1
|
Walwyn-Brown K, Pugh J, Cocker AT, Beyzaie N, Singer BB, Olive D, Guethlein LA, Parham P, Djaoud Z. Phosphoantigen-stimulated γδ T cells suppress natural killer cell-responses to missing-self. Cancer Immunol Res 2022; 10:558-570. [PMID: 35263761 DOI: 10.1158/2326-6066.cir-21-0696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/14/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022]
Abstract
γδ T cells stimulated by phosphoantigens (pAg) are potent effectors that secrete Th1 cytokines and kill tumor cells. Consequently, they are considered candidates for use in cancer immunotherapy. However, they have proven only moderately effective in several clinical trials. We studied the consequences of pAg-stimulated γδ T-cell interactions with Natural Killer (NK) cells and CD8+ T cells, major innate and adaptive effectors, respectively. We found that pAg-stimulated γδ T cells suppressed NK-cell responses to "missing-self" but had no effect on antigen-specific CD8+ T-cell responses. Extensive analysis of the secreted cytokines showed that pAg-stimulated γδ T cells had a pro-inflammatory profile. CMV-pp65-specific CD8+ T cells primed with pAg-stimulated γδ T cells showed little effect on responses to pp65-loaded target cells. By contrast, NK cells primed similarly with γδ T cells had impaired capacity to degranulate and produce IFNγ in response to HLA class I-deficient targets. This effect depended on BTN3A1 and required direct contact between NK cells and γδ T cells. γδ T cell-priming of NK cells also led to a downregulation of NKG2D and NKp44 on NK cells. Every NK-cell subset was affected by γδ T cell-mediated immunosuppression, but the strongest effect was on KIR+NKG2A- NK cells. We therefore report a previously unknown function for γδ T cells, as brakes of NK-cell responses to "missing-self". This provides a new perspective for optimizing the use of γδ T cells in cancer immunotherapy and for assessing their role in immune responses to pAg-producing pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniel Olive
- Aix Marseille Univ, CNRS, Inserm, Institut Paoli-Calmettes, CRCM,, Marseille, France
| | | | | | | |
Collapse
|
2
|
Immunophenotypic characterization of TCR γδ T cells and MAIT cells in HIV-infected individuals developing Hodgkin's lymphoma. Infect Agent Cancer 2021; 16:24. [PMID: 33865435 PMCID: PMC8052713 DOI: 10.1186/s13027-021-00365-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Background Despite successful combined antiretroviral therapy (cART), the risk of non-AIDS defining cancers (NADCs) remains higher for HIV-infected individuals than the general population. The reason for this increase is highly disputed. Here, we hypothesized that T-cell receptor (TCR) γδ cells and/or mucosal-associated invariant T (MAIT) cells might be associated with the increased risk of NADCs. γδ T cells and MAIT cells both serve as a link between the adaptive and the innate immune system, and also to exert direct anti-viral and anti-tumor activity. Methods We performed a longitudinal phenotypic characterization of TCR γδ cells and MAIT cells in HIV-infected individuals developing Hodgkin’s lymphoma (HL), the most common type of NADCs. Cryopreserved PBMCs of HIV-infected individuals developing HL, matched HIV-infected controls without (w/o) HL and healthy controls were used for immunophenotyping by polychromatic flow cytometry, including markers for activation, exhaustion and chemokine receptors. Results We identified significant differences in the CD4+ T cell count between HIV-infected individuals developing HL and HIV-infected matched controls within 1 year before cancer diagnosis. We observed substantial differences in the cellular phenotype mainly between healthy controls and HIV infection irrespective of HL. A number of markers tended to be different in Vδ1 and MAIT cells in HIV+HL+ patients vs. HIV+ w/o HL patients; notably, we observed significant differences for the expression of CCR5, CCR6 and CD16 between these two groups of HIV+ patients. Conclusion TCR Vδ1 and MAIT cells in HIV-infected individuals developing HL show subtle phenotypical differences as compared to the ones in HIV-infected controls, which may go along with functional impairment and thereby may be less efficient in detecting and eliminating malignant cells. Further, our results support the potential of longitudinal CD4+ T cell count analysis for the identification of patients at higher risk to develop HL. Supplementary Information The online version contains supplementary material available at 10.1186/s13027-021-00365-4.
Collapse
|
3
|
Seo IH, Lee SJ, Noh TW, Kim JH, Joo HC, Shin EC, Park SH, Ko YG. Increase of Vδ2 + T Cells That Robustly Produce IL-17A in Advanced Abdominal Aortic Aneurysm Tissues. Immune Netw 2021; 21:e17. [PMID: 33996173 PMCID: PMC8099614 DOI: 10.4110/in.2021.21.e17] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/19/2020] [Indexed: 12/01/2022] Open
Abstract
Abdominal aortic aneurysm (AAA) is a chronic dilation of the aorta with a tendency to enlarge and eventually rupture, which constitutes a major cause of cardiovascular mortality. Although T-cell infiltrates have been observed in AAA, the cellular, phenotypic, and functional characteristics of these tissue-infiltrating T cells are not fully understood. Here, we investigated the proportional changes of T-cell subsets-including CD4+ T cells, CD8+ T cells, and γδ T cells-and their effector functions in AAAs. We found that Vδ2+ T cells were presented at a higher frequency in aortic aneurysmal tissue compared to normal aortic tissue and PBMCs from patients with AAA. In contrast, no differences were observed in the frequencies of CD4+, CD8+, and Vδ1+ T cells. Moreover, we observed that the Vδ2+ T cells from AAA tissue displayed immunophenotypes indicative of CCR5+ non-exhausted effector memory cells, with a decreased proportion of CD16+ cells. Finally, we found that these Vδ2+ T cells were the main source of IL-17A in abdominal aortic aneurysmal tissue. In conclusion, our results suggest that increased Vδ2+ T cells that robustly produce IL-17A in aortic aneurysmal tissue may contribute to AAA pathogenesis and progression.
Collapse
Affiliation(s)
- In-Ho Seo
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Seung-Jun Lee
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Tae Wook Noh
- Department of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Jung-Hwan Kim
- Department of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Hyun-Chel Joo
- Department of Cardiovascular Surgery, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Eui-Cheol Shin
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Su-Hyung Park
- Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Young-Guk Ko
- Division of Cardiology, Department of Internal Medicine, Severance Cardiovascular Hospital, Yonsei University College of Medicine, Seoul 03722, Korea
| |
Collapse
|
4
|
CD8 + γδ T Cells Are More Frequent in CMV Seropositive Bone Marrow Grafts and Display Phenotype of an Adaptive Immune Response. Stem Cells Int 2019; 2019:6348060. [PMID: 31885619 PMCID: PMC6925825 DOI: 10.1155/2019/6348060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/24/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022] Open
Abstract
The role of gamma delta (γδ) T cells in human cytomegalovirus (HCMV) immune surveillance has been the focus of research interest for years. Recent reports have shown a substantial clonal proliferation of γδ T cells in response to HCMV, shedding light on the adaptive immune response of γδ T cells. Nevertheless, most efforts have focused on Vδ2neg γδ T cell subset while less attention has been given to investigate other less common γδ T cell subsets. In this regard, a distinct subpopulation of γδ T cells that expresses the CD8 coreceptor (CD8+ γδ T cells) has not been thoroughly explored. Whether it is implicated in HCMV response and its ability to generate adaptive response has not been thoroughly investigated. In this study, we combined flow cytometry and immune sequencing of the TCR γ-chain (TRG) to analyze in-depth bone marrow (BM) graft γδ T cells from CMV seropositive (CMV+) and CMV seronegative (CMV-) donors. We showed that the frequency of CD8+ γδ T cells was significantly higher in CMV+ grafts compared to CMV- grafts (P < 0.001). Further characterization revealed that CD8+ γδ T cells from CMV+ grafts express Vγ9- and preferentially differentiated from a naive to terminal effector memory phenotype (CD27low/-CD45RO-). In line with these findings, TRG immune sequencing revealed clonal focusing and reduced usage of the Vγ9/JP gene segment in a CMV+ graft. Furthermore, CD8+ γδ T cells showed an enhanced response to TCR/CD3 and cytokine stimulation in contrast to CD8- γδ T cells. We conclude that γδ T cells in BM grafts are reshaped by donor CMV serostatus and highlight the potential adaptive role of CD8+ γδ T cells in HCMV immune response.
Collapse
|
5
|
Tong W, Maira M, Roychoudhury R, Galan A, Brahimi F, Gilbert M, Cunningham AM, Josephy S, Pirvulescu I, Moffett S, Saragovi HU. Vaccination with Tumor-Ganglioside Glycomimetics Activates a Selective Immunity that Affords Cancer Therapy. Cell Chem Biol 2019; 26:1013-1026.e4. [DOI: 10.1016/j.chembiol.2019.03.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/19/2018] [Accepted: 03/27/2019] [Indexed: 02/06/2023]
|
6
|
Tanaka Y, Murata‐Hirai K, Iwasaki M, Matsumoto K, Hayashi K, Kumagai A, Nada MH, Wang H, Kobayashi H, Kamitakahara H, Okamura H, Sugie T, Minato N, Toi M, Morita CT. Expansion of human γδ T cells for adoptive immunotherapy using a bisphosphonate prodrug. Cancer Sci 2018; 109:587-599. [PMID: 29288540 PMCID: PMC5834800 DOI: 10.1111/cas.13491] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/20/2017] [Accepted: 12/25/2017] [Indexed: 12/27/2022] Open
Abstract
Cancer immunotherapy with human γδ T cells expressing Vγ2Vδ2 T cell receptor (also termed Vγ9Vδ2) has shown promise because of their ability to recognize and kill most types of tumors in a major histocombatibility complex (MHC) -unrestricted fashion that is independent of the number of tumor mutations. In clinical trials, adoptive transfer of Vγ2Vδ2 T cells has been shown to be safe and does not require preconditioning. In this report, we describe a method for preparing highly enriched human Vγ2Vδ2 T cells using the bisphosphonate prodrug, tetrakis-pivaloyloxymethyl 2-(thiazole-2-ylamino)ethylidene-1,1-bisphosphonate (PTA). PTA stimulated the expansion of Vγ2Vδ2 cells to purities up to 99%. These levels were consistently higher than those observed after expansion with zoledronic acid, the most commonly used stimulator for clinical trials. Cell numbers also averaged more than those obtained with zoledronic acid and the expanded Vγ2Vδ2 cells exhibited high cytotoxicity against tumor cells. The high purity of Vγ2Vδ2 cells expanded by PTA increased engraftment success in immunodeficient NOG mice. Even low levels of contaminating αβ T cells resulted in some mice with circulating human αβ T cells rather than Vγ2Vδ2 cells. Vγ2Vδ2 cells from engrafted NOG mice upregulated CD25 and secreted tumor necrosis factor-α and interferon-γ in response to PTA-treated tumor cells. Thus, PTA expands Vγ2Vδ2 T cells to higher purity than zoledronic acid. The high purities allow the successful engraftment of immunodeficient mice without further purification and may speed up the development of allogeneic Vγ2Vδ2 T cell therapies derived from HLA-matched normal donors for patients with poor autologous Vγ2Vδ2 T cell responses.
