1
|
Rosendo-Silva D, Lopes E, Monteiro-Alfredo T, Falcão-Pires I, Eickhoff H, Viana S, Reis F, Pires AS, Abrantes AM, Botelho MF, Seiça R, Matafome P. The adipose tissue melanocortin 3 receptor is targeted by ghrelin and leptin and may be a therapeutic target in obesity. Mol Cell Endocrinol 2024; 594:112367. [PMID: 39293775 DOI: 10.1016/j.mce.2024.112367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/03/2024] [Accepted: 09/07/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVE Obesity is linked to perturbations in energy balance mechanisms, including ghrelin and leptin actions at the hypothalamic circuitry of neuropeptide Y (NPY) and melanocortin. However, information about the regulation of this system in the periphery is still scarce. Our objective was to study the regulation of the NPY/melanocortin system in the adipose tissue (AT) and evaluate its therapeutic potential for obesity and type 2 diabetes. METHODS The expression of the NPY/melanocortin receptors' levels was assessed in the visceral AT of individuals with obesity and altered metabolism. Protein levels of these receptors were evaluated in cultured adipocytes incubated with ghrelin (30 and 100 ng/mL) and leptin (1 and 10 nM) and in the AT of an animal model with a mutation in the leptin receptor (ZSF1 rat), to understand their regulation by leptin and ghrelin. The vertical sleeve gastrectomy animal model was used to evaluate the putative therapeutic potential of the NPY/melanocortin system. RESULTS In this study, we unravelled that leptin (1 nM and 10 nM) selectively reduced the levels of NPY5R and MC3R but no other NPYR/MCRs in cultured adipocytes. In turn, acylated ghrelin (100 ng/mL) significantly increased NPY1R, but the inhibition of its receptor also abrogates MC3R levels. However, in the Lepr-deficient ZSF1 rat, both NPY5R and MC3R levels were reduced, along with other NPYRs and MCRs, suggesting that leptin resistance negatively affects NPY and melanocortin signalling. In human adipose tissue, we found a downregulation of genes encoding the NPY and melanocortin receptors in the visceral AT of individuals with obesity and insulin resistance, being correlated with genes regulating metabolic activity. Additionally, diabetic obese rats submitted to vertical sleeve gastrectomy showed increased levels of NPY, melanocortin, ghrelin, and leptin receptors in the AT, including MC3R, suggesting it may constitute a therapeutic target in obesity. CONCLUSIONS Our results suggest that the AT NPY/melanocortin system, particularly the MC3R, may be involved in the neuroendocrine regulation of adipocyte metabolism. Altogether, our work shows MC3R is under the control of the ghrelin/leptin duo, is reduced in patients with obesity and prediabetes, and may constitute a therapeutic target in obesity.
Collapse
Affiliation(s)
- Daniela Rosendo-Silva
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal.
| | - Eduardo Lopes
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Tamaeh Monteiro-Alfredo
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Hans Eickhoff
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal
| | - Sofia Viana
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal; Polytechnic University of Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal
| | - Flávio Reis
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR and Institute of Pharmacology and Experimental Therapeutics, Faculty of Medicine, Coimbra, Portugal
| | - Ana Salomé Pires
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Ana Margarida Abrantes
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Maria Filomena Botelho
- University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; University of Coimbra, iCBR Area of Environment Genetics and Oncobiology (CIMAGO), Institute of Biophysics, Faculty of Medicine, Coimbra, Portugal
| | - Raquel Seiça
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal
| | - Paulo Matafome
- University of Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR) and Institute of Physiology, Faculty of Medicine, Coimbra, Portugal; University of Coimbra, Center for Innovative Biomedicine and Biotechnology (CIBB), Coimbra, Portugal; Clinical Academic Center of Coimbra (CACC), Coimbra, Portugal; Polytechnic University of Coimbra, Coimbra Health School (ESTeSC), Coimbra, Portugal.
| |
Collapse
|
2
|
Doiron JE, Xia H, Yu X, Nevins AR, LaPenna KB, Sharp TE, Goodchild TT, Allerton TD, Elgazzaz M, Lazartigues E, Shah SJ, Li Z, Lefer DJ. Adjunctive therapy with an oral H 2S donor provides additional therapeutic benefit beyond SGLT2 inhibition in cardiometabolic heart failure with preserved ejection fraction. Br J Pharmacol 2024; 181:4294-4310. [PMID: 38982742 DOI: 10.1111/bph.16493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND AND PURPOSE Sodium glucose cotransporter 2 inhibitors (SGLT2i) have emerged as a potent therapy for heart failure with preserved ejection fraction (HFpEF). Hydrogen sulphide (H2S), a well-studied cardioprotective agent, could be beneficial in HFpEF. SGLT2i monotherapy and combination therapy involving an SGLT2i and H2S donor in two preclinical models of cardiometabolic HFpEF was investigated. EXPERIMENTAL APPROACH Nine-week-old C57BL/6N mice received L-NAME and a 60% high fat diet for five weeks. Mice were then randomized to either control, SGLT2i monotherapy or SGLT2i and H2S donor, SG1002, for five additional weeks. Ten-week-old ZSF1 obese rats were randomized to control, SGLT2i or SGLT2i and SG1002 for 8 weeks. SG1002 monotherapy was investigated in additional animals. Cardiac function (echocardiography and haemodynamics), exercise capacity, glucose handling and multiorgan pathology were monitored during experimental protocols. KEY RESULTS SGLT2i treatment improved E/e' ratio and treadmill exercise in both models. Combination therapy afforded increases in cardiovascular sulphur bioavailability that coincided with improved left end-diastolic function (E/e' ratio), exercise capacity, metabolic state, cardiorenal fibrosis, and hepatic steatosis. Follow-up studies with SG1002 monotherapy revealed improvements in diastolic function, exercise capacity and multiorgan histopathology. CONCLUSIONS AND IMPLICATIONS SGLT2i monotherapy remediated pathological complications exhibited by two well-established HFpEF models. Adjunctive H2S therapy resulted in further improvements of cardiometabolic perturbations beyond SGLT2i monotherapy. Follow-up SG1002 monotherapy studies inferred an improved phenotype with combination therapy beyond either monotherapy. These data demonstrate the differing effects of SGLT2i and H2S therapy while also revealing the superior efficacy of the combination therapy in cardiometabolic HFpEF.
Collapse
Affiliation(s)
- Jake E Doiron
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Huijing Xia
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA
- Cardiovascular Center of Excellence, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Xiaoman Yu
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Alexandra R Nevins
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kyle B LaPenna
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Thomas E Sharp
- Molecular Pharmacology and Physiology, University of South Florida, Tampa, Florida, USA
| | - Traci T Goodchild
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | | | - Mona Elgazzaz
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA
- Cardiovascular Center of Excellence, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Eric Lazartigues
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, Louisiana, USA
- Cardiovascular Center of Excellence, LSU Health Sciences Center, New Orleans, Louisiana, USA
| | - Sanjiv J Shah
- Feinberg School of Medicine, Northwestern University Medicine, Chicago, Illinois, USA
| | - Zhen Li
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David J Lefer
- Department of Cardiac Surgery, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
3
|
Gibb AA, LaPenna K, Gaspar RB, Latchman NR, Tan Y, Choya-Foces C, Doiron JE, Li Z, Xia H, Lazaropoulos MP, Conwell M, Sharp TE, Goodchild TT, Lefer DJ, Elrod JW. Integrated systems biology identifies disruptions in mitochondrial function and metabolism as key contributors to heart failure with preserved ejection fraction (HFpEF). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.25.619450. [PMID: 39484400 PMCID: PMC11527111 DOI: 10.1101/2024.10.25.619450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Background Heart failure with preserved ejection fraction (HFpEF) accounts for ~50% of HF cases, with no effective treatments. The ZSF1-obese rat model recapitulates numerous clinical features of HFpEF including hypertension, obesity, metabolic syndrome, exercise intolerance, and LV diastolic dysfunction. Here, we utilized a systems-biology approach to define the early metabolic and transcriptional signatures to gain mechanistic insight into the pathways contributing to HFpEF development. Methods Male ZSF1-obese, ZSF1-lean hypertensive controls, and WKY (wild-type) controls were compared at 14w of age for extensive physiological phenotyping and LV tissue harvesting for unbiased metabolomics, RNA-sequencing, and assessment of mitochondrial morphology and function. Utilizing ZSF1-lean and WKY controls enabled a distinction between hypertension-driven molecular changes contributing to HFpEF pathology, versus hypertension + metabolic syndrome. Results ZSF1-obese rats displayed numerous clinical features of HFpEF. Comparison of ZSF1-lean vs WKY (i.e., hypertension-exclusive effects) revealed metabolic remodeling suggestive of increased aerobic glycolysis, decreased β-oxidation, and dysregulated purine and pyrimidine metabolism with few transcriptional changes. ZSF1-obese rats displayed worsened metabolic remodeling and robust transcriptional remodeling highlighted by the upregulation of inflammatory genes and downregulation of the mitochondrial structure/function and cellular metabolic processes. Integrated network analysis of metabolomic and RNAseq datasets revealed downregulation of nearly all catabolic pathways contributing to energy production, manifesting in a marked decrease in the energetic state (i.e., reduced ATP/ADP, PCr/ATP). Cardiomyocyte ultrastructure analysis revealed decreased mitochondrial area, size, and cristae density, as well as increased lipid droplet content in HFpEF hearts. Mitochondrial function was also impaired as demonstrated by decreased substrate-mediated respiration and dysregulated calcium handling. Conclusions Collectively, the integrated omics approach applied here provides a framework to uncover novel genes, metabolites, and pathways underlying HFpEF, with an emphasis on mitochondrial energy metabolism as a potential target for intervention.
