1
|
Chen S, Mei H, Xu L, Zhan L, Yang Y, Zhao D, Bao G, Li X, Cao Z. Impact of fermented feed of soybean hulls and rapeseed cake on immunity, antioxidant capacity, and gut microbiota in Chahua chicken. Poult Sci 2024; 103:103451. [PMID: 38301497 PMCID: PMC10847688 DOI: 10.1016/j.psj.2024.103451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/25/2023] [Accepted: 01/06/2024] [Indexed: 02/03/2024] Open
Abstract
The present study investigated the effects of replacing part of the basal diet with 2-stage fermented feed (FF) (soybean hulls:rapeseed cake (2:1, m/m)) on the growth performance, immunity, antioxidant capacity, and intestinal health of Chahua chicken. A total of 160 Chahua chickens were randomly divided into 4 groups to receive a control diet or diet with 5%, 10%, or 15% of the basal diet replaced by FF, respectively for 56 d. The results showed that FF significantly improved the average daily gain (ADG) and average daily feed intake (ADFI) of Chahua chickens (P < 0.05). Furthermore, the serum immunoglobulin (Ig) A, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD) in Chahua chicken receiving the diet added with 15% FF significantly increased (P < 0.05). Chahua chicken in both the 10% and 15% groups showed increased serum IgG and IgM and decreased malondialdehyde. Serum interleukin-2 and interferon-gamma significantly increased in all FF groups. Compared with the CON group, higher ileal villus height (VH) was found in the 10% FF group. Treatment with FF significantly increased the ileal villus height/crypt depth (VH/CD) ratio, jejunal VH, and jejunal VH/CD ratio while reducing ileal and jejunal CD. The modified gut microbiota composition was observed in the Chahua chicken fed a diet containing FF, in particular, with the increased abundance of Faecalibacterium and Lactobacillus. The abundance of Lactobacillus significantly increased in the 10% and 15% FF groups (all P < 0.05). Correlation analysis revealed a positive correlation between Lactobacillus and VH (R = 0.38, P = 0.10, Figure 3B), AH/CD ratio (R = 0.63, P = 0.003), and a negative correlation with CD (R = -0.72, P = 0.001). These results indicate that FF improves immunity, antioxidant capacity, and intestinal health and consequently enhances growth performance in Chahua chicken.
Collapse
Affiliation(s)
- Shiyu Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Huiyou Mei
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Le Xu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China; Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Heilongtan, Kunming 650201, People's Republic of China
| | - Limei Zhan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Yuhao Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Dexuan Zhao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Guoying Bao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Xiaoye Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China
| | - Zhenhui Cao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Heilongtan, Kunming 650201, People's Republic of China; Yunnan Provincial Key Laboratory of Animal Nutrition and Feed Science, Heilongtan, Kunming 650201, People's Republic of China.
| |
Collapse
|
2
|
Mehta H, Tasin I, Hackstein CP, Willberg C, Klenerman P. Prostaglandins differentially modulate mucosal-associated invariant T-cell activation and function according to stimulus. Immunol Cell Biol 2023; 101:262-272. [PMID: 36541521 PMCID: PMC10152717 DOI: 10.1111/imcb.12617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 05/29/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are an innate-like T-cell type conserved in many mammals and especially abundant in humans. Their semi-invariant T-cell receptor (TCR) recognizes the major histocompatibility complex-like molecule MR1 presenting riboflavin intermediates associated with microbial metabolism. Full MAIT cell triggering requires costimulation via cytokines, and the cells can also be effectively triggered in a TCR-independent manner by cytokines [e.g. interleukin (IL)-12 and IL-18 in combination]. Thus, triggering of MAIT cells is highly sensitive to local soluble mediators. Suppression of MAIT cell activation has not been well explored and could be very relevant to their roles in infection, inflammation and cancer. Prostaglandins (PG) are major local mediators of these microenvironments which can have regulatory roles for T cells. Here, we explored whether prostaglandins suppressed MAIT cell activation in response to TCR-dependent and TCR-independent signals. We found that protaglandin E2 (PGE2 ) and to a lesser extent protaglandin D2 (PGD2 ), but not leukotrienes, suppressed MAIT cell responses to Escherichia coli or TCR triggers. However, there was no impact on cytokine-induced triggering. The inhibition was blocked by targeting the signaling mediated via PG receptor 2 (PTGER2) and 4 (PTGER4) receptors in combination. These data indicate that prostaglandins can potentially modulate local MAIT cell functions in vivo and indicate distinct regulation of the TCR-dependent and TCR-independent pathways of MAIT cell activation.
Collapse
Affiliation(s)
- Hema Mehta
- The Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Irene Tasin
- The Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | | | - Christian Willberg
- The Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
| | - Paul Klenerman
- The Peter Medawar Building for Pathogen ResearchUniversity of OxfordOxfordUK
- NIHR Biomedical Research CentreUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Burkett JB, Doran AC, Gannon M. Harnessing prostaglandin E 2 signaling to ameliorate autoimmunity. Trends Immunol 2023; 44:162-171. [PMID: 36707339 PMCID: PMC9975049 DOI: 10.1016/j.it.2023.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 01/26/2023]
Abstract
The etiology of most autoimmune diseases remains unknown; however, shared among them is a disruption of immunoregulation. Prostaglandin lipid signaling molecules possess context-dependent immunoregulatory properties, making their role in autoimmunity difficult to decipher. For example, prostaglandin E2 (PGE2) can function as an immunosuppressive molecule as well as a proinflammatory mediator in different circumstances, contributing to the expansion and activation of T cell subsets associated with autoimmunity. Recently, PGE2 was shown to play important roles in the resolution and post-resolution phases of inflammation, promoting return to tissue homeostasis. We propose that PGE2 plays both proinflammatory and pro-resolutory roles in the etiology of autoimmunity, and that harnessing this signaling pathway during the resolution phase might help prevent autoimmune attack.
Collapse
Affiliation(s)
- Juliann B Burkett
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Amanda C Doran
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA; Department of Veterans Affairs Tennessee Valley, Nashville, TN, USA.
| |
Collapse
|
4
|
Patel D, Goruk S, Richard C, Field CJ. Combined Supplementation with Arachidonic and Docosahexaenoic Acids in T Helper Type-2 Skewed Brown Norway Rat Offspring is Beneficial in the Induction of Oral Tolerance toward Ovalbumin and Immune System Development. J Nutr 2022; 152:2165-2178. [PMID: 35648474 DOI: 10.1093/jn/nxac118] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/08/2022] [Accepted: 05/26/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND A T helper type-2 (Th2) skewed immune response is associated with food allergies. DHA and arachidonic acid (ARA) have been shown to promote oral tolerance (OT) in healthy rodents. OBJECTIVES We studied the effect of combined ARA + DHA supplementation during the suckling and weaning periods on OT and immune system development in Th2-skewed Brown Norway rat offspring. METHODS Dams were fed ARA + DHA (0.45% ARA, 0.8% DHA wt/wt of total fat; n = 10) as a suckling period diet (SPD) or control SPD (0% ARA, 0% DHA, n = 8). At 3 wk, offspring from each SPD group received ARA + DHA (0.5% ARA, 0.5% DHA wt/wt of total fat) weaning diet (WD), or control until 8 wk. For OT, offspring were orally exposed to either ovalbumin (OVA) or placebo between 21 and 25 d, followed by systemic immunization with OVA + adjuvant at 7 wk. Primary outcomes, ex vivo cytokine production by splenocytes and plasma OVA-specific Igs, were analyzed using a 3-way ANOVA. RESULTS At 8 wk, despite no lasting effect of SPD on splenocytes fatty acids, ARA + DHA WD resulted in 2× higher DHA in splenocyte phospholipid compositions without affecting ARA. OT development was observed in OVA-exposed groups with 15% lower plasma OVA-IgE (P = 0.04) and 35% lower OVA-IgG1 (P = 0.01) than placebo. ARA + DHA SPD resulted in 35% lower OVA-IgG1 and iIL-6 (P = 0.04) when stimulated with LPS, and a higher proportion of mature B cells (OX12+, P = 0.0004, and IgG+, P = 0.008). ARA + DHA WD resulted in 20% higher Th1 cytokines (TNF-α and IFN-γ) production to lymphocyte stimulant and higher splenocyte proportion of CD45RA+ (pan-B cells) and OX6+ (dendritic cells) than control WD (P values < 0.05). CONCLUSIONS Combined supplementation of ARA and DHA is beneficial for OT development, especially in the suckling period. Further, ARA + DHA supplementation can also counteract the Th2-skewed immunity of Brown Norway rat offspring through higher Th1 cytokine production by lymphocytes.
Collapse
Affiliation(s)
- Dhruvesh Patel
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Susan Goruk
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
Pro- and anti-inflammatory bioactive lipids imbalance contributes to the pathobiology of autoimmune diseases. Eur J Clin Nutr 2022:10.1038/s41430-022-01173-8. [PMID: 35701524 DOI: 10.1038/s41430-022-01173-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/22/2022] [Accepted: 05/26/2022] [Indexed: 12/27/2022]
Abstract
Autoimmune diseases are driven by TH17 cells that secrete pro-inflammatory cytokines, especially IL-17. Under normal physiological conditions, autoreactive T cells are suppressed by TGF-β and IL-10 secreted by microglia and dendritic cells. When this balance is upset due to injury, infection and other causes, leukocyte recruitment and macrophage activation occurs resulting in secretion of pro-inflammatory IL-6, TNF-α, IL-17 and PGE2, LTs (leukotrienes) accompanied by a deficiency of anti-inflammatory LXA4, resolvins, protecting, and maresins. PGE2 facilitates TH1 cell differentiation and promotes immune-mediated inflammation through TH17 expansion. There is evidence to suggest that autoimmune diseases can be suppressed by anti-inflammatory bioactive lipids LXA4, resolvins, protecting, and maresins. These results imply that systemic and/or local application of LXA4, resolvins, protecting, and maresins and administration of their precursors AA/EPA/DHA could form a potential therapeutic approach in the prevention and treatment of autoimmune diseases.
Collapse
|
6
|
[Real-world study in oncological outpatients of an oral supplement enriched with ω-3 fatty acids - effect on quality of life and nutritional parameters]. NUTR HOSP 2021; 38:1132-1137. [PMID: 34643407 DOI: 10.20960/nh.03514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Background: cancer patients are a group at high nutritional risk. Oral nutritional supplementation (ONS) can improve nutritional status. Objective: the objective of our study was to evaluate the effectiveness on nutritional parameters and quality of life of a ω3-enriched ONS in oncology outpatients in a real-world study. Material and methods: a total of 35 outpatient cancer patients who received 2 ONS per day were recruited. Chemistry, anthropometric, impedance measurement, nutritional survey, malnutrition universal screening tool (MUST) test, and EQ5D quality of life test were all used before and after 3 months of intervention. Results: mean age was 65.4 ± 10.7 years (18 females/17 males). Mean completion of the group was 81.7 ± 7.2 %. During the intervention, total protein (1.5 ± 0.2 g/dL; p = 0.01), albumin (0.9 ± 0.1 mg/dL; p = 0.04), and transferrin (53.9 ± 21.1 mg/dL; p = 0.02) levels increased. At the beginning of the study, 100 % of the patients were in the high nutritional risk category according to MUST. After the intervention, 34.3 % (n = 12) were in the low nutritional risk category, 51.4 % (n = 18) in the moderate nutritional risk category, and only 14.3 % (n = 5) in the category of high nutritional risk; previously, 100 % of patients had high nutritional risk (p = 0.02). The total score in the quality of life test increased significantly (0.51 ± 0.06 vs 0.84 ± 0.03 points; p = 0.01), with improvement in 5 dimensions. Conclusions: the use of a ω3-enriched ONS in a real-world study with cancer outpatients showed a beneficial effect on nutritional parameters and quality of life.