Collapse
Affiliation(s)
- Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and TherapeuticsGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of Immunology and Cell BiologyGraduate School of MedicineKyoto UniversityKyotoJapan
- Center for Bioinformatics and Molecular MedicineGraduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Kaoru Murata‐Hirai
- Center for Innovation in Immunoregulative Technology and TherapeuticsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Masashi Iwasaki
- Center for Innovation in Immunoregulative Technology and TherapeuticsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kenji Matsumoto
- Center for Innovation in Immunoregulative Technology and TherapeuticsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Kosuke Hayashi
- Center for Innovation in Immunoregulative Technology and TherapeuticsGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Asuka Kumagai
- Center for Bioinformatics and Molecular MedicineGraduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Mohanad H. Nada
- Department of Internal Medicine and the Interdisciplinary Graduate Program in ImmunologyUniversity of Iowa Carver College of MedicineIowa City Veterans Affairs Health Care SystemIowa CityIAUSA
| | - Hong Wang
- Department of Internal Medicine and the Interdisciplinary Graduate Program in ImmunologyUniversity of Iowa Carver College of MedicineIowa City Veterans Affairs Health Care SystemIowa CityIAUSA
| | - Hirohito Kobayashi
- Department of Transfusion Medicine and Cell ProcessingTokyo Women's Medical UniversityTokyoJapan
| | - Hiroshi Kamitakahara
- Department of Forest and Biomaterials ScienceGraduate School of AgricultureKyoto UniversityKyotoJapan
| | - Haruki Okamura
- Department of Tumor Immunology and Cell TherapyHyogo College of MedicineNishinomiyaHyogoJapan
| | - Tomoharu Sugie
- Department of SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Nagahiro Minato
- Department of Immunology and Cell BiologyGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Masakazu Toi
- Department of SurgeryGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Craig T. Morita
- Department of Internal Medicine and the Interdisciplinary Graduate Program in ImmunologyUniversity of Iowa Carver College of MedicineIowa City Veterans Affairs Health Care SystemIowa CityIAUSA
| |
Collapse
|
7
|
Khan S, Telwatte S, Trapecar M, Yukl S, Sanjabi S. Differentiating Immune Cell Targets in Gut-Associated Lymphoid Tissue for HIV Cure. AIDS Res Hum Retroviruses 2017; 33:S40-S58. [PMID: 28882067 PMCID: PMC5685216 DOI: 10.1089/aid.2017.0153] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The single greatest challenge to an HIV cure is the persistence of latently infected cells containing inducible, replication-competent proviral genomes, which constitute only a small fraction of total or infected cells in the body. Although resting CD4+ T cells in the blood are a well-known source of viral rebound, more than 90% of the body's lymphocytes reside elsewhere. Many are in gut tissue, where HIV DNA levels per million CD4+ T cells are considerably higher than in the blood. Despite the significant contribution of gut tissue to viral replication and persistence, little is known about the cell types that support persistence of HIV in the gut; importantly, T cells in the gut have phenotypic, functional, and survival properties that are distinct from T cells in other tissues. The mechanisms by which latency is established and maintained will likely depend on the location and cytokine milieu surrounding the latently infected cells in each compartment. Therefore, successful HIV cure strategies require identification and characterization of the exact cell types that support viral persistence, particularly in the gut. In this review, we describe the seeding of the latent HIV reservoir in the gut mucosa; highlight the evidence for compartmentalization and depletion of T cells; summarize the immunologic consequences of HIV infection within the gut milieu; propose how the damaged gut environment may promote the latent HIV reservoir; and explore several immune cell targets in the gut and their place on the path toward HIV cure.
Collapse
Affiliation(s)
- Shahzada Khan
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Sushama Telwatte
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Martin Trapecar
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
| | - Steven Yukl
- San Francisco VA Health Care System and University of California, San Francisco (UCSF), San Francisco, California
| | - Shomyseh Sanjabi
- Gladstone Institute of Virology and Immunology, Gladstone Institutes, San Francisco, California
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California
| |
Collapse
|
8
|
Rossini M, Adami G, Viapiana O, Idolazzi L, Fassio A, Giollo A, Caimmi C, Orsolini G, Gatti D. Rheumatoid arthritis, γδ T cells and bisphosphonates. Ann Rheum Dis 2017; 77:e57. [DOI: 10.1136/annrheumdis-2017-212510] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 10/11/2017] [Indexed: 11/03/2022]
|
9
|
Mo WX, Yin SS, Chen H, Zhou C, Zhou JX, Zhao LD, Fei YY, Yang HX, Guo JB, Mao YJ, Huang LF, Zheng WJ, Zhang W, Zhang JM, He W, Zhang X. Chemotaxis of Vδ2 T cells to the joints contributes to the pathogenesis of rheumatoid arthritis. Ann Rheum Dis 2017; 76:2075-2084. [PMID: 28866647 PMCID: PMC5705844 DOI: 10.1136/annrheumdis-2016-211069] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 04/26/2017] [Accepted: 07/26/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To explore the role of Vδ2 T cells in the pathogenesis of rheumatoid arthritis (RA). METHODS Sixty-eight patients with RA, 21 patients with osteoarthritis and 21 healthy controls were enrolled in the study. All patients with RA fulfilled the 2010 American College of Rheumatology/European League Against Rheumatism criteria for RA. Peripheral Vδ2T population, chemokine receptor expression and proinflammatory cytokine secretion were quantified by flow cytometry. The infiltration of Vδ2 T cells within the synovium was examined by immunohistochemistry and flow cytometry. The effect of tumour necrosis factor (TNF)-α and interleukin (IL)-6 on Vδ2 T migration was determined by flow cytometry and transwell migration assay. RESULTS Peripheral Vδ2T cells, but not Vδ1 T cells, were significantly lower in patients with RA, which was negatively correlated with disease activity gauged by Disease Activity Score in 28 joints. Vδ2 T cells from RA accumulated in the synovium and produced high levels of proinflammatory cytokines including interferon-γ and IL-17. Phenotypically, Vδ2 T cells from RA showed elevated chemotaxis potential and expressed high levels of chemokine receptors CCR5 and CXCR3, which was driven by increased serum TNF-α through nuclear factor kappa B signalling. In vivo, TNF-α neutralising therapy dramatically downregulated CCR5 and CXCR3 on Vδ2 T cells and repopulated the peripheral Vδ2 T cells in patients with RA. CONCLUSIONS High levels of TNF-α promoted CCR5 and CXCR3 expression in Vδ2 T cells from RA, which potentially infiltrated into the synovium and played crucial roles in the pathogenesis of RA. Targeting Vδ2 T cells might be a potential approach for RA.
Collapse
Affiliation(s)
- Wen-Xiu Mo
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Shan-Shan Yin
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Hua Chen
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Chen Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Jia-Xin Zhou
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Li-Dan Zhao
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Yun-Yun Fei
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Hua-Xia Yang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Jing-Bo Guo
- Department of Traditional Chinese Medicine, 256th Clinical Department of Bethune International Peace Hospital of PLA, Shijiazhuang, China
| | - Yu-Jia Mao
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Lin-Fang Huang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Wen-Jie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Wen Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| | - Jian-Min Zhang
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Wei He
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, State Key Laboratory of Medical Molecular Biology, Beijing, China
| | - Xuan Zhang
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Ministry of Education Key Laboratory, Beijing, China
| |
Collapse
|
10
|
Lee S, Affandi JS, Irish AB, Price P. Cytomegalovirus infection alters phenotypes of different γδ T-cell subsets in renal transplant recipients with long-term stable graft function. J Med Virol 2017; 89:1442-1452. [PMID: 28198539 DOI: 10.1002/jmv.24784] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/03/2017] [Accepted: 01/21/2017] [Indexed: 02/03/2023]
Abstract
Cytomegalovirus (CMV) infection alters the phenotypic profiles of T-cells and NK cells in healthy and immunocompromised individuals. Here, we examined the effects of CMV infection on the phenotype and functions of γδ T-cell subsets in renal transplant recipients (RTR) stable several years after transplantation (n = 80) and healthy controls (n = 72). Differentiation status, function, and expression of HLA-DR, CD57, and LIR-1 on Vδ2- and Vδ2+ γδ T-cells were examined in peripheral blood cells using flow cytometry. Percentages of Vδ2- γδ T-cells were higher in RTR who are CMV-seropositive and correlated with CMV antibody levels. Proportions of Vδ2- γδ T-cells expressing HLA-DR, CD57, or LIR-1 were increased in CMV-seropositive RTR and healthy controls compared to their seronegative counterparts. Additionally, Vδ2- γδ T-cells were skewed towards a terminally differentiated phenotype and most expressed CD8 in individuals who were CMV-seropositive. Increased expression of LIR-1 on terminally differentiated Vδ2- γδ T-cells was associated with CMV seropositivity in RTR and controls. The presence of CMV DNA in 15 RTR was associated with higher frequencies of LIR-1+ Vδ2+ γδ T-cells and increased percentages of terminally differentiated effector memory cells in both γδ T-cell subsets. Our study further characterises the effects of CMV and transplantation on γδ T-cell phenotypes.
Collapse
Affiliation(s)
- Silvia Lee
- Biomedical Science, Curtin University, Bentley, Australia.,Department of Microbiology, Royal Perth Hospital, Perth, Australia
| | | | - Ashley B Irish
- Medicine & Pharmacology, University of Western Australia, Nedlands, Australia.,Department of Nephrology, Fiona Stanley Hospital, Murdoch, Australia
| | - Patricia Price
- Biomedical Science, Curtin University, Bentley, Australia.,Medicine & Pharmacology, University of Western Australia, Nedlands, Australia
| |
Collapse
|
11
|
Abstract
Immunoglobulin E (IgE) antibodies play a crucial role in host defense against parasite infections. However, inappropriate IgE responses are also involved in the pathogenesis of allergic diseases. The generation of IgE antibodies is a tightly controlled process regulated by multiple transcription factors, cytokines, and immune cells including γδ T cells. Accumulating evidence demonstrates that γδ T cells play a critical role in regulating IgE responses; however, both IgE-enhancing and IgE-suppressive effects are suggested for these cells in different experimental systems. In this review, we examine the available evidence and discuss the role of γδ T cells in IgE regulation both in the context of antigen-induced immune responses and in the state of partial immunodeficiency.
Collapse
|
12
|
Lafont V, Sanchez F, Laprevotte E, Michaud HA, Gros L, Eliaou JF, Bonnefoy N. Plasticity of γδ T Cells: Impact on the Anti-Tumor Response. Front Immunol 2014; 5:622. [PMID: 25538706 PMCID: PMC4259167 DOI: 10.3389/fimmu.2014.00622] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 11/21/2014] [Indexed: 01/17/2023] Open
Abstract
The tumor immune microenvironment contributes to tumor initiation, progression, and response to therapy. Among the immune cell subsets that play a role in the tumor microenvironment, innate-like T cells that express T cell receptors composed of γ and δ chains (γδ T cells) are of particular interest. γδ T cells can contribute to the immune response against many tumor types (lymphoma, myeloma, melanoma, breast, colon, lung, ovary, and prostate cancer) directly through their cytotoxic activity and indirectly by stimulating or regulating the biological functions of other cell types required for the initiation and establishment of the anti-tumor immune response, such as dendritic cells and cytotoxic CD8+ T cells. However, the notion that tumor-infiltrating γδ T cells are a good prognostic marker in cancer was recently challenged by studies showing that the presence of these cells in the tumor microenvironment was associated with poor prognosis in both breast and colon cancer. These findings suggest that γδ T cells may also display pro-tumor activities. Indeed, breast tumor-infiltrating γδ T cells could exert an immunosuppressive activity by negatively regulating dendritic cell maturation. Furthermore, recent studies demonstrated that signals from the microenvironment, particularly cytokines, can confer some plasticity to γδ T cells and promote their differentiation into γδ T cells with regulatory functions. This review focuses on the current knowledge on the functional plasticity of γδ T cells and its effect on their anti-tumor activities. It also discusses the putative mechanisms underlying γδ T cell expansion, differentiation, and recruitment in the tumor microenvironment.
