1
|
Jin J, Mao X, Zhang D. A differential diagnosis method for systemic CAEBV and the prospect of EBV-related immune cell markers via flow cytometry. Ann Med 2024; 56:2329136. [PMID: 38502913 PMCID: PMC10953786 DOI: 10.1080/07853890.2024.2329136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/23/2024] [Indexed: 03/21/2024] Open
Abstract
Chronic active Epstein-Barr virus (CAEBV) infection of the T-cell or Natural killer (NK)-cell type, systemic form (systemic CAEBV or sCAEBV) was defined by the WHO in 2017 as an EBV-related lymphoproliferative disorder and is listed as an EBV-positive T-cell and NK-cell proliferation. The clinical manifestations and prognoses are heterogeneous. This makes systemic CAEBV indistinguishable from other EBV-positive T-cell and NK-cell proliferations. Early diagnosis of systemic CAEBV and early hematopoietic stem cell transplantation can improve patient prognosis. At present, the diagnosis of systemic CAEBV relies mainly on age, clinical manifestations, and cell lineage, incurring missed diagnosis, misdiagnosis, long diagnosis time, and inability to identify high-risk systemic CAEBV early. The diagnostic methods for systemic CAEBV are complicated and lack systematic description. The recent development of diagnostic procedures, including molecular biological and immunological techniques such as flow cytometry, has provided us with the ability to better understand the proliferation of other EBV-positive T cells and NK cells, but there is no definitive review of their value in diagnosing systemic CAEBV. This article summarizes the recent progress in systemic CAEBV differential diagnosis and the prospects of flow cytometry.
Collapse
Affiliation(s)
- Jie Jin
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xia Mao
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Donghua Zhang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
2
|
Wang F, Bashiri Dezfouli A, Multhoff G. The immunomodulatory effects of cannabidiol on Hsp70-activated NK cells and tumor target cells. Mol Immunol 2024; 174:1-10. [PMID: 39126837 DOI: 10.1016/j.molimm.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Cannabidiol (CBD), the major non-psychoactive component of cannabis, exhibits anti-inflammatory properties, but less is known about the immunomodulatory potential of CBD on activated natural killer (NK) cells and/or their targets. Many tumor cells present heat shock protein 70 (Hsp70) on their cell surface in a tumor-specific manner and although a membrane Hsp70 (mHsp70) positive phenotype serves as a target for Hsp70-activated NK cells, a high mHsp70 expression is associated with tumor aggressiveness. This study investigated the immuno-modulatory potential of CBD on NK cells stimulated with TKD Hsp70 peptide and IL-2 (TKD+IL-2) and also on HCT116 p53wt and HCT116 p53-/- colorectal cancer cells exhibiting high and low basal levels of mHsp70 expression. RESULTS Apart from an increase in the density of NTB-A and a reduced expression of LAMP-1, the expression of all other activatory NK cell receptors including NKp30, NKG2D and CD69 which are significantly up-regulated after stimulation with TKD+IL-2 remained unaffected after a co-treatment with CBD. However, the release of major pro-inflammatory cytokines by NK cells such as interferon-γ (IFN-γ) and the effector molecule granzyme B (GrzB) was significantly reduced upon CBD treatment. With respect to the tumor target cells, CBD significantly reduced the elevated expression of mHsp70 but had no effect on the low basal mHsp70 expression. Expression of other NK cell ligands such as MICA and MICB remained unaffected, and the NK cell ligands ULBP and B7-H6 were not expressed on these target cells. Consistent with the reduced mHsp70 expression, treatment of both effector and target cells with CBD reduced the killing of high mHsp70 expressing tumor cells by TKD+IL-2+CBD pre-treated NK cells but had no effect on the killing of low mHsp70 expressing tumor cells. Concomitantly, CBD treatment reduced the TKD+IL-2 induced increased release of IFN-γ, IL-4, TNF-α and GrzB, but CBD had no effect on the release of IFN-α when NK cells were co-incubated with tumor target cells. CONCLUSION Cannabidiol (CBD) may potentially diminish the anti-tumor effectiveness of TKD+IL-2 activated natural killer (NK) cells.
Collapse
Affiliation(s)
- Fei Wang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Center Munich and Department of Oncology, The second affiliated Hospital of Zunyi Medical University, Zunyi, China; Radiation Immuno-Oncology Group, TranslaTUM - Central Institute for Translational Cancer Research and Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Ali Bashiri Dezfouli
- Department of Otolaryngology, Head and Neck Surgery, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, TranslaTUM - Central Institute for Translational Cancer Research and Department of Radiation Oncology, Klinikum rechts der Isar, TUM School of Medicine and Health, Munich, Germany.
| |
Collapse
|
3
|
Bjorgen JC, Dick JK, Cromarty R, Hart GT, Rhein J. NK cell subsets and dysfunction during viral infection: a new avenue for therapeutics? Front Immunol 2023; 14:1267774. [PMID: 37928543 PMCID: PMC10620977 DOI: 10.3389/fimmu.2023.1267774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/25/2023] [Indexed: 11/07/2023] Open
Abstract
In the setting of viral challenge, natural killer (NK) cells play an important role as an early immune responder against infection. During this response, significant changes in the NK cell population occur, particularly in terms of their frequency, location, and subtype prevalence. In this review, changes in the NK cell repertoire associated with several pathogenic viral infections are summarized, with a particular focus placed on changes that contribute to NK cell dysregulation in these settings. This dysregulation, in turn, can contribute to host pathology either by causing NK cells to be hyperresponsive or hyporesponsive. Hyperresponsive NK cells mediate significant host cell death and contribute to generating a hyperinflammatory environment. Hyporesponsive NK cell populations shift toward exhaustion and often fail to limit viral pathogenesis, possibly enabling viral persistence. Several emerging therapeutic approaches aimed at addressing NK cell dysregulation have arisen in the last three decades in the setting of cancer and may prove to hold promise in treating viral diseases. However, the application of such therapeutics to treat viral infections remains critically underexplored. This review briefly explores several therapeutic approaches, including the administration of TGF-β inhibitors, immune checkpoint inhibitors, adoptive NK cell therapies, CAR NK cells, and NK cell engagers among other therapeutics.
Collapse
Affiliation(s)
- Jacob C. Bjorgen
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| | - Jenna K. Dick
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Ross Cromarty
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
| | - Geoffrey T. Hart
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Joshua Rhein
- Division of Infectious Diseases and International Medicine, Department of Medicine, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
4
|
Kang G, Zhao X, Sun J, Cheng C, Wang C, Tao L, Zong L, Yin W, Cong J, Li J, Wang X. A2AR limits IL-15-induced generation of CD39 + NK cells with high cytotoxicity. Int Immunopharmacol 2023; 114:109567. [PMID: 36529024 DOI: 10.1016/j.intimp.2022.109567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022]
Abstract
CD39-mediated inhibition of natural killer (NK) cell activity has been demonstrated, but the characteristics of CD39+ NK cells in humans are not known. We investigated the characteristics of human circulating CD39+ NK cells. In healthy donors, the proportion of circulating CD39+ NK cells in total NK cells was relatively low compared with that of CD39- NK cells. Nonetheless, a higher proportion of CD39+ NK cells expressed CD107a. Similarly, a higher proportion of CD39+ NK cells expressed CD107a in patients with hepatitis B virus or patients with hepatocellular carcinoma. Stimulation with NK-sensitive K562 cells or interleukin (IL)-12/IL-18 activated CD39+ NK cells to express higher levels of CD107a, IFN-γ and TNF-α, relative to CD39- NK cells. Importantly, IL-15 induced the generation of CD39+ NK cells. In contrast, A2A adenosine receptor (A2AR) ligation suppressed the generation of CD39+ NK cells by inhibiting IL-15 signaling. These data for the first time demonstrated that A2AR counteracts IL-15-induced generation of human CD39+ NK cells, which have a stronger cytotoxicity than CD39- NK cells. IL-15-induced human CD39+ NK cells might be better choice for immunotherapy based on adoptive transfer of NK cells.
Collapse
Affiliation(s)
- Guijie Kang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Xueqin Zhao
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Jiafeng Sun
- Dental Department, Health Service Center, Jianghai Community, Guangyi Street, Liangxi District, Wuxi 214000, Jiangsu, China
| | - Chen Cheng
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Cen Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| | - Longxiang Tao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Lu Zong
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, Anhui, China
| | - Wenwei Yin
- Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jingjing Cong
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| | - Jing Li
- School of Life Sciences, Anhui Medical University, Hefei 230032, China.
| | - Xuefu Wang
- School of Pharmacy, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
5
|
Cianga VA, Rusu C, Pavel-Tanasa M, Dascalescu A, Danaila C, Harnau S, Aanei CM, Cianga P. Combined flow cytometry natural killer immunophenotyping and KIR/HLA-C genotyping reveal remarkable differences in acute myeloid leukemia patients, but suggest an overall impairment of the natural killer response. Front Med (Lausanne) 2023; 10:1148748. [PMID: 36960339 PMCID: PMC10028202 DOI: 10.3389/fmed.2023.1148748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Natural killer (NK) cells are key anti-tumor effectors of the innate immunity. Phenotypic differences allow us to discriminate in between three functional stages of maturation, named immature, mature and hypermature that are distinctive in terms of receptor expression, cytokine secretion, cytotoxic properties and organ trafficking. NKs display an impressive repertoire of highly polymorphic germline encoded receptors that can be either activating, triggering the effector's function, or inhibitory, limiting the immune response. In our study, we have investigated peripheral blood NK cells of acute myeloid leukemia (AML) patients. Methods The Killer Immunoglobulin-like receptors (KIRs) and the HLA-C genotypes were assessed, as HLA-C molecules are cognate antigens for inhibitory KIRs. Results The AA mainly inhibitory KIR haplotype was found in a higher proportion in AML, while a striking low frequency of the 2DS3 characterized the mainly activating Bx haplotype. Flow cytometry immunophenotyping evidenced a lower overall count of NK cells in AML versus healthy controls, with lower percentages of the immature and mature subpopulations, but with a markedly increase of the hypermature NKs. The analysis of the KIR2DL1, KIR2DL2, KIR2DL3, KIR3DL1, and NKG2A inhibitory receptors surface expression revealed a remarkable heterogeneity. However, an overall trend for a higher expression in AML patients could be noticed in all maturation subpopulations. Some of the AML patients with complex karyotypes or displaying a FLT3 gene mutation proved to be extreme outliers in terms of NK cells percentages or inhibitory receptors expression. Discussion We conclude that while the genetic background investigation in AML offers important pieces of information regarding susceptibility to disease or prognosis, it is flow cytometry that is able to offer details of finesse in terms of NK numbers and phenotypes, necessary for an adequate individual evaluation of these patients.
Collapse
Affiliation(s)
- Vlad Andrei Cianga
- Department of Hematology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Department of Clinical Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Cristina Rusu
- Department of Genetics, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- *Correspondence: Cristina Rusu,
| | - Mariana Pavel-Tanasa
- Department of Immunology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
| | - Angela Dascalescu
- Department of Hematology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Department of Clinical Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Catalin Danaila
- Department of Hematology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Department of Clinical Hematology, Regional Institute of Oncology, Iasi, Romania
| | - Sebastian Harnau
- Department of Immunology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
| | - Carmen-Mariana Aanei
- Laboratory of Hematology, Nord Hospital, CHU Saint Etienne, Cedex2, Saint-Étienne, France
- INSERM U1059-SAINBIOSE, Université de Lyon, Saint-Étienne, France
| | - Petru Cianga
- Department of Immunology, University of Medicine and Pharmacy “Grigore T. Popa”, Iasi, Romania
- Petru Cianga,
| |
Collapse
|
6
|
Zingaropoli MA, Parente A, Kertusha B, Campagna R, Tieghi T, Garattini S, Marocco R, Carraro A, Tortellini E, Guardiani M, Dominelli F, Turriziani O, Ciardi MR, Mastroianni CM, Del Borgo C, Lichtner M. Longitudinal Virological and Immunological Profile in a Case of Human Monkeypox Infection. Open Forum Infect Dis 2022; 9:ofac569. [PMID: 36474633 PMCID: PMC9716865 DOI: 10.1093/ofid/ofac569] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 10/29/2022] [Indexed: 10/03/2023] Open
Abstract
In a male with severe proctitis, monkeypox virus DNA was detected in skin lesions, blood, the nasopharynx, and the rectum, underlying generalized viral spreading. Rectal involvement was still found when skin lesions disappeared. At this early stage, an increase of cytotoxic and activated T cells was observed, while a reduction in CD56dimCD57+ NK cells compared with recovery time point was observed.
Collapse
Affiliation(s)
| | - Alberico Parente
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Blerta Kertusha
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Roberta Campagna
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Tiziana Tieghi
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Silvia Garattini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Raffaella Marocco
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Anna Carraro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Eeva Tortellini
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Mariasilvia Guardiani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | - Federica Dominelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Maria Rosa Ciardi
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy
| | | | - Cosmo Del Borgo
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
| | - Miriam Lichtner
- Infectious Diseases Unit, SM Goretti Hospital, Sapienza University of Rome, Latina, Italy
- Department of Neurosciences, Mental Health, and Sense Organs, NESMOS, University of Rome, Rome, Italy
| |
Collapse
|
7
|
Sterling KG, Dodd GK, Alhamdi S, Asimenios PG, Dagda RK, De Meirleir KL, Hudig D, Lombardi VC. Mucosal Immunity and the Gut-Microbiota-Brain-Axis in Neuroimmune Disease. Int J Mol Sci 2022; 23:13328. [PMID: 36362150 PMCID: PMC9655506 DOI: 10.3390/ijms232113328] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.