Collapse
|
7
|
Wang D, Cabalag CS, Clemons NJ, DuBois RN. Cyclooxygenases and Prostaglandins in Tumor Immunology and Microenvironment of Gastrointestinal Cancer. Gastroenterology 2021; 161:1813-1829. [PMID: 34606846 DOI: 10.1053/j.gastro.2021.09.059] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/03/2021] [Accepted: 09/19/2021] [Indexed: 12/21/2022]
Abstract
Chronic inflammation is a known risk factor for gastrointestinal cancer. The evidence that nonsteroidal anti-inflammatory drugs suppress the incidence, growth, and metastasis of gastrointestinal cancer supports the concept that a nonsteroidal anti-inflammatory drug target, cyclooxygenase, and its downstream bioactive lipid products may provide one of the links between inflammation and cancer. Preclinical studies have demonstrated that the cyclooxygenase-2-prostaglandin E2 pathway can promote gastrointestinal cancer development. Although the role of this pathway in cancer has been investigated extensively for 2 decades, only recent studies have described its effects on host defenses against transformed epithelial cells. Overcoming tumor-immune evasion remains one of the major challenges in cancer immunotherapy. This review summarizes the impacts of the cyclooxygenase-2-prostaglandin E2 pathway on gastrointestinal cancer development. Our focus was to highlight recent advances in our understanding of how this pathway induces tumor immune evasion.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Carlos S Cabalag
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Nicholas J Clemons
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia; Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Raymond N DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
8
|
Ng MG, Ng KY, Koh RY, Chye SM. Potential role of melatonin in prevention and treatment of leukaemia. Horm Mol Biol Clin Investig 2021; 42:445-461. [PMID: 34355548 DOI: 10.1515/hmbci-2021-0009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/06/2021] [Indexed: 11/15/2022]
Abstract
Leukaemia is a haematological malignancy originated from the bone marrow. Studies have shown that shift work could disrupt the melatonin secretion and eventually increase leukaemia incidence risk. Melatonin, a pineal hormone, has shown promising oncostatic properties on a wide range of cancers, including leukaemia. We first reviewed the relationship between shift work and the incidence rate of leukaemia and then discussed the role of melatonin receptors (MT1 and MT2) and their functions in leukaemia. Moreover, the connection between inflammation and leukaemia, and melatonin-induced anti-leukaemia mechanisms including anti-proliferation, apoptosis induction and immunomodulation are comprehensively discussed. Apart from that, the synergistic effects of melatonin with other anticancer compounds are also included. In short, this review article has compiled the evidence of anti-leukaemia properties displayed by melatonin and discuss its potential to act as adjunct for anti-leukaemia treatment. This review may serve as a reference for future studies or experimental research to explore the possibility of melatonin serving as a novel therapeutic agent for leukaemia.
Collapse
Affiliation(s)
- Ming Guan Ng
- School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
9
|
Sokolowska M, Rovati GE, Diamant Z, Untersmayr E, Schwarze J, Lukasik Z, Sava F, Angelina A, Palomares O, Akdis CA, O’Mahony L, Sanak M, Dahlen S, Woszczek G. Current perspective on eicosanoids in asthma and allergic diseases: EAACI Task Force consensus report, part I. Allergy 2021; 76:114-130. [PMID: 32279330 DOI: 10.1111/all.14295] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/13/2020] [Accepted: 03/25/2020] [Indexed: 12/25/2022]
Abstract
Eicosanoids are biologically active lipid mediators, comprising prostaglandins, leukotrienes, thromboxanes, and lipoxins, involved in several pathophysiological processes relevant to asthma, allergies, and allied diseases. Prostaglandins and leukotrienes are the most studied eicosanoids and established inducers of airway pathophysiology including bronchoconstriction and airway inflammation. Drugs inhibiting the synthesis of lipid mediators or their effects, such as leukotriene synthesis inhibitors, leukotriene receptors antagonists, and more recently prostaglandin D2 receptor antagonists, have been shown to modulate features of asthma and allergic diseases. This review, produced by an European Academy of Allergy and Clinical Immunology (EAACI) task force, highlights our current understanding of eicosanoid biology and its role in mediating human pathology, with a focus on new findings relevant for clinical practice, development of novel therapeutics, and future research opportunities.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - G. Enrico Rovati
- Department of Pharmaceutical Sciences University of Milan Milan Italy
| | - Zuzana Diamant
- Department of Respiratory Medicine & Allergology Skane University Hospital Lund Sweden
- Department of Respiratory Medicine First Faculty of Medicine Charles University and Thomayer Hospital Prague Czech Republic
| | - Eva Untersmayr
- Institute of Pathophysiology and Allergy Research Center for Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Jargen Schwarze
- Child Life and Health and Centre for Inflammation Research The University of Edinburgh Edinburgh UK
| | - Zuzanna Lukasik
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
| | - Florentina Sava
- London North Genomic Laboratory Hub Great Ormond Street Hospital for Children NHS Foundation Trust London UK
| | - Alba Angelina
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology School of Chemistry Complutense University Madrid Spain
| | - Cezmi A. Akdis
- Swiss Institute of Allergy and Asthma Research University of Zurich Davos Switzerland
- Christine Kühne ‐ Center for Allergy Research and Education (CK‐CARE) Davos Switzerland
| | - Liam O’Mahony
- Departments of Medicine and Microbiology APC Microbiome Ireland University College Cork Cork Ireland
| | - Marek Sanak
- Department of Medicine Jagiellonian University Medical College Krakow Poland
| | - Sven‐Erik Dahlen
- Institute of Environmental Medicine Karolinska Institute Stockholm Sweden
- Centre for Allergy Research Karolinska Institute Stockholm Sweden
| | - Grzegorz Woszczek
- MRC/Asthma UK Centre in Allergic Mechanisms of Asthma School of Immunology & Microbial Sciences King's College London London UK
| |
Collapse
|
10
|
Norel X, Sugimoto Y, Ozen G, Abdelazeem H, Amgoud Y, Bouhadoun A, Bassiouni W, Goepp M, Mani S, Manikpurage HD, Senbel A, Longrois D, Heinemann A, Yao C, Clapp LH. International Union of Basic and Clinical Pharmacology. CIX. Differences and Similarities between Human and Rodent Prostaglandin E 2 Receptors (EP1-4) and Prostacyclin Receptor (IP): Specific Roles in Pathophysiologic Conditions. Pharmacol Rev 2020; 72:910-968. [PMID: 32962984 PMCID: PMC7509579 DOI: 10.1124/pr.120.019331] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Prostaglandins are derived from arachidonic acid metabolism through cyclooxygenase activities. Among prostaglandins (PGs), prostacyclin (PGI2) and PGE2 are strongly involved in the regulation of homeostasis and main physiologic functions. In addition, the synthesis of these two prostaglandins is significantly increased during inflammation. PGI2 and PGE2 exert their biologic actions by binding to their respective receptors, namely prostacyclin receptor (IP) and prostaglandin E2 receptor (EP) 1-4, which belong to the family of G-protein-coupled receptors. IP and EP1-4 receptors are widely distributed in the body and thus play various physiologic and pathophysiologic roles. In this review, we discuss the recent advances in studies using pharmacological approaches, genetically modified animals, and genome-wide association studies regarding the roles of IP and EP1-4 receptors in the immune, cardiovascular, nervous, gastrointestinal, respiratory, genitourinary, and musculoskeletal systems. In particular, we highlight similarities and differences between human and rodents in terms of the specific roles of IP and EP1-4 receptors and their downstream signaling pathways, functions, and activities for each biologic system. We also highlight the potential novel therapeutic benefit of targeting IP and EP1-4 receptors in several diseases based on the scientific advances, animal models, and human studies. SIGNIFICANCE STATEMENT: In this review, we present an update of the pathophysiologic role of the prostacyclin receptor, prostaglandin E2 receptor (EP) 1, EP2, EP3, and EP4 receptors when activated by the two main prostaglandins, namely prostacyclin and prostaglandin E2, produced during inflammatory conditions in human and rodents. In addition, this comparison of the published results in each tissue and/or pathology should facilitate the choice of the most appropriate model for the future studies.
Collapse
Affiliation(s)
- Xavier Norel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yukihiko Sugimoto
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Gulsev Ozen
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Heba Abdelazeem
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Yasmine Amgoud
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amel Bouhadoun
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Wesam Bassiouni
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Marie Goepp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Salma Mani
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Hasanga D Manikpurage
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Amira Senbel
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Dan Longrois
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Akos Heinemann
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Chengcan Yao
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| | - Lucie H Clapp
- Université de Paris, Institut National de la Sante et de la Recherche Medicale (INSERM), UMR-S 1148, CHU X. Bichat, Paris, France (X.N., G.O., H.A., Y.A., A.B., S.M., H.D.M., A.S., D.L.); Université Sorbonne Paris Nord, Villetaneuse, France (X.N., H.A., Y.A., A.B., S.M., D.L.); Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan (Y.S.); Istanbul University, Faculty of Pharmacy, Department of Pharmacology, Istanbul, Turkey (G.O.); Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt (A.S., H.A., W.B.); Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom (C.Y., M.G.); Institut Supérieur de Biotechnologie de Monastir (ISBM), Université de Monastir, Monastir, Tunisia (S.M.); CHU X. Bichat, AP-HP, Paris, France (D.L.); Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Division of Pharmacology, Medical University of Graz, Graz, Austria (A.H.); and Centre for Cardiovascular Physiology & Pharmacology, University College London, London, United Kingdom (L.H.C.)
| |
Collapse
|
11
|
Tsuge K, Inazumi T, Shimamoto A, Sugimoto Y. Molecular mechanisms underlying prostaglandin E2-exacerbated inflammation and immune diseases. Int Immunol 2020; 31:597-606. [PMID: 30926983 DOI: 10.1093/intimm/dxz021] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/18/2019] [Indexed: 01/12/2023] Open
Abstract
Prostaglandins (PGs) are the major lipid mediators in animals and which are biosynthesized from arachidonic acid by the cyclooxygenases (COX-1 or COX-2) as the rate-limiting enzymes. Prostaglandin E2 (PGE2), which is the most abundantly detected PG in various tissues, exerts versatile physiological and pathological actions via four receptor subtypes (EP1-4). Non-steroidal anti-inflammatory drugs, such as aspirin and indomethacin, exert potent anti-inflammatory actions by the inhibition of COX activity and the resulting suppression of PG production. Therefore, PGE2 has been shown to exacerbate several inflammatory responses and immune diseases. Recently, studies using mice deficient in each PG receptor subtype have clarified the detailed mechanisms underlying PGE2-associated inflammation and autoimmune diseases involving each EP receptor. Here, we review the recent advances in our understanding of the roles of PGE2 receptors in the progression of acute and chronic inflammation and autoimmune diseases. PGE2 induces acute inflammation through mast cell activation via the EP3 receptor. PGE2 also induces chronic inflammation and various autoimmune diseases through T helper 1 (Th1)-cell differentiation, Th17-cell proliferation and IL-22 production from Th22 cells via the EP2 and EP4 receptors. The possibility of EP receptor-targeted drug development for the treatment of immune diseases is also discussed.
