1
|
Xiao Y, Liu X, Song Z, Lu Y, Zhang L, Huang M, Cheng Y, Chen S, Zhao Y, Zhang Z, Zhou S. Plant size-dependent influence of foliar fungal pathogens promotes diversity through allometric growth. THE NEW PHYTOLOGIST 2024; 242:687-699. [PMID: 38396376 DOI: 10.1111/nph.19600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/26/2024] [Indexed: 02/25/2024]
Abstract
The effect of pathogens on host diversity has attracted much attention in recent years, yet how the influence of pathogens on individual plants scales up to affect community-level host diversity remains unclear. Here, we assessed the effects of foliar fungal pathogens on plant growth and species richness using allometric growth theory in population-level and community-level foliar fungal pathogen exclusion experiments. We calculated growth scaling exponents of 24 species to reveal the intraspecific size-dependent effects of foliar fungal pathogens on plant growth. We also calculated the intercepts to infer the growth rates of relatively larger conspecific individuals. We found that foliar fungal pathogens inhibited the growth of small conspecific individuals more than large individuals, resulting in a positive allometric growth. After foliar fungal pathogen exclusion, species-specific growth scaling exponents and intercepts decreased, but became positively related to species' relative abundance, providing a growth advantage for individuals of abundant species with a higher growth scaling exponent and intercept compared with rare species, and thus reduced species diversity. By adopting allometric growth theory, we elucidate the size-dependent mechanisms through which pathogens regulate species diversity and provide a powerful framework to incorporate antagonistic size-dependent processes in understanding species coexistence.
Collapse
Affiliation(s)
- Yao Xiao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Xiang Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Zhiping Song
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yawen Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Li Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Mengjiao Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yikang Cheng
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Shiliang Chen
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University, 2005 Songhu Road, Shanghai, 200438, China
| | - Yimin Zhao
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China
| | - Zhenhua Zhang
- Qinghai Haibei National Field Research Station of Alpine Grassland Ecosystem, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | - Shurong Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou, 570228, China
| |
Collapse
|
2
|
Daniel C, Allan E, Saiz H, Godoy O. Fast-slow traits predict competition network structure and its response to resources and enemies. Ecol Lett 2024; 27:e14425. [PMID: 38577899 DOI: 10.1111/ele.14425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/12/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
Plants interact in complex networks but how network structure depends on resources, natural enemies and species resource-use strategy remains poorly understood. Here, we quantified competition networks among 18 plants varying in fast-slow strategy, by testing how increased nutrient availability and reduced foliar pathogens affected intra- and inter-specific interactions. Our results show that nitrogen and pathogens altered several aspects of network structure, often in unexpected ways due to fast and slow growing species responding differently. Nitrogen addition increased competition asymmetry in slow growing networks, as expected, but decreased it in fast growing networks. Pathogen reduction made networks more even and less skewed because pathogens targeted weaker competitors. Surprisingly, pathogens and nitrogen dampened each other's effect. Our results show that plant growth strategy is key to understand how competition respond to resources and enemies, a prediction from classic theories which has rarely been tested by linking functional traits to competition networks.