Collapse
Affiliation(s)
- Andrew A. Gibb
- Center for Cardiometabolic Science, Christina Lee Brown Envirome Institute, Department of Medicine, University of Louisville, Louisville, KY, USA
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Kyle LaPenna
- Cardiovascular Center for Excellence, Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Ryan B. Gaspar
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Nadina R. Latchman
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Yinfei Tan
- Fox Chase Cancer Center, Temple University, Philadelphia, PA, USA
| | - Carmen Choya-Foces
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Jake E. Doiron
- Cardiovascular Center for Excellence, Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Zhen Li
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Huijing Xia
- Cardiovascular Center for Excellence, Department of Pharmacology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Michael P. Lazaropoulos
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mariell Conwell
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Thomas E. Sharp
- Department of Molecular Pharmacology and Physiology, University of South Florida Health, Tampa, FL, USA
| | - Traci T. Goodchild
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - David J. Lefer
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - John W. Elrod
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| |
Collapse
|
4
|
Guivala SJ, Bode KA, Okun JG, Kartal E, Schwedhelm E, Pohl LV, Werner S, Erbs S, Thiele H, Büttner P. Interactions between the gut microbiome, associated metabolites and the manifestation and progression of heart failure with preserved ejection fraction in ZSF1 rats. Cardiovasc Diabetol 2024; 23:299. [PMID: 39143579 PMCID: PMC11325580 DOI: 10.1186/s12933-024-02398-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is associated with systemic inflammation, obesity, metabolic syndrome, and gut microbiome changes. Increased trimethylamine-N-oxide (TMAO) levels are predictive for mortality in HFpEF. The TMAO precursor trimethylamine (TMA) is synthesized by the intestinal microbiome, crosses the intestinal barrier and is metabolized to TMAO by hepatic flavin-containing monooxygenases (FMO). The intricate interactions of microbiome alterations and TMAO in relation to HFpEF manifestation and progression are analyzed here. METHODS Healthy lean (L-ZSF1, n = 12) and obese ZSF1 rats with HFpEF (O-ZSF1, n = 12) were studied. HFpEF was confirmed by transthoracic echocardiography, invasive hemodynamic measurements, and detection of N-terminal pro-brain natriuretic peptide (NT-proBNP). TMAO, carnitine, symmetric dimethylarginine (SDMA), and amino acids were measured using mass-spectrometry. The intestinal epithelial barrier was analyzed by immunohistochemistry, in-vitro impedance measurements and determination of plasma lipopolysaccharide via ELISA. Hepatic FMO3 quantity was determined by Western blot. The fecal microbiome at the age of 8, 13 and 20 weeks was assessed using 16s rRNA amplicon sequencing. RESULTS Increased levels of TMAO (+ 54%), carnitine (+ 46%) and the cardiac stress marker NT-proBNP (+ 25%) as well as a pronounced amino acid imbalance were observed in obese rats with HFpEF. SDMA levels in O-ZSF1 were comparable to L-ZSF1, indicating stable kidney function. Anatomy and zonula occludens protein density in the intestinal epithelium remained unchanged, but both impedance measurements and increased levels of LPS indicated an impaired epithelial barrier function. FMO3 was decreased (- 20%) in the enlarged, but histologically normal livers of O-ZSF1. Alpha diversity, as indicated by the Shannon diversity index, was comparable at 8 weeks of age, but decreased by 13 weeks of age, when HFpEF manifests in O-ZSF1. Bray-Curtis dissimilarity (Beta-Diversity) was shown to be effective in differentiating L-ZSF1 from O-ZSF1 at 20 weeks of age. Members of the microbial families Lactobacillaceae, Ruminococcaceae, Erysipelotrichaceae and Lachnospiraceae were significantly differentially abundant in O-ZSF1 and L-ZSF1 rats. CONCLUSIONS In the ZSF1 HFpEF rat model, increased dietary intake is associated with alterations in gut microbiome composition and bacterial metabolites, an impaired intestinal barrier, and changes in pro-inflammatory and health-predictive metabolic profiles. HFpEF as well as its most common comorbidities obesity and metabolic syndrome and the alterations described here evolve in parallel and are likely to be interrelated and mutually reinforcing. Dietary adaption may have a positive impact on all entities.
Collapse
Affiliation(s)
- Salmina J Guivala
- Department of Cardiology, Angiology and Pulmonology, University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| | - Konrad A Bode
- Department Molecular Diagnostics, Laboratory Dr. Limbach and Colleagues, Am Breitspiel 15, 69126, Heidelberg, Germany
| | - Jürgen G Okun
- Division of Neuropediatrics and Metabolic Medicine, Department of General Pediatrics, University Children's Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Ece Kartal
- Faculty of Medicine, and Heidelberg University Hospital, Institute for Computational Biomedicine, Bioquant, Heidelberg University, Im Neuenheimer Feld 267, 69120, Heidelberg, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Luca V Pohl
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Sarah Werner
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Sandra Erbs
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Holger Thiele
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| | - Petra Büttner
- Heart Center Leipzig, University of Leipzig, Strümpellstrasse 89, 04289, Leipzig, Germany
| |
Collapse
|
5
|
Eaton DM, Lee BW, Caporizzo MA, Iyengar A, Chen CY, Uchida K, Marcellin G, Lannay Y, Vite A, Bedi KC, Brady CF, Smolyak JN, Meldrum D, Dominic J, Weingarten N, Patel M, Belec A, Hached K, Atluri P, Van Der Laan S, Prosser BL, Margulies KB. Vasohibin inhibition improves myocardial relaxation in a rat model of heart failure with preserved ejection fraction. Sci Transl Med 2024; 16:eadm8842. [PMID: 39018366 DOI: 10.1126/scitranslmed.adm8842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/29/2024] [Accepted: 06/24/2024] [Indexed: 07/19/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated with increased myocardial stiffness and cardiac filling abnormalities. Prior studies implicated increased α-tubulin detyrosination, which is catalyzed by the vasohibin enzymes, as a contributor to increased stabilization of the cardiomyocyte microtubule network (MTN) and stiffness in failing human hearts. We explored whether increased MTN detyrosination contributed to impaired diastolic function in the ZSF1 obese rat model of HFpEF and designed a small-molecule vasohibin inhibitor to ablate MTN detyrosination in vivo. Compared with ZSF1 lean and Wistar Kyoto rats, obese rats exhibited increased tubulin detyrosination concomitant with diastolic dysfunction, left atrial enlargement, and cardiac hypertrophy with a preserved left ventricle ejection fraction, consistent with an HFpEF phenotype. Ex vivo myocardial phenotyping assessed cardiomyocyte mechanics and contractility. Vasohibin inhibitor treatment of isolated cardiomyocytes from obese rats resulted in reduced stiffness and faster relaxation. Acute in vivo treatment with vasohibin inhibitor improved diastolic relaxation in ZSF1 obese rats compared with ZSF1 lean and Wistar Kyoto rats. Vasohibin inhibition also improved relaxation in isolated human cardiomyocytes from both failing and nonfailing hearts. Our data suggest the therapeutic potential for vasohibin inhibition to reduce myocardial stiffness and improve relaxation in HFpEF.
Collapse
Affiliation(s)
- Deborah M Eaton
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin W Lee
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew A Caporizzo
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Molecular Physiology and Biophysics, University of Vermont's Larner College of Medicine, Burlington, VT 05405, USA
| | - Amit Iyengar
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christina Y Chen
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keita Uchida
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Alexia Vite
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth C Bedi
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claire F Brady
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julia N Smolyak
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danika Meldrum
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica Dominic
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noah Weingarten
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mrinal Patel
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andrew Belec
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Pavan Atluri
- Division of Cardiac Surgery, Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Benjamin L Prosser
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kenneth B Margulies
- Department of Medicine and Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
6
|
Vahle B, Heilmann L, Schauer A, Augstein A, Jarabo MEP, Barthel P, Mangner N, Labeit S, Bowen TS, Linke A, Adams V. Modulation of Titin and Contraction-Regulating Proteins in a Rat Model of Heart Failure with Preserved Ejection Fraction: Limb vs. Diaphragmatic Muscle. Int J Mol Sci 2024; 25:6618. [PMID: 38928324 PMCID: PMC11203682 DOI: 10.3390/ijms25126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.
Collapse
Affiliation(s)
- Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Leonard Heilmann
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Norman Mangner
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany;
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| |
Collapse
|
7
|
Berger JH, Shi Y, Matsuura TR, Batmanov K, Chen X, Tam K, Marshall M, Kue R, Patel J, Taing R, Callaway R, Griffin J, Kovacs A, Shanthappa DH, Miller R, Zhang BB, Roth Flach RJ, Kelly DP. Two-hit mouse model of heart failure with preserved ejection fraction combining diet-induced obesity and renin-mediated hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.06.597821. [PMID: 38895483 PMCID: PMC11185718 DOI: 10.1101/2024.06.06.597821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is increasingly common but its pathogenesis is poorly understood. The ability to assess genetic and pharmacologic interventions is hampered by the lack of robust preclinical mouse models of HFpEF. We have developed a novel "2-hit" model, which combines obesity and insulin resistance with chronic pressure overload to recapitulate clinical features of HFpEF. C57BL6/NJ mice fed a high fat diet for >10 weeks were administered an AAV8-driven vector resulting in constitutive overexpression of mouse Renin1d . Control mice, HFD only, Renin only and HFD-Renin (aka "HFpEF") littermates underwent a battery of cardiac and extracardiac phenotyping. HFD-Renin mice demonstrated obesity and insulin resistance, a 2-3-fold increase in circulating renin levels that resulted in 30-40% increase in left ventricular hypertrophy, preserved systolic function, and diastolic dysfunction indicated by altered E/e', IVRT, and strain measurements; increased left atrial mass; elevated natriuretic peptides; and exercise intolerance. Transcriptomic and metabolomic profiling of HFD-Renin myocardium demonstrated upregulation of pro-fibrotic pathways and downregulation of metabolic pathways, in particular branched chain amino acid catabolism, similar to findings in human HFpEF. Treatment of these mice with the sodium-glucose cotransporter 2 inhibitor empagliflozin, an effective but incompletely understood HFpEF therapy, improved exercise tolerance, left heart enlargement, and insulin homeostasis. The HFD-Renin mouse model recapitulates key features of human HFpEF and will enable studies dissecting the contribution of individual pathogenic drivers to this complex syndrome. Addition of HFD-Renin mice to the preclinical HFpEF model platform allows for orthogonal studies to increase validity in assessment of interventions. NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a complex disease to study due to limited preclinical models. We rigorously characterize a new two-hit HFpEF mouse model, which allows for dissecting individual contributions and synergy of major pathogenic drivers, hypertension and diet-induced obesity. The results are consistent and reproducible in two independent laboratories. This high-fidelity pre-clinical model increases the available, orthogonal models needed to improve our understanding of the causes and assessment treatments for HFpEF.
Collapse
|
8
|
Schauer A, Adams V, Kämmerer S, Langner E, Augstein A, Barthel P, Männel A, Fabig G, Alves PKN, Günscht M, El-Armouche A, Müller-Reichert T, Linke A, Winzer EB. Empagliflozin Improves Diastolic Function in HFpEF by Restabilizing the Mitochondrial Respiratory Chain. Circ Heart Fail 2024; 17:e011107. [PMID: 38847102 PMCID: PMC11177604 DOI: 10.1161/circheartfailure.123.011107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Clinical studies demonstrated beneficial effects of sodium-glucose-transporter 2 inhibitors on the risk of cardiovascular death in patients with heart failure with preserved ejection fraction (HFpEF). However, underlying processes for cardioprotection remain unclear. The present study focused on the impact of empagliflozin (Empa) on myocardial function in a rat model with established HFpEF and analyzed underlying molecular mechanisms. METHODS Obese ZSF1 (Zucker fatty and spontaneously hypertensive) rats were randomized to standard care (HFpEF, n=18) or Empa (HFpEF/Empa, n=18). ZSF1 lean rats (con, n=18) served as healthy controls. Echocardiography was performed at baseline and after 4 and 8 weeks, respectively. After 8 weeks of treatment, hemodynamics were measured invasively, mitochondrial function was assessed and myocardial tissue was collected for either molecular and histological analyses or transmission electron microscopy. RESULTS In HFpEF Empa significantly improved diastolic function (E/é: con: 17.5±2.8; HFpEF: 24.4±4.6; P<0.001 versus con; HFpEF/Empa: 19.4±3.2; P<0.001 versus HFpEF). This was accompanied by improved hemodynamics and calcium handling and by reduced inflammation, hypertrophy, and fibrosis. Proteomic analysis demonstrated major changes in proteins involved in mitochondrial oxidative phosphorylation. Cardiac mitochondrial respiration was significantly impaired in HFpEF but restored by Empa (Vmax complex IV: con: 0.18±0.07 mmol O2/s/mg; HFpEF: 0.13±0.05 mmol O2/s/mg; P<0.041 versus con; HFpEF/Empa: 0.21±0.05 mmol O2/s/mg; P=0.012 versus HFpEF) without alterations of mitochondrial content. The expression of cardiolipin, an essential stability/functionality-mediating phospholipid of the respiratory chain, was significantly decreased in HFpEF but reverted by Empa (con: 15.9±1.7 nmol/mg protein; HFpEF: 12.5±1.8 nmol/mg protein; P=0.002 versus con; HFpEF/Empa: 14.5±1.8 nmol/mg protein; P=0.03 versus HFpEF). Transmission electron microscopy revealed a reduced size of mitochondria in HFpEF, which was restored by Empa. CONCLUSIONS The study demonstrates beneficial effects of Empa on diastolic function, hemodynamics, inflammation, and cardiac remodeling in a rat model of HFpEF. These effects were mediated by improved mitochondrial respiratory capacity due to modulated cardiolipin and improved calcium handling.