Collapse
Affiliation(s)
- Kyoshiro Tsuge
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| | - Akira Shimamoto
- Department of Regenerative Medicine Research, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Sanyo-Onoda, Yamaguchi, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Chuo-ku, Kumamoto, Japan.,Japan Agency for Medical Research and Development-Core Research for Evolutional Science and Technology, Chiyoda-ku, Tokyo, Japan
| |
Collapse
|
12
|
Abstract
Our own studies and those of others have shown that defects in essential fatty acid (EFA) metabolism occurs in age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, atherosclerosis, coronary heart disease, immune dysfunction and cancer. It has been noted that in all these disorders there could occur a defect in the activities of desaturases, cyclo-oxygenase (COX), and lipoxygenase (LOX) enzymes leading to a decrease in the formation of their long-chain products gamma-linolenic acid (GLA), arachidonic acid, eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid (DHA). This leads to an increase in the production of pro-inflammatory prostaglandin E2 (PGE2), thromboxanes (TXs), and leukotrienes (LTs) and a decrease in anti-inflammatory lipoxin A4, resolvins, protectins and maresins. All these bioactive molecules are termed as bioactive lipids (BALs). This imbalance in the metabolites of EFAs leads to low-grade systemic inflammation and at times acute inflammatory events at specific local sites that trigger the development of various age-related disorders such as obesity, type 2 diabetes mellitus, hypertension, coronary heart disease, atherosclerosis, and immune dysfunction as seen in rheumatoid arthritis, lupus, nephritis and other localized inflammatory conditions. This evidence implies that methods designed to restore BALs to normal can prevent age-related disorders and enhance longevity and health.
Collapse
|
13
|
Abstract
Prostaglandins are synthesized through the metabolism of arachidonic acid via the cyclooxygenase pathway. There are five primary prostaglandins, PGD2, PGE2, PGF2, PGI2, and thromboxane B2, that all signal through distinct seven transmembrane, G-protein coupled receptors. The receptors through which the prostaglandins signal determines their immunologic or physiologic effects. For instance, the same prostaglandin may have opposing properties, dependent upon the signaling pathways activated. In this article, we will detail how inhibition of cyclooxygenase metabolism and regulation of prostaglandin signaling regulates allergic airway inflammation and asthma physiology. Possible prostaglandin therapeutic targets for allergic lung inflammation and asthma will also be reviewed, as informed by human studies, basic science, and animal models.
Collapse
Affiliation(s)
- R Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.
| |
Collapse
|
14
|
Abstract
Chronic inflammation is a risk factor for gastrointestinal cancer and other diseases. Most studies have focused on cytokines and chemokines as mediators connecting chronic inflammation to cancer, whereas the involvement of lipid mediators, including prostanoids, has not been extensively investigated. Prostanoids are among the earliest signaling molecules released in response to inflammation. Multiple lines of evidence suggest that prostanoids are involved in gastrointestinal cancer. In this Review, we discuss how prostanoids impact gastrointestinal cancer development. In particular, we highlight recent advances in our understanding of how prostaglandin E2 induces the immunosuppressive microenvironment in gastrointestinal cancers.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Raymond N DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.,Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, Arizona, USA
| |
Collapse
|
15
|
Maseda D, Johnson EM, Nyhoff LE, Baron B, Kojima F, Wilhelm AJ, Ward MR, Woodward JG, Brand DD, Crofford LJ. mPGES1-Dependent Prostaglandin E 2 (PGE 2) Controls Antigen-Specific Th17 and Th1 Responses by Regulating T Autocrine and Paracrine PGE 2 Production. THE JOURNAL OF IMMUNOLOGY 2017; 200:725-736. [PMID: 29237778 DOI: 10.4049/jimmunol.1601808] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/06/2017] [Indexed: 01/24/2023]
Abstract
The integration of inflammatory signals is paramount in controlling the intensity and duration of immune responses. Eicosanoids, particularly PGE2, are critical molecules in the initiation and resolution of inflammation and in the transition from innate to acquired immune responses. Microsomal PGE synthase 1 (mPGES1) is an integral membrane enzyme whose regulated expression controls PGE2 levels and is highly expressed at sites of inflammation. PGE2 is also associated with modulation of autoimmunity through altering the IL-23/IL-17 axis and regulatory T cell (Treg) development. During a type II collagen-CFA immunization response, lack of mPGES1 impaired the numbers of CD4+ regulatory (Treg) and Th17 cells in the draining lymph nodes. Ag-experienced mPGES1-/- CD4+ cells showed impaired IL-17A, IFN-γ, and IL-6 production when rechallenged ex vivo with their cognate Ag compared with their wild-type counterparts. Additionally, production of PGE2 by cocultured APCs synergized with that of Ag-experienced CD4+ T cells, with mPGES1 competence in the APC compartment enhancing CD4+ IL-17A and IFN-γ responses. However, in contrast with CD4+ cells that were Ag primed in vivo, exogenous PGE2 inhibited proliferation and skewed IL-17A to IFN-γ production under Th17 polarization of naive T cells in vitro. We conclude that mPGES1 is necessary in vivo to mount optimal Treg and Th17 responses during an Ag-driven primary immune response. Furthermore, we uncover a coordination of autocrine and paracrine mPGES1-driven PGE2 production that impacts effector T cell IL-17A and IFN-γ responses.
Collapse
Affiliation(s)
- Damian Maseda
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202
| | - Elizabeth M Johnson
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202
| | - Lindsay E Nyhoff
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202
| | - Bridgette Baron
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202
| | - Fumiaki Kojima
- Department of Pharmacology, Kitasato University, Tokyo 108-8641, Japan
| | - Ashley J Wilhelm
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202
| | - Martin R Ward
- University of Kentucky Medical Center, Lexington, KY 40536; and
| | | | - David D Brand
- Division of Rheumatology, University of Tennessee, Memphis, TN 38104
| | - Leslie J Crofford
- Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37202;
| |
Collapse
|
16
|
Renz H, Holt PG, Inouye M, Logan AC, Prescott SL, Sly PD. An exposome perspective: Early-life events and immune development in a changing world. J Allergy Clin Immunol 2017; 140:24-40. [DOI: 10.1016/j.jaci.2017.05.015] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/22/2017] [Accepted: 05/23/2017] [Indexed: 02/09/2023]
|
17
|
Yu HR, Hsu TY, Huang HC, Kuo HC, Li SC, Yang KD, Hsieh KS. Comparison of the Functional microRNA Expression in Immune Cell Subsets of Neonates and Adults. Front Immunol 2016; 7:615. [PMID: 28066425 PMCID: PMC5165026 DOI: 10.3389/fimmu.2016.00615] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/05/2016] [Indexed: 02/06/2023] Open
Abstract
Diversity of biological molecules in newborn and adult immune cells contributes to differences in cell function and atopic properties. Micro RNAs (miRNAs) are reported to involve in the regulation of immune system. Therefore, determining the miRNA expression profile of leukocyte subpopulations is important for understanding immune system regulation. In order to explore the unique miRNA profiling that contribute to altered immune in neonates, we comprehensively analyzed the functional miRNA signatures of eight leukocyte subsets (polymorphonuclear cells, monocytes, CD4+ T cells, CD8+ T cells, natural killer cells, B cells, plasmacytoid dendritic cells, and myeloid dendritic cells) from both neonatal and adult umbilical cord and peripheral blood samples, respectively. We observed distinct miRNA profiles between adult and neonatal blood leukocyte subsets, including unique miRNA signatures for each cell lineage. Leukocyte miRNA signatures were altered after stimulation. Adult peripheral leukocytes had higher let-7b-5p expression levels compared to neonatal cord leukocytes across multiple subsets, irrespective of stimulation. Transfecting neonatal monocytes with a let-7b-5p mimic resulted in a reduction of LPS-induced interleukin (IL)-6 and TNF-α production, while transfection of a let-7b-5p inhibitor into adult monocytes enhanced IL-6 and TNF-α production. With this functional approach, we provide intact differential miRNA expression profiling of specific immune cell subsets between neonates and adults. These studies serve as a basis to further understand the altered immune response observed in neonates and advance the development of therapeutic strategies.
Collapse
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Te-Yao Hsu
- Department of Obstetrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Hsin-Chun Huang
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Ho-Chang Kuo
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| | - Kuender D Yang
- Institute of Biomedical Sciences, Mackay Medical College, New Taipei City, Taiwan; Department of Pediatrics, Mackay Memorial Hospital, Taipei, Taiwan; Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| | - Kai-Sheng Hsieh
- Department of Pediatrics, Chang Gung Memorial Hospital-Kaohsiung Medical Center, Graduate Institute of Clinical Medical Science, Chang Gung University College of Medicine , Kaohsiung , Taiwan
| |
Collapse
|
18
|
Chaves MM, Canetti C, Coutinho-Silva R. Crosstalk between purinergic receptors and lipid mediators in leishmaniasis. Parasit Vectors 2016; 9:489. [PMID: 27595742 PMCID: PMC5011846 DOI: 10.1186/s13071-016-1781-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/29/2016] [Indexed: 11/10/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease affecting millions of people around the world caused by organisms of the genus Leishmania. Parasite escape mechanisms of the immune system confer the possibility of resistance and dissemination of the disease. A group of molecules that has become a target for Leishmania survival strategies are lipid mediators. Among them, leukotriene B4 (LTB4) has been described as a pro-inflammatory molecule capable of activating cells of the immune system to combat Leishmania. In an opposite way, prostaglandin E2 (PGE2) is a lipid mediator described as a deactivator of macrophages and neutrophils. The balance of these two molecules can be generated by extracellular nucleotides, such as adenosine 5'-triphosphate (ATP) and adenosine (Ado), which activate the purinergic receptors system. Herein, we discuss the role of extracellular nucleotides and the resulting balance of LTB4 and PGE2 in Leishmania fate, survival or death.