Collapse
Affiliation(s)
- Virginie Lafont
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Françoise Sanchez
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Emilie Laprevotte
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Henri-Alexandre Michaud
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Laurent Gros
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| | - Jean-François Eliaou
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France ; Département d'Immunologie, Centre Hospitalier Régional Universitaire de Montpellier et Faculté de Médecine, Université Montpellier 1 , Montpellier , France
| | - Nathalie Bonnefoy
- U896, Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM , Montpellier , France ; Centre Régional de Lutte Contre le Cancer CRLC Val d'Aurelle - Paul Lamarque, Université Montpellier 1 , Montpellier , France
| |
Collapse
|
13
|
Darcy PK, Neeson P, Yong CSM, Kershaw MH. Manipulating immune cells for adoptive immunotherapy of cancer. Curr Opin Immunol 2014; 27:46-52. [PMID: 24534448 DOI: 10.1016/j.coi.2014.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 01/10/2014] [Accepted: 01/20/2014] [Indexed: 12/28/2022]
Abstract
The immune system can be induced to respond against cancer with some success reported in clinical trials using a range of approaches including vaccines and antibodies. In addition to these approaches, cell based therapies are demonstrating much promise as potential therapies for cancer. In cell therapies autologous patient leukocytes are isolated and manipulated in vitro before transfer back to the patient in adoptive transfer regimens. The majority of approaches utilize conventional T cells or dendritic cells, but a wide variety of other types of leukocytes exist which can possess anti-cancer activity. In this review, we present a brief overview of T cell adoptive cell transfer followed by a review of approaches using alternate lymphocyte subsets and other leukocytes including neutrophils, macrophages and eosinophils.
Collapse
Affiliation(s)
- Phillip K Darcy
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Pathology, University of Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia; Department of Immunology, Monash University, Clayton, Australia.
| | - Paul Neeson
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Pathology, University of Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
| | - Carmen S M Yong
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Pathology, University of Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia; Department of Immunology, Monash University, Clayton, Australia
| | - Michael H Kershaw
- Cancer Immunology Program, Peter MacCallum Cancer Centre, East Melbourne, Victoria, Australia; Department of Pathology, University of Melbourne, Australia; Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia; Department of Immunology, Monash University, Clayton, Australia.
| |
Collapse
|
14
|
Hope CM, Grace BS, Pilkington KR, Coates PT, Bergmann IP, Carroll RP. The immune phenotype may relate to cancer development in kidney transplant recipients. Kidney Int 2014; 86:175-83. [PMID: 24429406 DOI: 10.1038/ki.2013.538] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/01/2013] [Accepted: 10/31/2013] [Indexed: 01/06/2023]
Abstract
High regulatory T-cell (Treg) numbers predict recurrent cutaneous squamous cell carcinoma in kidney transplant recipients, and the Treg immune phenotype may identify kidney transplant recipients at risk of developing squamous cell carcinoma and/or solid-organ cancer. To investigate this, a total of 116 kidney transplant recipients, of whom 65 had current or past cancer, were immune-phenotyped and followed up prospectively for a median of 15 months. Higher Treg (CD3+CD4+FOXP3+CD25(Hi)CD127(Lo)) proportion and numbers significantly increased the odds of developing cancer (odds ratios (95% CI) 1.61 (1.17-2.20) and 1.03 (1.00-1.06), respectively) after adjusting for age, gender, and duration of immunosuppression. Class-switched memory B cells (CD19+CD27+IgD-) had a significant association to cancer, 1.04 (1.00-1.07). Receiver operator characteristic (ROC) curves for squamous cell carcinoma development within 100 days of immune phenotyping were significant for Tregs, memory B cells, and γδ T cells (AUC of 0.78, 0.68, and 0.65, respectively). After cancer resection, Treg, NK cell, and γδ T-cell numbers fell significantly. Immune-phenotype profiles associated with both squamous cell carcinoma and solid-organ cancer in kidney transplant recipients and depended on the presence of cancer tissue. Thus, immune profiling could be used to stratify kidney transplant recipients at risk of developing cancers to identify those who could qualify for prevention therapy.
Collapse
Affiliation(s)
- Christopher M Hope
- 1] The Centre of Clinical and Experimental Transplantation (CCET), Central Northern Adelaide Renal and Transplantation Services (CNARTS), Adelaide, South Australia, Australia [2] Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Blair S Grace
- 1] Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia [2] The Australia and New Zealand Dialysis and Transplant Registry (ANZDATA), Adelaide, South Australia, Australia
| | - Katherine R Pilkington
- 1] Detmold Family Imaging Facility, Hanson Institute, Adelaide, South Australia, Australia [2] Department of Haematology, South Australia Pathology, Adelaide, South Australia, Australia
| | - Patrick T Coates
- 1] The Centre of Clinical and Experimental Transplantation (CCET), Central Northern Adelaide Renal and Transplantation Services (CNARTS), Adelaide, South Australia, Australia [2] Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Ivo P Bergmann
- Department of Nephrology and Hypertension, University Hospital Berne, Berne, Switzerland
| | - Robert P Carroll
- 1] The Centre of Clinical and Experimental Transplantation (CCET), Central Northern Adelaide Renal and Transplantation Services (CNARTS), Adelaide, South Australia, Australia [2] Department of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
15
|
Wang H, Henry O, Distefano MD, Wang YC, Räikkönen J, Mönkkönen J, Tanaka Y, Morita CT. Butyrophilin 3A1 plays an essential role in prenyl pyrophosphate stimulation of human Vγ2Vδ2 T cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:1029-42. [PMID: 23833237 DOI: 10.4049/jimmunol.1300658] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most human γδ T cells express Vγ2Vδ2 TCRs and play important roles in microbial and tumor immunity. Vγ2Vδ2 T cells are stimulated by self- and foreign prenyl pyrophosphate intermediates in isoprenoid synthesis. However, little is known about the molecular basis for this stimulation. We find that a mAb specific for butyrophilin 3 (BTN3)/CD277 Ig superfamily proteins mimics prenyl pyrophosphates. The 20.1 mAb stimulated Vγ2Vδ2 T cell clones regardless of their functional phenotype or developmental origin and selectively expanded blood Vγ2Vδ2 T cells. The γδ TCR mediates 20.1 mAb stimulation because IL-2 is released by β(-) Jurkat cells transfected with Vγ2Vδ2 TCRs. 20.1 stimulation was not due to isopentenyl pyrophosphate (IPP) accumulation because 20.1 treatment of APC did not increase IPP levels. In addition, stimulation was not inhibited by statin treatment, which blocks IPP production. Importantly, small interfering RNA knockdown of BTN3A1 abolished stimulation by IPP that could be restored by re-expression of BTN3A1 but not by BTN3A2 or BTN3A3. Rhesus monkey and baboon APC presented HMBPP and 20.1 to human Vγ2Vδ2 T cells despite amino acid differences in BTN3A1 that localize to its outer surface. This suggests that the conserved inner and/or top surfaces of BTN3A1 interact with its counterreceptor. Although no binding site exists on the BTN3A1 extracellular domains, a model of the intracellular B30.2 domain predicts a basic pocket on its binding surface. However, BTN3A1 did not preferentially bind a photoaffinity prenyl pyrophosphate. Thus, BTN3A1 is required for stimulation by prenyl pyrophosphates but does not bind the intermediates with high affinity.
Collapse
Affiliation(s)
- Hong Wang
- Division of Immunology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
OBJECTIVE Malaria and HIV-1 adversely interact, with HIV-positive individuals suffering higher parasite burdens and worse clinical outcomes. However, the mechanisms underlying these disease interactions are unclear. We hypothesized that HIV coinfection impairs the innate immune response to malaria, and that combination antiretroviral therapy (cART) may restore this response. Our aim was to examine the innate inflammatory response of natural killer (NK), natural killer T (NKT), and γδ T-cells isolated from the peripheral blood of HIV-infected therapy-naive donors to malaria parasites, and determine the effect of cART on these responses. METHODS Freshly isolated peripheral blood mononuclear cells from 25 HIV-infected individuals pre-cART (month 0) and post-cART (months 3 and 6), and HIV-negative individuals at matched time-points, were cultured in the presence of Plasmodium falciparum parasitized erythrocytes. Supernatants and cells were collected to assess cytokine production and phenotypic changes. RESULTS Compared to HIV-negative participants, NKT, NK, and γδ T-cell subsets from participants with chronic HIV infection showed marked differences, including decreased production of interferon γ (IFNγ) and tumor necrosis factor (TNF) in response to malaria parasites. IFNγ production was linked to interleukin-18 receptor (IL-18R) expression in all three cell types studied. Six months of cART provided partial cellular reconstitution but had no effect on IL-18R expression, or IFNγ and TNF production. CONCLUSION These data suggest that HIV infection impairs the inflammatory response of innate effector cells to malaria, and that the response is not fully restored within 6 months of cART. This may contribute to higher parasite burdens and ineffective immune responses, and have implications for vaccination initiatives in coinfected individuals.
Collapse
|
17
|
Wang H, Sarikonda G, Puan KJ, Tanaka Y, Feng J, Giner JL, Cao R, Mönkkönen J, Oldfield E, Morita CT. Indirect stimulation of human Vγ2Vδ2 T cells through alterations in isoprenoid metabolism. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:5099-113. [PMID: 22013129 PMCID: PMC3326638 DOI: 10.4049/jimmunol.1002697] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human Vγ2Vδ2 T cells monitor isoprenoid metabolism by recognizing (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), an intermediate in the 2-C-methyl-d-erythritol-4-phosphate pathway used by microbes, and isopentenyl pyrophosphate (IPP), an intermediate in the mevalonate pathway used by humans. Aminobisphosphonates and alkylamines indirectly stimulate Vγ2Vδ2 cells by inhibiting farnesyl diphosphate synthase (FDPS) in the mevalonate pathway, thereby increasing IPP/triphosphoric acid 1-adenosin-5'-yl ester 3-(3-methylbut-3-enyl) ester that directly stimulate. In this study, we further characterize stimulation by these compounds and define pathways used by new classes of compounds. Consistent with FDPS inhibition, stimulation of Vγ2Vδ2 cells by aminobisphosphonates and alkylamines was much more sensitive to statin inhibition than stimulation by prenyl pyrophosphates; however, the continuous presence of aminobisphosphonates was toxic for T cells and blocked their proliferation. Aminobisphosphonate stimulation was rapid and prolonged, independent of known Ag-presenting molecules, and resistant to fixation. New classes of stimulatory compounds-mevalonate, the alcohol of HMBPP, and alkenyl phosphonates-likely stimulate differently. Mevalonate, a rate-limiting metabolite, appears to enter cells to increase IPP levels, whereas the alcohol of HMBPP and alkenyl phosphonates are directly recognized. The critical chemical feature of bisphosphonates is the amino moiety, because its loss switched aminobisphosphonates to direct Ags. Transfection of APCs with small interfering RNA downregulating FDPS rendered them stimulatory for Vγ2Vδ2 cells and increased cellular IPP. Small interfering RNAs for isopentenyl diphosphate isomerase functioned similarly. Our results show that a variety of manipulations affecting isoprenoid metabolism lead to stimulation of Vγ2Vδ2 T cells and that pulsing aminobisphosphonates would be more effective for the ex vivo expansion of Vγ2Vδ2 T cells for adoptive cancer immunotherapy.
Collapse
Affiliation(s)
- Hong Wang
- Division of Immunology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans Affairs Medical Center, EMRB 400F, Iowa City, IA 52242
| | - Ghanashyam Sarikonda
- Division of Immunology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans Affairs Medical Center, EMRB 400F, Iowa City, IA 52242
| | - Kia-Joo Puan
- Division of Immunology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans Affairs Medical Center, EMRB 400F, Iowa City, IA 52242
| | - Yoshimasa Tanaka
- Center for Innovation in Immunoregulative Technology and Therapeutics, Graduate School of Medicine, Kyoto University, Sakyo, Kyoto 606-8501
| | - Ju Feng
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210
| | - José-Luis Giner
- Department of Chemistry, State University of New York-ESF, Syracuse, NY 13210
| | - Rong Cao
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Jukka Mönkkönen
- School of Pharmacy, University of Eastern Finland, Kuopio, Finland
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, IL 61801
| | - Craig T. Morita
- Division of Immunology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Veterans Affairs Medical Center, EMRB 400F, Iowa City, IA 52242
| |
Collapse
|
18
|
Zhou L, Park JJ, Zheng Q, Dong Z, Mi Q. MicroRNAs are key regulators controlling iNKT and regulatory T-cell development and function. Cell Mol Immunol 2011; 8:380-7. [PMID: 21822298 PMCID: PMC4012887 DOI: 10.1038/cmi.2011.27] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 06/24/2011] [Indexed: 02/03/2023] Open
Abstract
MicroRNAs (miRNAs) are an abundant class of evolutionarily conserved, small, non-coding RNAs that post-transcriptionally regulate expression of their target genes. Emerging evidence indicates that miRNAs are important regulators that control the development, differentiation and function of different immune cells. Both CD4(+)CD25(+)Foxp3(+) regulatory T (Treg) cells and invariant natural killer T (iNKT) cells are critical for immune homeostasis and play a pivotal role in the maintenance of self-tolerance and immunity. Here, we review the important roles of miRNAs in the development and function of iNKT and Treg cells.