Collapse
Affiliation(s)
- Caroline Daniel
- Institute for Plant Sciences (IPS), Bern University, Bern, Switzerland
| | - Eric Allan
- Institute for Plant Sciences (IPS), Bern University, Bern, Switzerland
- Centre for Development and Environment, University of Bern, Bern, Switzerland
| | - Hugo Saiz
- Institute for Plant Sciences (IPS), Bern University, Bern, Switzerland
- Departamento de Ciencias Agrarias y Medio Natural, Escuela Politécnica Superior, Instituto Universitario de Investigación en Ciencias Ambientales de Aragón (IUCA), Universidad de Zaragoza, Huesca, Spain
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, Puerto Real, Spain
- Estación Biológica de Doñana, EBD-CSIC, Sevilla, Spain
| |
Collapse
|
3
|
Montesinos-Navarro A, López-Climent MF, Pérez-Clemente RM, Arenas-Sánchez C, Sánchez-Martín R, Gómez-Cadenas A, Verdú M. Plant metabolic response to stress in an arid ecosystem is mediated by the presence of neighbors. Ecology 2024; 105:e4247. [PMID: 38267011 DOI: 10.1002/ecy.4247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/04/2023] [Accepted: 11/09/2023] [Indexed: 01/26/2024]
Abstract
Plant neighbors in arid environments can ameliorate abiotic stress by reducing insolation, but they also attract herbivores and pathogens, especially when neighbors are close relatives that share similar antagonists. Plants' metabolic profiles provide a chemical fingerprint of the physiological processes behind plant responses to different environmental stresses. For example, abscisic acid and proline, mainly involved in stomatal closure and osmotic adjustment, can induce plant responses to abiotic stress, while jasmonic acid and salicylic acid primarily regulate plant defense to herbivory or pathogens. Neighbor plants can generate contrasting ecological contexts, modulating plant responses to abiotic and biotic stresses. We hypothesize that plant metabolic profile is modulated by its neighbors in a vegetation patch, expecting a higher investment in metabolites related to biotic-stress tolerance (i.e., herbivory or pathogens) when growing associated with other plants, especially to phylogenetically close relatives, compared to plants growing alone. We show that plants from five species growing with neighbors invest more in biotic-stress tolerance while their conspecifics, growing alone, invest more in abiotic-stress tolerance. This tendency in plants' metabolic profiles was not affected by the phylogenetic diversity of their neighborhood. Linking physiological snapshots with community processes can contribute to elucidating metabolic profiles derived from plant-plant interactions.
Collapse
Affiliation(s)
- Alicia Montesinos-Navarro
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera, Valencia, Spain
| | - Maria F López-Climent
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castellón de la Plana, Spain
| | - Rosa M Pérez-Clemente
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castellón de la Plana, Spain
| | - Cristina Arenas-Sánchez
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera, Valencia, Spain
| | - Ricardo Sánchez-Martín
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera, Valencia, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, Castellón de la Plana, Spain
| | - Miguel Verdú
- Centro de Investigaciones Sobre Desertificación (CIDE, CSIC-UV-GV), Carretera de Moncada-Náquera, Valencia, Spain
| |
Collapse
|
4
|
Bourdôt GW, Casonato SG. Broad host-range pathogens as bioherbicides: managing nontarget plant disease risk. PEST MANAGEMENT SCIENCE 2024; 80:28-34. [PMID: 36789792 DOI: 10.1002/ps.7410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/25/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Plant pathogens with a broad host range are commercially more attractive as microbial bioherbicides than strictly host-specific pathogens as a result of the wider market potential of a product capable of controlling multiple species. However, the perceived spatiotemporal disease risk to nontarget plants is a barrier to their adoption for weed control. We consider two approaches to managing this risk. First, we consider safety zones and withholding periods for bioherbicide treatment sites. These must ensure inoculum spreading from, or surviving at the site, exposes nontarget plants to no more inoculum than from natural sources. They can be determined using simple dispersal models. We show that a ratio of added:natural inoculum of 1.0 is biologically reasonable as an 'acceptable risk' and a sound basis for safety zones and withholding periods. These would be analogous to the 'conditions of use' for synthetic chemical herbicides aimed at minimizing collateral damage to susceptible plants from spray drift and persistent soil residues. Second, weed-specific isolates of broad host-range pathogens may avoid the need for safety zones and withholding periods. Such isolates have been found in many broad host-range pathogen species. Their utilization as bioherbicides may more easily meet the requirements of regulators. Mixtures of different weed-specific isolates of a pathogen could provide bioherbicides with commercially attractive spectrums of weed control activity. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Graeme W Bourdôt