Collapse
Affiliation(s)
- Mariana M Chaves
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Inflammation, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cláudio Canetti
- Laboratory of Inflammation, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
19
|
Kumar SKM, Bhat BV. Distinct mechanisms of the newborn innate immunity. Immunol Lett 2016; 173:42-54. [PMID: 26994839 DOI: 10.1016/j.imlet.2016.03.009] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/14/2016] [Accepted: 03/15/2016] [Indexed: 12/23/2022]
Abstract
The ontogeny of immunity during early life is of high importance as it shapes the immune system for the entire course of life. The microbiome and the environment contribute to the development of immunity in newborns. As immune responses in newborns are predominantly less experienced they are increasingly susceptible to infections. Though the immune cells in newborns are in 'naïve' state, they have been shown to mount adult-like responses in several circumstances. The innate immunity plays a vital role in providing protection during the neonatal period. Various stimulants have been shown to enhance the potential and functioning of the innate immune cells in newborns. They are biased against the production of pro-inflammatory cytokines and this makes them susceptible to wide variety of intracellular pathogens. The adaptive immunity requires prior antigenic experience which is very limited in newborns. This review discusses in detail the characteristics of innate immunity in newborns and the underlying developmental and functional mechanisms involved in the immune response. A better understanding of the immunological milieu in newborns could help the medical fraternity to find novel methods for prevention and treatment of infection in newborns.
Collapse
Affiliation(s)
- S Kingsley Manoj Kumar
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India.
| | - B Vishnu Bhat
- Department of Neonatology, Jawaharlal Institute of Post Graduate Medical Education and Research (JIPMER), Puducherry 605006, India.
| |
Collapse
|
20
|
Contrasting Adult and Infant Immune Responses to HIV Infection and Vaccination. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 23:84-94. [PMID: 26656117 DOI: 10.1128/cvi.00565-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Extensive studies have demonstrated that infant immune responses are distinct from those of adults. Despite these differences, infant immunization can elicit protective immune responses at levels comparable to or, in some cases, higher than adult immune responses to many vaccines. To date, only a few HIV vaccine candidates have been tested in infant populations, and none of them evaluated vaccine efficacy. Recent exciting studies showing that HIV-infected infants can develop broad neutralizing antibody responses and that some HIV vaccine regimens can elicit high levels of potentially protective antibodies in infants provide support for the development and testing of HIV vaccines in pediatric populations. In this review, we discuss the differences in adult and infant immune responses in the setting of HIV infection and vaccination.
Collapse
|
21
|
Claar D, Hartert TV, Peebles RS. The role of prostaglandins in allergic lung inflammation and asthma. Expert Rev Respir Med 2014; 9:55-72. [PMID: 25541289 DOI: 10.1586/17476348.2015.992783] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Prostaglandins (PGs) are products of the COX pathway of arachidonic acid metabolism. There are five primary PGs, PGD₂, PGE₂, PGF₂, PGI₂ and thromboxane A₂, all of which signal through distinct seven transmembrane, G-protein coupled receptors. Some PGs may counteract the actions of others, or even the same PG may have opposing physiologic or immunologic effects, depending on the specific receptor through which it signals. In this review, we examine the effects of COX activity and the various PGs on allergic airway inflammation and physiology that is associated with asthma. We also highlight the potential therapeutic benefit of targeting PGs in allergic lung inflammation and asthma based on basic science, animal model and human studies.
Collapse
Affiliation(s)
- Dru Claar
- Department of Medicine, Division of Allergy, Pulmonary, and Critical Care Medicine, T-1217 MCN Vanderbilt University Medical Center, Vanderbilt University School of Medicine, Nashville, TN 37232-2650, USA
| | | | | |
Collapse
|
22
|
Abstract
It is widely accepted that intake of dietary fats and chronic inflammation are risk factors for developing colorectal cancer. Arachidonic acid is a major component of animal fats, and the bioactive lipids produced from this substrate play critical roles in a variety of biologic processes, including cancer. Cyclooxygenase-derived prostaglandin E2 is a known proinflammatory lipid mediator that promotes tumor progression. Metabolism of arachidonic acid by the cyclooxygenase pathway provides one mechanism for the contribution of dietary fats and chronic inflammation to carcinogenesis. In this review, we highlight recent advances in our understanding of how a proinflammatory mediator prostaglandin E2 promotes colorectal cancer immune evasion. These findings may provide a rationale for the development of new therapeutic approaches to subvert tumor-induced immunosuppression.
Collapse
|
23
|
Kawahara K, Hohjoh H, Inazumi T, Tsuchiya S, Sugimoto Y. Prostaglandin E2-induced inflammation: Relevance of prostaglandin E receptors. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:414-21. [PMID: 25038274 DOI: 10.1016/j.bbalip.2014.07.008] [Citation(s) in RCA: 295] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/04/2014] [Accepted: 07/10/2014] [Indexed: 12/15/2022]
Abstract
Prostaglandin E2 (PGE2) is one of the most typical lipid mediators produced from arachidonic acid (AA) by cyclooxygenase (COX) as the rate-limiting enzyme, and acts on four kinds of receptor subtypes (EP1-EP4) to elicit its diverse actions including pyrexia, pain sensation, and inflammation. Recently, the molecular mechanisms underlying the PGE2 actions mediated by each EP subtype have been elucidated by studies using mice deficient in each EP subtype as well as several compounds highly selective to each EP subtype, and their findings now enable us to discuss how PGE2 initiates and exacerbates inflammation at the molecular level. Here, we review the recent advances in PGE2 receptor research by focusing on the activation of mast cells via the EP3 receptor and the control of helper T cells via the EP2/4 receptor, which are the molecular mechanisms involved in PGE2-induced inflammation that had been unknown for many years. We also discuss the roles of PGE2 in acute inflammation and inflammatory disorders, and the usefulness of anti-inflammatory therapies that target EP receptors. This article is part of a Special Issue entitled "Oxygenated metabolism of PUFA: analysis and biological relevance".
Collapse
Affiliation(s)
- Kohichi Kawahara
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Hirofumi Hohjoh
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | - Tomoaki Inazumi
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Soken Tsuchiya
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| | - Yukihiko Sugimoto
- Department of Pharmaceutical Biochemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| |
Collapse
|
24
|
Clemente MI, Álvarez S, Serramía MJ, Martínez-Bonet M, Muñoz-Fernández MÁ. Prostaglandin E2 reduces the release and infectivity of new cell-free virions and cell-to-cell HIV-1 transfer. PLoS One 2014; 9:e85230. [PMID: 24586238 PMCID: PMC3934822 DOI: 10.1371/journal.pone.0085230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/25/2013] [Indexed: 12/23/2022] Open
Abstract
Background The course of human immunodeficiency virus type-1 (HIV-1) infection is influenced by a complex interplay between viral and host factors. HIV infection stimulates several proinflammatory genes, such as cyclooxigense-2 (COX-2), which leads to an increase in prostaglandin (PG) levels in the plasma of HIV-1-infected patients. These genes play an indeterminate role in HIV replication and pathogenesis. The effect of prostaglandin E2 (PGE2) on HIV infection is quite controversial and even contradictory, so we sought to determine the role of PGE2 and the signal transduction pathways involved in HIV infection to elucidate possible new targets for antiretrovirals. Results Our results suggest that PGE2 post-infection treatment acts in the late stages of the viral cycle to reduce HIV replication. Interestingly, viral protein synthesis was not affected, but a loss of progeny virus production was observed. No modulation of CD4 CXCR4 and CCR5 receptor expression, cell proliferation, or activation after PGE2 treatment was detected. Moreover, PGE2 induced an increase in intracellular cAMP (cyclic AMP) levels through the EP2/EP4 receptors. PGE2 effects were mimicked by dbcAMP and by a specific Epac (exchange protein directly activated by cyclic AMP) agonist, 8-Cpt-cAMP. Treatment with PGE2 increased Rap1 activity, decreased RhoA activity and subsequently reduced the polymerization of actin by approximately 30% compared with untreated cells. In connection with this finding, polarized viral assembly platforms enriched in Gag were disrupted, altering HIV cell-to-cell transfer and the infectivity of new virions. Conclusions Our results demonstrate that PGE2, through Epac and Rap activation, alters the transport of newly synthesized HIV-1 components to the assembly site, reducing the release and infectivity of new cell-free virions and cell-to-cell HIV-1 transfer.
Collapse
Affiliation(s)
- María Isabel Clemente
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Susana Álvarez
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - María Jesús Serramía
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Marta Martínez-Bonet
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - María Ángeles Muñoz-Fernández
- Laboratorio InmunoBiología Molecular, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- * E-mail:
| |
Collapse
|
25
|
Aida T, Furukawa K, Suzuki D, Shimizu H, Yoshidome H, Ohtsuka M, Kato A, Yoshitomi H, Miyazaki M. Preoperative immunonutrition decreases postoperative complications by modulating prostaglandin E2 production and T-cell differentiation in patients undergoing pancreatoduodenectomy. Surgery 2013; 155:124-33. [PMID: 24589090 DOI: 10.1016/j.surg.2013.05.040] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 05/31/2013] [Indexed: 01/04/2023]
Abstract
BACKGROUND An immune-enhancing diet has been used to alter eicosanoid synthesis, cytokine production, and immune function in an attempt to limit the undesired immune reactions after injury from surgery. This prospective randomized study was designed to investigate the effect of preoperative immunonutrition on operative complications, and the participation of prostaglandin E2 (PGE2) on T-cell differentiation in patients undergoing a severely stressful surgery. METHODS The enrolled patients who were scheduled to undergo pancreatoduodenectomy were randomized into two groups. Patients in the immunonutrition group (n = 25) received oral supplementation containing arginine, ω-3 fatty acids, and RNA for 5 days before the procedure in addition to a 50% reduction in the amount of regular food. Patients in the control group (n = 25) received no artificial nutrition and were allowed to consume regular food before surgery. All patients received early postoperative enteral infusion of a standard formula intended to provide 25 kcal/kg/day. The primary endpoint was the rate of infectious complications; the secondary endpoint was immune responses. This study is registered with ClinicalTrials.gov (NCT01256034). RESULTS Infectious complication rate and severity of complications (Clavien-Dindo classification) were lesser in the immunonutrition group than in the control group. mRNA expression levels of T-bet were greater in the immunonutrition group than in the control group (P < .05). Serum eicosapentaenoic acid and eicosapentaenoic acid/arachidonic acid ratios were greater in the immunonutrition group than in the control group (P < .05). The levels of plasma PGE2 were lesser in the immunonutrition group than in the control group (P < .05). CONCLUSION Preoperative immunonutrition modulates PGE2 production and T-cell differentiation and may protect against the aggravation of operative complications in patients undergoing pancreatoduodenectomy.