Collapse
Affiliation(s)
- Li Zhou
- Henry Ford Immunology Program, Henry Ford Health System, Detroit, MI, USA
| | | | | | | | | |
Collapse
|
19
|
Ness-Schwickerath KJ, Morita CT. Regulation and function of IL-17A- and IL-22-producing γδ T cells. Cell Mol Life Sci 2011; 68:2371-90. [PMID: 21573786 PMCID: PMC3152582 DOI: 10.1007/s00018-011-0700-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/21/2022]
Abstract
The regulation of IL-17A and IL-22 production differs between human and murine γδ T cells. We find that human γδ T cells expressing Vγ2Vδ2 T cell receptors are peripherally polarized to produce IL-17A or IL-22, much like CD4 αβ Th17 T cells. This requires IL-6, IL-1β, and TGF-β, whereas expansion and maintenance requires IL-23, IL-1β, and TGF-β. In contrast, IL-17A and IL-22 production by murine γδ T cells is innately programmed during thymic ontogeny but requires IL-23 and IL-1β for maintenance. Murine γδ cells producing IL-17A and IL-22 play important roles in microbial, autoimmune, and inflammatory responses. However, the roles played by human IL-17A- and IL-22-producing γδ T cells are less clear but are also likely to be important. These observations highlight differences between humans and murine γδ T cells and underscore the importance of IL-17A- and IL-22-producing γδ T cells.
Collapse
Affiliation(s)
- Kristin J. Ness-Schwickerath
- Division of Immunology, Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Craig T. Morita
- Division of Immunology, Department of Internal Medicine and the Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| |
Collapse
|
20
|
Ness-Schwickerath KJ, Jin C, Morita CT. Cytokine requirements for the differentiation and expansion of IL-17A- and IL-22-producing human Vgamma2Vdelta2 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:7268-80. [PMID: 20483730 PMCID: PMC2965829 DOI: 10.4049/jimmunol.1000600] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human gammadelta T cells expressing the Vgamma2Vdelta2 TCR play important roles in immune responses to microbial pathogens by monitoring prenyl pyrophosphate isoprenoid metabolites. Most adult Vgamma2Vdelta2 cells are memory cytotoxic cells that produce IFN-gamma. Recently, murine gammadelta T cells were found to be major sources of IL-17A in antimicrobial and autoimmune responses. To determine if primate gammadelta T cells play similar roles, we characterized IL-17A and IL-22 production by Vgamma2Vdelta2 cells. IL-17A-producing memory Vgamma2Vdelta2 cells exist at low but significant frequencies in adult humans (1:2762 T cells) and at even higher frequencies in adult rhesus macaques. Higher levels of Vgamma2Vdelta2 cells produce IL-22 (1:1864 T cells), although few produce both IL-17A and IL-22. Unlike adult humans, in whom many IL-17A+ Vgamma2Vdelta2 cells also produce IFN-gamma (Tgammadelta1/17), the majority of adult macaques IL-17A+ Vdelta2 cells (Tgammadelta17) do not produce IFN-gamma. To define the cytokine requirements for Tgammadelta17 cells, we stimulated human neonatal Vgamma2Vdelta2 cells with the bacterial Ag, (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate, and various cytokines and mAbs in vitro. We find that IL-6, IL-1beta, and TGF-beta are required to generate Tgammadelta17 cells in neonates, whereas Tgammadelta1/17 cells additionally required IL-23. In adults, memory Tgammadelta1/17 and Tgammadelta17 cells required IL-23, IL-1beta, and TGF-beta, but not IL-6. IL-22-producing cells showed similar requirements. Both neonatal and adult IL-17A+ Vgamma2Vdelta2 cells expressed elevated levels of retinoid-related orphan receptor gammat. Our data suggest that, like Th17 alphabeta T cells, Vgamma2Vdelta2 T cells can be polarized into Tgammadelta17 and Tgammadelta1/17 populations with distinct cytokine requirements for their initial polarization and later maintenance.
Collapse
Affiliation(s)
- Kristin J. Ness-Schwickerath
- Division of Rheumatology, Department of Internal Medicine, University of Iowa Carver College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Chenggang Jin
- Division of Rheumatology, Department of Internal Medicine, University of Iowa Carver College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Craig T. Morita
- Division of Rheumatology, Department of Internal Medicine, University of Iowa Carver College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| |
Collapse
|
21
|
Gammadelta T cell effector functions: a blend of innate programming and acquired plasticity. Nat Rev Immunol 2010; 10:467-78. [PMID: 20539306 DOI: 10.1038/nri2781] [Citation(s) in RCA: 717] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Gammadelta T cells have several innate cell-like features that allow their early activation following recognition of conserved stress-induced ligands. Here we review recent observations revealing the ability of gammadelta T cells to rapidly produce cytokines that regulate pathogen clearance, inflammation and tissue homeostasis in response to tissue stress. These studies provide insights into how they acquire these properties, through both developmental programming in the thymus and functional polarization in the periphery. Innate features of gammadelta T cells underlie their non-redundant role in several physiopathological contexts and are therefore being exploited in the design of new immunotherapeutic approaches.
Collapse
|
22
|
Wang H, Fang Z, Morita CT. Vgamma2Vdelta2 T Cell Receptor recognition of prenyl pyrophosphates is dependent on all CDRs. THE JOURNAL OF IMMUNOLOGY 2010; 184:6209-22. [PMID: 20483784 DOI: 10.4049/jimmunol.1000231] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
gammadelta T cells differ from alphabeta T cells in the Ags they recognize and their functions in immunity. Although most alphabeta TCRs recognize peptides presented by MHC class I or II, human gammadelta T cells expressing Vgamma2Vdelta2 TCRs recognize nonpeptide prenyl pyrophosphates. To define the molecular basis for this recognition, the effect of mutations in the TCR CDR was assessed. Mutations in all CDR loops altered recognition and cover a large footprint. Unlike murine gammadelta TCR recognition of the MHC class Ib T22 protein, there was no CDR3delta motif required for recognition because only one residue is required. Instead, the length and sequence of CDR3gamma was key. Although a prenyl pyrophosphate-binding site was defined by Lys109 in Jgamma1.2 and Arg51 in CDR2delta, the area outlined by critical mutations is much larger. These results show that prenyl pyrophosphate recognition is primarily by germline-encoded regions of the gammadelta TCR, allowing a high proportion of Vgamma2Vdelta2 TCRs to respond. This underscores its parallels to innate immune receptors. Our results also provide strong evidence for the existence of an Ag-presenting molecule for prenyl pyrophosphates.
Collapse
Affiliation(s)
- Hong Wang
- Division of Rheumatology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
23
|
Sarikonda G, Wang H, Puan KJ, Liu XH, Lee HK, Song Y, Distefano MD, Oldfield E, Prestwich GD, Morita CT. Photoaffinity antigens for human gammadelta T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2008; 181:7738-50. [PMID: 19017963 PMCID: PMC2696061 DOI: 10.4049/jimmunol.181.11.7738] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Vgamma2Vdelta2 T cells comprise the major subset of peripheral blood gammadelta T cells in humans and expand during infections by recognizing small nonpeptide prenyl pyrophosphates. These molecules include (E)-4-hydroxy-3-methyl-but-2-enyl-pyrophosphate (HMBPP), a microbial isoprenoid intermediate, and isopentenyl pyrophosphate, an endogenous isoprenoid intermediate. Recognition of these nonpeptide Ags is mediated by the Vgamma2Vdelta2 T cell Ag receptor. Several findings suggest that prenyl pyrophosphates are presented by an Ag-presenting molecule: contact between T cells and APC is required, the Ags do not bind the Vgamma2Vdelta2 TCR directly, and Ag recognition is abrogated by TCR mutations in CDRs distant from the putative Ag recognition site. Identification of the putative Ag-presenting molecule, however, has been hindered by the inability to achieve stable association of nonpeptide prenyl pyrophosphate Ags with the presenting molecule. In this study, we show that photoaffinity analogues of HMBPP, meta/para-benzophenone-(methylene)-prenyl pyrophosphates (m/p-BZ-(C)-C(5)-OPP), can crosslink to the surface of tumor cell lines and be presented as Ags to gammadelta T cells. Mutant tumor cell lines lacking MHC class I, MHC class II, beta(2)-microglobulin, and CD1, as well as tumor cell lines from a variety of tissues and individuals, will all crosslink to and present m-BZ-C(5)-OPP. Finally, pulsing of BZ-(C)-C(5)-OPP is inhibited by isopentenyl pyrophosphate and an inactive analog, suggesting that they bind to the same molecule. Taken together, these results suggest that nonpeptide Ags are presented by a novel-Ag-presenting molecule that is widely distributed and nonpolymorphic, but not classical MHC class I, MHC class II, or CD1.
Collapse
Affiliation(s)
- Ghanashyam Sarikonda
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Hong Wang
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Kia-Joo Puan
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Xiao-hui Liu
- Department of Medicinal Chemistry, University of Utah School of Pharmacy, Salt Lake City, UT 84112 USA
| | - Hoi K. Lee
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| | - Yongcheng Song
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 and the Center for Biophysics and Computational Biology, 607 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Mark D. Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, MN 55455 USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801 and the Center for Biophysics and Computational Biology, 607 South Mathews Avenue, Urbana, Illinois 61801 USA
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, University of Utah School of Pharmacy, Salt Lake City, UT 84112 USA
| | - Craig T. Morita
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
- Interdisciplinary Graduate Program in Immunology, University of Iowa College of Medicine, EMRB 400F, Iowa City, IA 52242 USA
| |
Collapse
|
24
|
Kobayashi F, Niikura M, Waki S, Matsui T, Fujino T, Tsuruhara T, Kamiya S. Plasmodium berghei XAT: contribution of gammadelta T cells to host defense against infection with blood-stage nonlethal malaria parasite. Exp Parasitol 2007; 117:368-75. [PMID: 17601562 DOI: 10.1016/j.exppara.2007.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2006] [Revised: 05/01/2007] [Accepted: 05/04/2007] [Indexed: 12/28/2022]
Abstract
We examined a potential role of gammadelta T cells in protective immunity to blood-stage Plasmodium berghei XAT infection. Plasmodium berghei XAT is an attenuated variant of the lethal strain P. berghei NK65 and its infection is self-resolving in immune competent mice. To determine whether gammadelta T cells are essential for the resolution of P. berghei XAT malaria, mice were depleted of gammadelta T cells with anti-TCRgammadelta antibody treatment. Although mice that had received control antibody resolved infections, mice received anti-TCRgammadelta antibody could not control their infections and eventually died. Spleen cells from infected mice produced IFN-gamma and nitric oxide (NO) within the first week of infection, however, levels of IFN-gamma and NO in gammadelta T cell-depleted mice were significantly lower than in control mice. To examine whether gammadelta T cells are involved in the antibody production, malarial-specific antibodies of the various isotypes were measured in the sera of gammadelta T cell-depleted mice and control mice. Serum levels of IgG2a, which was known to be a protective antibody in P. berghei XAT malaria, were significantly lower in gammadelta T cell-depleted mice than in control mice, whereas levels of IgG1 were comparable to those in control mice. Our results indicated that the presence of the gammadelta T cell subset was essential for resolution of blood-stage P. berghei XAT malaria and played a modulatory role in the development of Th1 response and host defense against this malarial parasites.