- Weeds Pests and Biosecurity Team, AgResearch Limited, Christchurch, New Zealand
| | - Seona G Casonato
- Department of Pest Management and Conservation, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
5
|
Grunberg RL, Halliday FW, Heckman RW, Joyner BN, O’Keeffe KR, Mitchell CE. Disease decreases variation in host community structure in an old-field grassland. PLoS One 2023; 18:e0293495. [PMID: 37889914 PMCID: PMC10610459 DOI: 10.1371/journal.pone.0293495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Disease may drive variation in host community structure by modifying the interplay of deterministic and stochastic processes that shape communities. For instance, deterministic processes like ecological selection can benefit species less impacted by disease. When communities have higher levels of disease and disease consistently selects for certain host species, this can reduce variation in host community composition. On the other hand, when host communities are less impacted by disease and selection is weaker, stochastic processes (e.g., drift, dispersal) may play a bigger role in host community structure, which can increase variation among communities. While effects of disease on host community structure have been quantified in field experiments, few have addressed the role of disease in modulating variation in structure among host communities. To address this, we conducted a field experiment spanning three years, using a tractable system: foliar fungal pathogens in an old-field grassland community dominated by the grass Lolium arundinaceum, tall fescue. We reduced foliar fungal disease burden in replicate host communities (experimental plots in intact vegetation) in three fungicide regimens that varied in the seasonal duration of fungicide treatment and included a fungicide-free control. We measured host diversity, biomass, and variation in community structure among replicate communities. Disease reduction generally decreased plant richness and increased aboveground biomass relative to communities experiencing ambient levels of disease. These changes in richness and aboveground biomass were consistent across years despite changes in structure of the plant communities over the experiment's three years. Importantly, disease reduction amplified host community variation, suggesting that disease diminished the degree to which host communities were structured by stochastic processes. These results of experimental disease reduction both highlight the potential importance of stochastic processes in plant communities and reveal the potential for disease to regulate variation in host community structure.
Collapse
Affiliation(s)
- Rita L. Grunberg
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Fletcher W. Halliday
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Robert W. Heckman
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, United States of America
| | - Brooklynn N. Joyner
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Kayleigh R. O’Keeffe
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Charles E. Mitchell
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Environment, Ecology and Energy Program, University of North Carolina, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
6
|
Granjel RR, Allan E, Godoy O. Nitrogen enrichment and foliar fungal pathogens affect the mechanisms of multispecies plant coexistence. THE NEW PHYTOLOGIST 2023; 237:2332-2346. [PMID: 36527234 DOI: 10.1111/nph.18689] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Changes in resources (e.g. nitrogen) and enemies (e.g. foliar pathogens) are key drivers of plant diversity and composition. However, their effects have not been connected to the niche and fitness differences that determine multispecies coexistence. Here, we combined a structuralist theoretical approach with a detailed grassland experiment factorially applying nitrogen addition and foliar fungal pathogen suppression to evaluate the joint effect of nitrogen and pathogens on niche and fitness differences, across a gradient from two to six interacting species. Nitrogen addition and pathogen suppression modified species interaction strengths and intrinsic growth rates, leading to reduced multispecies fitness differences. However, contrary to expected, we also observed that they promote stabilising niche differences. Although these modifications did not substantially alter species richness, they predicted major changes in community composition. Indirect interactions between species explained these community changes in smaller assemblages (three and four species) but lost importance in favour of direct pairwise interactions when more species were involved (five and six). Altogether, our work shows that explicitly considering the number of interacting species is critical for better understanding the direct and indirect processes by which nitrogen enrichment and pathogen communities shape coexistence in grasslands.