Collapse
Affiliation(s)
- Toshiaki Aida
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan.
| | - Daisuke Suzuki
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroaki Shimizu
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hiroyuki Yoshidome
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Atsushi Kato
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Japan
| |
Collapse
|
26
|
Kojima F, Frolov A, Matnani R, Woodward JG, Crofford LJ. Reduced T cell-dependent humoral immune response in microsomal prostaglandin E synthase-1 null mice is mediated by nonhematopoietic cells. THE JOURNAL OF IMMUNOLOGY 2013; 191:4979-88. [PMID: 24127557 DOI: 10.4049/jimmunol.1301942] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Microsomal PGE synthase-1 (mPGES-1) is an inducible enzyme that specifically catalyzes the conversion of PGH2 to PGE2. We showed that mPGES-1 null mice had a significantly reduced incidence and severity of collagen-induced arthritis compared with wild-type (WT) mice associated with a marked reduction in Abs to type II collagen. In this study, we further elucidated the role of mPGES-1 in the humoral immune response. Basal levels of serum IgM and IgG were significantly reduced in mPGES-1 null mice. Compared with WT mice, mPGES-1 null mice exhibited a significant reduction of hapten-specific serum Abs in response to immunization with the T cell-dependent (TD) Ag DNP-keyhole limpet hemocyanin. Immunization with the T cell-independent type 1 Ag trinitrophenyl-LPS or the T cell-independent type 2 Ag DNP-Ficoll revealed minimal differences between strains. Germinal center formation in the spleen of mPGES-1 null and WT mice were similar after immunization with DNP-keyhole limpet hemocyanin. To determine whether the effect of mPGES-1 and PGE2 was localized to hematopoietic or nonhematopoietic cells, we generated bone marrow chimeras. We demonstrated that mPGES-1 deficiency in nonhematopoietic cells was the critical factor for reduced TD Ab production. We conclude that mPGES-1 and PGE2-dependent phenotypic changes of nonhematopoietic/mesenchymal stromal cells play a key role in TD humoral immune responses in vivo. These findings may have relevance to the pathogenesis of rheumatoid arthritis and other autoimmune inflammatory diseases associated with autoantibody formation.
Collapse
Affiliation(s)
- Fumiaki Kojima
- Division of Rheumatology, Department of Internal Medicine, University of Kentucky, Lexington, KY 40536
| | | | | | | | | |
Collapse
|
27
|
Ketoprofen impairs immunosuppression induced by severe sepsis and reveals an important role for prostaglandin E2. Shock 2013; 38:620-9. [PMID: 23143054 DOI: 10.1097/shk.0b013e318272ff8a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mechanism of immunosuppression induced by severe sepsis is not fully understood. The production of prostaglandin E2 (PGE2) during sepsis is well known, but its role in long-term consequences of sepsis has not been explored. The current study evaluates the role of PGE2 in the development of immunosuppression secondary to sepsis and its potential as therapeutic target. Cecal ligation and puncture was used as an experimental model for sepsis induction in Balb/c and C57BL/6 mice. Immunosuppression was evaluated by the response to secondary infection with Aspergillus fumigatus in sepsis survivors. The role of prostanoids was evaluated in vivo and in vitro by treatment with the cyclooxygenase inhibitor ketoprofen. Balb/c mice were more susceptible than C57BL/6 to severe sepsis and to secondary infection, with a greater mortality rate. Prostaglandin E2 concentrations found in bronchoalveolar lavage in sham and cecal ligation and puncture group after fungal challenge were much higher in Balb/c than in C57BL/6 mice. Ketoprofen treatment improved survival of septic Balb/c mice subjected to secondary infection, while also enhancing macrophage phagocytosis and neutrophil recruitment to the lungs. We identified a pivotal role for PGE2 acting on EP4 receptors in modulating cytokine production differentially by sham and septic macrophages. Furthermore, sepsis also altered key enzymes in PGE2 synthesis and degradation. Our results indicate the involvement of PGE2 in severe sepsis-induced immunosuppression. Inhibition of PGE2 production represents an attractive target to improve innate immune response against secondary infection in the immunocompromised host.
Collapse
|
28
|
Qi Y, Operario DJ, Georas SN, Mosmann TR. The acute environment, rather than T cell subset pre-commitment, regulates expression of the human T cell cytokine amphiregulin. PLoS One 2012; 7:e39072. [PMID: 22720031 PMCID: PMC3375254 DOI: 10.1371/journal.pone.0039072] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 05/17/2012] [Indexed: 11/18/2022] Open
Abstract
Cytokine expression patterns of T cells can be regulated by pre-commitment to stable effector phenotypes, further modification of moderately stable phenotypes, and quantitative changes in cytokine production in response to acute signals. We showed previously that the epidermal growth factor family member Amphiregulin is expressed by T cell receptor-activated mouse CD4 T cells, particularly Th2 cells, and helps eliminate helminth infection. Here we report a detailed analysis of the regulation of Amphiregulin expression by human T cell subsets. Signaling through the T cell receptor induced Amphiregulin expression by most or all T cell subsets in human peripheral blood, including naive and memory CD4 and CD8 T cells, Th1 and Th2 in vitro T cell lines, and subsets of memory CD4 T cells expressing several different chemokine receptors and cytokines. In these different T cell types, Amphiregulin synthesis was inhibited by an antagonist of protein kinase A, a downstream component of the cAMP signaling pathway, and enhanced by ligands that increased cAMP or directly activated protein kinase A. Prostaglandin E2 and adenosine, natural ligands that stimulate adenylyl cyclase activity, also enhanced Amphiregulin synthesis while reducing synthesis of most other cytokines. Thus, in contrast to mouse T cells, Amphiregulin synthesis by human T cells is regulated more by acute signals than pre-commitment of T cells to a particular cytokine pattern. This may be appropriate for a cytokine more involved in repair than attack functions during most inflammatory responses.
Collapse
Affiliation(s)
- Yilin Qi
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Darwin J. Operario
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Steve N. Georas
- Department of Medicine, University of Rochester Medical Center, Rochester, New York, United States of America
| | - Tim R. Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Anti-inflammation therapy by activation of prostaglandin EP4 receptor in cardiovascular and other inflammatory diseases. J Cardiovasc Pharmacol 2012; 59:116-23. [PMID: 21697732 DOI: 10.1097/fjc.0b013e3182244a12] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Prostaglandin E2 constitutes a major cyclooxygenase-2-derived prostanoid produced at inflammatory sites. In vitro and in vivo data support its role as a modulator of inflammation. Prostaglandin E2 exerts anti-inflammatory effects by binding to one of its receptors, the prostaglandin E receptor 4 (EP4), thereby modulating macrophage and T lymphocyte functions that participate crucially in innate and adaptive immunity and tissue remodeling and repair. The activation of EP4 suppresses the release of cytokines and chemokines from macrophages and T cells, inhibits the proliferation and the activation of T cells, and induces T-cell apoptosis. Lack of EP4 in bone marrow-derived cells accelerates local inflammation in atherosclerotic and aneurysm lesions and increases the prevalence of aneurysm formation. An EP4 agonist promotes graft survival in allograft cardiac transplantation and dampens tissue damage after myocardial ischemia. Anti-inflammatory actions of EP4 agonism may benefit other inflammatory disorders, including colitis and gastric ulcers. By contrast, EP4 acts as a proinflammatory mediator in encephalomyelitis, skin inflammation, and arthritis by promoting T helper (Th) 1 differentiation and Th17 expansion. Overall, EP4 activation produces powerful anti-inflammatory responses in many experimental diseases, rendering EP4 agonists attractive agents to attenuate syndromes associated with inflammation.
Collapse
|
30
|
Tissières P, Ochoda A, Dunn-Siegrist I, Drifte G, Morales M, Pfister R, Berner M, Pugin J. Innate immune deficiency of extremely premature neonates can be reversed by interferon-γ. PLoS One 2012; 7:e32863. [PMID: 22427899 PMCID: PMC3299693 DOI: 10.1371/journal.pone.0032863] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/01/2012] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Bacterial sepsis is a major threat in neonates born prematurely, and is associated with elevated morbidity and mortality. Little is known on the innate immune response to bacteria among extremely premature infants. METHODOLOGY/PRINCIPAL FINDINGS We compared innate immune functions to bacteria commonly causing sepsis in 21 infants of less than 28 wks of gestational age, 24 infants born between 28 and 32 wks of gestational age, 25 term newborns and 20 healthy adults. Levels of surface expression of innate immune receptors (CD14, TLR2, TLR4, and MD-2) for Gram-positive and Gram-negative bacteria were measured in cord blood leukocytes at the time of birth. The cytokine response to bacteria of those leukocytes as well as plasma-dependent opsonophagocytosis of bacteria by target leukocytes was also measured in the presence or absence of interferon-γ. Leukocytes from extremely premature infants expressed very low levels of receptors important for bacterial recognition. Leukocyte inflammatory responses to bacteria and opsonophagocytic activity of plasma from premature infants were also severely impaired compared to term newborns or adults. These innate immune defects could be corrected when blood from premature infants was incubated ex vivo 12 hrs with interferon-γ. CONCLUSION/SIGNIFICANCE Premature infants display markedly impaired innate immune functions, which likely account for their propensity to develop bacterial sepsis during the neonatal period. The fetal innate immune response progressively matures in the last three months in utero. Ex vivo treatment of leukocytes from premature neonates with interferon-γ reversed their innate immune responses deficiency to bacteria. These data represent a promising proof-of-concept to treat premature newborns at the time of delivery with pharmacological agents aimed at maturing innate immune responses in order to prevent neonatal sepsis.
Collapse
Affiliation(s)
- Pierre Tissières
- Division of Intensive Care, University Hospitals of Geneva, Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Khan KMF, Kothari P, Du B, Dannenberg AJ, Falcone DJ. Matrix metalloproteinase-dependent microsomal prostaglandin E synthase-1 expression in macrophages: role of TNF-α and the EP4 prostanoid receptor. THE JOURNAL OF IMMUNOLOGY 2012; 188:1970-80. [PMID: 22227567 DOI: 10.4049/jimmunol.1102383] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloproteinase (MMP)-9 contributes to the pathogenesis of chronic inflammatory diseases and cancer. Thus, identifying targetable components of signaling pathways that regulate MMP-9 expression may have broad therapeutic implications. Our previous studies revealed a nexus between metalloproteinases and prostanoids whereby MMP-1 and MMP-3, commonly found in inflammatory and neoplastic foci, stimulate macrophage MMP-9 expression via the release of TNF-α and subsequent induction of cyclooxygenase-2 and PGE(2) engagement of EP4 receptor. In the current study, we determined whether MMP-induced cyclooxygenase-2 expression was coupled to the expression of prostaglandin E synthase family members. We found that MMP-1- and MMP-3-dependent release of TNF-α induced rapid and transient expression of early growth response protein 1 in macrophages followed by sustained elevation in microsomal prostaglandin synthase 1 (mPGES-1) expression. Metalloproteinase-induced PGE(2) levels and MMP-9 expression were markedly attenuated in macrophages in which mPGES-1 was silenced, thereby identifying mPGES-1 as a therapeutic target in the regulation of MMP-9 expression. Finally, the induction of mPGES-1 was regulated, in part, through a positive feedback loop dependent on PGE(2) binding to EP4. Thus, in addition to inhibiting macrophage MMP-9 expression, EP4 antagonists emerge as potential therapy to reduce mPGES-1 expression and PGE(2) levels in inflammatory and neoplastic settings.