Collapse
Affiliation(s)
| | - Griffin Kutler Dodd
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Shatha Alhamdi
- Clinical Immunology and Allergy Division, Department of Pediatrics, King Abdullah Specialist Children’s Hospital, King Saud bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs, Riyadh 11426, Saudi Arabia
| | | | - Ruben K. Dagda
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | | | - Dorothy Hudig
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| | - Vincent C. Lombardi
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV 89557, USA
| |
Collapse
|
8
|
Cossarizza A, Chang HD, Radbruch A, Abrignani S, Addo R, Akdis M, Andrä I, Andreata F, Annunziato F, Arranz E, Bacher P, Bari S, Barnaba V, Barros-Martins J, Baumjohann D, Beccaria CG, Bernardo D, Boardman DA, Borger J, Böttcher C, Brockmann L, Burns M, Busch DH, Cameron G, Cammarata I, Cassotta A, Chang Y, Chirdo FG, Christakou E, Čičin-Šain L, Cook L, Corbett AJ, Cornelis R, Cosmi L, Davey MS, De Biasi S, De Simone G, del Zotto G, Delacher M, Di Rosa F, Di Santo J, Diefenbach A, Dong J, Dörner T, Dress RJ, Dutertre CA, Eckle SBG, Eede P, Evrard M, Falk CS, Feuerer M, Fillatreau S, Fiz-Lopez A, Follo M, Foulds GA, Fröbel J, Gagliani N, Galletti G, Gangaev A, Garbi N, Garrote JA, Geginat J, Gherardin NA, Gibellini L, Ginhoux F, Godfrey DI, Gruarin P, Haftmann C, Hansmann L, Harpur CM, Hayday AC, Heine G, Hernández DC, Herrmann M, Hoelsken O, Huang Q, Huber S, Huber JE, Huehn J, Hundemer M, Hwang WYK, Iannacone M, Ivison SM, Jäck HM, Jani PK, Keller B, Kessler N, Ketelaars S, Knop L, Knopf J, Koay HF, Kobow K, Kriegsmann K, Kristyanto H, Krueger A, Kuehne JF, Kunze-Schumacher H, Kvistborg P, Kwok I, Latorre D, Lenz D, Levings MK, Lino AC, Liotta F, Long HM, Lugli E, MacDonald KN, Maggi L, Maini MK, Mair F, Manta C, Manz RA, Mashreghi MF, Mazzoni A, McCluskey J, Mei HE, Melchers F, Melzer S, Mielenz D, Monin L, Moretta L, Multhoff G, Muñoz LE, Muñoz-Ruiz M, Muscate F, Natalini A, Neumann K, Ng LG, Niedobitek A, Niemz J, Almeida LN, Notarbartolo S, Ostendorf L, Pallett LJ, Patel AA, Percin GI, Peruzzi G, Pinti M, Pockley AG, Pracht K, Prinz I, Pujol-Autonell I, Pulvirenti N, Quatrini L, Quinn KM, Radbruch H, Rhys H, Rodrigo MB, Romagnani C, Saggau C, Sakaguchi S, Sallusto F, Sanderink L, Sandrock I, Schauer C, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schober K, Schoen J, Schuh W, Schüler T, Schulz AR, Schulz S, Schulze J, Simonetti S, Singh J, Sitnik KM, Stark R, Starossom S, Stehle C, Szelinski F, Tan L, Tarnok A, Tornack J, Tree TIM, van Beek JJP, van de Veen W, van Gisbergen K, Vasco C, Verheyden NA, von Borstel A, Ward-Hartstonge KA, Warnatz K, Waskow C, Wiedemann A, Wilharm A, Wing J, Wirz O, Wittner J, Yang JHM, Yang J. Guidelines for the use of flow cytometry and cell sorting in immunological studies (third edition). Eur J Immunol 2021; 51:2708-3145. [PMID: 34910301 PMCID: PMC11115438 DOI: 10.1002/eji.202170126] [Citation(s) in RCA: 217] [Impact Index Per Article: 72.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The third edition of Flow Cytometry Guidelines provides the key aspects to consider when performing flow cytometry experiments and includes comprehensive sections describing phenotypes and functional assays of all major human and murine immune cell subsets. Notably, the Guidelines contain helpful tables highlighting phenotypes and key differences between human and murine cells. Another useful feature of this edition is the flow cytometry analysis of clinical samples with examples of flow cytometry applications in the context of autoimmune diseases, cancers as well as acute and chronic infectious diseases. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid. All sections are written and peer-reviewed by leading flow cytometry experts and immunologists, making this edition an essential and state-of-the-art handbook for basic and clinical researchers.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Hyun-Dong Chang
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Institute for Biotechnology, Technische Universität, Berlin, Germany
| | - Andreas Radbruch
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sergio Abrignani
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Richard Addo
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Andreata
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Eduardo Arranz
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Petra Bacher
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Molecular Biology Christian-Albrechts Universität zu Kiel, Kiel, Germany
| | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | - Dirk Baumjohann
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Cristian G. Beccaria
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
| | - David Bernardo
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Jessica Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chotima Böttcher
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Leonie Brockmann
- Department of Microbiology & Immunology, Columbia University, New York City, USA
| | - Marie Burns
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Yinshui Chang
- Medical Clinic III for Oncology, Hematology, Immuno-Oncology and Rheumatology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Fernando Gabriel Chirdo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - IIFP (UNLP-CONICET), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Eleni Christakou
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Luka Čičin-Šain
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca Cornelis
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Martin S. Davey
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Gabriele De Simone
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Michael Delacher
- Institute for Immunology, University Medical Center Mainz, Mainz, Germany
- Research Centre for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Francesca Di Rosa
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - James Di Santo
- Innate Immunity Unit, Department of Immunology, Institut Pasteur, Paris, France
- Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Jun Dong
- Cell Biology, German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Association, Berlin, Germany
| | - Thomas Dörner
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Regine J. Dress
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charles-Antoine Dutertre
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Simon Fillatreau
- Institut Necker Enfants Malades, INSERM U1151-CNRS, UMR8253, Paris, France
- Université de Paris, Paris Descartes, Faculté de Médecine, Paris, France
- AP-HP, Hôpital Necker Enfants Malades, Paris, France
| | - Aida Fiz-Lopez
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
| | - Marie Follo
- Department of Medicine I, Lighthouse Core Facility, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gemma A. Foulds
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Nicola Gagliani
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Germany
| | - Giovanni Galletti
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - José Antonio Garrote
- Mucosal Immunology Lab, Unidad de Excelencia Instituto de Biomedicina y Genética Molecular de Valladolid (IBGM, Universidad de Valladolid-CSIC), Valladolid, Spain
- Laboratory of Molecular Genetics, Servicio de Análisis Clínicos, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y León (SACYL), Valladolid, Spain
| | - Jens Geginat
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Paola Gruarin
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Leo Hansmann
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin (CVK), Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christopher M. Harpur
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Adrian C. Hayday
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Guido Heine
- Division of Allergy, Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Carolina Hernández
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Oliver Hoelsken
- Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
- Mucosal and Developmental Immunology, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Qing Huang
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Samuel Huber
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Johanna E. Huber
- Institute for Immunology, Biomedical Center, Faculty of Medicine, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - William Y. K. Hwang
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Hematology, Singapore General Hospital, Singapore, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Matteo Iannacone
- Division of Immunology, Transplantation and Infectious Diseases, IRCSS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sabine M. Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Peter K. Jani
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nina Kessler
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Steven Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Laura Knop
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - H. Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny F. Kuehne
- Institute of Transplant Immunology, Hannover Medical School, Hannover, Germany
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
| | | | - Daniel Lenz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Heather M. Long
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Enrico Lugli
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Katherine N. MacDonald
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
- Michael Smith Laboratories, The University of British Columbia, Vancouver, Canada
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Mala K. Maini
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Florian Mair
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Calin Manta
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Rudolf Armin Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | | | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Fritz Melchers
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, Leipzig University, Härtelstr.16, −18, Leipzig, 04107, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leticia Monin
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Gabriele Multhoff
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
- Department of Radiation Oncology, Technical University of Munich (TUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Miguel Muñoz-Ruiz
- Immunosurveillance Laboratory, The Francis Crick Institute, London, UK
| | - Franziska Muscate
- Department of Medicine, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ambra Natalini
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | | | - Jana Niemz
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Samuele Notarbartolo
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Lennard Ostendorf
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Laura J. Pallett
- Division of Infection & Immunity, Institute of Immunity & Transplantation, University College London, London, UK
| | - Amit A. Patel
- Institut National de la Sante Et de la Recherce Medicale (INSERM) U1015, Equipe Labellisee-Ligue Nationale contre le Cancer, Villejuif, France
| | - Gulce Itir Percin
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
| | - Giovanna Peruzzi
- Center for Life Nano & Neuro Science@Sapienza, Istituto Italiano di Tecnologia (IIT), Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
- Centre for Health, Ageing and Understanding Disease (CHAUD), School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- Institute of Systems Immunology, Hamburg Center for Translational Immunology (HCTI), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Irma Pujol-Autonell
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
- Peter Gorer Department of Immunobiology, King’s College London, London, UK
| | - Nadia Pulvirenti
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundorra, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hefin Rhys
- Flow Cytometry Science Technology Platform, The Francis Crick Institute, London, UK
| | - Maria B. Rodrigo
- Institute of Molecular Medicine and Experimental Immunology, Faculty of Medicine, University of Bonn, Germany
| | - Chiara Romagnani
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Carina Saggau
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | | | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Lieke Sanderink
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Regensburg, Germany
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Christine Schauer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Scheffold
- Institute of Immunology, Christian-Albrechts Universität zu Kiel & Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- Mikrobiologisches Institut – Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Germany
| | - Janina Schoen
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel R. Schulz
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sebastian Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Julia Schulze
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Sonia Simonetti
- Institute of Molecular Biology and Pathology, National Research Council of Italy (CNR), Rome, Italy
| | - Jeeshan Singh
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3 – Rheumatology and Immunology and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum für Immuntherapie, Friedrich-Alexander-University Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Katarzyna M. Sitnik
- Department of Viral Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Regina Stark
- Charité Universitätsmedizin Berlin – BIH Center for Regenerative Therapies, Berlin, Germany
- Sanquin Research – Adaptive Immunity, Amsterdam, The Netherlands
| | - Sarah Starossom
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christina Stehle
- Innate Immunity, German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Gastroenterology, Infectious Diseases, Rheumatology, Berlin, Germany
| | - Franziska Szelinski
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Leonard Tan
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research, Singapore, Singapore
- Department of Microbiology & Immunology, Immunology Programme, Life Science Institute, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Attila Tarnok
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instrument, Tsinghua University, Beijing, China
- Department of Preclinical Development and Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
| | - Julia Tornack
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
| | - Timothy I. M. Tree
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Jasper J. P. van Beek
- Laboratory of Translational Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | | | - Chiara Vasco
- Istituto Nazionale di Genetica Molecolare Romeo ed Enrica Invernizzi (INGM), Milan, Italy
| | - Nikita A. Verheyden
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Anouk von Borstel
- Infection and Immunity Program, Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Kirsten A. Ward-Hartstonge
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging – Fritz Lipmann Institute, Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
- Department of Medicine III, Technical University Dresden, Dresden, Germany
| | - Annika Wiedemann
- German Rheumatism Research Center Berlin (DRFZ), Berlin, Germany
- Department of Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - James Wing
- Immunology Frontier Research Center, Osaka University, Japan
| | - Oliver Wirz
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jens Wittner
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Department of Internal Medicine III, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jennie H. M. Yang
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institute for Health Research (NIHR) Biomedical Research Center (BRC), Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| |
Collapse
|
9
|
Defining the AHR-regulated transcriptome in NK cells reveals gene expression programs relevant to development and function. Blood Adv 2021; 5:4605-4618. [PMID: 34559190 PMCID: PMC8759121 DOI: 10.1182/bloodadvances.2021004533] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 07/27/2021] [Indexed: 12/20/2022] Open
Abstract
AHR directly regulates a wide range of genes in NK cells, including those involved in cell signaling, oxidative stress, and metabolism. Knowing of the repertoire of genes regulated by AHR may help us better understand NK-cell dysfunction mediated by AHR ligands in cancer.
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that regulates cellular processes in cancer and immunity, including innate immune cell development and effector function. However, the transcriptional repertoire through which AHR mediates these effects remains largely unexplored. To elucidate the transcriptional elements directly regulated by AHR in natural killer (NK) cells, we performed RNA and chromatin immunoprecipitation sequencing on NK cells exposed to AHR agonist or antagonist. We show that mature peripheral blood NK cells lack AHR, but its expression is induced by Stat3 during interleukin-21–driven activation and proliferation, coincident with increased NCAM1 (CD56) expression resulting in a CD56bright phenotype. Compared with control conditions, NK cells expanded in the presence of the AHR antagonist, StemRegenin-1, were unaffected in proliferation or cytotoxicity, had no increase in NCAM1 transcription, and maintained the CD56dim phenotype. However, it showed altered expression of 1004 genes including those strongly associated with signaling pathways. In contrast, NK cells expanded in the presence of the AHR agonist, kynurenine, showed decreased cytotoxicity and altered expression of 97 genes including those strongly associated with oxidative stress and cellular metabolism. By overlaying these differentially expressed genes with AHR chromatin binding, we identified 160 genes directly regulated by AHR, including hallmark AHR targets AHRR and CYP1B1 and known regulators of phenotype, development, metabolism, and function such as NCAM1, KIT, NQO1, and TXN. In summary, we define the AHR transcriptome in NK cells, propose a model of AHR and Stat3 coregulation, and identify potential pathways that may be targeted to overcome AHR-mediated immune suppression.
Collapse
|
10
|
Bergantini L, d’Alessandro M, Cameli P, Cavallaro D, Gangi S, Cekorja B, Sestini P, Bargagli E. NK and T Cell Immunological Signatures in Hospitalized Patients with COVID-19. Cells 2021; 10:3182. [PMID: 34831404 PMCID: PMC8618013 DOI: 10.3390/cells10113182] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/09/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome caused by coronavirus 2 emerged in Wuhan (China) in December 2019 and has severely challenged the human population. NK and T cells are involved in the progression of COVID-19 infection through the ability of NK cells to modulate T-cell responses, and by the stimulation of cytokine release. No detailed investigation of the NK cell landscape in clinical SARS-CoV-2 infection has yet been reported. A total of 35 COVID-19 hospitalised patients were stratified for clinical severity and 17 healthy subjects were enrolled. NK cell subsets and T cell subsets were analysed with flow cytometry. Serum cytokines were detected with a bead-based multiplex assay. Fewer CD56dimCD16brightNKG2A+NK cells and a parallel increase in the CD56+CD69+NK, CD56+PD-1+NK, CD56+NKp44+NK subset were reported in COVID-19 than HC. A significantly higher adaptive/memory-like NK cell frequency in patients with severe disease than in those with mild and moderate phenotypes were reported. Moreover, adaptive/memory-like NK cell frequencies were significantly higher in patients who died than in survivors. Severe COVID-19 patients showed higher serum concentrations of IL-6 than mild and control groups. Direct correlation emerged for IL-6 and adaptive/memory-like NK. All these findings provide new insights into the immune response of patients with COVID-19. In particular, they demonstrate activation of NK through overexpression of CD69 and CD25 and show that PD-1 inhibitory signalling maintains an exhausted phenotype in NK cells. These results suggest that adaptive/memory-like NK cells could be the basis of promising targeted therapy for future viral infections.
