) was lower in 2013-16, when the dominant baetid mayfly during 1983-84 had declined by almost 90%; only one of the 19 species occurred at higher abundance. Eight species were affected by seasonal temperature variability, but these responses were not correlated with any tendency to exhibit long-term changes in abundance. Substantial shifts in composition, including declines in mayfly relative abundance and assemblage diversity, occurred after three decades of warming, despite the broad annual range of stream temperatures (~16°C) in Hong Kong. This contradicts the well-known prediction that organisms from variable climates have evolved wider thermal tolerances that reflect prevailing environmental conditions. The observed compositional reorganization indicates that variability, rather than stability, may be typical of undisturbed tropical stream communities.
Collapse
Affiliation(s)
- David Dudgeon
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Lily C Y Ng
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Toby P N Tsang
- Division of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
20
|
Baranov V, Jourdan J, Pilotto F, Wagner R, Haase P. Complex and nonlinear climate-driven changes in freshwater insect communities over 42 years. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2020; 34:1241-1251. [PMID: 32022305 DOI: 10.1111/cobi.13477] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 01/24/2020] [Indexed: 05/12/2023]
Abstract
The ongoing biodiversity crisis becomes evident in the widely observed decline in abundance and diversity of species, profound changes in community structure, and shifts in species' phenology. Insects are among the most affected groups, with documented decreases in abundance up to 76% in the last 25-30 years in some terrestrial ecosystems. Identifying the underlying drivers is a major obstacle as most ecosystems are affected by multiple stressors simultaneously and in situ measurements of environmental variables are often missing. In our study, we investigated a headwater stream belonging to the most common stream type in Germany located in a nature reserve with no major anthropogenic impacts except climate change. We used the most comprehensive quantitative long-term data set on aquatic insects available, which includes weekly measurements of species-level insect abundance, daily water temperature and stream discharge as well as measurements of additional physicochemical variables for a 42-year period (1969-2010). Overall, water temperature increased by 1.88 °C and discharge patterns changed significantly. These changes were accompanied by an 81.6% decline in insect abundance, but an increase in richness (+8.5%), Shannon diversity (+22.7%), evenness (+22.4%), and interannual turnover (+34%). Moreover, the community's trophic structure and phenology changed: the duration of emergence increased by 15.2 days, whereas the peak of emergence moved 13.4 days earlier. Additionally, we observed short-term fluctuations (<5 years) in almost all metrics as well as complex and nonlinear responses of the community toward climate change that would have been missed by simply using snapshot data or shorter time series. Our results indicate that climate change has already altered biotic communities severely even in protected areas, where no other interacting stressors (pollution, habitat fragmentation, etc.) are present. This is a striking example of the scientific value of comprehensive long-term data in capturing the complex responses of communities toward climate change.
Collapse
Affiliation(s)
- Viktor Baranov
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Department of Biology II, LMU Munich Biocenter, Planegg-Martinsried, 82152, Germany
| | - Jonas Jourdan
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Department of Aquatic Ecotoxicology, Institute for Ecology, Evolution and Diversity, Goethe University of Frankfurt, Max-von-Laue-Str. 13, Frankfurt, 60438, Germany
| | - Francesca Pilotto
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious studies, University of Umeå, Umeå, 90187, Sweden
| | - Rüdiger Wagner
- FB 10 Nat. Sci., Biology, Zoology, University of Kassel, Heinrich-Plett-Straße 40, Kassel, 34132, Germany
| | - Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, 63571, Germany
- Faculty of Biology, University of Duisburg-Essen, Essen, 45141, Germany
| |
Collapse
|
21
|