Collapse
Affiliation(s)
- K M Faisal Khan
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
32
|
Chang Y, Zhang L, Wang C, Jia XY, Wei W. Paeoniflorin inhibits function of synoviocytes pretreated by rIL-1α and regulates EP4 receptor expression. JOURNAL OF ETHNOPHARMACOLOGY 2011; 137:1275-1282. [PMID: 21840386 DOI: 10.1016/j.jep.2011.07.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Revised: 07/04/2011] [Accepted: 07/28/2011] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE To investigate the effect of the Paeoniflorin (Pae), a main active component of total glucosides of paeony (TGP) extracted from the root of Paeonia lactiflora, on regulation of synoviocytes cultured from rats collagen-induced arthritis (CIA) in vitro. MATERIALS AND METHODS CIA was induced in male Sprague-Dawley rats immunized with chicken type II collagen (CCII) in Freund's complete adjuvant. The levels of interleukin-1 (IL-1), tumor necrosis factor α (TNF-α), prostaglandin E(2) (PGE(2)) and cyclic adenosine monophosphate (cAMP) were measured by radioimmunoassay. The proliferation responses was determined by the 3-(4,5-2dimethylthiazal-2yl) 2,5-diphenyltetrazoliumbromide (MTT) assay. Expression of E-prostanoid (EP(4)) receptor was detected by Western blotting technique. RESULTS Treatment of Pae (2.5, 12.5, 62.5 μg/ml) significantly decreased the production of IL-1 and TNF-α. Recombinant interleukin-1 (rIL-1α) (10 ng/ml) apparently stimulated synoviocyte, thymocyte and splenocyte proliferation, and Pae (12.5, 62.5 μg/ml) inhibited abnormal proliferation responses stimulated by rIL-1α. Moreover, rIL-1α time- and concentration-dependently increased production of PGE(2). The production of PGE(2) produced by synoviocytes from CIA rats significantly inhibited by administration of Pae (12.5, 62.5 μg/ml). rIL-1α (10 ng/ml) decreased cAMP of synoviocytes cells treated for 24h. Similarly rIL-1α (0.1, 1, 10 ng/ml) induced a concentration-dependent decrease in the production of cAMP at 24h. Pae (12.5, 62.5 μg/ml) increased the production of cAMP in synoviocytes. The immunoblot, Pae (12.5, 62.5 μg/ml) apparently increased the expression of EP(4) receptor in synoviocytes stimulated by rIL-1α (10 ng/ml). CONCLUSIONS The present study indicates that Pae might exert its anti-inflammatory effects through suppressing synoviocytes function and regulating immune cells responses in CIA rats, which might be associated with its ability to up-regulate the E-prostanoid (EP(4)) receptor protein expression and modulate intracellular cAMP level.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents/pharmacology
- Arthritis, Experimental/chemically induced
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/pathology
- Benzoates/pharmacology
- Blotting, Western
- Bridged-Ring Compounds/pharmacology
- Cell Proliferation/drug effects
- Cells, Cultured
- Collagen Type II
- Cyclic AMP/metabolism
- Dinoprostone/metabolism
- Dose-Response Relationship, Drug
- Glucosides/pharmacology
- Interleukin-1alpha/metabolism
- Male
- Monoterpenes
- Radioimmunoassay
- Rats
- Rats, Sprague-Dawley
- Receptors, Prostaglandin E, EP4 Subtype/drug effects
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Recombinant Proteins/metabolism
- Spleen/drug effects
- Spleen/immunology
- Synovial Membrane/drug effects
- Synovial Membrane/immunology
- Synovial Membrane/metabolism
- Synovial Membrane/pathology
- Thymocytes/drug effects
- Thymocytes/immunology
- Time Factors
- Tumor Necrosis Factor-alpha/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Yan Chang
- Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immunopharmacology of Education Ministry, Meishan Road, Hefei 230032, Anhui Province, China.
| | | | | | | | | |
Collapse
|
33
|
Yu HR, Kuo HC, Huang HC, Kuo HC, Chen TY, Huang LT, Tain YL, Chen CC, Sheen JM, Lin IC, Ou CY, Hsu TY, Jheng YJ, Yang KD. Identification of immunodeficient molecules in neonatal mononuclear cells by proteomic differential displays. Proteomics 2011; 11:3491-500. [PMID: 21751377 DOI: 10.1002/pmic.201100123] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 05/03/2011] [Accepted: 06/08/2011] [Indexed: 11/11/2022]
Affiliation(s)
- Hong-Ren Yu
- Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital, Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ugajin T, Satoh T, Kanamori T, Aritake K, Urade Y, Yokozeki H. FcεRI, but not FcγR, signals induce prostaglandin D2 and E2 production from basophils. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:775-82. [PMID: 21712025 DOI: 10.1016/j.ajpath.2011.04.023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Revised: 03/21/2011] [Accepted: 04/25/2011] [Indexed: 10/18/2022]
Abstract
Prostaglandin (PG) D2 and PGE2 are arachidonic acid metabolites that are generated though an isomerization reaction catalyzed by PG synthases. PGs have been implicated in immunologic reactions in addition to a wide range of physiological functions. It has long been thought that basophils, in contrast to mast cells, do not synthesize PGs, although they do release leukotrienes and platelet-activating factor. Here, we show that basophils function as a source of PGD2 and PGE2. In vitro-cultured basophils from mouse bone marrow produced both PGD2 and PGE2 in response to IgE + antigen (Ag), but not to IgG + Ag. Release of PGs was almost completely abrogated in cultured basophils from FcRγ-chain(-/-) mice, indicating the involvement of FcεRI. Basophils freshly isolated from bone marrow cells (primary basophils) were also capable of secreting PGD2 and PGE2. Although the amount of PGD2 released from primary basophils was lower than that from mast cells, the capability of primary basophils to generate PGE2 was more potent than that of mast cells. Transcripts and proteins for both hematopoietic-type PGD synthase and PGE synthase were detected in basophils. In addition, human basophils, like mouse basophils, also produced PGD2 through IgE-mediated stimulation. Thus, basophils could be an important source of PGD2/PGE2 and may contribute to allergic inflammation and immune responses.
Collapse
Affiliation(s)
- Tsukasa Ugajin
- Department of Dermatology, Graduate School, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Paccani SR, Baldari CT. T cell targeting by anthrax toxins: two faces of the same coin. Toxins (Basel) 2011; 3:660-71. [PMID: 22069732 PMCID: PMC3202842 DOI: 10.3390/toxins3060660] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/03/2011] [Accepted: 06/07/2011] [Indexed: 12/24/2022] Open
Abstract
Bacillus anthracis, similar to other bacterial pathogens, has evolved effective immune evasion strategies to prolong its survival in the host, thus ensuring the unchecked spread of the infection. This function is subserved by lethal (LT) and edema (ET) toxins, two exotoxins produced by vegetative anthrax bacilli following germination of the spores. The structure of these toxins and the mechanism of cell intoxication are topics covered by other reviews in this issue. Here we shall discuss how B. anthracis uses LT and ET to suppress the immune defenses of the host, focusing on T lymphocytes, the key players in adaptive immunity. We shall also summarize recent findings showing that, depending on its concentration, ET has the ability not only to suppress T cell activation but also to promote the polarization of CD4(+) T cells to the Th2 and Th17 subsets, highlighting the potential use of this toxin as an immunomodulator.
Collapse
Affiliation(s)
- Silvia Rossi Paccani
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
- Novartis Vaccines, Via Fiorentina 1, 53100 Siena, Italy
- Author to whom correspondence should be addressed; or ; Tel.: +39-0577-234396; Fax: +39-0577-234476
| | - Cosima T. Baldari
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy;
| |
Collapse
|
36
|
Nussbaum C, Sperandio M. Innate immune cell recruitment in the fetus and neonate. J Reprod Immunol 2011; 90:74-81. [DOI: 10.1016/j.jri.2011.01.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 01/26/2011] [Accepted: 01/27/2011] [Indexed: 01/13/2023]
|
37
|
Faber J, Berkhout M, Vos AP, Sijben JWC, Calder PC, Garssen J, van Helvoort A. Supplementation with a fish oil-enriched, high-protein medical food leads to rapid incorporation of EPA into white blood cells and modulates immune responses within one week in healthy men and women. J Nutr 2011; 141:964-70. [PMID: 21430245 DOI: 10.3945/jn.110.132985] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Immune modulatory effects of EPA and DHA are well described. However, these fatty acids must be effectively incorporated into cell membrane phospholipids to modify cell function. To address the absence of human data regarding short-term incorporation, the present study investigated the incorporation of EPA and DHA into white blood cells (WBC) at different time points during 1 wk of supplementation with a medical food, which is high in protein and leucine and enriched with fish oil and specific oligosaccharides. Additionally, the effects on ex vivo immune function were determined. In a single-arm, open label study, 12 healthy men and women consumed 2 × 200 mL of medical food providing 2.4 g EPA, 1.2 g DHA, 39.7 g protein (including 4.4 g L-leucine), and 5.6 g oligosaccharides daily. Blood samples were taken at d 0 (baseline), 1, 2, 4, and 7. Within 1 d of nutritional intervention, the percentage of EPA in phospholipids of WBC increased from 0.5% at baseline to 1.3% (P < 0.001). After 1 wk, the percentage of EPA rose to 2.8% (P < 0.001). Additionally, the production of proinflammatory cytokines in LPS-stimulated whole blood cultures was significantly increased within 1 wk. Nutritional supplementation with a fish oil-enriched medical food significantly increased the percentage of EPA in phospholipids of WBC within 1 wk. Simultaneously, ex vivo immune responsiveness to LPS increased significantly. These results hold promise for novel applications such as fast-acting nutritional interventions in cancer patients, which should be investigated in future studies.