Collapse
Affiliation(s)
- Rodrigo R Granjel
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, 41012, Sevilla, Spain
| | - Eric Allan
- Institute of Plant Sciences, University of Bern, Alterbergrain 21, 3013, Bern, Switzerland
| | - Oscar Godoy
- Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz, 11510, Puerto Real, Spain
| |
Collapse
|
7
|
Liu X, Parker IM, Gilbert GS, Lu Y, Xiao Y, Zhang L, Huang M, Cheng Y, Zhang Z, Zhou S. Coexistence is stabilized by conspecific negative density dependence via fungal pathogens more than oomycete pathogens. Ecology 2022; 103:e3841. [DOI: 10.1002/ecy.3841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 04/15/2022] [Accepted: 06/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Xiang Liu
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education College of Forestry, Hainan University Haikou P. R. China
- State Key Laboratory of Grassland Agro‐Ecosystems College of Ecology, Lanzhou University Lanzhou P. R. China
| | - Ingrid M. Parker
- Department of Ecology and Evolutionary Biology University of California Santa Cruz California U.S.A
| | - Gregory S. Gilbert
- Department of Environmental Studies University of California Santa Cruz California U.S.A
| | - Yawen Lu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University Shanghai P. R. China
| | - Yao Xiao
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University Shanghai P. R. China
| | - Li Zhang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University Shanghai P. R. China
| | - Mengjiao Huang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University Shanghai P. R. China
| | - Yikang Cheng
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversity Science, School of Life Sciences, Fudan University Shanghai P. R. China
| | - Zhenhua Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota Northwest Institute of Plateau Biology, Chinese Academy of Sciences Xining P. R. China
| | - Shurong Zhou
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education College of Forestry, Hainan University Haikou P. R. China
| |
Collapse
|
8
|
Moody NM, Vivlamore EK, Fuxjager MJ. Woodpecker drum evolution: An analysis of covariation in elements of a multicomponent acoustic display among and within species. Evolution 2022; 76:1469-1480. [PMID: 35665503 DOI: 10.1111/evo.14535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/15/2022] [Accepted: 03/10/2022] [Indexed: 01/22/2023]
Abstract
Multicomponent signals are found throughout the animal kingdom, but how these elaborate displays evolve and diversify is still unclear. Here, we explore the evolution of the woodpecker drum display. Two components of this territorial sexually selected signal, drum speed and drum length, are used by territory holders to assess the threat level of an intruding drummer. We explore the coevolution of these display components both among and within species. Among species, we find evidence for strong coevolution of drum speed and length. Within species, we find that drum speed and length vary largely independent of each other. However, in some species, there is evidence of covariation in certain portions of the drum length distribution. The observed differences in component covariation at the macro- and microevolutionary scales highlight the importance of studying signal structure both among and within species. In all cases of covariation at both evolutionary scales, the relationship between drum speed and length is positive, indicating mutual elaboration of display components and not a performance trade-off.
Collapse
Affiliation(s)
- Nicole M Moody
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, 02912, USA
| | - Emma K Vivlamore
- Department of Biology, Wake Forest University, Winston-Salem, North Carolina, 27101, USA
| | - Matthew J Fuxjager
- Department of Ecology, Evolution, and Organismal Biology, Brown University, Providence, Rhode Island, 02912, USA
| |
Collapse
|
9
|
Spear ER, Broders KD. Host-generalist fungal pathogens of seedlings may maintain forest diversity via host-specific impacts and differential susceptibility among tree species. THE NEW PHYTOLOGIST 2021; 231:460-474. [PMID: 33794003 DOI: 10.1111/nph.17379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Host-specialized pathogens are credited with the maintenance of tropical forest diversity under the Janzen-Connell hypothesis. Yet, in diverse forests, selection may favor pathogens with broad host ranges, given their passive dispersal and the relative rarity of tree species. We surveyed the host associations of potential pathogens isolated from symptomatic seedlings in forests in Panama and used inoculations to assess the pathogenicity and host ranges of 27 fungal isolates, and differences among tree species in susceptibility. Thirty-one of the 33 nonsingleton operational taxonomic units (OTUs) isolated from seedlings are multi-host. All 31 multi-host OTUs exhibit low to moderate specialization, and we observed phylogenetically overdispersed host use for 19 OTUs. The pathogenicity of 10 isolates was experimentally confirmed; nine caused disease in seedlings in multiple families. However, the outcome of infection differs among tree species susceptible to a given multi-host pathogen. Furthermore, some tree species were seemingly resistant to all fungi tested, while others were susceptible to multiple fungi. Tree species adapted to environments with lower disease pressure were most likely to exhibit disease. Our results suggest that generalist pathogens contribute to the maintenance of local and regional forest diversity via host-specific impacts and the exclusion of disease-sensitive trees from disease-prone habitats.