Collapse
|
11
|
Geriatrics and COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:209-222. [PMID: 33973181 DOI: 10.1007/978-3-030-63761-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since December 2019, a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has begun to infect people. The virus first occurred in Wuhan, China, but the whole world is now struggling with the pandemic. Over 13 million confirmed cases and 571,000 deaths have been reported so far, and this number is growing. Older people, who constitute a notable proportion of the world population, are at an increased risk of infection because of altered immunity and chronic comorbidities. Thus, appropriate health care is necessary to control fatalities and spread of the disease in this specific population. The chapter provides an overview of diagnostic methods, laboratory and imaging findings, clinical features, and management of COVID-19 in aged people. Possible mechanisms behind the behavior of SARS-CoV-2 in the elderly include immunosenescence and related impaired antiviral immunity, mature immunity and related hyper-inflammatory responses, comorbidities and their effects on the functioning of critical organs/systems, and the altered expression of angiotensin-converting enzyme 2 (ACE2) that acts as an entry receptor for SARS-CoV-2. This evidence defines the herding behavior of COVID-19 in relation to ACE2 under the influence of immune dysregulation. Then, identifying the immunogenetic factors that affect the disease susceptibility and severity and as well as key inflammatory pathways that have the potential to serve as therapeutic targets needs to remain an active area of research.
Collapse
|
12
|
Cianga VA, Campos Catafal L, Cianga P, Pavel Tanasa M, Cherry M, Collet P, Tavernier E, Guyotat D, Rusu C, Aanei CM. Natural Killer Cell Subpopulations and Inhibitory Receptor Dynamics in Myelodysplastic Syndromes and Acute Myeloid Leukemia. Front Immunol 2021; 12:665541. [PMID: 33986753 PMCID: PMC8112610 DOI: 10.3389/fimmu.2021.665541] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/31/2021] [Indexed: 12/13/2022] Open
Abstract
Natural killer (NK) cells are key innate immunity effectors that play a major role in malignant cell destruction. Based on expression patterns of CD16, CD56, CD57, and CD94, three distinct NK cell maturation stages have been described, which differ in terms of cytokine secretion, tissue migration, and the ability to kill target cells. Our study addressed NK cell maturation in bone marrow under three conditions: a normal developmental environment, during pre-leukemic state (myelodysplastic syndrome, MDS), and during leukemic transformation (acute myeloblastic leukemia, AML). In this study, we used a new tool to perform multicolor flow cytometry data analysis, based on principal component analysis, which allowed the unsupervised, accurate discrimination of immature, mature, and hypermature NK subpopulations. An impaired NK/T cell distribution was observed in the MDS bone marrow microenvironment compared with the normal and AML settings, and a phenotypic shift from the mature to the immature state was observed in NK cells under both the MDS and AML conditions. Furthermore, an impaired NK cell antitumor response, resulting in changes in NK cell receptor expression (CD159a, CD158a, CD158b, and CD158e1), was observed under MDS and AML conditions compared with the normal condition. The results of this study provide evidence for the failure of this arm of the immune response during the pathogenesis of myeloid malignancies. NK cell subpopulations display a heterogeneous and discordant dynamic on the spectrum between normal and pathological conditions. MDS does not appear to be a simple, intermediate stage but rather serves as a decisive step for the mounting of an efficient or ineffective immune response, leading to either the removal of the tumor cells or to malignancy.
Collapse
Affiliation(s)
- Vlad Andrei Cianga
- Department of Hematology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania.,Department of Clinical Hematology, Regional Institute of Oncology Iasi, Iasi, Romania
| | - Lydia Campos Catafal
- Hematology Laboratory, Universitary Hospital of Saint-Etienne, Saint-Etienne, France
| | - Petru Cianga
- Department of Immunology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Mariana Pavel Tanasa
- Department of Immunology, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Mohamad Cherry
- Hematology Laboratory, Universitary Hospital of Saint-Etienne, Saint-Etienne, France
| | - Phillipe Collet
- Department of Hematology, Lucien Neuwirth Cancer Institute, Saint Priest en Jarez, France
| | - Emmanuelle Tavernier
- Department of Hematology, Lucien Neuwirth Cancer Institute, Saint Priest en Jarez, France
| | - Denis Guyotat
- Department of Hematology, Lucien Neuwirth Cancer Institute, Saint Priest en Jarez, France
| | - Cristina Rusu
- Department of Genetics, Grigore T. Popa University of Medicine and Pharmacy, Iasi, Romania
| | - Carmen Mariana Aanei
- Hematology Laboratory, Universitary Hospital of Saint-Etienne, Saint-Etienne, France
| |
Collapse
|
13
|
Li M, Guo W, Dong Y, Wang X, Dai D, Liu X, Wu Y, Li M, Zhang W, Zhou H, Zhang Z, Lin L, Kang Z, Yu T, Tian C, Qin R, Gui Y, Jiang F, Fan H, Heissmeyer V, Sarapultsev A, Wang L, Luo S, Hu D. Elevated Exhaustion Levels of NK and CD8 + T Cells as Indicators for Progression and Prognosis of COVID-19 Disease. Front Immunol 2020; 11:580237. [PMID: 33154753 PMCID: PMC7591707 DOI: 10.3389/fimmu.2020.580237] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
Background Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) induced Coronavirus Disease 2019 (COVID-19) has posed a global threat to public health. The immune system is crucial in defending and eliminating the virus and infected cells. However, immune dysregulation may result in the rapid progression of COVID-19. Here, we evaluated the subsets, phenotypic and functional characteristics of natural killer (NK) and T cells in patients with COVID-19 and their associations with disease severity. Methods Demographic and clinical data of COVID-19 patients enrolled in Wuhan Union Hospital from February 25 to February 27, 2020, were collected and analyzed. The phenotypic and functional characteristics of NK cells and T cells subsets in circulating blood and serum levels of cytokines were analyzed via flow cytometry. Then the LASSO logistic regression model was employed to predict risk factors for the severity of COVID-19. Results The counts and percentages of NK cells, CD4+ T cells, CD8+ T cells and NKT cells were significantly reduced in patients with severe symptoms. The cytotoxic CD3-CD56dimCD16+ cell population significantly decreased, while the CD3-CD56dimCD16- part significantly increased in severe COVID-19 patients. More importantly, elevated expression of regulatory molecules, such as CD244 and programmed death-1 (PD-1), on NK cells and T cells, as well as decreased serum cytotoxic effector molecules including perforin and granzyme A, were detected in patients with COVID-19. The serum IL-6, IL-10, and TNF-α were significantly increased in severe patients. Moreover, the CD3-CD56dimCD16- cells were screened out as an influential factor in severe cases by LASSO logistic regression. Conclusions The functional exhaustion and other subset alteration of NK and T cells may contribute to the progression and improve the prognosis of COVID-19. Surveillance of lymphocyte subsets may in the future enable early screening for signs of critical illness and understanding the pathogenesis of this disease.
Collapse
Affiliation(s)
- Mingyue Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weina Guo
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaobei Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Die Dai
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xingxing Liu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yiquan Wu
- HIV and AIDS Malignancy Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mengmeng Li
- Department of Gastroenterology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Wenjing Zhang
- Department of Paediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zili Zhang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lan Lin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenyu Kang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting Yu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunxia Tian
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Qin
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Gui
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Jiang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Heng Fan
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Vigo Heissmeyer
- Institute for Immunology, Ludwig-Maximilians-Universität München, Munich, Germany.,Institute of Molecular Immunology, Helmholtz Zentrum München, Munich, Germany
| | - Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, Ekaterinburg, Russia
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Hashemi E, Malarkannan S. Tissue-Resident NK Cells: Development, Maturation, and Clinical Relevance. Cancers (Basel) 2020; 12:cancers12061553. [PMID: 32545516 PMCID: PMC7352973 DOI: 10.3390/cancers12061553] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 12/14/2022] Open
Abstract
Natural killer (NK) cells belong to type 1 innate lymphoid cells (ILC1) and are essential in killing infected or transformed cells. NK cells mediate their effector functions using non-clonotypic germ-line-encoded activation receptors. The utilization of non-polymorphic and conserved activating receptors promoted the conceptual dogma that NK cells are homogeneous with limited but focused immune functions. However, emerging studies reveal that NK cells are highly heterogeneous with divergent immune functions. A distinct combination of several activation and inhibitory receptors form a diverse array of NK cell subsets in both humans and mice. Importantly, one of the central factors that determine NK cell heterogeneity and their divergent functions is their tissue residency. Decades of studies provided strong support that NK cells develop in the bone marrow. However, evolving evidence supports the notion that NK cells also develop and differentiate in tissues. Here, we summarize the molecular basis, phenotypic signatures, and functions of tissue-resident NK cells and compare them with conventional NK cells.
Collapse
Affiliation(s)
- Elaheh Hashemi
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI 53226, USA;
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Correspondence:
| |
Collapse
|
15
|
Cossarizza A, Chang HD, Radbruch A, Acs A, Adam D, Adam-Klages S, Agace WW, Aghaeepour N, Akdis M, Allez M, Almeida LN, Alvisi G, Anderson G, Andrä I, Annunziato F, Anselmo A, Bacher P, Baldari CT, Bari S, Barnaba V, Barros-Martins J, Battistini L, Bauer W, Baumgart S, Baumgarth N, Baumjohann D, Baying B, Bebawy M, Becher B, Beisker W, Benes V, Beyaert R, Blanco A, Boardman DA, Bogdan C, Borger JG, Borsellino G, Boulais PE, Bradford JA, Brenner D, Brinkman RR, Brooks AES, Busch DH, Büscher M, Bushnell TP, Calzetti F, Cameron G, Cammarata I, Cao X, Cardell SL, Casola S, Cassatella MA, Cavani A, Celada A, Chatenoud L, Chattopadhyay PK, Chow S, Christakou E, Čičin-Šain L, Clerici M, Colombo FS, Cook L, Cooke A, Cooper AM, Corbett AJ, Cosma A, Cosmi L, Coulie PG, Cumano A, Cvetkovic L, Dang VD, Dang-Heine C, Davey MS, Davies D, De Biasi S, Del Zotto G, Cruz GVD, Delacher M, Bella SD, Dellabona P, Deniz G, Dessing M, Di Santo JP, Diefenbach A, Dieli F, Dolf A, Dörner T, Dress RJ, Dudziak D, Dustin M, Dutertre CA, Ebner F, Eckle SBG, Edinger M, Eede P, Ehrhardt GR, Eich M, Engel P, Engelhardt B, Erdei A, Esser C, Everts B, Evrard M, Falk CS, Fehniger TA, Felipo-Benavent M, Ferry H, Feuerer M, Filby A, Filkor K, Fillatreau S, Follo M, Förster I, Foster J, Foulds GA, Frehse B, Frenette PS, Frischbutter S, Fritzsche W, Galbraith DW, Gangaev A, Garbi N, Gaudilliere B, Gazzinelli RT, Geginat J, Gerner W, Gherardin NA, Ghoreschi K, Gibellini L, Ginhoux F, Goda K, Godfrey DI, Goettlinger C, González-Navajas JM, Goodyear CS, Gori A, Grogan JL, Grummitt D, Grützkau A, Haftmann C, Hahn J, Hammad H, Hämmerling G, Hansmann L, Hansson G, Harpur CM, Hartmann S, Hauser A, Hauser AE, Haviland DL, Hedley D, Hernández DC, Herrera G, Herrmann M, Hess C, Höfer T, Hoffmann P, Hogquist K, Holland T, Höllt T, Holmdahl R, Hombrink P, Houston JP, Hoyer BF, Huang B, Huang FP, Huber JE, Huehn J, Hundemer M, Hunter CA, Hwang WYK, Iannone A, Ingelfinger F, Ivison SM, Jäck HM, Jani PK, Jávega B, Jonjic S, Kaiser T, Kalina T, Kamradt T, Kaufmann SHE, Keller B, Ketelaars SLC, Khalilnezhad A, Khan S, Kisielow J, Klenerman P, Knopf J, Koay HF, Kobow K, Kolls JK, Kong WT, Kopf M, Korn T, Kriegsmann K, Kristyanto H, Kroneis T, Krueger A, Kühne J, Kukat C, Kunkel D, Kunze-Schumacher H, Kurosaki T, Kurts C, Kvistborg P, Kwok I, Landry J, Lantz O, Lanuti P, LaRosa F, Lehuen A, LeibundGut-Landmann S, Leipold MD, Leung LY, Levings MK, Lino AC, Liotta F, Litwin V, Liu Y, Ljunggren HG, Lohoff M, Lombardi G, Lopez L, López-Botet M, Lovett-Racke AE, Lubberts E, Luche H, Ludewig B, Lugli E, Lunemann S, Maecker HT, Maggi L, Maguire O, Mair F, Mair KH, Mantovani A, Manz RA, Marshall AJ, Martínez-Romero A, Martrus G, Marventano I, Maslinski W, Matarese G, Mattioli AV, Maueröder C, Mazzoni A, McCluskey J, McGrath M, McGuire HM, McInnes IB, Mei HE, Melchers F, Melzer S, Mielenz D, Miller SD, Mills KH, Minderman H, Mjösberg J, Moore J, Moran B, Moretta L, Mosmann TR, Müller S, Multhoff G, Muñoz LE, Münz C, Nakayama T, Nasi M, Neumann K, Ng LG, Niedobitek A, Nourshargh S, Núñez G, O’Connor JE, Ochel A, Oja A, Ordonez D, Orfao A, Orlowski-Oliver E, Ouyang W, Oxenius A, Palankar R, Panse I, Pattanapanyasat K, Paulsen M, Pavlinic D, Penter L, Peterson P, Peth C, Petriz J, Piancone F, Pickl WF, Piconese S, Pinti M, Pockley AG, Podolska MJ, Poon Z, Pracht K, Prinz I, Pucillo CEM, Quataert SA, Quatrini L, Quinn KM, Radbruch H, Radstake TRDJ, Rahmig S, Rahn HP, Rajwa B, Ravichandran G, Raz Y, Rebhahn JA, Recktenwald D, Reimer D, e Sousa CR, Remmerswaal EB, Richter L, Rico LG, Riddell A, Rieger AM, Robinson JP, Romagnani C, Rubartelli A, Ruland J, Saalmüller A, Saeys Y, Saito T, Sakaguchi S, de-Oyanguren FS, Samstag Y, Sanderson S, Sandrock I, Santoni A, Sanz RB, Saresella M, Sautes-Fridman C, Sawitzki B, Schadt L, Scheffold A, Scherer HU, Schiemann M, Schildberg FA, Schimisky E, Schlitzer A, Schlosser J, Schmid S, Schmitt S, Schober K, Schraivogel D, Schuh W, Schüler T, Schulte R, Schulz AR, Schulz SR, Scottá C, Scott-Algara D, Sester DP, Shankey TV, Silva-Santos B, Simon AK, Sitnik KM, Sozzani S, Speiser DE, Spidlen J, Stahlberg A, Stall AM, Stanley N, Stark R, Stehle C, Steinmetz T, Stockinger H, Takahama Y, Takeda K, Tan L, Tárnok A, Tiegs G, Toldi G, Tornack J, Traggiai E, Trebak M, Tree TI, Trotter J, Trowsdale J, Tsoumakidou M, Ulrich H, Urbanczyk S, van de Veen W, van den Broek M, van der Pol E, Van Gassen S, Van Isterdael G, van Lier RA, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Borstel A, von Volkmann K, Waisman A, Walker RV, Wallace PK, Wang SA, Wang XM, Ward MD, Ward-Hartstonge KA, Warnatz K, Warnes G, Warth S, Waskow C, Watson JV, Watzl C, Wegener L, Weisenburger T, Wiedemann A, Wienands J, Wilharm A, Wilkinson RJ, Willimsky G, Wing JB, Winkelmann R, Winkler TH, Wirz OF, Wong A, Wurst P, Yang JHM, Yang J, Yazdanbakhsh M, Yu L, Yue A, Zhang H, Zhao Y, Ziegler SM, Zielinski C, Zimmermann J, Zychlinsky A. Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). Eur J Immunol 2019; 49:1457-1973. [PMID: 31633216 PMCID: PMC7350392 DOI: 10.1002/eji.201970107] [Citation(s) in RCA: 710] [Impact Index Per Article: 142.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.