Collapse
Affiliation(s)
- Joyce Faber
- Nutricia Advanced Medical Nutrition, Danone Research-Center for Specialized Nutrition, Wageningen 6704PH, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Hogenkamp A, van Vlies N, Fear AL, van Esch BC, Hofman GA, Garssen J, Calder PC. Dietary fatty acids affect the immune system in male mice sensitized to ovalbumin or vaccinated with influenza. J Nutr 2011; 141:698-702. [PMID: 21346107 DOI: 10.3945/jn.110.135863] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
PUFA are precursor molecules for eicosanoids such as leukotrienes and prostaglandins and may influence immune function through other mechanisms involving membranes, cell signaling, and gene expression. Immune-modulating properties of diets containing different oils [sunflower oil, rich in linoleic acid; linseed oil, rich in α-linolenic acid; salmon oil, rich in marine (n-3) PUFA; and beef tallow, rich in SFA] were investigated in an influenza-vaccination model, in which the delayed-type hypersensitivity (DTH) response was studied in C57BL/6 mice, and an ovalbumin (OVA)-sensitization model for experimental allergy in BALB/c mice. Six-week-old mice were fed the different diets for 7 wk. The first vaccination or OVA sensitization was given 2 wk after the start of the dietary intervention. In the mice vaccinated with influenza, the DTH response to the vaccine was significantly higher in mice fed the marine (n-3) PUFA diet compared to all other groups, indicating that these PUFA promote a T helper-1 response. In the OVA-sensitized mice, those fed the marine (n-3) PUFA diet had a less severe acute allergic skin response (ASR), suggesting that (n-3) PUFA lessen the T helper-2 response. Mice fed the SFA-rich diet had the most severe ASR, indicating that a diet with high levels of SFA may contribute to increased severity of allergic symptoms. Whereas significant differences in in vivo immune responses were measured, in vitro responses did not differ among the dietary groups. In conclusion, using 2 different models of immune responses demonstrates potential benefits from marine (n-3) PUFA.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht 3584CG, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
39
|
Tsilingaridis G, Yucel-Lindberg T, Modéer T. T-helper-related cytokines in gingival crevicular fluid from adolescents with Down syndrome. Clin Oral Investig 2011; 16:267-73. [PMID: 21221679 DOI: 10.1007/s00784-010-0495-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 12/06/2010] [Indexed: 02/01/2023]
Abstract
Subjects with Down syndrome have a high prevalence of periodontal disease. The aim was to investigate the level of Th1-, Th2- and Th17-related cytokines in the gingival crevicular fluid (GCF) of subjects with Down syndrome. Subjects with Down syndrome (n = 24) and controls (n = 29) with a mean age of 16.4 years were clinically examined with respect to periodontal probing depth (PD) and gingival inflammation in terms of bleeding on probing (BOP%). The controls were matched to subjects with Down syndrome regarding age and gingival inflammation (BOP%). All subjects answered a questionnaire regarding oral hygiene, medical history and socioeconomic background. GCF was collected and the concentration of the cytokines, IFN-γ, TNF-α, IL-1β, IL-4, IL-6, IL-10, IL-12 and IL-17 were determined using Bio-Plex cytokine multiplex assays. The volume of GCF (microliters) was significantly higher in subjects with Down syndrome (P < 0.001) compared with controls. The mean concentrations (picogrammes per millilitre) of IL-1β (P < 0.001), IL-4 (P = 0.002), IL-6 (P = 0.005), IL-10 (P = 0.001), IL-12 (P = 0.003), IFN-γ (P = 0.002), and TNF-α (P = 0.002) in GCF, respectively, were significantly higher in subjects with Down syndrome compared with controls. The regression line of the relationship between IFN-γ and IL-4 in GCF differed significantly (P = 0.006) in subjects with Down syndrome compared to controls. Subjects with Down syndrome demonstrated higher concentration of Th1-, Th2- and Th17-related cytokines with an altered relationship between Th1 cytokine, IFN-γ and Th2 cytokine, IL-4, in volume GCF compared to controls.
Collapse
Affiliation(s)
- Georgios Tsilingaridis
- Division of Pediatric Dentistry, Department of Dental Medicine, Karolinska Institutet, Huddinge, Sweden.
| | | | | |
Collapse
|
40
|
Myer RG, El Mezayen R, High KP. Prostaglandin E2-dependent IL-23 production in aged murine dendritic cells. Exp Gerontol 2010; 45:834-41. [PMID: 20600778 DOI: 10.1016/j.exger.2010.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2010] [Revised: 06/10/2010] [Accepted: 06/22/2010] [Indexed: 02/06/2023]
Abstract
CD4+ T cells of the Th17 subtype are over-represented in the aged immune system. Dendritic cells (DC) play a critical role in naïve CD4+ T cell differentiation. However, expression of cytokines by aged DC that promote differentiation or survival of Th17 cells has not been extensively investigated. Using bone marrow-derived DC from C57BL/6 mice of different ages we compared cytokine production after DC activation by Toll-like receptor agonists for TLR4 and/or TLR7/8. DC-derived TNF-α and IL-12p70 production and expression of DC co-stimulatory molecules did not vary significantly by age indicating that TLR expression, function and signal transduction were intact in aged DC. There were relatively minor age-related changes in TGF-β and IL-6 which promote Th17 differentiation, but IL-23, a Th17-suvival cytokine, increased more than 40-fold across the lifespan. DC-derived prostaglandin E2 (PGE2) also increased with age and the up-regulation of IL-23 expression by aged DC was blocked by indomethacin that prevents PGE2 production, and by antagonists of PGE2 receptors. Exogenous PGE2 added to DC cultures further enhanced IL-23 production from aged but not young DCs. These data indicate that age-related changes in DC PGE2 production are necessary, but not sufficient to induce DC IL-23 production. Such changes may play a role in the expansion of Th17 cells in the aged immune system.
Collapse
Affiliation(s)
- Rebecca G Myer
- Department of Internal Medicine, Section of Infectious Diseases, Wake Forest University School of Medicine, 100 Medical Center Blvd., Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|
41
|
A novel antagonist of the prostaglandin E(2) EP(4) receptor inhibits Th1 differentiation and Th17 expansion and is orally active in arthritis models. Br J Pharmacol 2010; 160:292-310. [PMID: 20423341 DOI: 10.1111/j.1476-5381.2010.00647.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Rheumatoid arthritis (RA) is an autoimmune disorder involving subsets of activated T cells, in particular T helper (Th) 1 and Th17 cells, which infiltrate and damage tissues and induce inflammation. Prostaglandin E(2) (PGE(2)) enhances the Th17 response, exacerbates collagen-induced arthritis (CIA) and promotes inflammatory pain. The current study investigated whether selective antagonism of the PGE(2) EP(4) receptor would suppress Th1/Th17 cell development and inflammatory arthritis in animal models of RA. EXPERIMENTAL APPROACH Effects of PGE(2) and a novel EP(4) receptor antagonist ER-819762 on Th1 differentiation, interleukin-23 (IL-23) production by dendritic cells (DCs), and Th17 development were assessed in vitro. The effect of ER-819762 was evaluated in CIA and glucose-6-phosphate isomerase (GPI)-induced arthritis models. In addition, the effects of ER-819762 on pain were evaluated in a model of chronic inflammatory pain induced by complete Freund's adjuvant (CFA) in the rat. KEY RESULTS Stimulation of the EP(4) receptor enhanced Th1 differentiation via phosphatidylinositol 3 kinase signalling, selectively promoted Th17 cell expansion, and induced IL-23 secretion by activated DCs, effects suppressed by ER-819762 or anti-PGE(2) antibody. Oral administration of ER-19762 suppressed Th1 and Th17 cytokine production, suppressed disease in collagen- and GPI-induced arthritis in mice, and suppressed CFA-induced inflammatory pain in rats. CONCLUSION AND IMPLICATIONS PGE(2) stimulates EP(4) receptors to promote Th1 differentiation and Th17 expansion and is critically involved in development of arthritis in two animal models. Selective suppression of EP(4) receptor signalling may have therapeutic value in RA both by modifying inflammatory arthritis and by relieving pain.
Collapse
|
42
|
PGE(2) transiently enhances DC expression of CCR7 but inhibits the ability of DCs to produce CCL19 and attract naive T cells. Blood 2010; 116:1454-9. [PMID: 20498301 DOI: 10.1182/blood-2009-12-258038] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prostaglandin E(2) (PGE(2)) is an inflammatory mediator often used to increase CCR7 expression in the dendritic cells (DCs) used as cancer vaccines and to enhance their responsiveness to lymph node-associated chemokines. Here, we show that high surface expression of CCR7 on PGE(2)-matured DCs is associated with their suppressed production of the endogenous CCR7 ligand, CCL19, and is reversible by exogenous CCL19. In contrast to the PGE(2)-matured DCs, DCs matured in the presence of toll-like receptor (TLR) ligands and interferons produce high levels of both CCL19 and CCR7 mRNA/protein, but show selectively reduced expression of surface CCR7, which is compensated after DC removal from the CCL19-rich maturation environment. In accordance with these findings, PGE(2)-matured DCs show significantly higher in vitro migratory responsiveness to lymph node-associated chemokines directly after DC generation, but not after additional short-term culture in vitro, nor in vivo in patients injected with (111)indium-labeled DCs. The differences in CCL19-producing ability imprinted during DC maturation result in their different abilities to attract CCR7(+) naive T cells. Our data help to explain the impact of PGE(2) on CCR7 expression in maturing DCs and demonstrate a novel mechanism of regulatory activity of PGE(2), mediated by the inhibition of DCs ability to attract naive T cells.
Collapse
|
43
|
Murray-Taylor FM, Ho YY, Densupsoontorn N, Chang CL, Deckelbaum RJ, Seo T. n-3, but not n-6 lipid particle uptake requires cell surface anchoring. Biochem Biophys Res Commun 2010; 392:135-9. [PMID: 20056109 DOI: 10.1016/j.bbrc.2009.12.164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 12/31/2009] [Indexed: 10/20/2022]
Abstract
Omega-3 (n-3) fatty acids are emerging as bioactive agents protective against cardiovascular disease. However, their cellular delivery pathways are poorly defined. Here we questioned whether the uptake of n-3 triglyceride-rich particles (TGRP) is mediated by cell surface proteoglycans (PG) using LDL receptor (LDLR)+/+ and LDLR-/- cell models. LDLR+/+ but not LDLR-/- cells showed higher n-6 over n-3 TGRP uptake. Removal of cell surface proteins and receptors by pronase markedly enhanced the uptake of n-3 but not n-6 TGRP. Lactoferrin blockage of apoE-mediated pathways decreased the uptake of n-6 TGRP by up to 85% (p<0.05) but had insignificant effect on n-3 TGRP uptake. PG removal by sodium chlorate in LDLR+/+ cells substantially reduced n-3 TGRP uptake but had little effect on n-6 TGRP uptake. Thus, while n-6 TGRP uptake is preferentially mediated by LDLR-dependent pathways, the uptake of n-3 TGRP depends more on PG and non-LDLR cell surface anchoring.
Collapse
Affiliation(s)
- Faith M Murray-Taylor
- Institute of Human Nutrition, College of Physicians and Surgeons, Columbia University, USA
| | | | | | | | | | | |
Collapse
|
44
|
Abstract
Diseases caused by immune inflammation, such as rheumatoid arthritis, multiple sclerosis, and Crohn's disease, are intractable diseases to which novel therapeutics are highly demanded. Prostaglandin (PG) E(2) is the most ubiquitously produced PG with various actions. PGE(2) has been traditionally regarded as an immunosuppressant based on its inhibition of T cell activation in vitro. However, in vivo relevance of the immunosuppressant action of PGE(2) has remained obscure. Recently, several groups including ourselves have made unexpected findings that PGE(2) facilitates expansion of the Th17 subset of T helper cells of both human and mouse through elevation of cAMP via PGE receptors EP2 and EP4. We have further found that PGE(2) can induce and not suppress Th1 differentiation under certain conditions, again, through EP2 and EP4. Given the putative roles of these Th subsets in immune diseases such as the above, these findings suggest that, on the contrary to the traditional view, PGE(2) functions as a mediator of immune inflammation. Consistently, administration of an EP4 antagonist could suppress disease progression and development of antigen-specific Th17 cells in mice subjected to experimental allergic encephalomyelitis and contact hypersensitivity. In this perspective, we review these findings and discuss the prospect of EP4 antagonists as immunomodulatory drugs.