Collapse
Affiliation(s)
- Fumie Kobayashi
- Department of Infectious Diseases, Kyorin University School of Medicine, Mitaka, Tokyo 181-8611, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Morita CT, Jin C, Sarikonda G, Wang H. Nonpeptide antigens, presentation mechanisms, and immunological memory of human Vgamma2Vdelta2 T cells: discriminating friend from foe through the recognition of prenyl pyrophosphate antigens. Immunol Rev 2007; 215:59-76. [PMID: 17291279 DOI: 10.1111/j.1600-065x.2006.00479.x] [Citation(s) in RCA: 347] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Human Vgamma2Vdelta2 T cells play important roles in mediating immunity against microbial pathogens and have potent anti-tumor activity. Vgamma2Vdelta2 T cells recognize the pyrophosphorylated isoprenoid intermediates (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMBPP), an intermediate in the foreign 2-C-methyl-d-erythritol 4-phosphate (MEP) pathway, and isopentenyl pyrophosphate (IPP), an intermediate in the self-mevalonate pathway. Infection with bacteria and protozoa using the MEP pathway leads to the rapid expansion of Vgamma2Vdelta2 T cells to very high numbers through preferential recognition of HMBPP. Activated Vgamma2Vdelta2 T cells produce proinflammatory cytokines and chemokines, kill infected cells, secrete growth factors for epithelial cells, and present antigens to alphabeta T cells. Vgamma2Vdelta2 T cells can also recognize high levels of IPP in certain tumors and in cells treated with pharmacological agents, such as bisphosphonates and alkylamines, that block farnesyl pyrophosphate synthase. Activated Vgamma2Vdelta2 T cells are able to kill most tumor cells because of recognition by T-cell receptor and natural killer receptors. The ubiquitous nature of the antigens converts essentially all Vgamma2Vdelta2 T cells to memory cells at an early age. Thus, primary infections with HMBPP-producing bacteria are perceived by Vgamma2Vdelta2 T cells as a repeat infection. Extensive efforts are underway to harness these cells to treat a variety of cancers and to provide microbial immunity.
Collapse
Affiliation(s)
- Craig T Morita
- Division of Rheumatology, Department of Internal Medicine, Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
26
|
Puan KJ, Wang H, Dairi T, Kuzuyama T, Morita CT. fldAis an essential gene required in the 2-C-methyl-D-erythritol 4-phosphate pathway for isoprenoid biosynthesis. FEBS Lett 2005; 579:3802-6. [PMID: 15978585 DOI: 10.1016/j.febslet.2005.05.047] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2005] [Revised: 05/24/2005] [Accepted: 05/25/2005] [Indexed: 11/30/2022]
Abstract
Although flavodoxin I is indispensable for Escherichia coli growth, the exact pathway(s) where flavodoxin I is essential has not been identified. We performed transposon mutagenesis of the flavodoxin I gene, fldA, in an E. coli strain that expressed mevalonate pathway enzymes and that had a point mutation in the lytB gene of the MEP pathway resulting in the accumulation of (E)-4-hydroxy-3-methylbutyl-2-enyl pyrophosphate (HMBPP). Disruption of fldA abrogated mevalonate-independent growth and dramatically decreased HMBPP levels. The fldA- mutant grew with mevalonate indicating that the essential role of flavodoxin I under aerobic conditions is in the MEP pathway. Growth was restored by fldA complementation. Since GcpE (which synthesizes HMBPP) and LytB are iron-sulfur enzymes that require a reducing system for their activity, we propose that flavodoxin is essential for GcpE and possibly LytB activity. Thus, the essential role for flavodoxin I in E. coli is in the MEP pathway for isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Kia-Joo Puan
- Division of Rheumatology, Department of Internal Medicine and the Interdisciplinary Group in Immunology, University of Iowa, EMRB 340F, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
27
|
Sanders JM, Ghosh S, Chan JMW, Meints G, Wang H, Raker AM, Song Y, Colantino A, Burzynska A, Kafarski P, Morita CT, Oldfield E. Quantitative structure-activity relationships for gammadelta T cell activation by bisphosphonates. J Med Chem 2004; 47:375-84. [PMID: 14711309 DOI: 10.1021/jm0303709] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
gammadelta T cells are the first line of defense against many infectious organisms and are also involved in tumor cell surveillance and killing. They are stimulated by a broad range of small, phosphorus-containing antigens (phosphoantigens) as well as by the bisphosphonates commonly used in bone resorption therapy, such as pamidronate and risedronate. Here, we report the activation of gammadelta T cells by a broad range of bisphosphonates and develop a pharmacophore model for gammadelta T cell activation, in addition to using a comparative molecular similarity index analysis (CoMSIA) approach to make quantitative relationships between gammadelta T cell activation by bisphosphonates and their three-dimensional structures. The CoMSIA analyses yielded R(2) values of approximately 0.8-0.9 and q(2) values of approximately 0.5-0.6 for a training set of 45 compounds. Using an external test set, the activities (IC(50) values) of 16 compounds were predicted within a factor of 4.5, on average. The CoMSIA fields consisted of approximately 40% hydrophobic, approximately 40% electrostatic, and approximately 20% steric interactions. Since bisphosphonates are known to be potent, nanomolar inhibitors of the mevalonate/isoprene pathway enzyme farnesyl pyrophosphate synthase (FPPS), we also compared the pharmacophores for gammadelta T cell activation with those for FPPS inhibition, using the Catalyst program. The pharmacophores for gammadelta T cell activation and FPPS inhibition both consisted of two negative ionizable groups, a positive charge feature and an endocyclic carbon feature, all having very similar spatial dispositions. In addition, the CoMSIA fields were quite similar to those found for FPPS inhibition by bisphosphonates. The activities of the bisphosphonates in gammadelta T cell activation were highly correlated with their activities in FPPS inhibition: R = 0.88, p = 0.002, versus a human recombinant FPPS (N = 9 compounds); R = 0.82, p < 0.0001, for an expressed Leishmania major FPPS (N = 45 compounds). The bisphosphonate gammadelta T cell activation pharmacophore differs considerably, however, from that reported previously for gammadelta T cell activation by phosphoantigens (Gossman, W.; Oldfield, E. J. Med. Chem. 2002, 45, 4868-4874), suggesting different primary targets for the two classes of compounds. The ability to quite accurately predict the activity of bisphosphonates as gammadelta T cell activators by using 3D QSAR techniques can be expected to help facilitate the design of additional bisphosphonates for potential use in immunotherapy.
Collapse
MESH Headings
- Alkyl and Aryl Transferases/antagonists & inhibitors
- Alkyl and Aryl Transferases/chemistry
- Animals
- Cell Division/drug effects
- Cell Line
- Diphosphonates/chemistry
- Diphosphonates/pharmacology
- Geranyltranstransferase
- Humans
- Leishmania major/enzymology
- Lymphocyte Activation
- Models, Molecular
- Quantitative Structure-Activity Relationship
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/drug effects
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Necrosis Factor-alpha/chemistry
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- John M Sanders
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hontecillas R, Bassaganya-Riera J. Differential requirements for proliferation of CD4+ and γδ+ T cells to spirochetal antigens. Cell Immunol 2003; 224:38-46. [PMID: 14572799 DOI: 10.1016/s0008-8749(03)00172-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Alphabeta+ and gammadelta+ T cells have different mechanisms of epitope recognition and are stimulated by antigens of different chemical nature. An immunization model with antigens from the spirochete Brachyspira hyodysenteriae was used to examine the requirements for proliferation of circulating porcine CD4+ and gammadelta+ T cells in mixed lymphocyte cultures. CD4+ T cells only responded to stimulation with B. hyodysenteriae antigens, whereas gammadelta+ T cells proliferated when cultures were stimulated with either spirochetal antigens or interleukin-2 (IL-2). T cells that had proliferated expressed high levels of IL-2-receptor-alpha (IL-2Ralpha). Furthermore, neutralization of IL-2 at the beginning of the culture period was more efficient in blocking gammadelta+ than CD4+ T cell proliferation. Immunization induced interferon-gamma (IFN-gamma) production by CD4+ T cells, whereas only a small fraction of the antigen-stimulated gammadelta+ T cells produced this cytokine. Our results indicate that, under the same environmental conditions, CD4+ T cell functions are more tightly regulated when compared to gammadelta+ T cells. We conclude that these differences are due, in part, to the enhanced gammadelta+ T cell responsiveness to IL-2.
Collapse
Affiliation(s)
- Raquel Hontecillas
- Immunobiology Program, Veterinary Medical Research Institute, Iowa State University, Ames, IA 50010, USA.
| | | |
Collapse
|
29
|
Pon RA, Freedman MS. Study of Herpesvirus saimiri immortalization of gammadelta T cells derived from peripheral blood and CSF of multiple sclerosis patients. J Neuroimmunol 2003; 139:119-32. [PMID: 12799029 DOI: 10.1016/s0165-5728(03)00157-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Human gammadelta T cells are an integral part of the innate immune system and have been difficult to study owing primarily to their relatively low abundance and their fastidious culture properties associated with short in vitro lifespan. Their increased presence within multiple sclerosis (MS) white matter plaques compared to peripheral blood (PB) suggests a specific interaction with central nervous system (CNS) tissues. This fact, together with their innate ability to lyse human oligodendrocytes in culture implicate them possibly in the pathogenesis of MS. To further investigate their potential role in MS, we studied whether gammadelta T cells could be effectively immortalized using Herpesvirus saimiri (HVS), so that they could be studied in longer-term cultures. Effective culture conditions were established resulting in efficient HVS growth transformation of multiple PB and CSF gammadelta T cell lines and clones that could exist in IL-2-dependent culture for periods in excess of 2 years. Phenotypic and functional comparison studies with parental nontransformed gammadelta T cells were performed to characterize the changes that possibly induced by viral transformation. Using panels of transformed gammadelta T cell clones representing discrete gammadelta TcR subtypes, there was no apparent correlation between intracytoplasmic cytokine expression or tumor cell cytotoxicity with a specific TcR. All transformed gammadelta T cells analyzed, regardless of their compartment of origin, strongly expressed intracytoplasmic IFN-gamma and TNF-alpha, but little IL-2 or anti-inflammatory IL-4 or IL-10. These results indicate that HVS transformation of gammadelta T cells can be used to generate lines and clones from both the CSF and PB compartments for further study and elucidation of their potential role in MS pathogenesis.