Collapse
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, Univ. of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Acs
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Dieter Adam
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sabine Adam-Klages
- Institut für Transfusionsmedizin, Universitätsklinik Schleswig-Holstein, Kiel, Germany
| | - William W. Agace
- Mucosal Immunology group, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
- Immunology Section, Lund University, Lund, Sweden
| | - Nima Aghaeepour
- Departments of Anesthesiology, Pain and Perioperative Medicine; Biomedical Data Sciences; and Pediatrics, Stanford University, Stanford, CA, USA
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Matthieu Allez
- Université de Paris, Institut de Recherche Saint-Louis, INSERM U1160, and Gastroenterology Department, Hôpital Saint-Louis – APHP, Paris, France
| | | | - Giorgia Alvisi
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
| | | | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Francesco Annunziato
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Achille Anselmo
- Flow Cytometry Core, Humanitas Clinical and Research Center, Milan, Italy
| | - Petra Bacher
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
- Institut für Klinische Molekularbiologie, Christian-Albrechts Universität zu Kiel, Germany
| | | | - Sudipto Bari
- Division of Medical Sciences, National Cancer Centre Singapore, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Center for Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | | | | | - Wolfgang Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Baumgart
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Nicole Baumgarth
- Center for Comparative Medicine & Dept. Pathology, Microbiology & Immunology, University of California, Davis, CA, USA
| | - Dirk Baumjohann
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Bianka Baying
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Mary Bebawy
- Discipline of Pharmacy, Graduate School of Health, The University of Technology Sydney, Sydney, NSW, Australia
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Wolfgang Beisker
- Flow Cytometry Laboratory, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health, München, Germany
| | - Vladimir Benes
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Rudi Beyaert
- Department of Biomedical Molecular Biology, Center for Inflammation Research, Ghent University - VIB, Ghent, Belgium
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Dominic A. Boardman
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Christian Bogdan
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Erlangen, Germany
- Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg and Medical Immunology Campus Erlangen, Erlangen, Germany
| | - Jessica G. Borger
- Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Giovanna Borsellino
- Neuroimmunology and Flow Cytometry Units, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Philip E. Boulais
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
| | | | - Dirk Brenner
- Luxembourg Institute of Health, Department of Infection and Immunity, Experimental and Molecular Immunology, Esch-sur-Alzette, Luxembourg
- Odense University Hospital, Odense Research Center for Anaphylaxis, University of Southern Denmark, Department of Dermatology and Allergy Center, Odense, Denmark
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belvaux, Luxembourg
| | - Ryan R. Brinkman
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
- Terry Fox Laboratory, BC Cancer, Vancouver, BC, Canada
| | - Anna E. S. Brooks
- University of Auckland, School of Biological Sciences, Maurice Wilkins Center, Auckland, New Zealand
| | - Dirk H. Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- German Center for Infection Research (DZIF), Munich, Germany
- Focus Group “Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Martin Büscher
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Timothy P. Bushnell
- Department of Pediatrics and Shared Resource Laboratories, University of Rochester Medical Center, Rochester, NY, USA
| | - Federica Calzetti
- University of Verona, Department of Medicine, Section of General Pathology, Verona, Italy
| | - Garth Cameron
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Ilenia Cammarata
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
| | - Xuetao Cao
- National Key Laboratory of Medical Immunology, Nankai University, Tianjin, China
| | - Susanna L. Cardell
- Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Casola
- The FIRC Institute of Molecular Oncology (FOM), Milan, Italy
| | - Marco A. Cassatella
- University of Verona, Department of Medicine, Section of General Pathology, Verona, Italy
| | - Andrea Cavani
- National Institute for Health, Migration and Poverty (INMP), Rome, Italy
| | - Antonio Celada
- Macrophage Biology Group, School of Biology, University of Barcelona, Barcelona, Spain
| | - Lucienne Chatenoud
- Université Paris Descartes, Institut National de la Santé et de la Recherche Médicale, Paris, France
| | | | - Sue Chow
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Eleni Christakou
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | - Luka Čičin-Šain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mario Clerici
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Department of Physiopathology and Transplants, University of Milan, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Laura Cook
- BC Children’s Hospital Research Institute, Vancouver, Canada
- Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Andrea M. Cooper
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Antonio Cosma
- National Cytometry Platform, Luxembourg Institute of Health, Department of Infection and Immunity, Esch-sur-Alzette, Luxembourg
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pierre G. Coulie
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Ana Cumano
- Unit Lymphopoiesis, Department of Immunology, Institut Pasteur, Paris, France
| | - Ljiljana Cvetkovic
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Chantip Dang-Heine
- Clinical Research Unit, Berlin Institute of Health (BIH), Charite Universitätsmedizin Berlin, Berlin, Germany
| | - Martin S. Davey
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | - Derek Davies
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | | | - Gelo Victoriano Dela Cruz
- Novo Nordisk Foundation Center for Stem Cell Biology – DanStem, University of Copenhagen, Copenhagen, Denmark
| | - Michael Delacher
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Germany
| | - Silvia Della Bella
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Paolo Dellabona
- Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy
| | - Günnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | | | - James P. Di Santo
- Innate Immunty Unit, Department of Immunology, Institut Pasteur, Paris, France
- Institut Pasteur, Inserm U1223, Paris, France
| | - Andreas Diefenbach
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Laboratory of Innate Immunity, Department of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Francesco Dieli
- University of Palermo, Central Laboratory of Advanced Diagnosis and Biomedical Research, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Palermo, Italy
| | - Andreas Dolf
- Flow Cytometry Core Facility, Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Thomas Dörner
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Regine J. Dress
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Diana Dudziak
- Department of Dermatology, Laboratory of Dendritic Cell Biology, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), University Hospital Erlangen, Erlangen, Germany
| | - Michael Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Charles-Antoine Dutertre
- Program in Emerging Infectious Disease, Duke-NUS Medical School, Singapore
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Friederike Ebner
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Sidonia B. G. Eckle
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Matthias Edinger
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Pascale Eede
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Germany
| | | | - Marcus Eich
- Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany
| | - Pablo Engel
- University of Barcelona, Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Barcelona, Spain
| | | | - Anna Erdei
- Department of Immunology, University L. Eotvos, Budapest, Hungary
| | - Charlotte Esser
- Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maximilien Evrard
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Christine S. Falk
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Todd A. Fehniger
- Division of Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mar Felipo-Benavent
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Principe Felipe Research Center, Valencia, Spain
| | - Helen Ferry
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Markus Feuerer
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Chair for Immunology, University Regensburg, Germany
| | - Andrew Filby
- The Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | | | - Simon Fillatreau
- Institut Necker-Enfants Malades, Université Paris Descartes Sorbonne Paris Cité, Faculté de Médecine, AP-HP, Hôpital Necker Enfants Malades, INSERM U1151-CNRS UMR 8253, Paris, France
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Universitaetsklinikum FreiburgLighthouse Core Facility, Zentrum für Translationale Zellforschung, Klinik für Innere Medizin I, Freiburg, Germany
| | - Irmgard Förster
- Immunology and Environment, LIMES Institute, University of Bonn, Bonn, Germany
| | | | - Gemma A. Foulds
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Britta Frehse
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Paul S. Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Stefan Frischbutter
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Dermatology, Venereology and Allergology
| | - Wolfgang Fritzsche
- Nanobiophotonics Department, Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
| | - David W. Galbraith
- School of Plant Sciences and Bio5 Institute, University of Arizona, Tucson, USA
- Honorary Dean of Life Sciences, Henan University, Kaifeng, China
| | - Anastasia Gangaev
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Natalio Garbi
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Brice Gaudilliere
- Stanford Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, CA, USA
| | - Ricardo T. Gazzinelli
- Fundação Oswaldo Cruz - Minas, Laboratory of Immunopatology, Belo Horizonte, MG, Brazil
- Department of Mecicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jens Geginat
- INGM - Fondazione Istituto Nazionale di Genetica Molecolare “Ronmeo ed Enrica Invernizzi”, Milan, Italy
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Nicholas A. Gherardin
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Keisuke Goda
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Chemistry, University of Tokyo, Tokyo, Japan
- Institute of Technological Sciences, Wuhan University, Wuhan, China
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | | | - Jose M. González-Navajas
- Alicante Institute for Health and Biomedical Research (ISABIAL), Alicante, Spain
- Networked Biomedical Research Center for Hepatic and Digestive Diseases (CIBERehd), Madrid, Spain
| | - Carl S. Goodyear
- Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Andrea Gori
- Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, University of Milan
| | - Jane L. Grogan
- Cancer Immunology Research, Genentech, South San Francisco, CA, USA
| | | | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Claudia Haftmann
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jonas Hahn
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Hamida Hammad
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Sciences, Zwijnaarde, Belgium
| | | | - Leo Hansmann
- Berlin Institute of Health (BIH), Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, Berlin, Germany
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Goran Hansson
- Department of Medicine and Center for Molecular Medicine at Karolinska University Hospital, Solna, Sweden
| | | | - Susanne Hartmann
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Andrea Hauser
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Anja E. Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin
- Department of Rheumatology and Clinical Immunology, Berlin Institute of Health, Berlin, Germany
| | - David L. Haviland
- Flow Cytometry, Houston Methodist Hospital Research Institute, Houston, TX, USA
| | - David Hedley
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Daniela C. Hernández
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Guadalupe Herrera
- Cytometry Service, Incliva Foundation. Clinic Hospital and Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Christoph Hess
- Immunobiology Laboratory, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Thomas Höfer
- German Cancer Research Center (DKFZ), Division of Theoretical Systems Biology, Heidelberg, Germany
| | - Petra Hoffmann
- Regensburg Center for Interventional Immunology (RCI), Regensburg, Germany
- Department of Internal Medicine III, University Hospital Regensburg, Germany
| | - Kristin Hogquist
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Tristan Holland
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Thomas Höllt
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
- Computer Graphics and Visualization, Department of Intelligent Systems, TU Delft, Delft, The Netherlands
| | | | - Pleun Hombrink
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jessica P. Houston
- Department of Chemical & Materials Engineering, New Mexico State University, Las Cruces, NM, USA
| | - Bimba F. Hoyer
- Rheumatologie/Klinische Immunologie, Klinik für Innere Medizin I und Exzellenzzentrum Entzündungsmedizin, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Bo Huang
- Department of Immunology & National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College, Beijing, China
| | - Fang-Ping Huang
- Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, China
| | - Johanna E. Huber
- Institute for Immunology, Faculty of Medicine, Biomedical Center, LMU Munich, Planegg-Martinsried, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Hundemer
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Christopher A. Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - William Y. K. Hwang
- Department of Hematology, Singapore General Hospital, Singapore
- Cancer & Stem Cell Biology, Duke-NUS Medical School, Singapore
- Executive Offices, National Cancer Centre Singapore, Singapore
| | - Anna Iannone
- Department of Diagnostic Medicine, Clinical and Public Health, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Florian Ingelfinger
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sabine M Ivison
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Peter K. Jani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Stipan Jonjic
- Department of Histology and Embryology/Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Toralf Kaiser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Thomas Kamradt
- Jena University Hospital, Institute of Immunology, Jena, Germany
| | | | - Baerbel Keller
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Steven L. C. Ketelaars
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ahad Khalilnezhad
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jan Kisielow
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Paul Klenerman
- Experimental Medicine Division, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jasmin Knopf
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Hui-Fern Koay
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Katja Kobow
- Department of Neuropathology, Universitätsklinikum Erlangen, Germany
| | - Jay K. Kolls
- John W Deming Endowed Chair in Internal Medicine, Center for Translational Research in Infection and Inflammation Tulane School of Medicine, New Orleans, LA, USA
| | - Wan Ting Kong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zurich, Zürich, Switzerland
| | - Thomas Korn
- Department of Neurology, Technical University of Munich, Munich, Germany
| | - Katharina Kriegsmann
- Department of Hematology, Oncology and Rheumatology, University Heidelberg, Heidelberg, Germany
| | - Hendy Kristyanto
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Kroneis
- Division of Cell Biology, Histology & Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Andreas Krueger
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jenny Kühne
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Christian Kukat
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Désirée Kunkel
- Flow & Mass Cytometry Core Facility, Charité - Universitätsmedizin Berlin and Berlin Institute of Health, Berlin, Germany
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Heike Kunze-Schumacher
- Institute for Molecular Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Tomohiro Kurosaki
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Christian Kurts
- Institute of Experimental Immunology, University of Bonn, Germany
| | - Pia Kvistborg
- Division of Molecular Oncology and Immunology, the Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Immanuel Kwok
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
| | - Jonathan Landry
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Olivier Lantz
- INSERM U932, PSL University, Institut Curie, Paris, France
| | - Paola Lanuti
- Department of Medicine and Aging Sciences, Centre on Aging Sciences and Translational Medicine (Ce.S.I.-Me.T.), University “G. d’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Francesca LaRosa
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Agnès Lehuen
- Institut Cochin, CNRS8104, INSERM1016, Department of Endocrinology, Metabolism and Diabetes, Université de Paris, Paris, France
| | | | - Michael D. Leipold
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, CA, USA
| | - Leslie Y.T. Leung
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Megan K. Levings
- Department of Surgery, The University of British Columbia, Vancouver, Canada
- BC Children’s Hospital Research Institute, Vancouver, Canada
- School of Biomedical Engineering, The University of British Columbia, Vancouver, Canada
| | - Andreia C. Lino
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Francesco Liotta
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | | | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
| | - Michael Lohoff
- Inst. f. Med. Mikrobiology and Hospital Hygiene, University of Marburg, Germany
| | - Giovanna Lombardi
- King’s College London, “Peter Gorer” Department of Immunobiology, London, UK
| | | | - Miguel López-Botet
- IMIM(Hospital de Mar Medical Research Institute), University Pompeu Fabra, Barcelona, Spain
| | - Amy E. Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Herve Luche
- Centre d’Immunophénomique - CIPHE (PHENOMIN), Aix Marseille Université (UMS3367), Inserm (US012), CNRS (UMS3367), Marseille, France