Collapse
Affiliation(s)
- Antje Schauer
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Volker Adams
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Susanne Kämmerer
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (S.K., M.G., A.E.-A.)
| | - Erik Langner
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Antje Augstein
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Peggy Barthel
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Anita Männel
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Gunar Fabig
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (G.F., T.M.-R.)
| | - Paula Ketilly Nascimento Alves
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, Brazil (P.K.N.A.)
| | - Mario Günscht
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (S.K., M.G., A.E.-A.)
| | - Ali El-Armouche
- Institute of Pharmacology and Toxicology, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (S.K., M.G., A.E.-A.)
| | - Thomas Müller-Reichert
- Experimental Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Germany (G.F., T.M.-R.)
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| | - Ephraim B. Winzer
- Department of Internal Medicine and Cardiology, Heart Center Dresden - Laboratory of Experimental and Molecular Cardiology, Technische Universität Dresden, Germany (A.S., V.A., E.L., A.A., P.B., A.M., P.K.N.A., A.L., E.B.W.)
| |
Collapse
|
9
|
Alves PKN, Schauer A, Augstein A, Prieto Jarabo ME, Männel A, Barthel P, Vahle B, Moriscot AS, Linke A, Adams V. Leucine Supplementation Prevents the Development of Skeletal Muscle Dysfunction in a Rat Model of HFpEF. Cells 2024; 13:502. [PMID: 38534346 PMCID: PMC10969777 DOI: 10.3390/cells13060502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with exercise intolerance due to alterations in the skeletal muscle (SKM). Leucine supplementation is known to alter the anabolic/catabolic balance and to improve mitochondrial function. Thus, we investigated the effect of leucine supplementation in both a primary and a secondary prevention approach on SKM function and factors modulating muscle function in an established HFpEF rat model. Female ZSF1 obese rats were randomized to an untreated, a primary prevention, and a secondary prevention group. For primary prevention, leucine supplementation was started before the onset of HFpEF (8 weeks of age) and for secondary prevention, leucine supplementation was started after the onset of HFpEF (20 weeks of age). SKM function was assessed at an age of 32 weeks, and SKM tissue was collected for the assessment of mitochondrial function and histological and molecular analyses. Leucine supplementation prevented the development of SKM dysfunction whereas it could not reverse it. In the primary prevention group, mitochondrial function improved and higher expressions of mitofilin, Mfn-2, Fis1, and miCK were evident in SKM. The expression of UCP3 was reduced whereas the mitochondrial content and markers for catabolism (MuRF1, MAFBx), muscle cross-sectional area, and SKM mass did not change. Our data show that leucine supplementation prevented the development of skeletal muscle dysfunction in a rat model of HFpEF, which may be mediated by improving mitochondrial function through modulating energy transfer.
Collapse
Affiliation(s)
- Paula Ketilly Nascimento Alves
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Anita Männel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| |
Collapse
|
10
|
Espino-Gonzalez E, Tickle PG, Altara R, Gallagher H, Cheng CW, Engman V, Wood N, Justo da Silva GJ, Scalabrin M, Yu X, Zhong Z, Colman MA, Yuldasheva NY, Booz GW, Adams V, Pereira MG, Cataliotti A, Roberts LD, Egginton S, Bowen TS. Caloric Restriction Rejuvenates Skeletal Muscle Growth in Heart Failure With Preserved Ejection Fraction. JACC Basic Transl Sci 2024; 9:223-240. [PMID: 38510717 PMCID: PMC10950401 DOI: 10.1016/j.jacbts.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 03/22/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major clinical problem, with limited treatments. HFpEF is characterized by a distinct, but poorly understood, skeletal muscle pathology, which could offer an alternative therapeutic target. In a rat model, we identified impaired myonuclear accretion as a mechanism for low myofiber growth in HFpEF following resistance exercise. Acute caloric restriction rescued skeletal muscle pathology in HFpEF, whereas cardiac therapies had no effect. Mechanisms regulating myonuclear accretion were dysregulated in patients with HFpEF. Overall, these findings may have widespread implications in HFpEF, indicating combined dietary with exercise interventions as a beneficial approach to overcome skeletal muscle pathology.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Peter G. Tickle
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Raffaele Altara
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Harrison Gallagher
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Chew W. Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine, University of Leeds, Leeds, United Kingdom
| | - Viktor Engman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nathanael Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Mattia Scalabrin
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Xinyue Yu
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ziyi Zhong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Michael A. Colman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nadira Y. Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine, University of Leeds, Leeds, United Kingdom
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Volker Adams
- Heart Center Dresden, TU-Dresden, Dresden, Germany
| | - Marcelo G. Pereira
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine, University of Leeds, Leeds, United Kingdom
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
11
|
Fenwick AJ, Jani VP, Foster DB, Sharp TE, Goodchild TT, LaPenna K, Doiron JE, Lefer DJ, Hill JA, Kass DA, Cammarato A. Common Heart Failure With Preserved Ejection Fraction Animal Models Yield Disparate Myofibril Mechanics. J Am Heart Assoc 2024; 13:e032037. [PMID: 38193306 PMCID: PMC10926808 DOI: 10.1161/jaha.123.032037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024]
Affiliation(s)
- Axel J. Fenwick
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Vivek P. Jani
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMDUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
| | - D. Brian Foster
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| | - Thomas E. Sharp
- Department of Molecular Pharmacology and PhysiologyUniversity of South FloridaTampaFLUSA
| | - Traci T. Goodchild
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Kyle LaPenna
- Department of Medicine, Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Jake E. Doiron
- Department of Medicine, Cardiovascular Center of ExcellenceLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - David J. Lefer
- Department of Cardiac SurgerySmidt Heart Institute, Cedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Joseph A. Hill
- Department of MedicineUT Southwestern Medical CenterDallasTXUSA
- Department of Molecular BiologyUT Southwestern Medical CenterDallasTXUSA
| | - David A. Kass
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMDUSA
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMDUSA
| | - Anthony Cammarato
- Division of Cardiology, Department of MedicineJohns Hopkins UniversityBaltimoreMDUSA
| |
Collapse
|
12
|
Jalink EA, Schonk AW, Boon RA, Juni RP. Non-coding RNAs in the pathophysiology of heart failure with preserved ejection fraction. Front Cardiovasc Med 2024; 10:1300375. [PMID: 38259314 PMCID: PMC10800550 DOI: 10.3389/fcvm.2023.1300375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is the largest unmet clinical need in cardiovascular medicine. Despite decades of research, the treatment option for HFpEF is still limited, indicating our ongoing incomplete understanding on the underlying molecular mechanisms. Non-coding RNAs, comprising of microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), are non-protein coding RNA transcripts, which are implicated in various cardiovascular diseases. However, their role in the pathogenesis of HFpEF is unknown. Here, we discuss the role of miRNAs, lncRNAs and circRNAs that are involved in the pathophysiology of HFpEF, namely microvascular dysfunction, inflammation, diastolic dysfunction and cardiac fibrosis. We interrogated clinical evidence and dissected the molecular mechanisms of the ncRNAs by looking at the relevant in vivo and in vitro models that mimic the co-morbidities in patients with HFpEF. Finally, we discuss the potential of ncRNAs as biomarkers and potential novel therapeutic targets for future HFpEF treatment.
Collapse
Affiliation(s)
- Elisabeth A. Jalink
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Amber W. Schonk
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| | - Reinier A. Boon
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
- Institute for Cardiovascular Regeneration, Centre for Molecular Medicine, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
- German Centre for Cardiovascular Research, Partner Site Frankfurt Rhein/Main, Frankfurt, Germany
| | - Rio P. Juni
- Department of Physiology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, Netherlands
| |
Collapse
|
13
|
Simmonds SJ, Grootaert MOJ, Cuijpers I, Carai P, Geuens N, Herwig M, Baatsen P, Hamdani N, Luttun A, Heymans S, Jones EAV. Pericyte loss initiates microvascular dysfunction in the development of diastolic dysfunction. EUROPEAN HEART JOURNAL OPEN 2024; 4:oead129. [PMID: 38174347 PMCID: PMC10763525 DOI: 10.1093/ehjopen/oead129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 01/05/2024]
Abstract
Aims Microvascular dysfunction has been proposed to drive heart failure with preserved ejection fraction (HFpEF), but the initiating molecular and cellular events are largely unknown. Our objective was to determine when microvascular alterations in HFpEF begin, how they contribute to disease progression, and how pericyte dysfunction plays a role herein. Methods and results Microvascular dysfunction, characterized by inflammatory activation, loss of junctional barrier function, and altered pericyte-endothelial crosstalk, was assessed with respect to the development of cardiac dysfunction, in the Zucker fatty and spontaneously hypertensive (ZSF1) obese rat model of HFpEF at three time points: 6, 14, and 21 weeks of age. Pericyte loss was the earliest and strongest microvascular change, occurring before prominent echocardiographic signs of diastolic dysfunction were present. Pericytes were shown to be less proliferative and had a disrupted morphology at 14 weeks in the obese ZSF1 animals, who also exhibited an increased capillary luminal diameter and disrupted endothelial junctions. Microvascular dysfunction was also studied in a mouse model of chronic reduction in capillary pericyte coverage (PDGF-Bret/ret), which spontaneously developed many aspects of diastolic dysfunction. Pericytes exposed to oxidative stress in vitro showed downregulation of cell cycle-associated pathways and induced a pro-inflammatory state in endothelial cells upon co-culture. Conclusion We propose pericytes are important for maintaining endothelial cell function, where loss of pericytes enhances the reactivity of endothelial cells to inflammatory signals and promotes microvascular dysfunction, thereby accelerating the development of HFpEF.
Collapse
Affiliation(s)
- Steven J Simmonds
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, Leuven 3000, Belgium
| | - Mandy O J Grootaert
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, Leuven 3000, Belgium
| | - Ilona Cuijpers
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, Leuven 3000, Belgium
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Paolo Carai
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, Leuven 3000, Belgium
| | - Nadeche Geuens
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, Leuven 3000, Belgium
| | - Melissa Herwig
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum 44801, Germany
- Molecular and Experimental Cardiology, Institut für Forschung und Lehre (IFL), Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St.Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Pieter Baatsen
- VIB-KU Leuven, Center for Brain and Disease Research, Electron Microscopy Platform & VIB Bioimaging Core, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Nazha Hamdani
- Department of Cellular and Translational Physiology, Institute of Physiology, Ruhr University Bochum, Bochum 44801, Germany
- Molecular and Experimental Cardiology, Institut für Forschung und Lehre (IFL), Ruhr University Bochum, Bochum, Germany
- Department of Cardiology, St.Josef-Hospital, Ruhr University Bochum, Bochum, Germany
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, Leuven 3000, Belgium
| | - Stephane Heymans
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, Leuven 3000, Belgium
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| | - Elizabeth A V Jones
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, bus 911, Leuven 3000, Belgium
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, Maastricht 6229 ER, The Netherlands
| |
Collapse
|
14
|
Gao S, Liu XP, Li TT, Chen L, Feng YP, Wang YK, Yin YJ, Little PJ, Wu XQ, Xu SW, Jiang XD. Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery. Acta Pharmacol Sin 2024; 45:23-35. [PMID: 37644131 PMCID: PMC10770177 DOI: 10.1038/s41401-023-01152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/08/2023] [Indexed: 08/31/2023] Open
Abstract
Heart failure (HF) with preserved ejection fraction (HFpEF) is currently a preeminent challenge for cardiovascular medicine. It has a poor prognosis, increasing mortality, and is escalating in prevalence worldwide. Despite accounting for over 50% of all HF patients, the mechanistic underpinnings driving HFpEF are poorly understood, thus impeding the discovery and development of mechanism-based therapies. HFpEF is a disease syndrome driven by diverse comorbidities, including hypertension, diabetes and obesity, pulmonary hypertension, aging, and atrial fibrillation. There is a lack of high-fidelity animal models that faithfully recapitulate the HFpEF phenotype, owing primarily to the disease heterogeneity, which has hampered our understanding of the complex pathophysiology of HFpEF. This review provides an updated overview of the currently available animal models of HFpEF and discusses their characteristics from the perspective of energy metabolism. Interventional strategies for efficiently utilizing energy substrates in preclinical HFpEF models are also discussed.