Collapse
Affiliation(s)
- Robert A Pon
- Division of Neurology, Department of Medicine, University of Ottawa, Ottawa Hospital-General Campus, 501 Smyth Rd., K1H 8L6, Ottawa, Ont., Canada
| | | |
Collapse
|
30
|
Wang H, Lee HK, Bukowski JF, Li H, Mariuzza RA, Chen ZW, Nam KH, Morita CT. Conservation of nonpeptide antigen recognition by rhesus monkey V gamma 2V delta 2 T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3696-706. [PMID: 12646635 DOI: 10.4049/jimmunol.170.7.3696] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We have previously found that monkey Vgamma2Vdelta2(+) T cells mount adaptive immune responses in response to Mycobacterium bovis bacillus Calmette-Guérin infections. We have now analyzed rhesus monkey gammadelta T cell responses to nonpeptide Ags and superantigens. Like human Vgamma2Vdelta2(+) T cells, rhesus monkey gammadelta T cells are stimulated when exposed to prenyl pyrophosphate, bisphosphonate, and alkylamine Ags. Responsiveness was limited to gammadelta T cells expressing Vgamma2Vdelta2 TCRs. Rhesus monkey Vgamma2Vdelta2(+) T cells also responded to the superantigen, staphyloccocal enterotoxin A. Sequencing of the rhesus monkey Vgamma2Vdelta2 TCR revealed a strong sequence homology to human Vgamma2Vdelta2 TCR that preserves important sequence motifs. Moreover, chimeric TCRs that pair human Vgamma2 with monkey Vdelta2 and monkey Vgamma2 with human Vdelta2 retain reactivity to nonpeptide Ags and B cell lymphomas. A molecular model of the rhesus monkey Vgamma2Vdelta2 TCR has a basic region in the complementarity-determining region 3 binding groove that is similar to that seen in the human Vgamma2Vdelta2 TCR and preserves the topology of the complementarity-determining region loops. Thus, recognition of nonpeptide prenyl pyrophosphate, bisphosphonate, and alkylamine Ags is conserved in primates suggesting that primates can provide an animal model for human gammadelta T cell Ag responses.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigen Presentation/immunology
- Antigens, Bacterial/metabolism
- Antigens, Bacterial/pharmacology
- Butylamines/immunology
- Butylamines/metabolism
- Butylamines/pharmacology
- Clone Cells
- Conserved Sequence/immunology
- Diphosphates/pharmacology
- Epitopes, T-Lymphocyte/analysis
- Epitopes, T-Lymphocyte/immunology
- Epitopes, T-Lymphocyte/metabolism
- Fetal Blood/immunology
- Fetal Blood/metabolism
- Hemiterpenes
- Humans
- Infant, Newborn
- Lymphocyte Activation/drug effects
- Lymphocyte Activation/immunology
- Macaca mulatta
- Molecular Sequence Data
- Organophosphorus Compounds/immunology
- Organophosphorus Compounds/metabolism
- Organophosphorus Compounds/pharmacology
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/blood
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/isolation & purification
- Recombinant Fusion Proteins/analysis
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Superantigens/pharmacology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Hong Wang
- Division of Rheumatology, Department of Internal Medicine and Interdisciplinary Group in Immunology, University of Iowa College of Medicine, Iowa City, IA 52442, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Hiromatsu K, Dascher CC, LeClair KP, Sugita M, Furlong ST, Brenner MB, Porcelli SA. Induction of CD1-restricted immune responses in guinea pigs by immunization with mycobacterial lipid antigens. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:330-9. [PMID: 12077262 DOI: 10.4049/jimmunol.169.1.330] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Group 1 CD1 molecules have been shown to present lipid and glycolipid Ags of mycobacteria to human T cells. However, a suitable animal model for the investigation of this component of antimycobacterial immunity has not yet been established. Previously, we found that guinea pigs express multiple isoforms of group 1 CD1 proteins that are homologous to human CD1b and CD1c. In this study, we show that CD1-restricted T cell responses can be generated in guinea pigs following immunization with lipid Ags from Mycobacterium tuberculosis. Splenic T cells from lipid Ag-immunized guinea pigs showed strong proliferative responses to total lipid Ags and partially purified glycolipid fractions from M. tuberculosis. These lipid Ag-reactive T cells were enriched in CD4-negative T cell fractions and showed cytotoxic activity against CD1-expressing guinea pig bone marrow-derived dendritic cells pulsed with M. tuberculosis lipid Ags. Using guinea pig cell lines transfected with individual CD1 isoforms as target cells in cytotoxic T cell assays, we found that guinea pig CD1b and CD1c molecules presented M. tuberculosis glycolipid Ags to T cells raised by mycobacterial lipid immunization. These results were confirmed using a T cell line derived from M. tuberculosis lipid Ag-immunized guinea pigs, which also showed CD1-restricted responses and cytolytic activity. Our results demonstrate that CD1-restricted responses against microbial glycolipid Ags can be generated in vivo by specific immunization and provide support for the use of the guinea pig as a relevant small animal model for the study of CD1-restricted immune responses to mycobacterial pathogens.
Collapse
Affiliation(s)
- Kenji Hiromatsu
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Wang L, Das H, Kamath A, Bukowski JF. Human V gamma 2V delta 2 T cells produce IFN-gamma and TNF-alpha with an on/off/on cycling pattern in response to live bacterial products. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:6195-201. [PMID: 11714780 DOI: 10.4049/jimmunol.167.11.6195] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Whereas cytokine production in alphabeta T cells is rapidly regulated by exposure to peptide Ag, the mechanisms regulating cytokine production by gammadelta T cells are unknown. In this study, we demonstrate that human Vgamma2Vdelta2 T cells produce IFN-gamma and TNF-alpha as early as 2 h after Ag exposure, and that they produce these cytokines in a dose- and time- dependent manner in response to stimulation with a live bacterial product, iso-butylamine (IBA), but not to dead bacteria or LPS. gammadelta T cells began, ceased, and then resumed IFN-gamma and TNF-alpha generation in an on/off/on cycling pattern, both in vitro and in vivo, depending on the presence or absence of IBA. IFN-gamma and TNF-alpha, whose optimum production was dependent on IBA-stimulated gammadelta T cells, were critical for monocyte-mediated killing of Escherichia coli. By limiting cytokine production to periods of direct contact with live bacteria, gammadelta T cells focus their resources at the site of infection, while limiting systemic immunopathology. Thus, human gammadelta T cells may mediate innate resistance to extracellular bacteria via tightly regulated cytokine production without necessarily expanding in number.
Collapse
Affiliation(s)
- L Wang
- Lymphocyte Biology Section, Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
33
|
Das H, Groh V, Kuijl C, Sugita M, Morita CT, Spies T, Bukowski JF. MICA engagement by human Vgamma2Vdelta2 T cells enhances their antigen-dependent effector function. Immunity 2001; 15:83-93. [PMID: 11485740 DOI: 10.1016/s1074-7613(01)00168-6] [Citation(s) in RCA: 334] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Vgamma2Vdelta2 T cells comprise 2%-5% of human peripheral blood T cells, recognize ubiquitous nonpeptide antigens, and expand up to 50-fold during microbial infection. It is not clear why these Vgamma2Vdelta2 T cells expand only after microbial infection. We show here that the stress-inducible molecule, MICA, is induced on the surface of dendritic and epithelial cells by infection with M. tuberculosis in vitro and in vivo. MICA engagement by the activating receptor, NKG2D, present on Vgamma2Vdelta2 T cells, resulted in a substantial enhancement of the TCR-dependent Vgamma2Vdelta2 T cell response to nonpeptide antigens and protein superantigens alike. Thus, a MICA-NKG2D interaction may be necessary for an effective innate immune response to microbe-associated antigens that also are constitutively present in vivo.
Collapse
Affiliation(s)
- H Das
- Lymphocyte Biology Section, Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital and, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Morita CT, Lee HK, Wang H, Li H, Mariuzza RA, Tanaka Y. Structural features of nonpeptide prenyl pyrophosphates that determine their antigenicity for human gamma delta T cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:36-41. [PMID: 11418629 DOI: 10.4049/jimmunol.167.1.36] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human Vgamma2Vdelta2(+) T cells proliferate in vivo during many microbial infections. We have found that Vgamma2Vdelta2(+) T cells recognize nonpeptide prenyl pyrophosphates and alkylamines. We now have defined structural features that determine the antigenicity of prenyl pyrophosphates by testing synthetic analogs for bioactivity. We find that the carbon chain closest to the pyrophosphate moiety plays the major role in determining bioactivity. Changes in this area, such as the loss of a double bond, abrogated bioactivity. The loss of a phosphate from the pyrophosphate moiety also decreased antigenicity 100- to 200-fold. However, nucleotide monophosphates could be added with minimal changes in bioactivity. Longer prenyl pyrophosphates also retained bioactivity. Despite differences in CDR3 sequence, Vgamma2Vdelta2(+) clones and a transfectant responded similarly. Ag docking into a Vgamma2Vdelta2 TCR model reveals a potential binding site in germline regions of the Vgamma2Jgamma1.2 CDR3 and Vdelta2 CDR2 loops. Thus, Vgamma2Vdelta2(+) T cells recognize a core carbon chain and pyrophosphate moiety. This recognition is relatively unaffected by additions at distal positions to the core Ag unit.
Collapse
Affiliation(s)
- C T Morita
- Division of Rheumatology, Department of Internal Medicine and the Interdisciplinary Group in Immunology, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | |
Collapse
|
35
|
Morita CT, Li H, Lamphear JG, Rich RR, Fraser JD, Mariuzza RA, Lee HK. Superantigen recognition by gammadelta T cells: SEA recognition site for human Vgamma2 T cell receptors. Immunity 2001; 14:331-44. [PMID: 11290341 DOI: 10.1016/s1074-7613(01)00113-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Human gammadelta T cells expressing the Vgamma2Vdelta2 antigen receptors recognize nonpeptide prenyl pyrophosphate and alkylamine antigens. We find that they also recognize staphylococcal enterotoxin A superantigens in a manner distinct from the recognition of nonpeptide antigens. Using chimeric and mutant toxins, SEA amino acid residues 20-27 were shown to be required for gammadelta TCR recognition of SEA. Residues at 200-207 that are critical for specific alphabeta TCR recognition of SEA do not affect gammadelta TCR recognition. SEA residues 20-27 are located in an area contiguous with the binding site of V beta chains. This study defines a superantigen recognition site for a gammadelta T cell receptor and demonstrates the differences between Vgamma2Vdelta2+ T cell recognition of superantigens and nonpeptide antigens.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/pharmacology
- Antigen Presentation
- Antigen-Presenting Cells/immunology
- Binding Sites
- Biological Evolution
- Cell Line
- Clone Cells/immunology
- Clone Cells/metabolism
- Enterotoxins/chemistry
- Enterotoxins/immunology
- HLA-D Antigens/immunology
- Humans
- Models, Molecular
- Molecular Sequence Data
- Polyisoprenyl Phosphates/chemistry
- Polyisoprenyl Phosphates/immunology
- Protein Conformation
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Substrate Specificity
- Superantigens/chemistry
- Superantigens/immunology
- T-Lymphocytes/chemistry
- T-Lymphocytes/immunology
Collapse
Affiliation(s)
- C T Morita
- Division of Rheumatology, Department of Internal Medicine, University of Iowa College of Medicine, Iowa City, IA 52242, USA.
| | | | | | | | | | | | | |
Collapse
|
36
|
de la Barrera S, Fink S, Finiasz M, Alemán M, Helena Fariña M, Pizzariello G, del Carmen Sasiain M. Lysis of autologous macrophages pulsed with hsp10 from Mycobacterium leprae is associated to the absence of bacilli in leprosy. Immunol Lett 2001; 76:55-62. [PMID: 11222914 DOI: 10.1016/s0165-2478(00)00319-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Peripheral blood mononuclear cells from leprosy patients and normal individuals were analysed for their ability to lyse autologous macrophages pulsed with the Mycobacterium leprae 10 kDa heat shock protein (hsp10), an antigen considered to have an important role in the protective responses in leprosy. Strong cytotoxic responses, with an involvement of gammadelta T and class-I and class-II restricted alphabeta T cells and/or CD16+56+ cells, were observed in normal individuals, paucibacillary (PB) and those multibacillary (MB) patients with undetectable bacillary load. On the contrary, only a weak class-II restricted cytotoxic response was observed in those MB patients with positive bacillary load (MB(+)). Simultaneous addition of IFNgamma plus TNFalpha and IL-12 during hsp10 stimulation could partially upregulate the low cytotoxic response observed in MB(+) by enhancing class-II restricted T cell activity and by development of gammadelta T and/or CD16+56+ cell activity. Our results suggest that the ability to mount an effective cytotoxic response against hsp10-pulsed macrophages in leprosy patients is closely related to the patient's bacterial load and not to the clinical form of the disease.