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St.Gallen, St. Gallen, Switzerland
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Italy
- Flow Cytometry Core, Humanitas Clinical and Research Center, Milan, Italy
| | - Sebastian Lunemann
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Holden T. Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura Maggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Orla Maguire
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Florian Mair
- Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, Seattle, WA, USA
| | - Kerstin H. Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Alberto Mantovani
- Istituto Clinico Humanitas IRCCS and Humanitas University, Pieve Emanuele, Milan, Italy
- William Harvey Research Institute, Queen Mary University, London, United Kingdom
| | - Rudolf A. Manz
- Institute for Systemic Inflammation Research, University of Luebeck, Luebeck, Germany
| | - Aaron J. Marshall
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Glòria Martrus
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Ivana Marventano
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Wlodzimierz Maslinski
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Department of Pathophysiology and Immunology, Warsaw, Poland
| | - Giuseppe Matarese
- Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecologie Mediche, Università di Napoli Federico II and Istituto per l’Endocrinologia e l’Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Anna Vittoria Mattioli
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
- Lab of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Christian Maueröder
- Cell Clearance in Health and Disease Lab, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Alessio Mazzoni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - James McCluskey
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria, Australia
| | - Mairi McGrath
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Helen M. McGuire
- Ramaciotti Facility for Human Systems Biology, and Discipline of Pathology, The University of Sydney, Camperdown, Australia
| | - Iain B. McInnes
- Institute of Infection Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow Biomedical Research Centre, Glasgow, UK
| | - Henrik E. Mei
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Fritz Melchers
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Max Planck Institute for Infection Biology, Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, University Leipzig, Leipzig, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stephen D. Miller
- Interdepartmental Immunobiology Center, Dept. of Microbiology-Immunology, Northwestern Univ. Medical School, Chicago, IL, USA
| | - Kingston H.G. Mills
- Trinity College Dublin, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Hans Minderman
- Flow and Image Cytometry Shared Resource, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine Huddinge, ANA Futura, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical and Experimental Medine, Linköping University, Linköping, Sweden
| | - Jonni Moore
- Abramson Cancer Center Flow Cytometry and Cell Sorting Shared Resource, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Barry Moran
- Trinity College Dublin, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Dublin, Ireland
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesu Children’s Hospital, Rome, Italy
| | - Tim R. Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Susann Müller
- Centre for Environmental Research - UFZ, Department Environmental Microbiology, Leipzig, Germany
| | - Gabriele Multhoff
- Institute for Innovative Radiotherapy (iRT), Experimental Immune Biology, Helmholtz Zentrum München, Neuherberg, Germany
- Radiation Immuno-Oncology Group, Center for Translational Cancer Research Technische Universität München (TranslaTUM), Klinikum rechts der Isar, Munich, Germany
| | - Luis Enrique Muñoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Christian Münz
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba city, Chiba, Japan
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Katrin Neumann
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lai Guan Ng
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore
- Discipline of Dermatology, University of Sydney, Sydney, New South Wales, Australia
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Antonia Niedobitek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Sussan Nourshargh
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Gabriel Núñez
- Department of Pathology and Rogel Cancer Center, the University of Michigan, Ann Arbor, Michigan, USA
| | - José-Enrique O’Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Aaron Ochel
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Anna Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Diana Ordonez
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Alberto Orfao
- Department of Medicine, Cancer Research Centre (IBMCC-CSIC/USAL), Cytometry Service, University of Salamanca, CIBERONC and Institute for Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Eva Orlowski-Oliver
- Burnet Institute, AMREP Flow Cytometry Core Facility, Melbourne, Victoria, Australia
| | - Wenjun Ouyang
- Inflammation and Oncology, Research, Amgen Inc, South San Francisco, USA
| | | | - Raghavendra Palankar
- Department of Transfusion Medicine, Institute of Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Isabel Panse
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Kovit Pattanapanyasat
- Center of Excellence for Flow Cytometry, Department of Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Malte Paulsen
- Flow Cytometry Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dinko Pavlinic
- Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Livius Penter
- Department of Hematology, Oncology, and Tumor Immunology, Charité - Universitätsmedizin Berlin, Campus Virchow Klinikum, Berlin, Germany
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christian Peth
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Jordi Petriz
- Functional Cytomics Group, Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| | - Federica Piancone
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | - Winfried F. Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Rome, Italy
- Istituto Pasteur - Fondazione Cenci Bolognetti, Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - A. Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
- Chromocyte Limited, Electric Works, Sheffield, UK
| | - Malgorzata Justyna Podolska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Medicine 3, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
- Department for Internal Medicine 3, Institute for Rheumatology and Immunology, AG Munoz, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Zhiyong Poon
- Department of Hematology, Singapore General Hospital, Singapore
| | - Katharina Pracht
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Immo Prinz
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Sally A. Quataert
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Quatrini
- Department of Immunology, IRCCS Bambino Gesu Children’s Hospital, Rome, Italy
| | - Kylie M. Quinn
- School of Biomedical and Health Sciences, RMIT University, Bundoora, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Helena Radbruch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Neuropathology, Germany
| | - Tim R. D. J. Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Susann Rahmig
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany
| | - Hans-Peter Rahn
- Preparative Flow Cytometry, Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - Bartek Rajwa
- Bindley Biosciences Center, Purdue University, West Lafayette, IN, USA
| | - Gevitha Ravichandran
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yotam Raz
- Department of Internal Medicine, Groene Hart Hospital, Gouda, The Netherlands
| | - Jonathan A. Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Dorothea Reimer
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | | | - Ester B.M. Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Lisa Richter
- Core Facility Flow Cytometry, Biomedical Center, Ludwig-Maximilians-University Munich, Germany
| | - Laura G. Rico
- Functional Cytomics Group, Josep Carreras Leukaemia Research Institute, Campus ICO-Germans Trias i Pujol, Universitat Autònoma de Barcelona, UAB, Badalona, Spain
| | - Andy Riddell
- Flow Cytometry Scientific Technology Platform, The Francis Crick Institute, London, UK
| | - Aja M. Rieger
- Department of Medical Microbiology and Immunology, University of Alberta, Alberta, Canada
| | - J. Paul Robinson
- Purdue University Cytometry Laboratories, Purdue University, West Lafayette, IN, USA
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Anna Rubartelli
- Cell Biology Unit, IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Fakultät für Medizin, Technische Universität München, München, Germany
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Yvan Saeys
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Takashi Saito
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shimon Sakaguchi
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Francisco Sala de-Oyanguren
- Flow Cytometry Facility, Ludwig Cancer Institute, Faculty of Medicine and Biology, University of Lausanne, Epalinges, Switzerland
| | - Yvonne Samstag
- Heidelberg University, Institute of Immunology, Section of Molecular Immunology, Heidelberg, Germany
| | - Sharon Sanderson
- Translational Immunology Laboratory, NIHR BRC, University of Oxford, Kennedy Institute of Rheumatology, Oxford, UK
| | - Inga Sandrock
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Angela Santoni
- Department of Molecular Medicine, Sapienza University of Rome, IRCCS, Neuromed, Pozzilli, Italy
| | - Ramon Bellmàs Sanz
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Marina Saresella
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
- Milan Center for Neuroscience, University of Milano-Bicocca, Milan, Italy
| | | | - Birgit Sawitzki
- Charité – Universitätsmedizin Berlin, and Berlin Institute of Health, Institute of Medical Immunology, Berlin, Germany
| | - Linda Schadt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Alexander Scheffold
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Hans U. Scherer
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank A. Schildberg
- Clinic for Orthopedics and Trauma Surgery, University Hospital Bonn, Bonn, Germany
| | | | - Andreas Schlitzer
- Quantitative Systems Biology, Life & Medical Sciences Institute, University of Bonn, Bonn, Germany
| | - Josephine Schlosser
- Institute of Immunology, Centre for Infection Medicine, Department of Veterinary Medicine, Freie Universität Berlin, Germany
| | - Stephan Schmid
- Internal Medicine I, University Hospital Regensburg, Germany
| | - Steffen Schmitt
- Flow Cytometry Core Facility, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Daniel Schraivogel
- Genome Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Wolfgang Schuh
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Reiner Schulte
- University of Cambridge, Cambridge Institute for Medical Research, Cambridge, UK
| | - Axel Ronald Schulz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Sebastian R. Schulz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Cristiano Scottá
- King’s College London, “Peter Gorer” Department of Immunobiology, London, UK
| | - Daniel Scott-Algara
- Institut Pasteur, Cellular Lymphocytes Biology, Immunology Departement, Paris, France
| | - David P. Sester
- TRI Flow Cytometry Suite (TRI.fcs), Translational Research Institute, Wooloongabba, QLD, Australia
| | | | - Bruno Silva-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Katarzyna M. Sitnik
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Silvano Sozzani
- Dept. Molecular Translational Medicine, University of Brescia, Brescia, Italy
| | - Daniel E. Speiser
- Department of Oncology, University of Lausanne and CHUV, Epalinges, Switzerland
| | | | - Anders Stahlberg
- Lundberg Laboratory for Cancer, Department of Pathology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | | | - Natalie Stanley
- Departments of Anesthesiology, Pain and Perioperative Medicine; Biomedical Data Sciences; and Pediatrics, Stanford University, Stanford, CA, USA
| | - Regina Stark
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Christina Stehle
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Medical Department I, Division of Gastroenterology, Infectiology and Rheumatology, Berlin, Germany
| | - Tobit Steinmetz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | | | - Kiyoshi Takeda
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Leonard Tan
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Attila Tárnok
- Departement for Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute for Medical Informatics, Statistics and Epidemiology (IMISE), University of Leipzig, Leipzig, Germany
- Department of Precision Instruments, Tsinghua University, Beijing, China
| | - Gisa Tiegs
- Institute of Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Julia Tornack
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- BioGenes GmbH, Berlin, Germany
| | - Elisabetta Traggiai
- Novartis Biologics Center, Mechanistic Immunology Unit, Novartis Institute for Biomedical Research, NIBR, Basel, Switzerland
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, PA, United States
| | - Timothy I.M. Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | | | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | | | - Henning Ulrich
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, SP, Brazil
| | - Sophia Urbanczyk
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Willem van de Veen
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Maries van den Broek
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Comprehensive Cancer Center Zurich, Switzerland
| | - Edwin van der Pol
- Vesicle Observation Center; Biomedical Engineering & Physics; Laboratory Experimental Clinical Chemistry; Amsterdam University Medical Centers, Location AMC, The Netherlands
| | - Sofie Van Gassen
- Data Mining and Modeling for Biomedicine, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | | | - René A.W. van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc Veldhoen
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Portugal
| | | | - Paulo Vieira
- Unit Lymphopoiesis, Department of Immunology, Institut Pasteur, Paris, France
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuremberg (FAU), Erlangen, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT) Charité Universitätsmedizin Berlin and Berlin Institute of Health, Core Unit ImmunoCheck
| | - Anouk von Borstel
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, Victoria, Australia
| | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | - Paul K. Wallace
- Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Sa A. Wang
- Dept of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin M. Wang
- The Scientific Platforms, the Westmead Institute for Medical Research, the Westmead Research Hub, Westmead, New South Wales, Australia
| | | | | | - Klaus Warnatz
- Department of Rheumatology and Clinical Immunology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gary Warnes
- Flow Cytometry Core Facility, Blizard Institute, Queen Mary London University, London, UK
| | - Sarah Warth
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Claudia Waskow
- Regeneration in Hematopoiesis, Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | | | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Leonie Wegener
- Biophysics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Thomas Weisenburger
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Annika Wiedemann
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Dept. Medicine/Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, Germany
| | - Jürgen Wienands
- Institute for Cellular & Molecular Immunology, University Medical Center Göttingen, Göttingen, Germany
| | - Anneke Wilharm
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Robert John Wilkinson
- Department of Infectious Disease, Imperial College London, UK
- Wellcome Centre for Infectious Diseases Research in Africa and Department of Medicine, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Republic of South Africa
- Tuberculosis Laboratory, The Francis Crick Institute, London, UK
| | - Gerald Willimsky
- Cooperation Unit for Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ), Berlin, Germany
| | - James B. Wing
- WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Rieke Winkelmann
- Institut für Immunologie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Thomas H. Winkler
- Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver F. Wirz
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Alicia Wong
- Singapore Immunology Network (SIgN), A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Peter Wurst
- University Bonn, Medical Faculty, Bonn, Germany
| | - Jennie H. M. Yang
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, UK
- National Institutes of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service, Foundation Trust and King’s College London, UK
| | - Juhao Yang
- Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Alice Yue
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Susanne Maria Ziegler
- Department of Virus Immunology, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Christina Zielinski
- German Center for Infection Research (DZIF), Munich, Germany
- Institute of Virology, Technical University of Munich, Munich, Germany
- TranslaTUM, Technical University of Munich, Munich, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories (Department of Biomedical Research), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Bern, Switzerland
| | | |
Collapse
|
16
|
Wilk AJ, Blish CA. Diversification of human NK cells: Lessons from deep profiling. J Leukoc Biol 2018; 103:629-641. [PMID: 29350874 PMCID: PMC6133712 DOI: 10.1002/jlb.6ri0917-390r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 12/06/2017] [Accepted: 12/29/2017] [Indexed: 12/14/2022] Open
Abstract
NK cells are innate lymphocytes with important roles in immunoregulation, immunosurveillance, and cytokine production. Originally defined on the functional basis of their "natural" ability to lyse tumor targets and thought to be a relatively homogeneous group of lymphocytes, NK cells possess a remarkable degree of phenotypic and functional diversity due to the combinatorial expression of an array of activating and inhibitory receptors. Diversification of NK cells is multifaceted: mechanisms of NK cell education that promote self-tolerance result in a heterogeneous repertoire that further diversifies upon encounters with viral pathogens. Here, we review the genetic, developmental, and environmental sources of NK cell diversity with a particular focus on deep profiling and single-cell technologies that will enable a more thorough and accurate dissection of this intricate and poorly understood lymphocyte lineage.