Collapse
Affiliation(s)
- Si Gao
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Xue-Ping Liu
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Ting-Ting Li
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Li Chen
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yi-Ping Feng
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yu-Kun Wang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yan-Jun Yin
- School of Pharmacy, Bengbu Medical College, Bengbu, 233000, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
| | - Xiao-Qian Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
| | - Suo-Wen Xu
- Department of Endocrinology, First Affiliated Hospital, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| | - Xu-Dong Jiang
- Department of Pharmacy, School of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
| |
Collapse
|
15
|
Nandi SS, Katsurada K, Moulton MJ, Zheng H, Patel KP. Enhanced central sympathetic tone induces heart failure with preserved ejection fraction (HFpEF) in rats. Front Physiol 2023; 14:1277065. [PMID: 38169715 PMCID: PMC10758618 DOI: 10.3389/fphys.2023.1277065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 11/20/2023] [Indexed: 01/05/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogenous clinical syndrome characterized by diastolic dysfunction, concentric cardiac left ventricular (LV) hypertrophy, and myocardial fibrosis with preserved systolic function. However, the underlying mechanisms of HFpEF are not clear. We hypothesize that an enhanced central sympathetic drive is sufficient to induce LV dysfunction and HFpEF in rats. Male Sprague-Dawley rats were subjected to central infusion of either saline controls (saline) or angiotensin II (Ang II, 20 ng/min, i.c.v) via osmotic mini-pumps for 14 days to elicit enhanced sympathetic drive. Echocardiography and invasive cardiac catheterization were used to measure systolic and diastolic functions. Mean arterial pressure, heart rate, left ventricular end-diastolic pressure (LVEDP), and ± dP/dt changes in responses to isoproterenol (0.5 μg/kg, iv) were measured. Central infusion of Ang II resulted in increased sympatho-excitation with a consequent increase in blood pressure. Although the ejection fraction was comparable between the groups, there was a decrease in the E/A ratio (saline: 1.5 ± 0.2 vs Ang II: 1.2 ± 0.1). LVEDP was significantly increased in the Ang II-treated group (saline: 1.8 ± 0.2 vs Ang II: 4.6 ± 0.5). The increase in +dP/dt to isoproterenol was not significantly different between the groups, but the response in -dP/dt was significantly lower in Ang II-infused rats (saline: 11,765 ± 708 mmHg/s vs Ang II: 8,581 ± 661). Ang II-infused rats demonstrated an increased heart to body weight ratio, cardiomyocyte hypertrophy, and fibrosis. There were elevated levels of atrial natriuretic peptide and interleukin-6 in the Ang II-infused group. In conclusion, central infusion of Ang II in rats induces sympatho-excitation with concurrent diastolic dysfunction, pathological cardiac concentric hypertrophy, and cardiac fibrosis. This novel model of centrally mediated sympatho-excitation demonstrates characteristic diastolic dysfunction in rats, representing a potentially useful preclinical murine model of HFpEF to investigate various altered underlying mechanisms during HFpEF in future studies.
Collapse
Affiliation(s)
- Shyam S. Nandi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kenichi Katsurada
- Division of Cardiovascular Medicine, Department of Internal Medicine, Jichi Medical University School of Medicine, Shimotsuke, Tochigi, Japan
| | - Michael J. Moulton
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, United States
| | - Hong Zheng
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD, United States
| | - Kaushik P. Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
16
|
Alves PKN, Schauer A, Augstein A, Männel A, Barthel P, Joachim D, Friedrich J, Prieto ME, Moriscot AS, Linke A, Adams V. Leucine Supplementation Improves Diastolic Function in HFpEF by HDAC4 Inhibition. Cells 2023; 12:2561. [PMID: 37947639 PMCID: PMC10648219 DOI: 10.3390/cells12212561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/12/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a complex syndrome associated with a high morbidity and mortality rate. Leucine supplementation has been demonstrated to attenuate cardiac dysfunction in animal models of cachexia and heart failure with reduced ejection fraction (HFrEF). So far, no data exist on leucine supplementation on cardiac function in HFpEF. Thus, the current study aimed to investigate the effect of leucine supplementation on myocardial function and key signaling pathways in an established HFpEF rat model. Female ZSF1 rats were randomized into three groups: Control (untreated lean rats), HFpEF (untreated obese rats), and HFpEF_Leu (obese rats receiving standard chow enriched with 3% leucine). Leucine supplementation started at 20 weeks of age after an established HFpEF was confirmed in obese rats. In all animals, cardiac function was assessed by echocardiography at baseline and throughout the experiment. At the age of 32 weeks, hemodynamics were measured invasively, and myocardial tissue was collected for assessment of mitochondrial function and for histological and molecular analyses. Leucine had already improved diastolic function after 4 weeks of treatment. This was accompanied by improved hemodynamics and reduced stiffness, as well as by reduced left ventricular fibrosis and hypertrophy. Cardiac mitochondrial respiratory function was improved by leucine without alteration of the cardiac mitochondrial content. Lastly, leucine supplementation suppressed the expression and nuclear localization of HDAC4 and was associated with Protein kinase A activation. Our data show that leucine supplementation improves diastolic function and decreases remodeling processes in a rat model of HFpEF. Beneficial effects were associated with HDAC4/TGF-β1/Collagenase downregulation and indicate a potential use in the treatment of HFpEF.
Collapse
Affiliation(s)
- Paula Ketilly Nascimento Alves
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Antje Schauer
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Antje Augstein
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Anita Männel
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Peggy Barthel
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Dirk Joachim
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Janet Friedrich
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Maria-Elisa Prieto
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Anselmo Sigari Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Axel Linke
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| | - Volker Adams
- Laboratory of Experimental and Molecular Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (A.M.); (P.B.); (D.J.); (J.F.); (A.L.)
| |
Collapse
|
17
|
Allbritton-King JD, García-Cardeña G. Endothelial cell dysfunction in cardiac disease: driver or consequence? Front Cell Dev Biol 2023; 11:1278166. [PMID: 37965580 PMCID: PMC10642230 DOI: 10.3389/fcell.2023.1278166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
The vascular endothelium is a multifunctional cellular system which directly influences blood components and cells within the vessel wall in a given tissue. Importantly, this cellular interface undergoes critical phenotypic changes in response to various biochemical and hemodynamic stimuli, driving several developmental and pathophysiological processes. Multiple studies have indicated a central role of the endothelium in the initiation, progression, and clinical outcomes of cardiac disease. In this review we synthesize the current understanding of endothelial function and dysfunction as mediators of the cardiomyocyte phenotype in the setting of distinct cardiac pathologies; outline existing in vivo and in vitro models where key features of endothelial cell dysfunction can be recapitulated; and discuss future directions for development of endothelium-targeted therapeutics for cardiac diseases with limited existing treatment options.
Collapse
Affiliation(s)
- Jules D. Allbritton-King
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| | - Guillermo García-Cardeña
- Department of Pathology, Center for Excellence in Vascular Biology, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA, United States
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, United States
| |
Collapse
|
18
|
Büttner P, Werner S, Böttner J, Ossmann S, Schwedhelm E, Thiele H. Systemic Effects of Homoarginine Supplementation on Arginine Metabolizing Enzymes in Rats with Heart Failure with Preserved Ejection Fraction. Int J Mol Sci 2023; 24:14782. [PMID: 37834229 PMCID: PMC10572665 DOI: 10.3390/ijms241914782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
A restoration of low homoarginine (hArg) levels in obese ZSF1 rats (O-ZSF1) before (S1-ZSF1) and after (S2-ZSF1) the manifestation of heart failure with preserved ejection fraction (HFpEF) did not affect the worsening of cardiac HFpEF characteristics. Here, potential regulation of key enzymes of arginine metabolism in other organs was analyzed. Arginase 2 (ARG2) was reduced >35% in the kidney and small intestine of hArg-supplemented rats compared to O-ZSF1. Glycine amidinotransferase (GATM) was 29% upregulated in the kidneys of S1-ZSF1. Dimethylarginine dimethylaminohydrolase 1 (DDAH1) levels were reduced >50% in the livers of O-ZSF1 but restored in S2-ZSF1 compared to healthy rats (L-ZSF1). In the skeletal muscle, iNOS was lower in O-ZSF1 and further decreased in S1-ZSF1 and S2-ZSF1 compared to L-ZSF1. iNOS levels were lower in the liver of the S2-ZSF1 group but higher in the kidneys of S1-ZSF1 compared to L-ZSF1. Supplementation with hArg in an in vivo HFpEF model resulted in the inhibition of renal ARG2 and an increase in GATM expression. This supplementation might contribute to the stabilization of intestinal iNOS and ARG2 imbalances, thereby enhancing barrier function. Additionally, it may offer protective effects in skeletal muscle by downregulating iNOS. In the conceptualization of hArg supplementation studies, the current disease progression stage as well as organ-specific enzyme regulation should be considered.
Collapse
Affiliation(s)
- Petra Büttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Sarah Werner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Julia Böttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Susann Ossmann
- Department of Cardiac Surgery, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, 04289 Leipzig, Germany
| |
Collapse
|
19
|
Li C, Qin D, Hu J, Yang Y, Hu D, Yu B. Inflamed adipose tissue: A culprit underlying obesity and heart failure with preserved ejection fraction. Front Immunol 2022; 13:947147. [PMID: 36483560 PMCID: PMC9723346 DOI: 10.3389/fimmu.2022.947147] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022] Open
Abstract
The incidence of heart failure with preserved ejection fraction is increasing in patients with obesity, diabetes, hypertension, and in the aging population. However, there is a lack of adequate clinical treatment. Patients with obesity-related heart failure with preserved ejection fraction display unique pathophysiological and phenotypic characteristics, suggesting that obesity could be one of its specific phenotypes. There has been an increasing recognition that overnutrition in obesity causes adipose tissue expansion and local and systemic inflammation, which consequently exacerbates cardiac remodeling and leads to the development of obese heart failure with preserved ejection fraction. Furthermore, overnutrition leads to cellular metabolic reprogramming and activates inflammatory signaling cascades in various cardiac cells, thereby promoting maladaptive cardiac remodeling. Growing evidence indicates that the innate immune response pathway from the NLRP3 inflammasome, to interleukin-1 to interleukin-6, is involved in the generation of obesity-related systemic inflammation and heart failure with preserved ejection fraction. This review established the existence of obese heart failure with preserved ejection fraction based on structural and functional changes, elaborated the inflammation mechanisms of obese heart failure with preserved ejection fraction, proposed that NLRP3 inflammasome activation may play an important role in adiposity-induced inflammation, and summarized the potential therapeutic approaches.