Collapse
MESH Headings
- Adult
- Aged
- CD56 Antigen/biosynthesis
- Cell Differentiation/immunology
- Cells, Cultured
- Chaperonin 10/immunology
- Chaperonin 10/metabolism
- Cytotoxicity Tests, Immunologic
- Female
- Humans
- Interferon-gamma/physiology
- Interleukin-12/physiology
- Killer Cells, Natural/immunology
- Leprosy/immunology
- Leprosy/microbiology
- Leukocytes, Mononuclear/immunology
- Lymphocyte Activation
- Macrophages/immunology
- Male
- Middle Aged
- Mycobacterium leprae/growth & development
- Mycobacterium leprae/immunology
- Receptors, Antigen, T-Cell, alpha-beta/biosynthesis
- Receptors, Antigen, T-Cell, gamma-delta/biosynthesis
- Receptors, IgG/biosynthesis
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/microbiology
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/microbiology
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- S de la Barrera
- Departamento de Inmunología, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Pacheco de Melo 3081, 1425, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|
37
|
Spada FM, Borriello F, Sugita M, Watts GF, Koezuka Y, Porcelli SA. Low expression level but potent antigen presenting function of CD1d on monocyte lineage cells. Eur J Immunol 2000; 30:3468-77. [PMID: 11093166 DOI: 10.1002/1521-4141(2000012)30:12<3468::aid-immu3468>3.0.co;2-c] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
CD1d is a key antigen-presenting molecule involved in the selection and activation of a highly conserved T cell subset known as NK T cells. In this study, we analyzed the expression, regulation and function of human CD1d by various antigen-presenting cells (APC) of myeloid origin, including circulating monocytes, monocyte-derived dendritic cells and macrophages. CD1d was expressed as a mature glycoprotein by these cells, and unlike the other members of the human CD1 family its expression was constitutive and was not strongly up-regulated by GM-CSF and IL-4 or a range of other cytokines. Despite their remarkably low surface expression of CD1d, all myeloid lineage cells tested were extremely potent APC for responses of NK T cell clones to the synthetic glycolipid antigen, alpha-galactosyl ceramide. Prominent localization of CD1d to the endocytic system of monocyte lineage cells was observed, and functional studies suggested that this was important for achieving efficient antigen loading onto CD1d. Overall, these results support the view that monocyte lineage cells are important stimulators of CD1d-restricted immune responses, while also underscoring the unique regulation of CD1d expression by these cells.
Collapse
Affiliation(s)
- F M Spada
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
38
|
Rosenkranz AR, Knight S, Sethi S, Alexander SI, Cotran RS, Mayadas TN. Regulatory interactions of alphabeta and gammadelta T cells in glomerulonephritis. Kidney Int 2000; 58:1055-66. [PMID: 10972670 DOI: 10.1046/j.1523-1755.2000.00263.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Several lines of evidence suggest that cellular immune mechanisms contribute to glomerulonephritis. METHODS The roles of alphabeta and gammadelta T cells in the pathogenesis of glomerulonephritis were investigated in a model of nephrotoxic nephritis in mice deficient in either T-cell population [T-cell receptor (TCR)beta and TCRdelta knockout mice]. The model, induced by the injection of rabbit anti-mouse glomerular basement membrane antibody, is characterized by the development of proteinuria and glomerular damage over a 21-day observation period in wild-type mice. RESULTS Mice deficient in either alphabeta or gammadelta T cells developed minimal proteinuria and glomerular lesions and had a significant reduction in macrophage accumulation compared with wild-type mice. In gammadelta T-cell-deficient mice, circulating levels and glomerular deposition of autologous IgG were comparable to wild-type levels, while alphabeta T-cell-deficient mice had no autologous IgG production. Autologous antibody production was not required for the development of glomerulonephritis since mice that lack IgG and B cells (micro-chain-/-) developed similar proteinuria to that observed in wild-type mice. CONCLUSIONS These studies suggest a proinflammatory role for both alphabeta and gammadelta T cells in glomerular injury, independent of the humoral response. This is the first demonstration, to our knowledge, that both T-cell subsets contribute to the progression of a disease, and it suggests that complex regulatory interactions between alphabeta and gammadelta T cells play a role in glomerular injury.
Collapse
MESH Headings
- Animals
- Antibodies
- B-Lymphocytes/immunology
- Basement Membrane/immunology
- CD8-Positive T-Lymphocytes/immunology
- Complement System Proteins/analysis
- Gene Expression/immunology
- Glomerulonephritis/immunology
- Glomerulonephritis/metabolism
- Glomerulonephritis/pathology
- Immunity, Cellular/immunology
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Kidney Glomerulus/immunology
- Kidney Glomerulus/pathology
- Macrophages/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Proteinuria/immunology
- Proteinuria/metabolism
- Proteinuria/pathology
- RNA, Messenger/analysis
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
Collapse
Affiliation(s)
- A R Rosenkranz
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
39
|
Riccieri V, Spadaro A, Parisi G, Taccari E, Moretti T, Bernardini G, Favaroni M, Strom R. Down-regulation of natural killer cells and of gamma/delta T cells in systemic lupus erythematosus. Does it correlate to autoimmunity and to laboratory indices of disease activity? Lupus 2000; 9:333-7. [PMID: 10878724 DOI: 10.1191/096120300678828460] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A depletion of natural killer (NK) cells seems to play a role in the course of systemic lupus erythematosus (SLE) whereas the possible involvement in this disease of T cell receptor (TCR) gamma/delta positive T cells is still debated. The aim of this study was to evaluate the peripheral blood mononuclear cells (PBMCs) that express NK surface markers CD16 and CD56 or gamma/delta TCR antigen in 58 SLE patients, investigating the possible role of these cell subsets involved in non-MHC-restricted cytotoxicity and their relationship with the main clinical and laboratory parameters. SLE patients had, with respect to controls, considerably decreased values of NK cells (P<0.0004 in percentage and P<0.00004 as absolute number), of non-MHC-restricted T cytotoxic lymphocytes (P<0.007 and P<0.0015, respectively) and of T cells expressing gamma/delta TCR (P<0.02 and P<0.004, respectively). The absolute numbers of these cell subsets positively correlated to each other (P<0.009). gamma/delta T cells inversely correlated with higher ESR values, both percentually (P<0. 006; r=-0.367) and in absolute number (P<0.009; r=-0.350). Moreover, the percentage values of this cell subset inversely correlated with higher levels of CRP (P<0.05; r=-0.256) while SLE patients with anti-SSB/La antibodies had lower values of T lymphocytes bearing gamma/delta TCR, both as percentage (P<0.008) and as absolute number (P<0.02). Our study indicates that non-MHC-restricted cytotoxicity, shared by NK, NK-like and gamma/delta T cells, may be down-regulated in SLE patients, owing to a significant reduction of these PBMC subsets. These specific cell subset impairments seem to affect only some aspects of the disease, suggesting a weakening of the regulatory properties of these cells in the control of different immunological and inflammatory features of SLE, that could be of importance in its clinical expression.
Collapse
Affiliation(s)
- V Riccieri
- Department of Medical Therapy, University 'La Sapienza', Rome, Italy
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000. [DOI: 10.1182/blood.v96.2.384] [Citation(s) in RCA: 478] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
Bisphosphonates are well-known inhibitors of osteoclastic bone resorption, but recent clinical reports support the possibility of direct or indirect antitumor effects by these compounds. Because bisphosphonates share structural homologies with recently identified γδ T-cell ligands, we examined the stimulatory capacity of bisphosphonates to γδ T cells and determined whether γδ T-cell stimulation by bisphosphonates could be exploited to generate antiplasma cell activity in multiple myeloma (MM). All tested aminobisphosphonates (alendronate, ibandronate, and pamidronate) induced significant expansion of γδ T cells (Vγ9Vδ2 subset) in peripheral blood mononuclear cell cultures of healthy donors at clinically relevant concentrations (half-maximal activity, 0.9-4 μmol/L). The proliferative response of γδ T cells to aminobisphosphonates was IL-2 dependent, whereas activation of γδ T cells (up-regulation of CD25 and CD69) occurred in the absence of exogenous cytokines. Pamidronate-activated γδ T cells produced cytokines (ie, interferon [IFN]-γ) and exhibited specific cytotoxicity against lymphoma (Daudi) and myeloma cell lines (RPMI 8226, U266). Pamidronate-treated bone marrow (BM) cultures of 24 patients with MM showed significantly reduced plasma cell survival compared with untreated cultures, especially in cultures in which activation of BM-γδ T cells was evident (14 of 24 patients with MM). γδ T-cell depletion from BM cultures completely abrogated the cytoreductive effect on myeloma cells in 2 of 3 tested patients with MM. These results show that aminobisphosphonates stimulating γδ T cells have pronounced effects on the immune system, which might contribute to the antitumor effects of these drugs.
Collapse
|
41
|
Stimulation of γδ T cells by aminobisphosphonates and induction of antiplasma cell activity in multiple myeloma. Blood 2000. [DOI: 10.1182/blood.v96.2.384.013k07_384_392] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bisphosphonates are well-known inhibitors of osteoclastic bone resorption, but recent clinical reports support the possibility of direct or indirect antitumor effects by these compounds. Because bisphosphonates share structural homologies with recently identified γδ T-cell ligands, we examined the stimulatory capacity of bisphosphonates to γδ T cells and determined whether γδ T-cell stimulation by bisphosphonates could be exploited to generate antiplasma cell activity in multiple myeloma (MM). All tested aminobisphosphonates (alendronate, ibandronate, and pamidronate) induced significant expansion of γδ T cells (Vγ9Vδ2 subset) in peripheral blood mononuclear cell cultures of healthy donors at clinically relevant concentrations (half-maximal activity, 0.9-4 μmol/L). The proliferative response of γδ T cells to aminobisphosphonates was IL-2 dependent, whereas activation of γδ T cells (up-regulation of CD25 and CD69) occurred in the absence of exogenous cytokines. Pamidronate-activated γδ T cells produced cytokines (ie, interferon [IFN]-γ) and exhibited specific cytotoxicity against lymphoma (Daudi) and myeloma cell lines (RPMI 8226, U266). Pamidronate-treated bone marrow (BM) cultures of 24 patients with MM showed significantly reduced plasma cell survival compared with untreated cultures, especially in cultures in which activation of BM-γδ T cells was evident (14 of 24 patients with MM). γδ T-cell depletion from BM cultures completely abrogated the cytoreductive effect on myeloma cells in 2 of 3 tested patients with MM. These results show that aminobisphosphonates stimulating γδ T cells have pronounced effects on the immune system, which might contribute to the antitumor effects of these drugs.
Collapse
|
42
|
Spada FM, Grant EP, Peters PJ, Sugita M, Melián A, Leslie DS, Lee HK, van Donselaar E, Hanson DA, Krensky AM, Majdic O, Porcelli SA, Morita CT, Brenner MB. Self-recognition of CD1 by gamma/delta T cells: implications for innate immunity. J Exp Med 2000; 191:937-48. [PMID: 10727456 PMCID: PMC2193122 DOI: 10.1084/jem.191.6.937] [Citation(s) in RCA: 302] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The specificity of immunoglobulins and alpha/beta T cell receptors (TCRs) provides a framework for the molecular basis of antigen recognition. Yet, evolution has preserved a separate lineage of gamma/delta antigen receptors that share characteristics of both immunoglobulins and alpha/beta TCRs but whose antigens remain poorly understood. We now show that T cells of the major tissue gamma/delta T cell subset recognize nonpolymorphic CD1c molecules. These T cells proliferated in response to CD1+ presenter cells, lysed CD1c+ targets, and released T helper type 1 (Th1) cytokines. The CD1c-reactive gamma/delta T cells were cytotoxic and used both perforin- and Fas-mediated cytotoxicity. Moreover, they produced granulysin, an important antimicrobial protein. Recognition of CD1c was TCR mediated, as recognition was transferred by transfection of the gamma/delta TCR. Importantly, all CD1c-reactive gamma/delta T cells express V delta 1 TCRs, the TCR expressed by most tissue gamma/delta T cells. Recognition by this tissue pool of gamma/delta T cells provides the human immune system with the capacity to respond rapidly to nonpolymorphic molecules on professional antigen presenting cells (APCs) in the absence of foreign antigens that may activate or eliminate the APCs. The presence of bactericidal granulysin suggests these cells may directly mediate host defense even before foreign antigen-specific T cells have differentiated.