Collapse
Affiliation(s)
- Aaron J. Wilk
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A. Blish
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, and Stanford Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
17
|
Cossarizza A, Chang HD, Radbruch A, Akdis M, Andrä I, Annunziato F, Bacher P, Barnaba V, Battistini L, Bauer WM, Baumgart S, Becher B, Beisker W, Berek C, Blanco A, Borsellino G, Boulais PE, Brinkman RR, Büscher M, Busch DH, Bushnell TP, Cao X, Cavani A, Chattopadhyay PK, Cheng Q, Chow S, Clerici M, Cooke A, Cosma A, Cosmi L, Cumano A, Dang VD, Davies D, De Biasi S, Del Zotto G, Della Bella S, Dellabona P, Deniz G, Dessing M, Diefenbach A, Di Santo J, Dieli F, Dolf A, Donnenberg VS, Dörner T, Ehrhardt GRA, Endl E, Engel P, Engelhardt B, Esser C, Everts B, Dreher A, Falk CS, Fehniger TA, Filby A, Fillatreau S, Follo M, Förster I, Foster J, Foulds GA, Frenette PS, Galbraith D, Garbi N, García-Godoy MD, Geginat J, Ghoreschi K, Gibellini L, Goettlinger C, Goodyear CS, Gori A, Grogan J, Gross M, Grützkau A, Grummitt D, Hahn J, Hammer Q, Hauser AE, Haviland DL, Hedley D, Herrera G, Herrmann M, Hiepe F, Holland T, Hombrink P, Houston JP, Hoyer BF, Huang B, Hunter CA, Iannone A, Jäck HM, Jávega B, Jonjic S, Juelke K, Jung S, Kaiser T, Kalina T, Keller B, Khan S, Kienhöfer D, Kroneis T, Kunkel D, Kurts C, Kvistborg P, Lannigan J, Lantz O, Larbi A, LeibundGut-Landmann S, Leipold MD, Levings MK, Litwin V, Liu Y, Lohoff M, Lombardi G, Lopez L, Lovett-Racke A, Lubberts E, Ludewig B, Lugli E, Maecker HT, Martrus G, Matarese G, Maueröder C, McGrath M, McInnes I, Mei HE, Melchers F, Melzer S, Mielenz D, Mills K, Mirrer D, Mjösberg J, Moore J, Moran B, Moretta A, Moretta L, Mosmann TR, Müller S, Müller W, Münz C, Multhoff G, Munoz LE, Murphy KM, Nakayama T, Nasi M, Neudörfl C, Nolan J, Nourshargh S, O'Connor JE, Ouyang W, Oxenius A, Palankar R, Panse I, Peterson P, Peth C, Petriz J, Philips D, Pickl W, Piconese S, Pinti M, Pockley AG, Podolska MJ, Pucillo C, Quataert SA, Radstake TRDJ, Rajwa B, Rebhahn JA, Recktenwald D, Remmerswaal EBM, Rezvani K, Rico LG, Robinson JP, Romagnani C, Rubartelli A, Ruckert B, Ruland J, Sakaguchi S, Sala-de-Oyanguren F, Samstag Y, Sanderson S, Sawitzki B, Scheffold A, Schiemann M, Schildberg F, Schimisky E, Schmid SA, Schmitt S, Schober K, Schüler T, Schulz AR, Schumacher T, Scotta C, Shankey TV, Shemer A, Simon AK, Spidlen J, Stall AM, Stark R, Stehle C, Stein M, Steinmetz T, Stockinger H, Takahama Y, Tarnok A, Tian Z, Toldi G, Tornack J, Traggiai E, Trotter J, Ulrich H, van der Braber M, van Lier RAW, Veldhoen M, Vento-Asturias S, Vieira P, Voehringer D, Volk HD, von Volkmann K, Waisman A, Walker R, Ward MD, Warnatz K, Warth S, Watson JV, Watzl C, Wegener L, Wiedemann A, Wienands J, Willimsky G, Wing J, Wurst P, Yu L, Yue A, Zhang Q, Zhao Y, Ziegler S, Zimmermann J. Guidelines for the use of flow cytometry and cell sorting in immunological studies. Eur J Immunol 2017; 47:1584-1797. [PMID: 29023707 PMCID: PMC9165548 DOI: 10.1002/eji.201646632] [Citation(s) in RCA: 399] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, Univ. of Modena and Reggio Emilia School of Medicine, Modena, Italy
| | - Hyun-Dong Chang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Andreas Radbruch
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Mübeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Immanuel Andrä
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | | | | | - Vincenzo Barnaba
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Via Regina Elena 324, 00161 Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Luca Battistini
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, Rome, Italy
| | - Wolfgang M Bauer
- Division of Immunology, Allergy and Infectious Diseases, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Sabine Baumgart
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Burkhard Becher
- University of Zurich, Institute of Experimental Immunology, Zürich, Switzerland
| | - Wolfgang Beisker
- Flow Cytometry Laboratory, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München, German Research Center for Environmental Health
| | - Claudia Berek
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Alfonso Blanco
- Flow Cytometry Core Technologies, UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Giovanna Borsellino
- Neuroimmunology and Flow Cytometry Units, Santa Lucia Foundation, Rome, Italy
| | - Philip E Boulais
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- The Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, New York, USA
| | - Ryan R Brinkman
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Martin Büscher
- Biopyhsics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Dirk H Busch
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
- DZIF - National Centre for Infection Research, Munich, Germany
- Focus Group ''Clinical Cell Processing and Purification", Institute for Advanced Study, Technische Universität München, Munich, Germany
| | - Timothy P Bushnell
- Department of Pediatrics and Shared Resource Laboratories, University of Rochester Medical Center, Rochester NY, United States of America
| | - Xuetao Cao
- Institute of Immunology, Zhejiang University School of Medicine, Hangzhou 310058, China
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, China
- Department of Immunology & Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China
| | | | | | - Qingyu Cheng
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Medizinische Immunolologie Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Sue Chow
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Mario Clerici
- University of Milano and Don C Gnocchi Foundation IRCCS, Milano, Italy
| | - Anne Cooke
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Antonio Cosma
- CEA - Université Paris Sud - INSERM U, Immunology of viral infections and autoimmune diseases, France
| | - Lorenzo Cosmi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italia
| | - Ana Cumano
- Lymphopoiesis Unit, Immunology Department Pasteur Institute, Paris, France
| | - Van Duc Dang
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Derek Davies
- Flow Cytometry Facility, The Francis Crick Institute, London, United Kingdom
| | - Sara De Biasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | | | - Silvia Della Bella
- University of Milan, Department of Medical Biotechnologies and Translational Medicine
- Humanitas Clinical and Research Center, Lab of Clinical and Experimental Immunology, Rozzano, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Head, Division of Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milano, Italy
| | - Günnur Deniz
- Istanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Immunology, Istanbul, Turkey
| | | | | | | | - Francesco Dieli
- University of Palermo, Department of Biopathology, Palermo, Italy
| | - Andreas Dolf
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | - Vera S Donnenberg
- Department of Cardiothoracic Surgery, School of Medicine, University of Pittsburgh, PA
| | - Thomas Dörner
- Department of Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin, Germany
| | | | - Elmar Endl
- Department of Molecular Medicine and Experimental Immunology, (Core Facility Flow Cytometry) University of Bonn, Germany
| | - Pablo Engel
- Department of Biomedical Sciences, University of Barcelona, Barcelona, Spain
| | - Britta Engelhardt
- Professor for Immunobiology, Director, Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Charlotte Esser
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Bart Everts
- Leiden University Medical Center, Department of Parasitology, Leiden, The Netherlands
| | - Anita Dreher
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Christine S Falk
- Institute of Transplant Immunology, IFB-Tx, MHH Hannover Medical School, Hannover, Germany
- German Center for Infectious diseases (DZIF), TTU-IICH, Hannover, Germany
| | - Todd A Fehniger
- Divisions of Hematology & Oncology, Department of Medicine, Washington University School of Medicine, St Louis, MO
| | - Andrew Filby
- The Flow Cytometry Core Facility, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Simon Fillatreau
- Institut Necker-Enfants Malades (INEM), INSERM U-CNRS UMR, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Faculté de Médecine, Paris, France
- Assistance Publique - Hôpitaux de Paris (AP-HP), Hôpital Necker Enfants Malades, Paris, France
| | - Marie Follo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Irmgard Förster
- Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | | | - Gemma A Foulds
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
| | - Paul S Frenette
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Galbraith
- University of Arizona, Bio Institute, School of Plant Sciences and Arizona Cancer Center, Tucson, Arizona, USA
| | - Natalio Garbi
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
- Department of Molecular Immunology, Institute of Experimental Immunology, Bonn, Germany
| | | | - Jens Geginat
- INGM, Istituto Nazionale Genetica Molecolare "Romeo ed Enrica Invernizzi", Milan, Italy
| | - Kamran Ghoreschi
- Flow Cytometry Core Facility, Department of Dermatology, University Medical Center, Eberhard Karls University Tübingen, Germany
| | - Lara Gibellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | | | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Andrea Gori
- Clinic of Infectious Diseases, "San Gerardo" Hospital - ASST Monza, University Milano-Bicocca, Monza, Italy
| | - Jane Grogan
- Genentech, Department of Cancer Immunology, South San Francisco, California, USA
| | - Mor Gross
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas Grützkau
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | | | - Jonas Hahn
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Quirin Hammer
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Anja E Hauser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Immundynamics, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - David Hedley
- Divsion of Medical Oncology and Hematology, Princess Margaret Hospital, Toronto, Ontario, Canada
| | - Guadalupe Herrera
- Cytometry Service, Incliva Foundation. Clinic Hospital and Faculty of Medicine, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Martin Herrmann
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Falk Hiepe
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Medizinische Immunolologie Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Tristan Holland
- Department of Molecular Immunology, Institute of Experimental Immunology, Bonn, Germany
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Jessica P Houston
- Chemical and Materials Engineering, New Mexico State University, Las Cruces, NM, 88003, USA
| | - Bimba F Hoyer
- Medizinische Klinik mit Schwerpunkt Rheumatologie und Medizinische Immunolologie Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Immunology, Institute of Basic Medical Sciences & State Key Laboratory of Medical Molecular Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Clinical Immunology Center, Chinese Academy of Medical Sciences, Beijing, China
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Iannone
- Department of Diagnostic Medicine, Clinical and Public Health, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Internal Medicine III, Nikolaus-Fiebiger-Center of MolecularMedicine, University Hospital Erlangen, Erlangen, Germany
| | - Beatriz Jávega
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Stipan Jonjic
- Faculty of Medicine, Center for Proteomics, University of Rijeka, Rijeka, Croatia
- Department for Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Kerstin Juelke
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Steffen Jung
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Toralf Kaiser
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Tomas Kalina
- Department of Paediatric Haematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Baerbel Keller
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Srijit Khan
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Deborah Kienhöfer
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Thomas Kroneis
- Medical University of Graz, Institute of Cell Biology, Histology & Embryology, Graz, Austria
| | - Désirée Kunkel
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | - Christian Kurts
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | - Pia Kvistborg
- Division of immunology, the Netherlands Cancer Institute, Amsterdam
| | - Joanne Lannigan
- University of Virginia School of Medicine, Flow Cytometry Shared Resource, Charlottesville, VA, USA
| | - Olivier Lantz
- INSERM U932, Institut Curie, Paris 75005, France
- Laboratoire d'immunologie clinique, Institut Curie, Paris 75005, France
- Centre d'investigation Clinique en Biothérapie Gustave-Roussy Institut Curie (CIC-BT1428), Institut Curie, Paris 75005, France
| | - Anis Larbi
- Singapore Immunology Network (SIgN), Principal Investigator, Biology of Aging Program
- Director Flow Cytomerty Platform, Immunomonitoring Platform, Agency for Science Technology and Research (A*STAR), Singapore
- Department of Medicine, University of Sherbrooke, Qc, Canada
- Faculty of Sciences, ElManar University, Tunis, Tunisia
| | | | - Michael D Leipold
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, CA, USA
| | - Megan K Levings
- Department of Surgery, University of British Columbia & British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | | | - Yanling Liu
- Department of Immunology, University of Toronto, Toronto, Canada
| | - Michael Lohoff
- Institute for Medical Microbiology and Hospital Hygiene, University of Marburg, Marburg 35043, Germany
| | - Giovanna Lombardi
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | | | - Amy Lovett-Racke
- Department of Microbial Infection and Immunity, Ohio State University, Columbus, OH, USA
| | - Erik Lubberts
- Erasmus MC, University Medical Center, Department of Rheumatology, Rotterdam, The Netherlands
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Enrico Lugli
- Laboratory of Translational Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
- Humanitas Flow Cytometry Core, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Holden T Maecker
- The Human Immune Monitoring Center (HIMC), Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, CA, USA
| | - Glòria Martrus