Pilotto F, Kühn I, Adrian R, Alber R, Alignier A, Andrews C, Bäck J, Barbaro L, Beaumont D, Beenaerts N, Benham S, Boukal DS, Bretagnolle V, Camatti E, Canullo R, Cardoso PG, Ens BJ, Everaert G, Evtimova V, Feuchtmayr H, García-González R, Gómez García D, Grandin U, Gutowski JM, Hadar L, Halada L, Halassy M, Hummel H, Huttunen KL, Jaroszewicz B, Jensen TC, Kalivoda H, Schmidt IK, Kröncke I, Leinonen R, Martinho F, Meesenburg H, Meyer J, Minerbi S, Monteith D, Nikolov BP, Oro D, Ozoliņš D, Padedda BM, Pallett D, Pansera M, Pardal MÂ, Petriccione B, Pipan T, Pöyry J, Schäfer SM, Schaub M, Schneider SC, Skuja A, Soetaert K, Spriņģe G, Stanchev R, Stockan JA, Stoll S, Sundqvist L, Thimonier A, Van Hoey G, Van Ryckegem G, Visser ME, Vorhauser S, Haase P. Meta-analysis of multidecadal biodiversity trends in Europe. Nat Commun 2020; 11:3486. [PMID: 32661354 PMCID: PMC7359034 DOI: 10.1038/s41467-020-17171-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/16/2020] [Indexed: 11/22/2022] Open
Abstract
Local biodiversity trends over time are likely to be decoupled from global trends, as local processes may compensate or counteract global change. We analyze 161 long-term biological time series (15-91 years) collected across Europe, using a comprehensive dataset comprising ~6,200 marine, freshwater and terrestrial taxa. We test whether (i) local long-term biodiversity trends are consistent among biogeoregions, realms and taxonomic groups, and (ii) changes in biodiversity correlate with regional climate and local conditions. Our results reveal that local trends of abundance, richness and diversity differ among biogeoregions, realms and taxonomic groups, demonstrating that biodiversity changes at local scale are often complex and cannot be easily generalized. However, we find increases in richness and abundance with increasing temperature and naturalness as well as a clear spatial pattern in changes in community composition (i.e. temporal taxonomic turnover) in most biogeoregions of Northern and Eastern Europe.
Collapse
Affiliation(s)
- Francesca Pilotto
- Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
- Environmental Archaeology Lab, Department of Historical, Philosophical and Religious Studies, Umeå University, Umeå, Sweden.
| | - Ingolf Kühn
- Department of Community Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
- Martin Luther University Halle-Wittenberg, Geobotany and Botanical Garden, Halle, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle - Jena - Leipzig, Leipzig, Germany
| | - Rita Adrian
- Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries & Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Renate Alber
- Biological Laboratory, Agency for Environment and Climate Protection, Bolzano, Italy
| | - Audrey Alignier
- UMR 0980 BAGAP, INRAE - Institut Agro - ESA, Rennes, France
- LTSER Zone Atelier Armorique, 35042, Rennes, France
| | | | - Jaana Bäck
- Institute for Atmospheric and Earth system Research, Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Luc Barbaro
- Dynafor, INRAE, University of Toulouse, France & CESCO, Muséum National d'Histoire Naturelle, Sorbonne-Univ, Paris, France & LTSER Zone Atelier Pyrénées Garonne, Auzeville-Tolosane, France
| | | | - Natalie Beenaerts
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | | | - David S Boukal
- University of South Bohemia, Faculty of Science, Department of Ecosystem Biology & Soil and Water Research Infrastructure, Ceske Budejovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Vincent Bretagnolle
- CEBC, UMR7372, CNRS & La Rochelle University, 79360, Villiers en bois, France
- LTSER Zone Atelier Plaine & Val de Sèvre, 79360, Beauvoir sur Niort, France
| | - Elisa Camatti
- Institute of Marine Sciences, National Research Council, Venice, Italy
| | - Roberto Canullo
- School of Biosciences and Veterinary Medicine, unit Plant Diversity and Ecosystems Management, University of Camerino, Camerino, Italy
| | - Patricia G Cardoso
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research of the University of Porto, Porto, Portugal
| | - Bruno J Ens
- Sovon Dutch Centre for Field Ornithology, Nijmegen, The Netherlands
| | | | - Vesela Evtimova
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Heidrun Feuchtmayr
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | | | | | - Ulf Grandin
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jerzy M Gutowski
- Department of Natural Forests, Forest Research Institute, Białowieża, Poland
| | | | - Lubos Halada
- Institute of Landscape Ecology SAS, Branch Nitra, Slovakia
| | - Melinda Halassy
- MTA Centre for Ecological Research, Institute of Ecology and Botany, Vácrátót, Hungary
| | - Herman Hummel
- Royal Netherlands Institute for Sea Research, and Utrecht University, Yerseke, The Netherlands
| | - Kaisa-Leena Huttunen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Oulanka Research Station, University of Oulu Infrastructure Platform, Kuusamo, Finland