Collapse
Affiliation(s)
- Chenyu Li
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Donglu Qin
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Jiarui Hu
- Department of Spine Surgery, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Die Hu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China
| | - Bilian Yu
- Department of Cardiovascular Medicine, the Second Xiangya Hospital, Research Institute of Blood Lipid and Atherosclerosis, Central South University, Changsha, Hunan, China,*Correspondence: Bilian Yu,
| |
Collapse
|
20
|
Schulz L, Werner S, Böttner J, Adams V, Lurz P, Besler C, Thiele H, Büttner P. Tubulin expression and modification in heart failure with preserved ejection fraction (HFpEF). Sci Rep 2022; 12:15734. [PMID: 36131110 PMCID: PMC9492725 DOI: 10.1038/s41598-022-19766-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
Diastolic dysfunction in heart failure with preserved ejection fraction (HFpEF) is characterised by increased left ventricular stiffness and impaired active relaxation. Underpinning pathomechanisms are incompletely understood. Cardiac hypertrophy and end stage heart disease are associated with alterations in the cardiac microtubule (MT) network. Increased amounts and modifications of α-tubulin associate with myocardial stiffness. MT alterations in HFpEF have not been analysed yet. Using ZSF1 obese rats (O-ZSF1), a validated HFpEF model, we characterised MT-modifying enzymes, quantity and tyrosination/detyrosination pattern of α-tubulin at 20 and 32 weeks of age. In the left ventricle of O-ZSF1, α-tubulin concentration (20 weeks: 1.5-fold, p = 0.019; 32 weeks: 1.7-fold, p = 0.042) and detyrosination levels (20 weeks: 1.4-fold, p = 0.013; 32 weeks: 1.3-fold, p = 0.074) were increased compared to lean ZSF1 rats. Tyrosination/α-tubulin ratio was lower in O-ZSF1 (20 weeks: 0.8-fold, p = 0.020; 32 weeks: 0.7-fold, p = 0.052). Expression of α-tubulin modifying enzymes was comparable. These results reveal new alterations in the left ventricle in HFpEF that are detectable during early (20 weeks) and late (32 weeks) progression. We suppose that these alterations contribute to diastolic dysfunction in HFpEF and that reestablishment of MT homeostasis might represent a new target for pharmacological interventions.
Collapse
Affiliation(s)
- Lisa Schulz
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Sarah Werner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Julia Böttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Volker Adams
- Department of Cardiology, University Medicine TU Dresden, Dresden, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| | - Philipp Lurz
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Christian Besler
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Holger Thiele
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany
| | - Petra Büttner
- Department of Cardiology, Heart Center Leipzig at University of Leipzig, Strümpellstr. 39, 04289, Leipzig, Germany.
| |
Collapse
|
21
|
Empagliflozin Preserves Skeletal Muscle Function in a HFpEF Rat Model. Int J Mol Sci 2022; 23:ijms231910989. [PMID: 36232292 PMCID: PMC9570453 DOI: 10.3390/ijms231910989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Besides structural alterations in the myocardium, heart failure with preserved ejection fraction (HFpEF) is also associated with molecular and physiological alterations of the peripheral skeletal muscles (SKM) contributing to exercise intolerance often seen in HFpEF patients. Recently, the use of Sodium-Glucose-Transporter 2 inhibitors (SGLT2i) in clinical studies provided evidence for a significant reduction in the combined risk of cardiovascular death or hospitalization for HFpEF. The present study aimed to further elucidate the impact of Empagliflozin (Empa) on: (1) SKM function and metabolism and (2) mitochondrial function in an established HFpEF rat model. At the age of 24 weeks, obese ZSF1 rats were randomized either receiving standard care or Empa in the drinking water. ZSF1 lean animals served as healthy controls. After 8 weeks of treatment, echocardiography and SKM contractility were performed. Mitochondrial function was assessed in saponin skinned fibers and SKM tissue was snap frozen for molecular analyses. HFpEF was evident in the obese animals when compared to lean—increased E/é and preserved left ventricular ejection fraction. Empa treatment significantly improved E/é and resulted in improved SKM contractility with reduced intramuscular lipid content. Better mitochondrial function (mainly in complex IV) with only minor modulation of atrophy-related proteins was seen after Empa treatment. The results clearly documented a beneficial effect of Empa on SKM function in the present HFpEF model. These effects were accompanied by positive effects on mitochondrial function possibly modulating SKM function.
Collapse
|
22
|
Büttner P, Adams V, Werner S, Ossmann S, Besler C, Schwedhelm E, Thiele H. Effects of homoarginine supplementation on heart and skeletal muscle of rats with heart failure with preserved ejection fraction. ESC Heart Fail 2022; 9:4348-4351. [PMID: 36043453 PMCID: PMC9773648 DOI: 10.1002/ehf2.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 01/19/2023] Open
Abstract
AIM Heart failure with preserved ejection fraction (HFpEF) is associated with left ventricular stiffness, impaired diastolic relaxation, and severe exercise intolerance. Decreased homoarginine (hArg) levels are an independent predictor of mortality in cardiovascular disease and correlate with impaired exercise performance. We recently reported alterations in arginine, hArg, and related amino acids in obese ZSF1 rats (O-ZSF1), with a HFpEF phenotype. Although low hArg is associated with diastolic dysfunction in humans, potential effects of hArg supplementation were not tested yet. METHODS AND RESULTS At an age of 6 weeks, 12 O-ZSF1 were randomized into two groups: (1) O-ZSF1 rats supplemented with hArg in their drinking water (sO-ZSF1) or (2) O-ZSF1 rats receiving no hArg supplementation (O-ZSF1). At an age of 32 weeks, effects of primary prevention by hArg supplementation on echocardiographic, histological, and functional parameters of heart and skeletal muscle were determined. Lean ZSF1 rats (L-ZSF1) served as controls. hArg supplementation did not prevent impairment of diastolic relaxation (E/e': O-ZSF1 21 ± 3 vs. sO-ZSF1 22 ± 3, P = 0.954, L-ZSF1 18 ± 5) but resulted in more cardiac fibrosis (histological collagen staining: +57% in sO-ZSF1 vs. O-ZSF1, P = 0.027) and increased collagen gene expression (Col1a1: +48% in sO-ZSF1 vs. O-ZSF1, P = 0.026). In contrary, right ventricular function was preserved by hArg supplementation (TAPSE (mm): O-ZSF1 1.2 ± 0.3 vs. sO-ZSF1 1.7 ± 0.3, P = 0.020, L-ZSF1 1.8 ± 0.4). Musculus soleus maximal specific muscle force (N/cm2 ) in O-ZSF1 (30.4 ± 0.8) and sO-ZSF1 (31.9 ± 0.9) was comparable but significantly reduced compared with L-ZSF1 (36.4 ± 0.7; both P < 0.05). Maximal absolute muscle force (g) (O-ZSF1: 177.6 ± 7.8, sO-ZSF1: 187.8 ± 5.0, L-ZSF1: 181.5 ± 7.9, all P > 0.05) and cross-sectional fibre area (arbitrary units) (O-ZSF1: 1697 ± 57, sO-ZSF1: 1965 ± 121, L-ZSF1: 1691 ± 104, all P > 0.05) were not altered. CONCLUSIONS Preservation of physiological hArg level in HFpEF may not be suited to prevent alterations in left ventricular and skeletal muscle function and structure. However, hArg supplementation may be beneficial for right ventricular function especially in pulmonary hypertension in HFpEF. We may speculate that clinically observed decreased hArg level are not the cause but the consequence of a yet unrecognized pathomechanism that underpins HFpEF.
Collapse
Affiliation(s)
- Petra Büttner
- Department of CardiologyHeart Center Leipzig at University LeipzigLeipzigGermany
| | - Volker Adams
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Sarah Werner
- Department of CardiologyHeart Center Leipzig at University LeipzigLeipzigGermany
| | - Susann Ossmann
- Department of Cardiac SurgeryHeart Center Leipzig at University LeipzigLeipzigGermany
| | - Christian Besler
- Department of CardiologyHeart Center Leipzig at University LeipzigLeipzigGermany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Holger Thiele
- Department of CardiologyHeart Center Leipzig at University LeipzigLeipzigGermany
| |
Collapse
|
23
|
Holder ER, Alibhai FJ, Caudle SL, McDermott JC, Tobin SW. The importance of biological sex in cardiac cachexia. Am J Physiol Heart Circ Physiol 2022; 323:H609-H627. [PMID: 35960634 DOI: 10.1152/ajpheart.00187.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac cachexia is a catabolic muscle wasting syndrome observed in approximately 1 in 10 heart failure patients. Increased skeletal muscle atrophy leads to frailty and limits mobility which impacts quality of life, exacerbates clinical care, and is associated with higher rates of mortality. Heart failure is known to exhibit a wide range of prevalence and severity when examined across individuals of different ages and with co-morbidities related to diabetes, renal failure and pulmonary dysfunction. It is also recognized that men and women exhibit striking differences in the pathophysiology of heart failure as well as skeletal muscle homeostasis. Given that both skeletal muscle and heart failure physiology are in-part sex dependent, the diagnosis and treatment of cachexia in heart failure patients may depend on a comprehensive examination of how these organs interact. In this review we explore the potential for sex-specific differences in cardiac cachexia. We summarize advantages and disadvantages of clinical methods used to measure muscle mass and function and provide alternative measurements that should be considered in preclinical studies. Additionally, we summarize sex-dependent effects on muscle wasting in preclinical models of heart failure, disuse, and cancer. Lastly, we discuss the endocrine function of the heart and outline unanswered questions that could directly impact patient care.
Collapse
|
24
|
Smith AN, Altara R, Amin G, Habeichi NJ, Thomas DG, Jun S, Kaplan A, Booz GW, Zouein FA. Genomic, Proteomic, and Metabolic Comparisons of Small Animal Models of Heart Failure With Preserved Ejection Fraction: A Tale of Mice, Rats, and Cats. J Am Heart Assoc 2022; 11:e026071. [PMID: 35904190 PMCID: PMC9375492 DOI: 10.1161/jaha.122.026071] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a medical anomaly that baffles researchers and physicians alike. The overall phenotypical changes of diastolic function and left ventricular hypertrophy observed in HFpEF are definable; however, the metabolic and molecular alterations that ultimately produce these changes are not well established. Comorbidities such as obesity, hypertension, and diabetes, as well as general aging, play crucial roles in its development and progression. Various animal models have recently been developed to better understand the pathophysiological and metabolic developments in HFpEF and to illuminate novel avenues for pharmacotherapy. These models include multi‐hit rodents and feline aortic constriction animals. Recently, genomic, proteomic, and metabolomic approaches have been used to define altered signaling pathways in the heart associated with HFpEF, including those involved in inflammation, cGMP‐related, Ca2+ handling, mitochondrial respiration, and the unfolded protein response in endoplasmic reticulum stress. This article aims to present an overview of what has been learnt by these studies, focusing mainly on the findings in common while highlighting unresolved issues. The knowledge gained from these research models will not simply be of benefit for treating HFpEF but will undoubtedly provide new insights into the mechanisms by which the heart deals with external stresses and how the processes involved can fail.