- Department of Virus Immunology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Giuseppe Matarese
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Napoli, Italy and Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), Napoli, Italy
| | - Christian Maueröder
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Mairi McGrath
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Iain McInnes
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow
| | - Henrik E Mei
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Fritz Melchers
- Senior Group on Lymphocyte Development, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Susanne Melzer
- Clinical Trial Center Leipzig, University Leipzig, Leipzig, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kingston Mills
- Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - David Mirrer
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Jenny Mjösberg
- Center for Infectious Medicine, Department of Medicine, Karolinska Institute Stockholm, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Sweden
| | - Jonni Moore
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Barry Moran
- Trinity Biomedical Sciences Institute, Trinity College Dublin, the University of Dublin, Dublin, Ireland
| | - Alessandro Moretta
- Department of Experimental Medicine, University of Genova, Genova, Italy
- Centro di Eccellenza per la Ricerca Biomedica-CEBR, Genova, Italy
| | - Lorenzo Moretta
- Department of Immunology, IRCCS Bambino Gesu Children's Hospital, Rome, Italy
| | - Tim R Mosmann
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Susann Müller
- Centre for Environmental Research - UFZ, Department Environemntal Microbiology, Leipzig, Germany
| | - Werner Müller
- Bill Ford Chair in Cellular Immunology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Christian Münz
- University of Zurich, Institute of Experimental Immunology, Zürich, Switzerland
| | - Gabriele Multhoff
- Department of Radiation Oncology, Klinikum rechts der Isar, Technische Universität München (TUM), Munich, Germany
- Institute for Innovative Radiotherapy (iRT), Experimental Immune Biology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Luis Enrique Munoz
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Kenneth M Murphy
- Department of Pathology and Immunology, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Howard Hughes Medical Institute, School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Toshinori Nakayama
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan
| | - Milena Nasi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - Christine Neudörfl
- Institute of Transplant Immunology, IFB-Tx, MHH Hannover Medical School, Hannover, Germany
| | - John Nolan
- The Scintillon Institute, Nancy Ridge Drive, San Diego, CA, USA
| | - Sussan Nourshargh
- Centre for Microvascular Research, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - José-Enrique O'Connor
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Wenjun Ouyang
- Department of Inflammation and Oncology, Amgen Inc., South San Francisco, CA, USA
| | | | - Raghav Palankar
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, 17489, Greifswald, Germany
| | - Isabel Panse
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Christian Peth
- Biopyhsics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Jordi Petriz
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - Daisy Philips
- Division of immunology, the Netherlands Cancer Institute, Amsterdam
| | - Winfried Pickl
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Silvia Piconese
- Dipartimento di Medicina Interna e Specialità Mediche, Sapienza Università di Roma, Via Regina Elena 324, 00161 Rome, Italy
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marcello Pinti
- Department of Life Sciences, Univ. of Modena and Reggio Emilia, Modena, Italy
| | - A Graham Pockley
- John van Geest Cancer Research Centre, Nottingham Trent University, Nottingham, UK
- Chromocyte Limited, Electric Works, Sheffield, UK
| | - Malgorzata Justyna Podolska
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine, Rheumatology and Immunology, Universitätsklinikum Erlangen, Erlangen
| | - Carlo Pucillo
- Univeristy of Udine - Department of Medicine, Lab of Immunology, Udine, Italy
| | - Sally A Quataert
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | - Timothy R D J Radstake
- Department of Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, The Netherlands; Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bartek Rajwa
- Bindley Biosciences Center, Purdue University, West Lafayette, In, USA
| | - Jonathan A Rebhahn
- David H. Smith Center for Vaccine Biology and Immunology, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Ester B M Remmerswaal
- Department of Experimental Immunology and Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, The Netherlands
| | - Katy Rezvani
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas M. D. Anderson Cancer Center, Houston, TX, USA
| | - Laura G Rico
- Josep Carreras Leukemia Research Institute, Barcelona, Spain
| | - J Paul Robinson
- The SVM Professor of Cytomics & Professor of Biomedical Engineering, Purdue University Cytometry Laboratories, Purdue University, West Lafayette, IN, USA
| | - Chiara Romagnani
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | | | - Beate Ruckert
- Swiss Institute of Allergy and Asthma Research (SIAF), University Zurich, Davos, Switzerland
| | - Jürgen Ruland
- Institut für Klinische Chemie und Pathobiochemie, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Shimon Sakaguchi
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Francisco Sala-de-Oyanguren
- Laboratory of Cytomics, Joint Research Unit CIPF-UVEG, Department of Biochemistry and Molecular Biology, The University of Valencia. Av. Blasco Ibáñez, Valencia, Spain
| | - Yvonne Samstag
- Institute of Immunology, Section Molecular Immunology, Ruprecht-Karls-University, D-69120, Heidelberg, Germany
| | - Sharon Sanderson
- Translational Immunology Laboratory, NIHR BRC, University of Oxford, Kennedy Institute of Rheumatology,Oxford, United Kingdom
| | - Birgit Sawitzki
- Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin
- Berlin Institute of Health, Institute of Medical Immunology, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Alexander Scheffold
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Germany
| | - Matthias Schiemann
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Frank Schildberg
- Harvard Medical School, Department of Microbiology and Immunobiology, Boston, MA, USA
| | | | - Stephan A Schmid
- Klinik und Poliklinik für Innere Medizin I, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Steffen Schmitt
- Imaging and Cytometry Core Facility, Flow Cytometry Unit, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Kilian Schober
- Institut für Medizinische Mikrobiologie, Immunologie und Hygiene, Technische Universität München, Munich, Germany
| | - Thomas Schüler
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, Magdeburg, Germany
| | - Axel Ronald Schulz
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Ton Schumacher
- Division of immunology, the Netherlands Cancer Institute, Amsterdam
| | - Cristiano Scotta
- MRC Centre for Transplantation, King's College London, Guy's Hospital, SE1 9RT London, UK
| | | | - Anat Shemer
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Josef Spidlen
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC, Canada
| | | | - Regina Stark
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Christina Stehle
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, Berlin, Germany
| | - Merle Stein
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobit Steinmetz
- Division of Molecular Immunology, Nikolaus-Fiebiger-Center, Dept. of Internal Medicine III, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Hannes Stockinger
- Institute for Hygiene and Applied Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Yousuke Takahama
- Division of Experimental Immunology, Institute of Advanced Medical Sciences, University of Tokushima, Tokushima, Japan
| | - Attila Tarnok
- Departement for Therapy Validation, Fraunhofer Institute for Cell Therapy and Immunology IZI, Leipzig, Germany
- Institute for Medical Informatics, IMISE, Leipzig, Germany
| | - ZhiGang Tian
- School of Life Sciences and Medical Center, Institute of Immunology, Key Laboratory of Innate Immunity and Chronic Disease of Chinese Academy of Science, University of Science and Technology of China, Hefei, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Gergely Toldi
- University of Birmingham, Institute of Immunology and Immunotherapy, Birmingham, UK
| | - Julia Tornack
- Senior Group on Lymphocyte Development, Max Planck Institute for Infection Biology, Berlin, Germany
| | | | | | - Henning Ulrich
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo
| | | | - René A W van Lier
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | | | | | - Paulo Vieira
- Unité Lymphopoiese, Institut Pasteur, Paris, France
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen, Wasserturmstr. 3/5, 91054 Erlangen, Germany
| | | | | | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | | | | | - Klaus Warnatz
- Center for Chronic Immunodeficiency (CCI), Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sarah Warth
- BCRT Flow Cytometry Lab, Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin
| | | | - Carsten Watzl
- Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund, IfADo, Department of Immunology, Dortmund, Germany
| | - Leonie Wegener
- Biopyhsics, R&D Engineering, Miltenyi Biotec GmbH, Bergisch Gladbach, Germany
| | - Annika Wiedemann
- Department of Medicine/Rheumatology and Clinical Immunology, Charite Universitätsmedizin Berlin, Germany
| | - Jürgen Wienands
- Universitätsmedizin Göttingen, Georg-August-Universität, Abt. Zelluläre und Molekulare Immunologie, Humboldtallee 34, 37073 Göttingen, Germany
| | - Gerald Willimsky
- Cooperation Unit for Experimental and Translational Cancer Immunology, Institute of Immunology (Charité - Universitätsmedizin Berlin) and German Cancer Research Center (DKFZ), Berlin, Germany
| | - James Wing
- Laboratory of Experimental Immunology, WPI Immunology Frontier Research Center (IFReC), Osaka University, Suita 565-0871, Japan
- Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Peter Wurst
- Institute of Experimental Immunology, University Bonn, Bonn, Germany
| | | | - Alice Yue
- School of Computing Science, Simon Fraser University, Burnaby, Canada
| | | | - Yi Zhao
- Department of Rheumatology & Immunology, West China Hospital, Sichuan University, Chengdu, China
| | - Susanne Ziegler
- Department of Virus Immunology, Heinrich-Pette-Institute, Leibniz Institute for Experimental Virology, Hamburg, Germany
| | - Jakob Zimmermann
- Maurice Müller Laboratories (DKF), Universitätsklinik für Viszerale Chirurgie und Medizin Inselspital, University of Bern, Murtenstrasse, Bern
| |
Collapse
|
18
|
Zakiryanova GK, Kustova E, Urazalieva NT, Amirbekov A, Baimuchametov ET, Nakisbekov NN, Shurin MR. Alterations of oncogenes expression in NK cells in patients with cancer. IMMUNITY INFLAMMATION AND DISEASE 2017; 5:493-502. [PMID: 28695716 PMCID: PMC5691306 DOI: 10.1002/iid3.179] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/08/2017] [Accepted: 05/23/2017] [Indexed: 12/20/2022]
Abstract
INTRODUCTION C-kit/SCF signaling plays a key role in regulating NK cell homeostasis, maturation, proliferation, and cytotoxicity. C-kit-deficiency in NK cells results in significant reduction of their number, suggesting an imperative role for c-kit signaling in NK cell biology. We have recently showed that human NK cells express not only c-kit-receptor, but also both membrane-bound and soluble forms of c-kit ligand-Stem cell factor. The goal of this study was to characterize the c-kit/SCF autocrine loop in peripheral blood NK cells obtained from patients with cancer. METHODS Using Smart Flare and qRT-PCR, we have characterized expression of c-kit and two forms of SCF in patients' NK cells and correlated these results with the expression of c-myc and STAT3. RESULTS Our results demonstrated that the expression of proto-oncogenes c-myc and c-kit was significantly decreased in NK cells from all cancer patients. Expression of membrane-bound SCF in NK cells correlated with the presence of remote metastases. CONCLUSIONS We suggest that the abnormal signaling and expression of c-kit/SCF, c-myc, and STAT3 in NK cells is responsible for the defect in their cytolytic activity in cancer and these defects at the gene expression level may be the cause rather than the result of tumor progression.
Collapse
Affiliation(s)
- Gulnur K Zakiryanova
- Scientific and Technological Park Al-Farabi Kazakh National University, Almaty, Kazakhstan
| | - Elena Kustova
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Nataliya T Urazalieva
- Laboratory of Immunology, Scientific Center of Pediatric and Children Surgery, Almaty, Kazakhstan
| | - Aday Amirbekov
- Joint Use Center, Atchabarov Scientific-research institute of fundamental and applied medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | | | - Narymzhan N Nakisbekov
- Joint Use Center, Atchabarov Scientific-research institute of fundamental and applied medicine, Asfendiyarov Kazakh National Medical University, Almaty, Kazakhstan
| | - Michael R Shurin
- Clinical Immunopathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| |
Collapse
|
19
|
Björkström NK, Ljunggren HG, Michaëlsson J. Emerging insights into natural killer cells in human peripheral tissues. Nat Rev Immunol 2017; 16:310-20. [PMID: 27121652 DOI: 10.1038/nri.2016.34] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural killer (NK) cells have long been considered to be a homogenous population of innate lymphocytes with limited phenotypic and functional diversity. However, recent findings have revealed that these cells comprise a large number of distinct populations with diverse characteristics. Some of these characteristics may relate to their developmental origin, and others represent differences in differentiation that are influenced by factors such as tissue localization and imprints by viral infections. In this Review, we provide a comprehensive overview of the emerging knowledge about the development, differentiation and function of human NK cell populations, with a particular focus on NK cells in peripheral tissues.