Collapse
Affiliation(s)
- Erin R Spear
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Kirk D Broders
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| |
Collapse
|
10
|
Kendig AE, Spear ER, Daws SC, Flory SL, Mordecai EA. Native perennial and non-native annual grasses shape pathogen community composition and disease severity in a California grassland. THE JOURNAL OF ECOLOGY 2021; 109:900-912. [PMID: 34158675 PMCID: PMC8215988 DOI: 10.1111/1365-2745.13515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/23/2020] [Indexed: 06/13/2023]
Abstract
The densities of highly competent plant hosts (i.e. those that are susceptible to and successfully transmit a pathogen) may shape pathogen community composition and disease severity, altering disease risk and impacts. Life history and evolutionary history can influence host competence; longer lived species tend to be better defended than shorter lived species and pathogens adapt to infect species with which they have longer evolutionary histories. It is unclear, however, how the densities of species that differ in competence due to life and evolutionary histories affect plant pathogen community composition and disease severity.We examined foliar fungal pathogens of two host groups in a California grassland: native perennial and non-native annual grasses. We first characterized pathogen community composition and disease severity of the two host groups to approximate differences in competence. We then used observational and manipulated gradients of native perennial and non-native annual grass densities to assess the effects of each host group on pathogen community composition and disease severity in 1-m2 plots.Native perennial and non-native annual grasses hosted distinct pathogen communities but shared generalist pathogens. Native perennial grasses experienced 26% higher disease severity than non-native annuals. Only the observational gradient of native perennial grass density affected disease severity; there were no other significant relationships between host group density and either disease severity or pathogen community composition.Synthesis. The life and evolutionary histories of grasses likely influence their competence for different pathogen species, exemplified by distinct pathogen communities and differences in disease severity. However, there was limited evidence that the density of either host group affected pathogen community composition or disease severity. Therefore, competence for different pathogens likely shapes pathogen community composition and disease severity but may not interact with host density to alter disease risk and impacts at small scales.
Collapse
Affiliation(s)
- Amy E. Kendig
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | - Erin R. Spear
- Smithsonian Tropical Research Institute, Panama City, Panama
| | | | - S. Luke Flory
- Agronomy Department, University of Florida, Gainesville, FL, USA
| | | |
Collapse
|
11
|
Farner JE, Spear ER, Mordecai EA. Habitat type and interannual variation shape unique fungal pathogen communities on a California native bunchgrass. FUNGAL ECOL 2021; 48. [PMID: 33408755 DOI: 10.1016/j.funeco.2020.100983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The role of infectious disease in regulating host populations is increasingly recognized, but how environmental conditions affect pathogen communities and infection levels remains poorly understood. Over 3 y, we compared foliar disease burden, fungal pathogen community composition, and foliar chemistry in the perennial bunchgrass Stipa pulchra occurring in adjacent serpentine and nonserpentine grassland habitats with distinct soil types and plant communities. We found that serpentine and nonserpentine S. pulchra experienced consistent, low disease pressure associated with distinct fungal pathogen communities with high interannual species turnover. Additionally, plant chemistry differed with habitat type. The results indicate that this species experiences minimal foliar disease associated with diverse fungal communities that are structured across landscapes by spatially and temporally variable conditions. Distinct fungal communities associated with different growing conditions may shield S. pulchra from large disease outbreaks, contributing to the low disease burden observed on this and other Mediterranean grassland species.
Collapse
Affiliation(s)
- Johannah E Farner
- Biology Department, Stanford University, Stanford, California 94305 USA
| | - Erin R Spear
- Biology Department, Stanford University, Stanford, California 94305 USA.,Smithsonian Tropical Research Institute, Panama City, Panama, Republic of Panama
| | - Erin A Mordecai
- Biology Department, Stanford University, Stanford, California 94305 USA
| |
Collapse
|
12
|
Mc Cargo PD, Iannone LJ, Soria M, Novas MV. Diversity of foliar endophytes in a dioecious wild grass and their interaction with the systemic Epichloë. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Goss EM, Kendig AE, Adhikari A, Lane B, Kortessis N, Holt RD, Clay K, Harmon PF, Flory SL. Disease in Invasive Plant Populations. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:97-117. [PMID: 32516034 DOI: 10.1146/annurev-phyto-010820-012757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Non-native invasive plants can establish in natural areas, where they can be ecologically damaging and costly to manage. Like cultivated plants, invasive plants can experience a relatively disease-free period upon introduction and accumulate pathogens over time. Diseases of invasive plant populations are infrequently studied compared to diseases of agriculture, forestry, and even native plant populations. We evaluated similarities and differences in the processes that are likely to affect pathogen accumulation and disease in invasive plants compared to cultivated plants, which are the dominant focus of the field of plant pathology. Invasive plants experience more genetic, biotic, and abiotic variation across space and over time than cultivated plants, which is expected to stabilize the ecological and evolutionary dynamics of interactions with pathogens and possibly weaken the efficacy of infectious disease in their control. Although disease is expected to be context dependent, the widespread distribution of invasive plants makes them important pathogen reservoirs. Research on invasive plant diseases can both protect crops and help manage invasive plant populations.