| | - Bogdan Jaroszewicz
- Białowieża Geobotanical Station, Faculty of Biology, University of Warsaw, Białowieża, Poland
| | | | | | - Inger Kappel Schmidt
- Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Ingrid Kröncke
- Senckenberg am Meer, Marine Research Department, Wilhelmshaven, Germany
| | - Reima Leinonen
- Kainuu Centre for Economic Development, Transport and the Environment, Kajaani, Finland
| | - Filipe Martinho
- Centre For Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Julia Meyer
- Senckenberg am Meer, Marine Research Department, Wilhelmshaven, Germany
| | - Stefano Minerbi
- Forest Services, Autonomous Province of Bolzano - South Tyrol, Bolzano, Italy
| | - Don Monteith
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Lancaster, UK
| | - Boris P Nikolov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Daniel Oro
- CEAB (CSIC), 17300, Blanes, Spain
- IMEDEA (CSIC-UIB), 07190, Esporles, Spain
| | - Dāvis Ozoliņš
- Institute of Biology, University of Latvia, Salaspils, Latvia
| | - Bachisio M Padedda
- Dipartimento di Architettura, Design e Urbanistica, Università degli Studi di Sassari, Sassari, Italy
| | | | - Marco Pansera
- Institute of Marine Sciences, National Research Council, Venice, Italy
| | - Miguel Ângelo Pardal
- Centre For Functional Ecology (CFE), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Bruno Petriccione
- Carabinieri, Biodiversity and Park Protection Department, Castel di Sangro Biodiversity Unit, L'Aquila, Italy
| | - Tanja Pipan
- ZRC SAZU Karst Research Institute, Ljubljana & UNESCO Chair on Karst Education University of Nova Gorica, Vipava, Slovenia
| | - Juha Pöyry
- Finnish Environment Institute (SYKE), Biodiversity Centre, Helsinki, Finland
| | | | - Marcus Schaub
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - Agnija Skuja
- Institute of Biology, University of Latvia, Salaspils, Latvia
| | - Karline Soetaert
- Royal Netherlands Institute for Sea Research, and Utrecht University, Yerseke, The Netherlands
| | - Gunta Spriņģe
- Institute of Biology, University of Latvia, Salaspils, Latvia
| | - Radoslav Stanchev
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Jenni A Stockan
- Ecological Sciences, James Hutton Institute, Craigiebuckler, Aberdeen, UK
| | - Stefan Stoll
- University of Applied Sciences Trier, Environmental Campus Birkenfeld, Birkenfeld, Germany
- University of Duisburg-Essen, Essen, Germany
| | - Lisa Sundqvist
- Swedish Meteorological and Hydrological Institute, Gothenburg, Sweden
| | - Anne Thimonier
- Swiss Federal Institute for Forest Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Gert Van Hoey
- Flanders Research Institute for Agriculture, Fishery and Food, Oostende, Belgium
| | | | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Samuel Vorhauser
- Biological Laboratory, Agency for Environment and Climate Protection, Bolzano, Italy
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
- University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
22
|
Chase JM, Jeliazkov A, Ladouceur E, Viana DS. Biodiversity conservation through the lens of metacommunity ecology. Ann N Y Acad Sci 2020; 1469:86-104. [PMID: 32406120 DOI: 10.1111/nyas.14378] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/14/2020] [Accepted: 05/01/2020] [Indexed: 01/09/2023]
Abstract
Metacommunity ecology combines local (e.g., environmental filtering and biotic interactions) and regional (e.g., dispersal and heterogeneity) processes to understand patterns of species abundance, occurrence, composition, and diversity across scales of space and time. As such, it has a great potential to generalize and synthesize our understanding of many ecological problems. Here, we give an overview of how a metacommunity perspective can provide useful insights for conservation biology, which aims to understand and mitigate the effects of anthropogenic drivers that decrease population sizes, increase extinction probabilities, and threaten biodiversity. We review four general metacommunity processes-environmental filtering, biotic interactions, dispersal, and ecological drift-and discuss how key anthropogenic drivers (e.g., habitat loss and fragmentation, and nonnative species) can alter these processes. We next describe how the patterns of interest in metacommunities (abundance, occupancy, and diversity) map onto issues at the heart of conservation biology, and describe cases where conservation biology benefits by taking a scale-explicit metacommunity perspective. We conclude with some ways forward for including metacommunity perspectives into ideas of ecosystem functioning and services, as well as approaches to habitat management, preservation, and restoration.