Collapse
Affiliation(s)
- Alex N Smith
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Raffaele Altara
- Department of Pathology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Ghadir Amin
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon
| | - Nada J Habeichi
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France
| | - Daniel G Thomas
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Seungho Jun
- Division of Cardiology The Johns Hopkins Medical Institutions Baltimore MD
| | - Abdullah Kaplan
- Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Cardiology Clinic Rumeli Hospital Istanbul Turkey
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS
| | - Fouad A Zouein
- Department of Pharmacology and Toxicology, School of Medicine University of Mississippi Medical Center Jackson MS.,Department of Pharmacology and Toxicology, Faculty of Medicine American University of Beirut Medical Center Beirut Lebanon.,Laboratory of Signaling and Cardiovascular Pathophysiology, Inserm Unit UMR-S 1180, Faculty of Pharmacy Paris-Saclay University Châtenay-Malabry France.,The Cardiovascular, Renal, and Metabolic Diseases Research Center of Excellence American University of Beirut Medical Center Beirut Lebanon
| |
Collapse
|
25
|
Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F. Heart Failure With Preserved Ejection Fraction: Heterogeneous Syndrome, Diverse Preclinical Models. Circ Res 2022; 130:1906-1925. [PMID: 35679364 PMCID: PMC10035274 DOI: 10.1161/circresaha.122.320257] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) represents one of the greatest challenges facing cardiovascular medicine today. Despite being the most common form of heart failure worldwide, there has been limited success in developing therapeutics for this syndrome. This is largely due to our incomplete understanding of the biology driving its systemic pathophysiology and the heterogeneity of clinical phenotypes, which are increasingly being recognized as distinct HFpEF phenogroups. Development of efficacious therapeutics fundamentally relies on robust preclinical models that not only faithfully recapitulate key features of the clinical syndrome but also enable rigorous investigation of putative mechanisms of disease in the context of clinically relevant phenotypes. In this review, we propose a preclinical research strategy that is conceptually grounded in model diversification and aims to better align with our evolving understanding of the heterogeneity of clinical HFpEF. Although heterogeneity is often viewed as a major obstacle in preclinical HFpEF research, we challenge this notion and argue that embracing it may be the key to demystifying its pathobiology. Here, we first provide an overarching guideline for developing HFpEF models through a stepwise approach of comprehensive cardiac and extra-cardiac phenotyping. We then present an overview of currently available models, focused on the 3 leading phenogroups, which are primarily based on aging, cardiometabolic stress, and chronic hypertension. We discuss how well these models reflect their clinically relevant phenogroup and highlight some of the more recent mechanistic insights they are providing into the complex pathophysiology underlying HFpEF.
Collapse
Affiliation(s)
- Jason Roh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology) (J.A.H.), University of Texas Southwestern Medical Center, Dallas
- Department of Molecular Biology (J.A.H.), University of Texas Southwestern Medical Center, Dallas
| | - Abhilasha Singh
- Cardiovascular Research Center, Massachusetts General Hospital, Boston (J.R., A.S.)
| | - María Valero-Muñoz
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| | - Flora Sam
- Whitaker Cardiovascular Institute, Boston University School of Medicine, MA (M.V.-M., F.S.)
| |
Collapse
|
26
|
Adams V, Schauer A, Augstein A, Kirchhoff V, Draskowski R, Jannasch A, Goto K, Lyall G, Männel A, Barthel P, Mangner N, Winzer EB, Linke A, Labeit S. Targeting MuRF1 by small molecules in a HFpEF rat model improves myocardial diastolic function and skeletal muscle contractility. J Cachexia Sarcopenia Muscle 2022; 13:1565-1581. [PMID: 35301823 PMCID: PMC9178400 DOI: 10.1002/jcsm.12968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND About half of heart failure (HF) patients, while having preserved left ventricular function, suffer from diastolic dysfunction (so-called HFpEF). No specific therapeutics are available for HFpEF in contrast to HF where reduced ejection fractions (HFrEF) can be treated pharmacologically. Myocardial titin filament stiffening, endothelial dysfunction, and skeletal muscle (SKM) myopathy are suspected to contribute to HFpEF genesis. We previously described small molecules interfering with MuRF1 target recognition thereby attenuating SKM myopathy and dysfunction in HFrEF animal models. The aim of the present study was to test the efficacy of one small molecule (MyoMed-205) in HFpEF and to describe molecular changes elicited by MyoMed-205. METHODS Twenty-week-old female obese ZSF1 rats received the MuRF1 inhibitor MyoMed-205 for 12 weeks; a comparison was made to age-matched untreated ZSF1-lean (healthy) and obese rats as controls. LV (left ventricle) function was assessed by echocardiography and by invasive haemodynamic measurements until week 32. At week 32, SKM and endothelial functions were measured and tissues collected for molecular analyses. Proteome-wide analysis followed by WBs and RT-PCR was applied to identify specific genes and affected molecular pathways. MuRF1 knockout mice (MuRF1-KO) SKM tissues were included to validate MuRF1-specificity. RESULTS By week 32, untreated obese rats had normal LV ejection fraction but augmented E/e' ratios and increased end diastolic pressure and myocardial fibrosis, all typical features of HFpEF. Furthermore, SKM myopathy (both atrophy and force loss) and endothelial dysfunction were detected. In contrast, MyoMed-205 treated rats had markedly improved diastolic function, less myocardial fibrosis, reduced SKM myopathy, and increased SKM function. SKM extracts from MyoMed-205 treated rats had reduced MuRF1 content and lowered total muscle protein ubiquitination. In addition, proteomic profiling identified eight proteins to respond specifically to MyoMed-205 treatment. Five out of these eight proteins are involved in mitochondrial metabolism, dynamics, or autophagy. Consistent with the mitochondria being a MyoMed-205 target, the synthesis of mitochondrial respiratory chain complexes I + II was increased in treated rats. MuRF1-KO SKM controls also had elevated mitochondrial complex I and II activities, also suggesting mitochondrial activity regulation by MuRF1. CONCLUSIONS MyoMed-205 improved myocardial diastolic function and prevented SKM atrophy/function in the ZSF1 animal model of HFpEF. Mechanistically, SKM benefited from an attenuated ubiquitin proteasome system and augmented synthesis/activity of proteins of the mitochondrial respiratory chain while the myocardium seemed to benefit from reduced titin modifications and fibrosis.
Collapse
Affiliation(s)
- Volker Adams
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbHDresdenGermany
| | - Antje Schauer
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Antje Augstein
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Virginia Kirchhoff
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Runa Draskowski
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Anett Jannasch
- Department of Cardiac SurgeryTU Dresden, Heart Center DresdenDresdenGermany
| | - Keita Goto
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Gemma Lyall
- School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Anita Männel
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Peggy Barthel
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Norman Mangner
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Ephraim B. Winzer
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Axel Linke
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbHDresdenGermany
| | - Siegfried Labeit
- Myomedix GmbHNeckargemündGermany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/MannheimMannheimGermany
| |
Collapse
|
27
|
Li H, Xia YY, Xia CL, Li Z, Shi Y, Li XB, Zhang JX. Mimicking Metabolic Disturbance in Establishing Animal Models of Heart Failure With Preserved Ejection Fraction. Front Physiol 2022; 13:879214. [PMID: 35592030 PMCID: PMC9110887 DOI: 10.3389/fphys.2022.879214] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 03/30/2022] [Indexed: 01/10/2023] Open
Abstract
Heart failure (HF), the terminal state of different heart diseases, imposed a significant health care burden worldwide. It is the last battlefield in dealing with cardiovascular diseases. HF with preserved ejection fraction (HFpEF) is a type of HF in which the symptoms and signs of HF are mainly ascribed to diastolic dysfunction of left ventricle, whereas systolic function is normal or near-normal. Compared to HF with reduced ejection fraction (HFrEF), the diagnosis and treatment of HFpEF have made limited progress, partly due to the lack of suitable animal models for translational studies in the past. Given metabolic disturbance and inflammatory burden contribute to HFpEF pathogenesis, recent years have witnessed emerging studies focusing on construction of animal models with HFpEF phenotype by mimicking metabolic disorders. These models prefer to recapitulate the metabolic disorders and endothelial dysfunction, leading to the more detailed understanding of the entity. In this review, we summarize the currently available animal models of HFpEF with metabolic disorders, as well as their advantages and disadvantages as tools for translational studies.
Collapse
Affiliation(s)
- Hui Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi-Yuan Xia
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Chun-Lei Xia
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- Department of Intensive Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yi Shi
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiao-Bo Li
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiao-Bo Li, ; Jun-Xia Zhang,
| | - Jun-Xia Zhang
- Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
- *Correspondence: Xiao-Bo Li, ; Jun-Xia Zhang,
| |
Collapse
|
28
|
Abstract
The development of pulmonary hypertension (PH) is common and has adverse prognostic implications in patients with heart failure due to left heart disease (LHD), and thus far, there are no known treatments specifically for PH-LHD, also known as group 2 PH. Diagnostic thresholds for PH-LHD, and clinical classification of PH-LHD phenotypes, continue to evolve and, therefore, present a challenge for basic and translational scientists actively investigating PH-LHD in the preclinical setting. Furthermore, the pathobiology of PH-LHD is not well understood, although pulmonary vascular remodeling is thought to result from (1) increased wall stress due to increased left atrial pressures; (2) hemodynamic congestion-induced decreased shear stress in the pulmonary vascular bed; (3) comorbidity-induced endothelial dysfunction with direct injury to the pulmonary microvasculature; and (4) superimposed pulmonary arterial hypertension risk factors. To ultimately be able to modify disease, either by prevention or treatment, a better understanding of the various drivers of PH-LHD, including endothelial dysfunction, abnormalities in vascular tone, platelet aggregation, inflammation, adipocytokines, and systemic complications (including splanchnic congestion and lymphatic dysfunction) must be further investigated. Here, we review the diagnostic criteria and various hemodynamic phenotypes of PH-LHD, the potential biological mechanisms underlying this disorder, and pressing questions yet to be answered about the pathobiology of PH-LHD.
Collapse
Affiliation(s)
- Jessica H Huston
- Division of Cardiology, Department of Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA (J.H.H.)
| | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S.)
| |
Collapse
|
29
|
Kobak KA, Zarzycka W, Chiao YA. Age and Sex Differences in Heart Failure With Preserved Ejection Fraction. FRONTIERS IN AGING 2022; 3:811436. [PMID: 35821846 PMCID: PMC9261310 DOI: 10.3389/fragi.2022.811436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/29/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a multi-organ disorder that represents about 50% of total heart failure (HF) cases and is the most common form of HF in the elderly. Because of its increasing prevalence caused by the aging population, high mortality and morbidity, and very limited therapeutic options, HFpEF is considered as one of the greatest unmet medical needs in cardiovascular medicine. Despite its complex pathophysiology, numerous preclinical models have been established in rodents and in large animals to study HFpEF pathophysiology. Although age and sex differences are well described in HFpEF population, there are knowledge gaps in sex- and age-specific differences in established preclinical models. In this review, we summarize various strategies that have been used to develop HFpEF models and discuss the knowledge gaps in sex and age differences in HFpEF.