Collapse
Affiliation(s)
- Erica M Goss
- Department of Plant Pathology and Emerging Pathogens Institute, University of Florida, Gainesville, Florida 32611, USA;
| | - Amy E Kendig
- Agronomy Department, University of Florida, Gainesville, Florida 32611, USA
| | - Ashish Adhikari
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - Brett Lane
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - Nicholas Kortessis
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Robert D Holt
- Department of Biology, University of Florida, Gainesville, Florida 32611, USA
| | - Keith Clay
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana 70118, USA
| | - Philip F Harmon
- Department of Plant Pathology, University of Florida, Gainesville, Florida 32611, USA
| | - S Luke Flory
- Agronomy Department, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
14
|
Schmidt R, Auge H, Deising HB, Hensen I, Mangan SA, Schädler M, Stein C, Knight TM. Abundance, origin, and phylogeny of plants do not predict community-level patterns of pathogen diversity and infection. Ecol Evol 2020; 10:5506-5516. [PMID: 32607170 PMCID: PMC7319236 DOI: 10.1002/ece3.6292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022] Open
Abstract
Pathogens have the potential to shape plant community structure, and thus, it is important to understand the factors that determine pathogen diversity and infection in communities. The abundance, origin, and evolutionary relationships of plant hosts are all known to influence pathogen patterns and are typically studied separately. We present an observational study that examined the influence of all three factors and their interactions on the diversity of and infection of several broad taxonomic groups of foliar, floral, and stem pathogens across three sites in a temperate grassland in the central United States. Despite that pathogens are known to respond positively to increases in their host abundances in other systems, we found no relationship between host abundance and either pathogen diversity or infection. Native and exotic plants did not differ in their infection levels, but exotic plants hosted a more generalist pathogen community compared to native plants. There was no phylogenetic signal across plants in pathogen diversity or infection. The lack of evidence for a role of abundance, origin, and evolutionary relationships in shaping patterns of pathogens in our study might be explained by the high generalization and global distributions of our focal pathogen community, as well as the high diversity of our plant host community. In general, the community-level patterns of aboveground pathogen infections have received less attention than belowground pathogens, and our results suggest that their patterns might not be explained by the same drivers.
Collapse
Affiliation(s)
- Robin Schmidt
- Department of Community EcologyHelmholtz‐Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Harald Auge
- Department of Community EcologyHelmholtz‐Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Holger B. Deising
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Agricultural and Nutritional Sciences, Phytopathology and Plant ProtectionMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Isabell Hensen
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Scott A. Mangan
- Tyson Research Center & Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
| | - Martin Schädler
- Department of Community EcologyHelmholtz‐Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Claudia Stein
- Tyson Research Center & Department of BiologyWashington University in St. LouisSt. LouisMissouriUSA
- Department of Biology and Environmental SciencesAuburn University at MontgomeryMontgomeryALUSA
| | - Tiffany M. Knight
- Department of Community EcologyHelmholtz‐Centre for Environmental Research–UFZHalle (Saale)Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology/Geobotany and Botanical GardenMartin Luther University Halle‐WittenbergHalle (Saale)Germany
| |
Collapse
|
15
|
Schroeder JW, Dobson A, Mangan SA, Petticord DF, Herre EA. Mutualist and pathogen traits interact to affect plant community structure in a spatially explicit model. Nat Commun 2020; 11:2204. [PMID: 32371877 PMCID: PMC7200732 DOI: 10.1038/s41467-020-16047-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
Empirical studies show that plant-soil feedbacks (PSF) can generate negative density dependent (NDD) recruitment capable of maintaining plant community diversity at landscape scales. However, the observation that common plants often exhibit relatively weaker NDD than rare plants at local scales is difficult to reconcile with the maintenance of overall plant diversity. We develop a spatially explicit simulation model that tracks the community dynamics of microbial mutualists, pathogens, and their plant hosts. We find that net PSF effects vary as a function of both host abundance and key microbial traits (e.g., host affinity) in ways that are compatible with both common plants exhibiting relatively weaker local NDD, while promoting overall species diversity. The model generates a series of testable predictions linking key microbial traits and the relative abundance of host species, to the strength and scale of PSF and overall plant community diversity.