Collapse
Affiliation(s)
- Jonathan M Chase
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Department of Computer Sciences, Martin Luther University, Halle-Wittenberg, Germany
| | - Alienor Jeliazkov
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Department of Computer Sciences, Martin Luther University, Halle-Wittenberg, Germany
| | - Emma Ladouceur
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Department of Computer Sciences, Martin Luther University, Halle-Wittenberg, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Duarte S Viana
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Germany.,Leipzig University, Leipzig, Germany
| |
Collapse
|
23
|
Huttunen KL, Muotka T, Karjalainen SM, Laamanen T, Aroviita J. Excess of nitrogen reduces temporal variability of stream diatom assemblages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136630. [PMID: 31958730 DOI: 10.1016/j.scitotenv.2020.136630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Nutrient enrichment degrades water quality and threatens aquatic biota. However, our knowledge on (dis)similarities in temporal patterns of biota among sites of varying level of nutrient stress is limited. We addressed this gap by assessing temporal (among seasons) variation in algal biomass, species diversity and composition of diatom assemblages in three streams that differ in nutrient stress, but are otherwise similar and share the same regional species pool. We monitored three riffle sections in each stream bi-weekly from May to October in 2014. Temporal variation in water chemistry and other environmental variables was mainly synchronous among riffles within streams and often also among streams, indicating shared environmental forcing through time. We found significant differences in diatom assemblage composition among streams and, albeit less so, also among riffles within streams. Diatom assemblages in the two nutrient-enriched streams were more similar to each other than to those in the nutrient-poor stream. Taxa richness did not differ consistently among the streams, and did not vary synchronously at any spatial scale. Temporal variation in diatom assemblage composition decreased with increasing DIN:TotP ratio, likely via a negative effect on sensitive taxa while maintaining favorable conditions for certain tolerant taxa, irrespective of season. This relationship weakened but remained significant even after controlling for stochastic effects, suggesting deterministic mechanisms between nutrient levels and diatom assemblage stability. After controlling for stochastic effects temporal variability was best explained by DIN suggesting that excess of nitrogen reduces temporal variability(intra-annual beta diversity) of diatom assemblages. The high temporal variation, and especially the lack of temporal synchrony at the within streams scale, suggests that single sampling at a single site may be insufficient to reliably assess and monitor a complete stream water body. Our results also showed that measures including species identity outperform traditional diversity metrics in detecting nutrient stress in streams.
Collapse
Affiliation(s)
- Kaisa-Leena Huttunen
- Department of Ecology and Genetics, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland.
| | - Timo Muotka
- Department of Ecology and Genetics, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland; Finnish Environment Institute, Freshwater Centre, P.O. Box 413, FI-90014 Oulu, Finland
| | | | - Tiina Laamanen
- Finnish Environment Institute, Freshwater Centre, P.O. Box 413, FI-90014 Oulu, Finland
| | - Jukka Aroviita
- Finnish Environment Institute, Freshwater Centre, P.O. Box 413, FI-90014 Oulu, Finland
| |
Collapse
|
24
|
Tsiftsis S. The complex effect of heterogeneity and isolation in determining alpha and beta orchid diversity on islands in the Aegean archipelago. SYST BIODIVERS 2020. [DOI: 10.1080/14772000.2020.1738584] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Spyros Tsiftsis
- Department of Forestry and Natural Environment, International Hellenic University, Drama, GR-66100, Greece
- Global Change Research Institute, Academy of Science of the Czech Republic, Belidla 4a, Brno, 603, Czech Republic
| |
Collapse
|
25
|
Li Z, Liu Z, Heino J, Jiang X, Wang J, Tang T, Xie Z. Discriminating the effects of local stressors from climatic factors and dispersal processes on multiple biodiversity dimensions of macroinvertebrate communities across subtropical drainage basins. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134750. [PMID: 31810670 DOI: 10.1016/j.scitotenv.2019.134750] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 06/10/2023]
Abstract