Collapse
MESH Headings
- Amino Acid Sequence
- Anti-Infective Agents/metabolism
- Antigen-Presenting Cells/immunology
- Antigen-Presenting Cells/metabolism
- Antigens, CD1/biosynthesis
- Antigens, CD1/metabolism
- Antigens, Differentiation, T-Lymphocyte/biosynthesis
- Base Sequence
- Cell Differentiation/immunology
- Cell Line
- Cytotoxicity Tests, Immunologic
- Cytotoxicity, Immunologic
- Gene Rearrangement, delta-Chain T-Cell Antigen Receptor
- Gene Rearrangement, gamma-Chain T-Cell Antigen Receptor
- Humans
- Immunity, Innate
- Lymphocyte Activation
- Membrane Glycoproteins/physiology
- Molecular Sequence Data
- Perforin
- Pore Forming Cytotoxic Proteins
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- Th1 Cells/immunology
- Th1 Cells/metabolism
- fas Receptor/physiology
Collapse
Affiliation(s)
- Franca M. Spada
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital at Harvard Medical School, Boston, Massachusetts 02115
| | - Ethan P. Grant
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital at Harvard Medical School, Boston, Massachusetts 02115
| | - Peter J. Peters
- The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Masahiko Sugita
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital at Harvard Medical School, Boston, Massachusetts 02115
| | - Augustín Melián
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital at Harvard Medical School, Boston, Massachusetts 02115
| | - David S. Leslie
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital at Harvard Medical School, Boston, Massachusetts 02115
| | - Hoi K. Lee
- Division of Rheumatology, Department of Internal Medicine and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa 52242
| | | | | | - Alan M. Krensky
- Division of Immunology and Transplantation Biology, Department of Pediatrics, Stanford University, Stanford, California 94305
| | - Otto Majdic
- Institute of Immunology, University of Vienna, A-1090 Vienna, Austria
| | - Steven A. Porcelli
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital at Harvard Medical School, Boston, Massachusetts 02115
| | - Craig T. Morita
- Division of Rheumatology, Department of Internal Medicine and Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, Iowa 52242
| | - Michael B. Brenner
- Division of Rheumatology, Immunology, and Allergy, Department of Medicine, Brigham and Women's Hospital at Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
43
|
Yin Z, Craft J. gamma delta T cells in autoimmunity. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2000; 22:311-20. [PMID: 11116960 DOI: 10.1007/s002810000048] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Z Yin
- Section of Rheumatology, Department of Medicine, Yale School of Medicine, New Haven, Conecticut, USA
| | | |
Collapse
|
44
|
De Libero G. Tissue distribution, antigen specificity and effector functions of gamma delta T cells in human diseases. SPRINGER SEMINARS IN IMMUNOPATHOLOGY 2000; 22:219-38. [PMID: 11116954 DOI: 10.1007/s002810000043] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
MESH Headings
- Animals
- Antigen Presentation
- Carbohydrates/immunology
- Cell Differentiation
- Disease Models, Animal
- Humans
- Immunity, Cellular
- Ligands
- Peptides/immunology
- Receptors, Antigen, T-Cell, gamma-delta/analysis
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
Collapse
|
45
|
Bukowski JF, Morita CT, Brenner MB. Human gamma delta T cells recognize alkylamines derived from microbes, edible plants, and tea: implications for innate immunity. Immunity 1999; 11:57-65. [PMID: 10435579 DOI: 10.1016/s1074-7613(00)80081-3] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Approximately 4% of peripheral blood T cells in humans express a T cell receptor with markedly restricted germline gene segment usage (V gamma 2 V delta 2). Remarkably, these T cells expand 2- to 10-fold (8%-60% of all circulating T cells) during many microbial infections. We show here that these T cells recognize a family of naturally occurring primary alkylamines in a TCR-dependent manner. These antigenic alkylamines are secreted to millimolar concentrations in bacterial supernatants and are found in certain edible plants. Given the large numbers of memory V gamma 2 V delta 2 T cells in adult humans, recognition of alkylamine antigens offers the immune system a response of the magnitude of major superantigens for alpha beta T cells and may bridge the gap between innate and adaptive immunity.
Collapse
MESH Headings
- Amines/chemistry
- Amines/immunology
- Amines/metabolism
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacteroides fragilis/immunology
- Bacteroides fragilis/metabolism
- Cell Line, Transformed
- Clone Cells
- Clostridium perfringens/immunology
- Clostridium perfringens/metabolism
- Epitopes, T-Lymphocyte/immunology
- Ethylamines/chemistry
- Ethylamines/immunology
- Ethylamines/metabolism
- Glutamates/chemistry
- Glutamates/immunology
- Glutamates/metabolism
- Humans
- Immunity, Cellular
- Immunity, Innate
- Plants, Edible/immunology
- Proteus/immunology
- Proteus/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/physiology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocyte Subsets/microbiology
- Tea/chemistry
- Tea/immunology
- Tea/metabolism
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- J F Bukowski
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | |
Collapse
|
46
|
García VE, Uyemura K, Sieling PA, Ochoa MT, Morita CT, Okamura H, Kurimoto M, Rea TH, Modlin RL. IL-18 Promotes Type 1 Cytokine Production from NK Cells and T Cells in Human Intracellular Infection. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.10.6114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We investigated the role of IL-18 in leprosy, a disease characterized by polar cytokine responses that correlate with clinical disease. In vivo, IL-18 mRNA expression was higher in lesions from resistant tuberculoid as compared with susceptible lepromatous patients, and, in vitro, monocytes produced IL-18 in response to Mycobacterium leprae. rIL-18 augmented M. leprae-induced IFN-γ in tuberculoid patients, but not lepromatous patients, while IL-4 production was not induced by IL-18. Anti-IL-12 partially inhibited M. leprae-induced release of IFN-γ in the presence of IL-18, suggesting a combined effect of IL-12 and IL-18 in promoting M. leprae-specific type 1 responses. IL-18 enhanced M. leprae-induced IFN-γ production rapidly (24 h) by NK cells and in a more sustained manner (5 days) by T cells. Finally, IL-18 directly induced IFN-γ production from mycobacteria-reactive T cell clones. These results suggest that IL-18 induces type 1 cytokine responses in the host defense against intracellular infection.
Collapse
Affiliation(s)
| | | | | | | | - Craig T. Morita
- ‡Division of Rheumatology and Immunology, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Haruki Okamura
- §Hyogo College of Medicine, Mukogawa-cho, Nishinomiya, Japan
| | - Masashi Kurimoto
- ¶Fujisaki Institute, Hayashibara Biochemical Labs, Fujisaki, Okayama, Japan; and
| | - Thomas H. Rea
- ∥Section of Dermatology, University of Southern California School of Medicine, Los Angeles, CA 90033
| | - Robert L. Modlin
- *Division of Dermatology and
- †Department of Microbiology and Immunology, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095
| |
Collapse
|
47
|
Morita CT, Lee HK, Leslie DS, Tanaka Y, Bukowski JF, Märker-Hermann E. Recognition of nonpeptide prenyl pyrophosphate antigens by human γδ T cells. Microbes Infect 1999. [DOI: 10.1016/s1286-4579(99)80032-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
48
|
Rosat JP, Grant EP, Beckman EM, Dascher CC, Sieling PA, Frederique D, Modlin RL, Porcelli SA, Furlong ST, Brenner MB. CD1-Restricted Microbial Lipid Antigen-Specific Recognition Found in the CD8+ αβ T Cell Pool. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.1.366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
It is generally accepted that TCR αβ+ CD8+ T cells recognize immunogenic peptides bound to MHC-encoded class I molecules. This recognition is a major component of the cellular response mediating immune protection and recovery from viral infections and from certain intracellular bacterial infections. Here, we report two human CD8+ TCR αβ+ T cell lines specific for Mycobacterium tuberculosis Ags presented in the context of CD1a or CD1c Ag-presenting molecules. These T cells recognize lipid Ags and display cytotoxicity as well as strong Th cell type I cytokine responses. By extending presentation by the CD1 system to the major TCR αβ+ CD8+ T cell pool, this system gains wider applicability beyond the double negative subset of T cells previously shown to have this reactivity. This implies that previous assumptions about the role of CD8+ T cells in microbial immunity may require revision as the relative proportions of CD1-restricted and MHC class I-restricted CD8+ T cells are further defined.
Collapse
Affiliation(s)
- Jean-Pierre Rosat
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Ethan P. Grant
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Evan M. Beckman
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Christopher C. Dascher
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Peter A. Sieling
- †Division of Dermatology, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095
| | - Daphney Frederique
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Robert L. Modlin
- †Division of Dermatology, University of California, Los Angeles, School of Medicine, Los Angeles, CA 90095
| | - Steven A. Porcelli
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Stephen T. Furlong
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115; and
| | - Michael B. Brenner
- *Lymphocyte Biology Section, Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham & Women’s Hospital and Harvard Medical School, Boston, MA 02115; and
| |
Collapse
|
49
|
Tuo W, Bazer FW, Davis WC, Zhu D, Brown WC. Differential Effects of Type I IFNs on the Growth of WC1− CD8+ γδ T Cells and WC1+ CD8− γδ T Cells In Vitro. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.1.245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Type I IFNs have a broad array of immunoregulatory functions that include up-regulation of type 1 immune responses through enhancing differentiation and activation of CD8+ T cells and CD4+ Th1 cells. Ovine trophoblast IFN-τ is a recently described type I IFN with the potential for therapeutic use, based on its potent antiviral activity yet low toxicity. Studies were designed to determine the immunoregulatory effects of IFN-τ on Ag-stimulated T cells, and a novel effect of type I IFNs on γδ T cells was observed. In cultures of parasite Ag-stimulated bovine T cells that contained a mixture of αβ and γδ T cells, both IFN-τ and IFN-α suppressed the expansion of WC1+ CD2− CD6− CD8− γδ T cells, yet stimulated the growth of WC1− CD2+ CD6+ CD8+ γδ T cells and CD8+ αβ T cells. The CD8+ γδ T cell subset expressed high levels of the IL-2R α-chain. Furthermore, we showed that type I IFN enhanced IL-2 production by these Ag-stimulated T cell lines. In short term cultures of PBMC, IL-2 stimulated an expansion of WC1− CD6+ CD8+ γδ T cells, which was significantly increased by IFN-τ, even though IFN-τ alone did not support cell survival. These studies demonstrate for the first time that type I IFNs differentially modulate the proliferation of different subsets of γδ T cells, which appears to act in part via IL-2.
Collapse
Affiliation(s)
- Wenbin Tuo
- *Department of Veterinary Pathology and Microbiology, Washington State University, Pullman, WA 99164; and
| | - Fuller W. Bazer
- †Center for Animal Biotechnology, Institute of Biosciences and Technology, Texas A&M University, College Station, TX 77843
| | - William C. Davis
- *Department of Veterinary Pathology and Microbiology, Washington State University, Pullman, WA 99164; and
| | - Daming Zhu
- *Department of Veterinary Pathology and Microbiology, Washington State University, Pullman, WA 99164; and
| | - Wendy C. Brown
- *Department of Veterinary Pathology and Microbiology, Washington State University, Pullman, WA 99164; and
| |
Collapse
|
50
|
Chu DH, Morita CT, Weiss A. The Syk family of protein tyrosine kinases in T-cell activation and development. Immunol Rev 1998; 165:167-80. [PMID: 9850860 DOI: 10.1111/j.1600-065x.1998.tb01238.x] [Citation(s) in RCA: 187] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The processes of T-cell development and activation employ similar immature and mature receptors as well as similar signal transduction pathways to achieve different outcomes. Many signaling molecules are shared between the receptor signaling pathways, including two families of cytoplasmic protein tyrosine kinases, the Src family and the Syk family. The two Syk family members expressed in T cells, Syk and ZAP-70, are structurally similar but are expressed at different times during thymic development and during T-cell activation. These two kinases, although they share many physical features, differ in terms of biochemical activity and regulation. We discuss the overlapping and distinct characteristics of Syk and ZAP-70 in T-cell signaling and the potential biological importance of their differences.
Collapse
Affiliation(s)
- D H Chu
- Department of Microbiology and Immunology, University of California, San Francisco, USA
| | | | | |
Collapse
|