Collapse
Affiliation(s)
- Daiji Sakata
- Department of Pharmacology, Kyoto University Faculty of Medicine, Japan
| | | | | |
Collapse
|
45
|
Chattopadhyay S, Bhattacharyya S, Saha B, Chakraborty J, Mohanty S, Sakib Hossain DM, Banerjee S, Das K, Sa G, Das T. Tumor-shed PGE(2) impairs IL2Rgammac-signaling to inhibit CD4 T cell survival: regulation by theaflavins. PLoS One 2009; 4:e7382. [PMID: 19812686 PMCID: PMC2753647 DOI: 10.1371/journal.pone.0007382] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 08/28/2009] [Indexed: 01/18/2023] Open
Abstract
Background Many tumors are associated with decreased cellular immunity and elevated levels of prostaglandin E2 (PGE2), a known inhibitor of CD4+ T cell activation and inducer of type-2 cytokine bias. However, the role of this immunomodulator in the survival of T helper cells remained unclear. Since CD4+ T cells play critical roles in cell-mediated immunity, detail knowledge of the effect tumor-derived PGE2 might have on CD4+ T cell survival and the underlying mechanism may, therefore, help to overcome the overall immune deviation in cancer. Methodology/Principal Findings By culturing purified human peripheral CD4+ T cells or Jurkat cells with spent media of theaflavin- or celecoxib-pre-treated MCF-7 cells, we show that tumor-shed PGE2 severely impairs interleukin 2 receptor γc (IL2Rγc)-mediated survival signaling in CD4+ T cells. Indeed, tumor-shed PGE2 down-regulates IL2Rγc expression, reduces phosphorylation as well as activation of Janus kinase 3 (Jak-3)/signal transducer and activator of transcription 5 (Stat-5) and decreases Bcl-2/Bax ratio thereby leading to activation of intrinsic apoptotic pathway. Constitutively active Stat-5A (Stat-5A1*6) over-expression efficiently elevates Bcl-2 levels in CD4+ T cells and protects them from tumor-induced death while dominant-negative Stat-5A over-expression fails to do so, indicating the importance of Stat-5A-signaling in CD4+ T cell survival. Further support towards the involvement of PGE2 comes from the results that (a) purified synthetic PGE2 induces CD4+ T cell apoptosis, and (b) when knocked out by small interfering RNA, cyclooxygenase-2 (Cox-2)-defective tumor cells fail to initiate death. Interestingly, the entire phenomena could be reverted back by theaflavins that restore cytokine-dependent IL2Rγc/Jak-3/Stat-5A signaling in CD4+ T cells thereby protecting them from tumor-shed PGE2-induced apoptosis. Conclusions/Significance These data strongly suggest that tumor-shed PGE2 is an important factor leading to CD4+ T cell apoptosis during cancer and raise the possibility that theaflavins may have the potential as an effective immunorestorer in cancer-bearer.
Collapse
Affiliation(s)
- Sreya Chattopadhyay
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Sankar Bhattacharyya
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Baisakhi Saha
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Juni Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Suchismita Mohanty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | | | - Shuvomoy Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Kaushik Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
- * E-mail:
| |
Collapse
|
46
|
Székely JI, Pataki A. Recent findings on the pathogenesis of bronchial asthma. Part II. The role of hormonal predisposition, environmental influences and conditioning leading to bronchial asthma. ACTA ACUST UNITED AC 2009; 96:289-305. [PMID: 19706372 DOI: 10.1556/aphysiol.96.2009.3.4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this second part of the review on the pathogenesis of asthma the hormonal factors and adverse external events are shortly reviewed which skew the balance of Th1 vs. Th2 CD4+ lymphocytes towards the latter ones and this way increase the probability of atopic diseases. Among other the role of transplacental priming, insulin, insulin-like and other growth factors, lack of the usual microbial infections in the early childhood (the so-called hygiene hypothesis), gender, diminished testosterone production, gastroesophageal reflux, adverse effects during pregnancy are discussed. A separate chapter deals with the role of central nervous system in the etiology and finally the most common allergizing and airway tissue damaging agents are listed in tabulated form.
Collapse
Affiliation(s)
- József Iván Székely
- Human Physiology Department, Semmelweis University, Tuzoltó u. 37-47, Budapest, Hungary
| | | |
Collapse
|
47
|
Prostaglandin E2-EP4 signaling promotes immune inflammation through Th1 cell differentiation and Th17 cell expansion. Nat Med 2009; 15:633-40. [PMID: 19465928 DOI: 10.1038/nm.1968] [Citation(s) in RCA: 420] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2008] [Accepted: 04/22/2009] [Indexed: 11/08/2022]
Abstract
Two distinct helper T (TH) subsets, TH1 and TH17, mediate tissue damage and inflammation in animal models of various immune diseases such as multiple sclerosis, rheumatoid arthritis, inflammatory bowel diseases and allergic skin disorders. These experimental findings, and the implication of these TH subsets in human diseases, suggest the need for pharmacological measures to manipulate these TH subsets. Here we show that prostaglandin E2 (PGE2) acting on its receptor EP4 on T cells and dendritic cells not only facilitates TH1 cell differentiation but also amplifies interleukin-23-mediated TH17 cell expansion in vitro. Administration of an EP4-selective antagonist in vivo decreases accumulation of both TH1 and TH17 cells in regional lymph nodes and suppresses the disease progression in mice subjected to experimental autoimmune encephalomyelitis or contact hypersensitivity. Thus, PGE2-EP4 signaling promotes immune inflammation through TH1 differentiation and TH17 expansion, and EP4 antagonism may be therapeutically useful for various immune diseases.
Collapse
|
48
|
Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res 2008; 68:5972-8. [PMID: 18632653 DOI: 10.1158/0008-5472.can-07-6818] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Preferential activation of regulatory T (Treg) cells limits autoimmune tissue damage during chronic immune responses but can also facilitate tumor growth. Here, we show that tissue-produced inflammatory mediators prime maturing dendritic cells (DC) for the differential ability of attracting anti-inflammatory Treg cells. Our data show that prostaglandin E(2) (PGE(2)), a factor overproduced in chronic inflammation and cancer, induces stable Treg-attracting properties in maturing DC, mediated by CCL22. The elevated production of CCL22 by PGE(2)-matured DC persists after the removal of PGE(2) and is further elevated after secondary stimulation of DC in a neutral environment. This PGE(2)-induced overproduction of CCL22 and the resulting attraction of FOXP3(+) Tregs are counteracted by IFN alpha, a mediator of acute inflammation, which also restores the ability of the PGE(2)-exposed DC to secrete the Th1-attracting chemokines: CXCL9, CXCL10, CXCL11, and CCL5. In accordance with these observations, different DCs clinically used as cancer vaccines show different Treg-recruiting abilities, with PGE(2)-matured DC, but not type 1-polarized DC, generated in the presence of type I and type II IFNs, showing high Treg-attracting activity. The current data, showing that the ability of mature DC to interact with Treg cells is predetermined at the stage of DC maturation, pave the way to preferentially target the regulatory versus proinflammatory T cells in autoimmunity and transplantation, as opposed to intracellular infections and cancer.
Collapse
|
49
|
Nagamachi M, Sakata D, Kabashima K, Furuyashiki T, Murata T, Segi-Nishida E, Soontrapa K, Matsuoka T, Miyachi Y, Narumiya S. Facilitation of Th1-mediated immune response by prostaglandin E receptor EP1. ACTA ACUST UNITED AC 2007; 204:2865-74. [PMID: 17967902 PMCID: PMC2118516 DOI: 10.1084/jem.20070773] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Prostaglandin E2 (PGE2) exerts its actions via four subtypes of the PGE receptor, EP1–4. We show that mice deficient in EP1 exhibited significantly attenuated Th1 response in contact hypersensitivity induced by dinitrofluorobenzene (DNFB). This phenotype was recapitulated in wild-type mice by administration of an EP1-selective antagonist during the sensitization phase, and by adoptive transfer of T cells from sensitized EP1−/− mice. Conversely, an EP1-selective agonist facilitated Th1 differentiation of naive T cells in vitro. Finally, CD11c+ cells containing the inducible form of PGE synthase increased in number in the draining lymph nodes after DNFB application. These results suggest that PGE2 produced by dendritic cells in the lymph nodes acts on EP1 in naive T cells to promote Th1 differentiation.
Collapse
Affiliation(s)
- Miyako Nagamachi
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu Y, Hao W, Letiembre M, Walter S, Kulanga M, Neumann H, Fassbender K. Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 2007; 26:12904-13. [PMID: 17167081 PMCID: PMC6674962 DOI: 10.1523/jneurosci.2531-06.2006] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multiple sclerosis (MS) is pathologically characterized by inflammatory demyelination and neuronal injury. Although phagocytosis of myelin debris by microglia and macrophages in acute MS lesions is well documented, its pathophysiological significance is unclear. Using real-time quantitative PCR, flow cytometry, ELISA, and reactive oxygen species (ROS) measurement assays, we demonstrated that phagocytosis of myelin modulates activation of microglial cells prestimulated by interferon-gamma (IFN-gamma) or a combination of IFN-gamma and lipopolysaccharide with a biphasic temporal pattern, i.e., enhanced production of proinflammatory mediators during the first phase (< or = 6 h), followed by suppression during the second (6-24 h) phase. In this second phase, myelin phagocytosis leads to an enhanced release of prostaglandin E2 and ROS in microglia, whereas the production of anti-inflammatory cytokines (particularly interleukin-10) remains unchanged. Suppression of inflammatory microglial activation by myelin phagocytosis was reversed by treatment with superoxide dismutase and catalase, by inhibition of the NADPH-oxidase complex, or by specific knockdown of the NADPH-oxidase-required adaptor p47-phagocyte oxidase (PHOX). Furthermore, we observed that myelin phagocytosis destabilized tumor necrosis factor-alpha and interferon-induced protein-10 mRNA through an adenine-uridine-rich elements-involved mechanism, which was reversed by blocking the function of NADPH-oxidase complex. We conclude that phagocytosis of myelin suppresses microglial inflammatory activities via enhancement of p47-PHOX-mediated ROS generation. These results suggest that intervention in ROS generation could represent a novel therapeutic strategy to reduce neuroinflammation in MS.
Collapse
Affiliation(s)
- Yang Liu
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| | - Wenlin Hao
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
- Neuroimmunology Unit, European Neuroscience Institute Göttingen, University of Göttingen, 37073 Göttingen, Germany
| | - Maryse Letiembre
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| | - Silke Walter
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| | - Miroslav Kulanga
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| | - Harald Neumann
- Neural Regeneration Unit, Institute of Reconstructive Neurobiology, University of Bonn Life and Brain Center and Hertie Foundation, 53127 Bonn, Germany, and
- Neuroimmunology Unit, European Neuroscience Institute Göttingen, University of Göttingen, 37073 Göttingen, Germany
| | - Klaus Fassbender
- Department of Neurology, University of the Saarland, 66421 Homburg/Saar, Germany
| |
Collapse
|