Collapse
Affiliation(s)
- John W Schroeder
- Smithsonian Tropical Research Institute, Balboa Ancon, Republic of Panama.
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Andrew Dobson
- Princeton University, Princeton, NJ, USA
- Santa Fe Institute, Hyde Park Road, Santa Fe, NM, USA
| | - Scott A Mangan
- Smithsonian Tropical Research Institute, Balboa Ancon, Republic of Panama
- Washington University, St. Louis, MO, USA
| | - Daniel F Petticord
- Smithsonian Tropical Research Institute, Balboa Ancon, Republic of Panama
| | - Edward Allen Herre
- Smithsonian Tropical Research Institute, Balboa Ancon, Republic of Panama
| |
Collapse
|
16
|
Montesinos-Navarro A, Pérez-Clemente RM, Sánchez-Martín R, Gómez-Cadenas A, Verdú M. Phylogenetic analysis of secondary metabolites in a plant community provides evidence for trade-offs between biotic and abiotic stress tolerance. Evol Ecol 2020. [DOI: 10.1007/s10682-020-10044-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Jiang J, Abbott KC, Baudena M, Eppinga MB, Umbanhowar JA, Bever JD. Pathogens and Mutualists as Joint Drivers of Host Species Coexistence and Turnover: Implications for Plant Competition and Succession. Am Nat 2020; 195:591-602. [PMID: 32216667 DOI: 10.1086/707355] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The potential for either pathogens or mutualists to alter the outcome of interactions between host species has been clearly demonstrated experimentally, but our understanding of their joint influence remains limited. Individually, pathogens and mutualists can each stabilize (via negative feedback) or destabilize (via positive feedback) host-host interactions. When pathogens and mutualists are both present, the potential for simultaneous positive and negative feedbacks can generate a wide range of possible effects on host species coexistence and turnover. Extending existing theoretical frameworks, we explore the range of dynamics generated by simultaneous interactions with pathogens and mutualists and identify the conditions for pathogen or mutualist mediation of host coexistence. We then explore the potential role of microbial mutualists and pathogens in plant species turnover during succession. We show how a combination of positive and negative plant-microbe feedbacks can generate a coexistence state that is part of a set of alternative stable states. This result implies that the outcomes of coexistence from classical plant-soil feedback experiments may be susceptible to disturbances and that empirical investigations of microbially mediated coexistence would benefit from consideration of interactive effects of feedbacks generated from different distinct components of the plant microbiome.
Collapse
|
18
|
Uricchio LH, Daws SC, Spear ER, Mordecai EA. Priority Effects and Nonhierarchical Competition Shape Species Composition in a Complex Grassland Community. Am Nat 2019; 193:213-226. [PMID: 30720356 PMCID: PMC8518031 DOI: 10.1086/701434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Niche and fitness differences control the outcome of competition, but determining their relative importance in invaded communities—which may be far from equilibrium—remains a pressing concern. Moreover, it is unclear whether classic approaches for studying competition, which were developed predominantly for pairs of interacting species, will fully capture dynamics in complex species assemblages. We parameterized a population-dynamic model using competition experiments of two native and three exotic species from a grassland community. We found evidence for minimal fitness differences or niche differences between the native species, leading to slow replacement dynamics and priority effects, but large fitness advantages allowed exotics to unconditionally invade natives. Priority effects driven by strong interspecific competition between exotic species drove single-species dominance by one of two exotic species in 80% of model outcomes, while a complex mixture of nonhierarchical competition and coexistence between native and exotic species occurred in the remaining 20%. Fungal infection, a commonly hypothesized coexistence mechanism, had weak fitness effects and is unlikely to substantially affect coexistence. In contrast to previous work on pairwise outcomes in largely native-dominated communities, our work supports a role for nearly neutral dynamics and priority effects as drivers of species composition in invaded communities.
Collapse
|