Metacommunity ecology emphasizes that community structure and diversity are not only determined by local environmental conditions through environmental filtering, but also by dispersal-related processes, such as mass effects, dispersal limitation and patch dynamics. However, the roles of dispersal processes are typically ignored in bioassessment approaches. Here, we simultaneously explored the potential influences of four groups of factors: local stressors, climatic factors, within-basin spatial factors and basin identity in explaining variation in diversity indices of macroinvertebrate assemblages from seven subtropical tributary rivers. A total of 12 biodiversity indices based on species identities, functional traits and taxonomic relatedness were calculated and used in the subsequent statistical analysis. Our results showed that, although differing in their relative importance, the four explanatory factor groups all played important roles in explaining variation in biodiversity indices. Of the pure fractions, index variation was best explained by local environmental stressors, whereas the other three explanatory factor groups appeared less influential. Furthermore, diversity indices from species, functional and taxonomic dimensions responded distinctly to the focal ecological factors, and differed in their abilities to portray the effects of human disturbances on macroinvertebrate communities. Taxonomic distinctness indices performed best, with the highest amount of variation associated to local stressors and hardly any variation explained by other factors, implying that these indices are robust in portraying human disturbances in streams. However, species diversity and functional diversity indices were also affected by spatial processes and climatic factors, suggesting that these indices should be used with caution in bioassessment. We hence conclude that environmental assessment of riverine ecosystems should not rely entirely on the perspective of species sorting. In contrast, both roles of spatial processes and environmental variables related to human disturbances and climatic variation should be incorporated in management and conservation of riverine ecosystems.
Collapse
Affiliation(s)
- Zhengfei Li
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhenyuan Liu
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jani Heino
- Freshwater Centre, Finnish Environment Institute, Paavo Havaksen Tie 3, P.O. Box 413, Oulu FI-90014, Finland.
| | - Xiaoming Jiang
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, China.
| | - Jun Wang
- Institute of International Rivers and Eco-security, Yunnan University, Kunming 650091, China.
| | - Tao Tang
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Zhicai Xie
- The Key Laboratory of Aquatic Biodiversity and Conservation, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
26
|
Law B, Chidel M, Law PR. Multi-year population dynamics of a specialist trawling bat at streams with contrasting disturbance. J Mammal 2020. [DOI: 10.1093/jmammal/gyz210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Habitat degradation leads to homogenization of biological communities, often due to the dominance of generalist species over specialists. Yet data as to how life history attributes of specialists vary with such perturbations remain sparse. We compared long-term population dynamics of a specialist trawling bat, the large-footed myotis (Myotis macropus), between two forested catchments. One forest stream was nutrient-enriched from dairy farming in its headwaters and a portion of its surrounding catchment was harvested for timber during the study, while the other was located in primarily undisturbed forest. We caught and banded bats annually at their roosts over 14 years and banded 529 individuals with a 45% recapture rate. The maximum time to recapture was nine years and there was no evidence for transiency in our populations. Mark-recapture analyses allowed for investigation of the dependence of survival on time, sex, and age at marking. Our study spanned extreme El Niño and La Niña weather events, but we found little variation in survival, although recruitment was lower during drought. Mean minimum winter temperature (positive) and rainfall (positive) had weak influences on survival. Survival of adults (~0.70) and population size of adult females was similar between the two sites, suggesting that neither timber harvesting with retained riparian buffers nor eutrophication from farming influenced survival. Survival of adult males and females was similar, but survival of juveniles was less than half that of adults, probably due to a combination of mortality and dispersal. Survival was three times lower immediately after one of the timber bridges used as a roost fully collapsed. Specializing on aquatic habitats buffered M. macropus from most extreme weather, but there was also evidence for possible mortality and recovery after an intense rainfall and flooding event immediately prior to the study. More frequent intense rainfall predicted with global warming may reduce the species’ resilience over time.