Collapse
|
30
|
Evaristi MF, Poirier B, Chénedé X, Lefebvre AM, Roccon A, Gillot F, Beeské S, Corbier A, Pruniaux-Harnist MP, Janiak P, Parkar AA. A G-protein-biased S1P1 agonist, SAR247799, improved LVH and diastolic function in a rat model of metabolic syndrome. PLoS One 2022; 17:e0257929. [PMID: 35030174 PMCID: PMC8759645 DOI: 10.1371/journal.pone.0257929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
AIM Heart failure with preserved ejection fraction (HFpEF) is a major cause of death worldwide with no approved treatment. Left ventricular hypertrophy (LVH) and diastolic dysfunction represent the structural and functional components of HFpEF, respectively. Endothelial dysfunction is prevalent in HFpEF and predicts cardiovascular events. We investigated if SAR247799, a G-protein-biased sphingosine-1-phosphate receptor 1 (S1P1) agonist with endothelial-protective properties, could improve cardiac and renal functions in a rat model of metabolic syndrome LVH and diastolic function. METHODS 31- and 65-week-old obese ZSF1 (Ob-ZSF1) rats, representing adult and aged animals with LVH and diastolic dysfunction, were randomized to a chow diet containing 0.025% (w/w) of SAR247799, or control (CTRL) chow for 4 weeks. Age-matched lean ZSF1 (Le-ZSF1) rats were fed control chow. Echocardiography, telemetry, biochemical and histological analysis were performed to evaluate the effect of SAR247799. RESULTS Echocardiography revealed that Ob-ZSF1 rats, in contrast to Le-ZSF1 rats, developed progressive diastolic dysfunction and cardiac hypertrophy with age. SAR247799 blunted the progression of diastolic dysfunction in adult and aged animals: in adult animals E/e' was evaluated at 21.8 ± 1.4 for Ob-ZSF1-CTRL, 19.5 ± 1.2 for Ob-ZSF1-SAR247799 p<0.01, and 19.5 ± 2.3 for Le-ZSF1-CTRL (median ± IQR). In aged animals E/e' was evaluated at 23.15 ± 4.45 for Ob-ZSF1-CTRL, 19.5 ± 5 for Ob-ZSF1-SAR247799 p<0.01, and 16.69 ± 1.7 for Le-ZSF1-CTRL, p<0.01 (median ± IQR). In aged animals, SAR247799 reduced cardiac hypertrophy (g/mm mean ± SEM of heart weight/tibia length 0.053 ± 0.001 for Ob-ZSF1-CTRL vs 0.046 ± 0.002 for Ob-ZSF1-SAR247799 p<0.01, Le-ZSF1-CTRL 0.035 ± 0.001) and myocardial perivascular collagen content (p<0.001), independently of any changes in microvascular density. In adult animals, SAR247799 improved endothelial function as assessed by the very low frequency bands of systolic blood pressure variability (mean ± SEM 67.8 ± 3.41 for Ob-ZSF1-CTRL 55.8 ± 4.27 or Ob-ZSF1-SAR247799, p<0.05 and 57.3 ± 1.82 Le-ZSF1-CTRL), independently of any modification of arterial blood pressure. In aged animals, SAR247799 reduced urinary protein/creatinine ratio, an index of glomerular injury, (10.3 ± 0.621 vs 8.17 ± 0.231 for Ob-ZSF1-CTRL vs Ob-ZSF1-SAR247799, respectively, p<0.05 and 0.294 ± 0.029 for Le-ZSF1-CTRL, mean ± SEM) and the fractional excretion of electrolytes. Circulating lymphocytes were not decreased by SAR247799, confirming lack of S1P1 desensitization. CONCLUSIONS These experimental findings suggest that S1P1 activation with SAR247799 may be considered as a new therapeutic approach for LVH and diastolic dysfunction, major components of HFpEF.
Collapse
Affiliation(s)
| | - Bruno Poirier
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Xavier Chénedé
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Anne-Marie Lefebvre
- Molecular Histology and Bioimaging Translational Sciences, Sanofi R&D, Chilly-Mazarin, France
| | - Alain Roccon
- Biomarkers and Clinical Bioanalyses, Translational Medicine and Early Development, Sanofi R&D, Montpellier, France
| | - Florence Gillot
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Sandra Beeské
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Alain Corbier
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | | | - Philip Janiak
- Diabetes and Cardiovascular Research, Sanofi R&D, Chilly-Mazarin, France
| | - Ashfaq A. Parkar
- Diabetes and Cardiovascular Research, Sanofi US Services, Bridgewater, NJ, United States of America
| |
Collapse
|
31
|
Kelley RC, Betancourt L, Noriega AM, Brinson SC, Curbelo-Bermudez N, Hahn D, Kumar RA, Balazic E, Muscato DR, Ryan TE, van der Pijl RJ, Shen S, Ottenheijm CAC, Ferreira LF. Skeletal myopathy in a rat model of postmenopausal heart failure with preserved ejection fraction. J Appl Physiol (1985) 2022; 132:106-125. [PMID: 34792407 PMCID: PMC8742741 DOI: 10.1152/japplphysiol.00170.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of all patients with heart failure and frequently affects postmenopausal women. The HFpEF condition is phenotype-specific, with skeletal myopathy that is crucial for disease development and progression. However, most of the current preclinical models of HFpEF have not addressed the postmenopausal phenotype. We sought to advance a rodent model of postmenopausal HFpEF and examine skeletal muscle abnormalities therein. Female, ovariectomized, spontaneously hypertensive rats (SHRs) were fed a high-fat, high-sucrose diet to induce HFpEF. Controls were female sham-operated Wistar-Kyoto rats on a lean diet. In a complementary, longer-term cohort, controls were female sham-operated SHRs on a lean diet to evaluate the effect of strain difference in the model. Our model developed key features of HFpEF that included increased body weight, glucose intolerance, hypertension, cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and elevated plasma cytokines. In limb skeletal muscle, HFpEF decreased specific force by 15%-30% (P < 0.05) and maximal mitochondrial respiration by 40%-55% (P < 0.05), increased oxidized glutathione by approximately twofold (P < 0.05), and tended to increase mitochondrial H2O2 emission (P = 0.10). Muscle fiber cross-sectional area, markers of mitochondrial content, and indices of capillarity were not different between control and HFpEF in our short-term cohort. Overall, our preclinical model of postmenopausal HFpEF recapitulates several key features of the disease. This new model reveals contractile and mitochondrial dysfunction and redox imbalance that are potential contributors to abnormal metabolism, exercise intolerance, and diminished quality of life in patients with postmenopausal HFpEF.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a condition with phenotype-specific features highly prevalent in postmenopausal women and skeletal myopathy contributing to disease development and progression. We advanced a rat model of postmenopausal HFpEF with key cardiovascular and systemic features of the disease. Our study shows that the skeletal myopathy of postmenopausal HFpEF includes loss of limb muscle-specific force independent of atrophy, mitochondrial dysfunction, and oxidized shift in redox balance.
Collapse
Affiliation(s)
- Rachel C Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Lauren Betancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Andrea M Noriega
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Suzanne C Brinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Nuria Curbelo-Bermudez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Eliza Balazic
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Derek R Muscato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Robbert J van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Shengyi Shen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Coen A C Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
32
|
Haberecht-Müller S, Krüger E, Fielitz J. Out of Control: The Role of the Ubiquitin Proteasome System in Skeletal Muscle during Inflammation. Biomolecules 2021; 11:biom11091327. [PMID: 34572540 PMCID: PMC8468834 DOI: 10.3390/biom11091327] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 02/07/2023] Open
Abstract
The majority of critically ill intensive care unit (ICU) patients with severe sepsis develop ICU-acquired weakness (ICUAW) characterized by loss of muscle mass, reduction in myofiber size and decreased muscle strength leading to persisting physical impairment. This phenotype results from a dysregulated protein homeostasis with increased protein degradation and decreased protein synthesis, eventually causing a decrease in muscle structural proteins. The ubiquitin proteasome system (UPS) is the predominant protein-degrading system in muscle that is activated during diverse muscle atrophy conditions, e.g., inflammation. The specificity of UPS-mediated protein degradation is assured by E3 ubiquitin ligases, such as atrogin-1 and MuRF1, which target structural and contractile proteins, proteins involved in energy metabolism and transcription factors for UPS-dependent degradation. Although the regulation of activity and function of E3 ubiquitin ligases in inflammation-induced muscle atrophy is well perceived, the contribution of the proteasome to muscle atrophy during inflammation is still elusive. During inflammation, a shift from standard- to immunoproteasome was described; however, to which extent this contributes to muscle wasting and whether this changes targeting of specific muscular proteins is not well described. This review summarizes the function of the main proinflammatory cytokines and acute phase response proteins and their signaling pathways in inflammation-induced muscle atrophy with a focus on UPS-mediated protein degradation in muscle during sepsis. The regulation and target-specificity of the main E3 ubiquitin ligases in muscle atrophy and their mode of action on myofibrillar proteins will be reported. The function of the standard- and immunoproteasome in inflammation-induced muscle atrophy will be described and the effects of proteasome-inhibitors as treatment strategies will be discussed.
Collapse
Affiliation(s)
- Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, University Medicine Greifswald, 17475 Greifswald, Germany;
- Correspondence: (E.K.); (J.F.)
| | - Jens Fielitz
- DZHK (German Centre for Cardiovascular Research), Partner Site Greifswald, 17475 Greifswald, Germany
- Department of Internal Medicine B, Cardiology, University Medicine Greifswald, 17475 Greifswald, Germany
- Correspondence: (E.K.); (J.F.)
| |
Collapse
|
33
|
Hegemann N, Primessnig U, Bode D, Wakula P, Beindorff N, Klopfleisch R, Michalick L, Grune J, Hohendanner F, Messroghli D, Pieske B, Kuebler WM, Heinzel FR. Right-ventricular dysfunction in HFpEF is linked to altered cardiomyocyte Ca 2+ homeostasis and myofilament sensitivity. ESC Heart Fail 2021; 8:3130-3144. [PMID: 34002482 PMCID: PMC8318431 DOI: 10.1002/ehf2.13419] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 12/17/2022] Open
Abstract
Aims Heart failure with preserved ejection fraction (HFpEF) is frequently (30%) associated with right ventricular (RV) dysfunction, which increases morbidity and mortality in these patients. Yet cellular mechanisms of RV remodelling and RV dysfunction in HFpEF are not well understood. Here, we evaluated RV cardiomyocyte function in a rat model of metabolically induced HFpEF. Methods and results Heart failure with preserved ejection fraction‐prone animals (ZSF‐1 obese) and control rats (Wistar Kyoto) were fed a high‐caloric diet for 13 weeks. Haemodynamic characterization by echocardiography and invasive catheterization was performed at 22 and 23 weeks of age, respectively. After sacrifice, organ morphometry, RV histology, isolated RV cardiomyocyte function, and calcium (Ca2+) transients were assessed. ZSF‐1 obese rats showed a HFpEF phenotype with left ventricular (LV) hypertrophy, LV diastolic dysfunction (including increased LV end‐diastolic pressures and E/e′ ratio), and preserved LV ejection fraction. ZSF‐1 obese animals developed RV dilatation (50% increased end‐diastolic area) and mildly impaired RV ejection fraction (42%) with evidence of RV hypertrophy. In isolated RV cardiomyocytes from ZSF‐1 obese rats, cell shortening amplitude was preserved, but cytosolic Ca2+ transient amplitude was reduced. In addition, augmentation of cytosolic Ca2+ release with increased stimulation frequency was lost in ZSF‐1 obese rats. Myofilament sensitivity was increased, while contractile kinetics were largely unaffected in intact isolated RV cardiomyocytes from ZSF‐1 obese rats. Western blot analysis revealed significantly increased phosphorylation of cardiac myosin‐binding protein C (Ser282 cMyBP‐C) but no change in phosphorylation of troponin I (Ser23, 24 TnI) in RV myocardium from ZSF‐1 obese rats. Conclusions Right ventricular dysfunction in obese ZSF‐1 rats with HFpEF is associated with intrinsic RV cardiomyocyte remodelling including reduced cytosolic Ca2+ amplitudes, loss of frequency‐dependent augmentation of Ca2+ release, and increased myofilament Ca2+ sensitivity.
Collapse
Affiliation(s)
- Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - David Bode
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Paulina Wakula
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Nicola Beindorff
- Berlin Experimental Radionuclide Imaging Center (BERIC), Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Robert Klopfleisch
- Department of Veterinary Pathology, Free University of Berlin, Berlin, Germany
| | - Laura Michalick
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jana Grune
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Daniel Messroghli
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center, Berlin, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center, Berlin, Germany
| | - Wolfgang M Kuebler
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Institute of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburger Platz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
34
|
Schauer A, Adams V, Augstein A, Jannasch A, Draskowski R, Kirchhoff V, Goto K, Mittag J, Galli R, Männel A, Barthel P, Linke A, Winzer EB. Sacubitril/Valsartan Improves Diastolic Function But Not Skeletal Muscle Function in a Rat Model of HFpEF. Int J Mol Sci 2021; 22:3570. [PMID: 33808232 PMCID: PMC8036273 DOI: 10.3390/ijms22073570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/11/2022] Open
Abstract
The angiotensin receptor/neprilysin inhibitor Sacubitril/Valsartan (Sac/Val) has been shown to be beneficial in patients suffering from heart failure with reduced ejection fraction (HFrEF). However, the impact of Sac/Val in patients presenting with heart failure with preserved ejection fraction (HFpEF) is not yet clearly resolved. The present study aimed to reveal the influence of the drug on the functionality of the myocardium, the skeletal muscle, and the vasculature in a rat model of HFpEF. Female obese ZSF-1 rats received Sac/Val as a daily oral gavage for 12 weeks. Left ventricle (LV) function was assessed every four weeks using echocardiography. Prior to organ removal, invasive hemodynamic measurements were performed in both ventricles. Vascular function of the carotid artery and skeletal muscle function were monitored. Sac/Val treatment reduced E/é ratios, left ventricular end diastolic pressure (LVEDP) and myocardial stiffness as well as myocardial fibrosis and heart weight compared to the obese control group. Sac/Val slightly improved endothelial function in the carotid artery but had no impact on skeletal muscle function. Our results demonstrate striking effects of Sac/Val on the myocardial structure and function in a rat model of HFpEF. While vasodilation was slightly improved, functionality of the skeletal muscle remained unaffected.
Collapse
Affiliation(s)
- Antje Schauer
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Antje Augstein
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstrasse 76, 01307 Dresden, Germany; (A.J.); (J.M.)
| | - Runa Draskowski
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Virginia Kirchhoff
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Keita Goto
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Jeniffer Mittag
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstrasse 76, 01307 Dresden, Germany; (A.J.); (J.M.)
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Anita Männel
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Peggy Barthel
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Axel Linke
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| | - Ephraim B. Winzer
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, 01307 Dresden, Germany; (V.A.); (A.A.); (R.D.); (V.K.); (K.G.); (A.M.); (P.B.); (A.L.); (E.B.W.)
| |
Collapse
|
35
|
Sharp TE, Scarborough AL, Li Z, Polhemus DJ, Hidalgo HA, Schumacher JD, Matsuura TR, Jenkins JS, Kelly DP, Goodchild TT, Lefer DJ. Novel Göttingen Miniswine Model of Heart Failure With Preserved Ejection Fraction Integrating Multiple Comorbidities. JACC Basic Transl Sci 2021; 6:154-170. [PMID: 33665515 PMCID: PMC7907541 DOI: 10.1016/j.jacbts.2020.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/14/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023]
Abstract
A lack of preclinical large animal models of heart failure with preserved ejection fraction (HFpEF) that recapitulate this comorbid-laden syndrome has led to the inability to tease out mechanistic insights and to test novel therapeutic strategies. This study developed a large animal model that integrated multiple comorbid determinants of HFpEF in a miniswine breed that exhibited sensitivity to obesity, metabolic syndrome, and vascular disease with overt clinical signs of heart failure. The combination of a Western diet and 11-deoxycorticosterone acetate salt-induced hypertension in the Göttingen miniswine led to the development of a novel large animal model of HFpEF that exhibited multiorgan involvement and a full spectrum of comorbidities associated with human HFpEF.
Collapse
Key Words
- DBP, diastolic blood pressure
- DOCA, 11-deoxycorticosterone acetate
- EC50, half-maximal effective concentration
- EF, ejection fraction
- HDL, high-density lipoprotein
- HFpEF, heart failure with preserved ejection fraction
- HFrEF, heart failure with reduced ejection fraction
- IVGTT, intravenous glucose tolerance test
- LDL, low-density lipoprotein
- LV, left ventricle
- PCWP, pulmonary capillary wedge pressure
- SBP, systolic blood pressure
- TC, total cholesterol
- WD, Western diet
- animal models of human disease
- heart failure with preserved ejection fraction
- hypertension
- metabolic syndrome
- obesity
Collapse
Affiliation(s)
- Thomas E Sharp
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Amy L Scarborough
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Zhen Li
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - David J Polhemus
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Hunter A Hidalgo
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA.,Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Jeffery D Schumacher
- Department of Animal Care, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - Timothy R Matsuura
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - J Stephen Jenkins
- Department of Cardiology, Heart and Vascular Institute, Ochsner Medical Center, New Orleans, Louisiana, USA
| | - Daniel P Kelly
- Cardiovascular Institute, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Traci T Goodchild
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA.,Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| | - David J Lefer
- Cardiovascular Center of Excellence, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA.,Department of Pharmacology and Experimental Therapeutics, School of Medicine, Louisiana State University Health Science Center, New Orleans, Louisiana, USA
| |
Collapse
|
36
|
Espino-Gonzalez E, Tickle PG, Benson AP, Kissane RWP, Askew GN, Egginton S, Bowen TS. Abnormal skeletal muscle blood flow, contractile mechanics and fibre morphology in a rat model of obese-HFpEF. J Physiol 2021; 599:981-1001. [PMID: 33347612 PMCID: PMC7898698 DOI: 10.1113/jp280899] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Heart failure is characterised by limb and respiratory muscle impairments that limit functional capacity and quality of life. However, compared with heart failure with reduced ejection fraction (HFrEF), skeletal muscle alterations induced by heart failure with preserved ejection fraction (HFpEF) remain poorly explored. Here we report that obese-HFpEF induces multiple skeletal muscle alterations in the rat hindlimb, including impaired muscle mechanics related to shortening velocity, fibre atrophy, capillary loss, and an impaired blood flow response to contractions that implies a perfusive oxygen delivery limitation. We also demonstrate that obese-HFpEF is characterised by diaphragmatic alterations similar to those caused by denervation - atrophy in Type IIb/IIx (fast/glycolytic) fibres and hypertrophy in Type I (slow/oxidative) fibres. These findings extend current knowledge in HFpEF skeletal muscle physiology, potentially underlying exercise intolerance, which may facilitate future therapeutic approaches. ABSTRACT Peripheral skeletal muscle and vascular alterations induced by heart failure with preserved ejection fraction (HFpEF) remain poorly identified, with limited therapeutic targets. This study used a cardiometabolic obese-HFpEF rat model to comprehensively phenotype skeletal muscle mechanics, blood flow, microvasculature and fibre atrophy. Lean (n = 8) and obese-HFpEF (n = 8) ZSF1 rats were compared. Skeletal muscles (soleus and diaphragm) were assessed for in vitro contractility (isometric and isotonic properties) alongside indices of fibre-type cross-sectional area, myosin isoform, and capillarity, and estimated muscle PO2 . In situ extensor digitorum longus (EDL) contractility and femoral blood flow were assessed. HFpEF soleus demonstrated lower absolute maximal force by 22%, fibre atrophy by 24%, a fibre-type shift from I to IIa, and a 17% lower capillary-to-fibre ratio despite increased capillary density (all P < 0.05) with preserved muscle PO2 (P = 0.115) and isometric specific force (P > 0.05). Soleus isotonic properties (shortening velocity and power) were impaired by up to 17 and 22%, respectively (P < 0.05), while the magnitude of the exercise hyperaemia was attenuated by 73% (P = 0.012) in line with higher muscle fatigue by 26% (P = 0.079). Diaphragm alterations (P < 0.05) included Type IIx fibre atrophy despite Type I/IIa fibre hypertrophy, with increased indices of capillarity alongside preserved contractile properties during isometric, isotonic, and cyclical contractions. In conclusion, obese-HFpEF rats demonstrated blunted skeletal muscle blood flow during contractions in parallel to microvascular structural remodelling, fibre atrophy, and isotonic contractile dysfunction in the locomotor muscles. In contrast, diaphragm phenotype remained well preserved. This study identifies numerous muscle-specific impairments that could exacerbate exercise intolerance in obese-HFpEF.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter G Tickle
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alan P Benson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Roger W P Kissane
- Department of Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, UK
| | - Graham N Askew
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
37
|
Schauer A, Draskowski R, Jannasch A, Kirchhoff V, Goto K, Männel A, Barthel P, Augstein A, Winzer E, Tugtekin M, Labeit S, Linke A, Adams V. ZSF1 rat as animal model for HFpEF: Development of reduced diastolic function and skeletal muscle dysfunction. ESC Heart Fail 2020; 7:2123-2134. [PMID: 32710530 PMCID: PMC7524062 DOI: 10.1002/ehf2.12915] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/02/2020] [Accepted: 07/13/2020] [Indexed: 12/17/2022] Open
Abstract
AIMS The prevalence of heart failure with preserved ejection fraction (HFpEF) is still increasing, and so far, no pharmaceutical treatment has proven to be effective. A key obstacle for testing new pharmaceutical substances is the availability of suitable animal models for HFpEF, which realistically reflect the clinical picture. The aim of the present study was to characterize the development of HFpEF and skeletal muscle (SM) dysfunction in ZSF1 rats over time. METHODS AND RESULTS Echocardiography and functional analyses of the SM were performed in 6-, 10-, 15-, 20-, and 32-week-old ZSF1-lean and ZSF1-obese. Furthermore, myocardial and SM tissue was collected for molecular and histological analyses. HFpEF markers were evident as early as 10 weeks of age. Diastolic dysfunction, confirmed by a significant increase in E/e', was detectable at 10 weeks. Increased left ventricular mRNA expression of collagen and BNP was detected in ZSF1-obese animals as early as 15 and 20 weeks, respectively. The loss of muscle force was measurable in the extensor digitorum longus starting at 15 weeks, whereas the soleus muscle function was impaired at Week 32. In addition, at Week 20, markers for aortic valve sclerosis were increased. CONCLUSIONS Our measurements confirmed the appearance of HFpEF in ZSF1-obese rats as early as 10 weeks of age, most likely as a result of the pre-existing co-morbidities. In addition, SM function was reduced after the manifestation of HFpEF. In conclusion, the ZSF1 rat may serve as a suitable animal model to study pharmaceutical strategies for the treatment of HFpEF.
Collapse
Affiliation(s)
- Antje Schauer
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Runa Draskowski
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Virginia Kirchhoff
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Keita Goto
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Anita Männel
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Peggy Barthel
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Antje Augstein
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Ephraim Winzer
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Dresden, Germany
| | - Siegfried Labeit
- Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany.,Myomedix GmbH, Neckargemünd, Germany
| | - Axel Linke
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Fetscherstrasse 76, Dresden, 01307, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| |
Collapse
|