Collapse
Affiliation(s)
| | - Mark Chidel
- Forest Science Unit, NSW Primary Industries, Locked Bag 5123, Parramatta 2124, NSW Australia
- The Hills Shire Council, P.O. Box 75, Castle Hill, 1765, NSW, Australia
| | - Peter R Law
- Research Associate, Centre for African Conservation Ecology, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
27
|
Filstrup CT, King KBS, McCullough IM. Evenness effects mask richness effects on ecosystem functioning at macro-scales in lakes. Ecol Lett 2019; 22:2120-2129. [PMID: 31621180 DOI: 10.1111/ele.13407] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/05/2019] [Accepted: 09/23/2019] [Indexed: 11/26/2022]
Abstract
Biodiversity-ecosystem functioning (BEF) theory has largely focused on species richness, although studies have demonstrated that evenness may have stronger effects. While theory and numerous small-scale studies support positive BEF relationships, regional studies have documented negative effects of evenness on ecosystem functioning. We analysed a lake dataset spanning the continental US to evaluate whether strong evenness effects are common at broad spatial scales and if BEF relationships are similar across diverse regions and trophic levels. At the continental scale, phytoplankton evenness explained more variance in phytoplankton and zooplankton resource use efficiency (RUE; ratio of biomass to resources) than richness. For individual regions, slopes of phytoplankton evenness-RUE relationships were consistently negative and positive for phytoplankton and zooplankton RUE, respectively, and most slopes did not significantly differ among regions. Findings suggest that negative evenness effects may be more common than previously documented and are not exceptions restricted to highly disturbed systems.
Collapse
Affiliation(s)
| | - Katelyn B S King
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Ian M McCullough
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
28
|
Testing the River Continuum Concept with geostatistical stream-network models. ECOLOGICAL COMPLEXITY 2019. [DOI: 10.1016/j.ecocom.2019.100773] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
29
|
Haase P, Pilotto F, Li F, Sundermann A, Lorenz AW, Tonkin JD, Stoll S. Moderate warming over the past 25 years has already reorganized stream invertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1531-1538. [PMID: 30678011 DOI: 10.1016/j.scitotenv.2018.12.234] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
Climate warming often results in species range shifts, biodiversity loss and accumulated climatic debts of biota (i.e. slower changes in biota than in temperature). Here, we analyzed the changes in community composition and temperature signature of stream invertebrate communities over 25 years (1990-2014), based on a large set of samples (n = 3782) over large elevation, latitudinal and longitudinal gradients in central Europe. Although warming was moderate (average 0.5 °C), we found a strong reorganization of stream invertebrate communities. Total abundance (+35.9%) and richness (+39.2%) significantly increased. The share of abundance (TA) and taxonomic richness (TR) of warm-dwelling taxa (TA: +73.2%; TR: +60.2%) and medium-temperature-dwelling taxa (TA: +0.4%; TR: +5.8%) increased too, while cold-dwelling taxa declined (TA: -61.5%; TR: -47.3%). The community temperature index, representing the temperature signature of stream invertebrate communities, increased at a similar pace to physical temperature, indicating a thermophilization of the communities and, for the first time, no climatic debt. The strongest changes occurred along the altitudinal gradient, suggesting that stream invertebrates use the spatial configuration of river networks to track their temperature niche uphill. Yet, this may soon come to an end due to the summit trap effect. Our results indicate an ongoing process of replacement of cold-adapted species by thermophilic species at only 0.5 °C warming, which is particularly alarming in the light of the more drastic climate warming projected for coming decades.
Collapse
Affiliation(s)
- Peter Haase
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Francesca Pilotto
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany.
| | - Fengqing Li
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany
| | - Andrea Sundermann
- Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Gelnhausen, Germany; Institute of Ecology, Evolution and Diversity, Goethe University, Frankfurt am Main, Germany
| | - Armin W Lorenz
- Department of Aquatic Ecology, Faculty of Biology, University of Duisburg-Essen, Essen, Germany
| | - Jonathan D Tonkin
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Stefan Stoll
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Environmental Campus Birkenfeld, University of Applied Sciences Trier, Birkenfeld, Germany
| |
Collapse
|
30
|
Cao Y, Hawkins CP. Weighting effective number of species measures by abundance weakens detection of diversity responses. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13345] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yong Cao
- Illinois Natural History Survey Prairie Research Institute University of Illinois Champaign Illinois
| | - Charles P. Hawkins
- Department of Watershed Sciences, Ecology Center National Aquatic Monitoring Center Utah State University Logan Utah
| |
Collapse
|