Collapse
Affiliation(s)
- Niklas K Björkström
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| | - Jakob Michaëlsson
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, 141 86 Stockholm, Sweden
| |
Collapse
|
20
|
Shao JY, Yin WW, Zhang QF, Liu Q, Peng ML, Hu HD, Hu P, Ren H, Zhang DZ. Siglec-7 Defines a Highly Functional Natural Killer Cell Subset and Inhibits Cell-Mediated Activities. Scand J Immunol 2017; 84:182-90. [PMID: 27312286 DOI: 10.1111/sji.12455] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022]
Abstract
Sialic acid-binding immunoglobulin-like lectin-7 (Siglec-7) is an inhibitory receptor expressed on natural killer (NK) cells. In this study, we investigated the relationship between Siglec-7 expression and NK cell functions. Siglec-7 was highly expressed on NK cells and was preferentially expressed by mature NK cells from peripheral blood of healthy adults. Siglec-7(+) NK cells displayed higher levels of activating receptors CD38, CD16, DNAM1, NKp30 and NKp46, but lower levels of inhibitory receptors such as NKG2A and CD158b, compared with Siglec-7(-) NK cells. Functional tests showed that Siglec-7(+) NK cells displayed more CD107a degranulation and IFN-γ production than Siglec-7(-) NK cells. Siglec-7 inhibited NK cell functions when interacting with specific antibodies. These data suggest that Siglec-7 defines a highly functional NK cell subset and suppresses NK cell-mediated functions when cross-linked with specific antibodies.
Collapse
Affiliation(s)
- J-Y Shao
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - W-W Yin
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Q-F Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Q Liu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - M-L Peng
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - H-D Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - P Hu
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - H Ren
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - D-Z Zhang
- Department of Infectious Diseases, Institute for Viral Hepatitis, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
The Development and Diversity of ILCs, NK Cells and Their Relevance in Health and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:225-244. [PMID: 28921473 DOI: 10.1007/978-981-10-5987-2_11] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Next to T and B cells, natural killer (NK) cells are the third largest lymphocyte population. They are recently re-categorized as innate lymphocytes (ILCs), which also include ILC1, ILC2, ILC3, and the lymphoid tissue inducer (LTi) cells. Both NK cells and ILC1 cells are designated as group 1 ILCs because they secrete interferon-γ (IFN-γ) and tumor necrosis factor (TNF). However, in contrast to ILC1 and all other ILCs, NK cells possess potent cytolytic functions that resemble cytotoxic T lymphocytes (CTL). In addition, NK cells express, in a stochastic manner, an array of germ line-encoded activating and inhibitory receptors that recognize the polymorphic regions of major histocompatibility class I (MHC-I) molecules and self-proteins. Recognition of self renders NK cell tolerance to self-healthy tissues, but fail to recognize self ('missing-self') leads to activation to neoplastic transformation and infections of certain viruses. In this chapter, we will summarize the development of NK cells in the context of ILCs, describe the diversity of phenotype and function in blood and tissues, and discuss their involvement in health and diseases in humans.
Collapse
|
22
|
Development of a Modular Assay for Detailed Immunophenotyping of Peripheral Human Whole Blood Samples by Multicolor Flow Cytometry. Int J Mol Sci 2016; 17:ijms17081316. [PMID: 27529227 PMCID: PMC5000713 DOI: 10.3390/ijms17081316] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 07/18/2016] [Accepted: 07/28/2016] [Indexed: 12/19/2022] Open
Abstract
The monitoring of immune cells gained great significance in prognosis and prediction of therapy responses. For analyzing blood samples, the multicolor flow cytometry has become the method of choice as it combines high specificity on single cell level with multiple parameters and high throughput. Here, we present a modular assay for the detailed immunophenotyping of blood (DIoB) that was optimized for an easy and direct application in whole blood samples. The DIoB assay characterizes 34 immune cell subsets that circulate the peripheral blood including all major immune cells such as T cells, B cells, natural killer (NK) cells, monocytes, dendritic cells (DCs), neutrophils, eosinophils, and basophils. In addition, it evaluates their functional state and a few non-leukocytes that also have been associated with the outcome of cancer therapy. This DIoB assay allows a longitudinal and close-meshed monitoring of a detailed immune status in patients requiring only 2.0 mL of peripheral blood and it is not restricted to peripheral blood mononuclear cells. It is currently applied for the immune monitoring of patients with glioblastoma multiforme (IMMO-GLIO-01 trial, NCT02022384), pancreatic cancer (CONKO-007 trial, NCT01827553), and head and neck cancer (DIREKHT trial, NCT02528955) and might pave the way for immune biomarker identification for prediction and prognosis of therapy outcome.
Collapse
|
23
|
Mehta RS, Shpall EJ, Rezvani K. Cord Blood as a Source of Natural Killer Cells. Front Med (Lausanne) 2016; 2:93. [PMID: 26779484 PMCID: PMC4700256 DOI: 10.3389/fmed.2015.00093] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 12/10/2015] [Indexed: 12/11/2022] Open
Abstract
Cord blood (CB) offers several unique advantages as a graft source for hematopoietic stem cell transplantation (HSCT). The risk of relapse and graft vs. host disease after cord blood transplantation (CBT) is lower than what is typically observed after other graft sources with a similar degree of human leukocyte antigen mismatch. Natural killer (NK) cells have a well-defined role in both innate and adaptive immunity and as the first lymphocytes to reconstitute after HSCT and CBT, and they play a significant role in protection against early relapse. In this article, we highlight the uses of CB NK cells in transplantation and adoptive immunotherapy. First, we will describe differences in the phenotype and functional characteristics of NK cells in CB as compared with peripheral blood. Then, we will review some of the obstacles we face in using resting CB NK cells for adoptive immunotherapy, and discuss methods to overcome them. We will review the current literature on killer-cell immunoglobulin-like receptors ligand mismatch and outcomes after CBT. Finally, we will touch on current strategies for the use of CB NK cells in cellular immunotherapy.
Collapse
Affiliation(s)
- Rohtesh S Mehta
- Division of Hematology, Oncology and Transplantation, University of Minnesota Medical Center , Minneapolis, MN , USA
| | - Elizabeth J Shpall
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Katayoun Rezvani
- Department of Stem Cell Transplantation, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
24
|
Lima M, Leander M, Santos M, Santos AH, Lau C, Queirós ML, Gonçalves M, Fonseca S, Moura J, Teixeira MDA, Orfao A. Chemokine Receptor Expression on Normal Blood CD56(+) NK-Cells Elucidates Cell Partners That Comigrate during the Innate and Adaptive Immune Responses and Identifies a Transitional NK-Cell Population. J Immunol Res 2015; 2015:839684. [PMID: 26543875 PMCID: PMC4620293 DOI: 10.1155/2015/839684] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 12/26/2022] Open
Abstract
Studies of chemokine receptors (CKR) in natural killer- (NK-) cells have already been published, but only a few gave detailed information on its differential expression on blood NK-cell subsets. We report on the expression of the inflammatory and homeostatic CKR on normal blood CD56(+low) CD16(+) and CD56(+high) CD16(-/+low) NK-cells. Conventional CD56(+low) and CD56(+high) NK-cells present in the normal PB do express CKR for inflammatory cytokines, although with different patterns CD56(+low) NK-cells are mainly CXCR1/CXCR2(+) and CXCR3/CCR5(-/+), whereas mostly CD56(+high) NK-cells are CXCR1/CXCR2(-) and CXCR3/CCR5(+). Both NK-cell subsets have variable CXCR4 expression and are CCR4(-) and CCR6(-). The CKR repertoire of the CD56(+low) NK-cells approaches to that of neutrophils, whereas the CKR repertoire of the CD56(+high) NK-cells mimics that of Th1(+) T cells, suggesting that these cells are prepared to migrate into inflamed tissues at different phases of the immune response. In addition, we describe a subpopulation of NK-cells with intermediate levels of CD56 expression, which we named CD56(+int) NK-cells. These NK-cells are CXCR3/CCR5(+), they have intermediate levels of expression of CD16, CD62L, CD94, and CD122, and they are CD57(-) and CD158a(-). In view of their phenotypic features, we hypothesize that they correspond to a transitional stage, between the well-known CD56(+high) and CD56(+low) NK-cells populations.
Collapse
Affiliation(s)
- Margarida Lima
- Laboratory of Cytometry, Service of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, 4050-345 Porto, Portugal
| | - Magdalena Leander
- Laboratory of Cytometry, Service of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, 4050-345 Porto, Portugal
| | - Marlene Santos
- Laboratory of Cytometry, Service of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, 4050-345 Porto, Portugal
| | - Ana Helena Santos
- Laboratory of Cytometry, Service of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, 4050-345 Porto, Portugal
| | - Catarina Lau
- Laboratory of Cytometry, Service of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, 4050-345 Porto, Portugal
| | - Maria Luís Queirós
- Laboratory of Cytometry, Service of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, 4050-345 Porto, Portugal
| | - Marta Gonçalves
- Laboratory of Cytometry, Service of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, 4050-345 Porto, Portugal
| | - Sónia Fonseca
- Laboratory of Cytometry, Service of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, 4050-345 Porto, Portugal
| | - João Moura
- Laboratory of Cytometry, Service of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, 4050-345 Porto, Portugal
| | - Maria dos Anjos Teixeira
- Laboratory of Cytometry, Service of Hematology, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Rua D. Manuel II, 4050-345 Porto, Portugal
| | - Alberto Orfao
- Laboratory of Flow Cytometry, Centro de Investigación del Cancer (CIC), Campus Miguel de Unamuno, 37007 Salamanca, Spain
| |
Collapse
|
25
|
Angelo LS, Banerjee PP, Monaco-Shawver L, Rosen JB, Makedonas G, Forbes LR, Mace EM, Orange JS. Practical NK cell phenotyping and variability in healthy adults. Immunol Res 2015; 62:341-56. [PMID: 26013798 PMCID: PMC4470870 DOI: 10.1007/s12026-015-8664-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Human natural killer (NK) cells display a wide array of surface and intracellular markers that indicate various states of differentiation and/or levels of effector function. These NK cell subsets exist simultaneously in peripheral blood and may vary among individuals. We examined variety among selected NK cell receptors expressed by NK cells from normal donors, as well as the distribution of select NK cell subsets and NK cell receptor expression over time in several individual donors. Peripheral blood mononuclear cells were evaluated using flow cytometry via fluorochrome-conjugated antibodies against a number of NK cell receptors. Results were analyzed for both mean fluorescence intensity (MFI) and the percent positive cells for each receptor. CD56(bright) and CD56(dim) NK cell subsets were also considered separately, as was variation in receptor expression in NK cell subsets over time in selected individuals. Through this effort, we provide ranges of NK cell surface receptor expression for a local adult population as well as provide insight into intra-individual variation.
Collapse
Affiliation(s)
- Laura S. Angelo
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| | - Pinaki P. Banerjee
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| | - Linda Monaco-Shawver
- Children’s Hospital of Philadelphia Research Institute, 3615 Civic Center Boulevard, Philadelphia, PA USA 19104
| | - Joshua B. Rosen
- Drexel University College of Medicine, 245 N. 15 Street, Philadelphia, PA USA 19102
| | - George Makedonas
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| | - Lisa R. Forbes
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| | - Emily M. Mace
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| | - Jordan S. Orange
- Center for Human Immunobiology, Department of Allergy, Immunology and Rheumatology, The Feigin Center, Texas Children’s Hospital, 1102 Bates Street, Suite 330, Houston, TX, USA 77030 and Baylor College of Medicine
| |
Collapse
|
26
|
Mulrooney TJ, Zhang AC, Goldgur Y, Boudreau JE, Hsu KC. KIR3DS1-Specific D0 Domain Polymorphisms Disrupt KIR3DL1 Surface Expression and HLA Binding. THE JOURNAL OF IMMUNOLOGY 2015; 195:1242-50. [PMID: 26109640 DOI: 10.4049/jimmunol.1500243] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 05/26/2015] [Indexed: 11/19/2022]
Abstract
KIR3DL1 is a polymorphic inhibitory receptor that modulates NK cell activity through interacting with HLA-A and HLA-B alleles that carry the Bw4 epitope. Amino acid polymorphisms throughout KIR3DL1 impact receptor surface expression and affinity for HLA. KIR3DL1/S1 encodes inhibitory and activating alleles, but despite high homology with KIR3DL1, the activating receptor KIR3DS1 does not bind the same ligand. Allele KIR3DL1*009 resulted from a gene recombination event between the inhibitory receptor allele KIR3DL1*001 and the activating receptor allele KIR3DS1*013. This study analyzed the functional impact of KIR3DS1-specific polymorphisms on KIR3DL1*009 surface expression, binding to HLA, and functional capacity. Flow-cytometric analysis of primary human NK cells as well as transfected HEK293T cells shows that KIR3DL1*009 is expressed at a significantly lower surface density compared with KIR3DL1*001. Using recombinant proteins of KIR3DL1*001, KIR3DL1*009, and KIR3DS1*013 to analyze binding to HLA, we found that although KIR3DL1*009 displayed some evidence of binding to HLA compared with KIR3DS1*013, the binding was minimal compared with KIR3DL1*001 and KIR3DL1*005. Mutagenesis of polymorphic sites revealed that the surface phenotype and reduced binding of KIR3DL1*009 are caused by the combined amino acid polymorphisms at positions 58 and 92 within the D0 extracellular domain. Resulting from these effects, KIR3DL1*009(+) NK cells exhibited significantly less inhibition by HLA-Bw4(+) target cells compared with KIR3DL1*001(+) NK cells. The data from this study contribute novel insight into how KIR3DS1-specific polymorphisms in the extracellular region impact KIR3DL1 surface expression, ligand binding, and inhibitory function.
Collapse
Affiliation(s)
| | - Aaron C Zhang
- Immunology Program, Sloan Kettering Institute, New York, NY 10065
| | - Yehuda Goldgur
- Department of Structural Biology, Sloan Kettering Institute, New York, NY 10065
| | | | - Katharine C Hsu
- Immunology Program, Sloan Kettering Institute, New York, NY 10065; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065; and Weill Cornell Medical College, Cornell University, New York, NY 10065
| |
Collapse
|
27
|
La leptine : un modulateur de l’activité des cellules Natural Killer ? NUTR CLIN METAB 2015. [DOI: 10.1016/j.nupar.2014.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Pradier A, Tabone‐Eglinger S, Huber V, Bosshard C, Rigal E, Wehrle‐Haller B, Roosnek E. Peripheral bloodCD56brightNKcells respond to stem cell factor and adhere to its membrane‐bound form after upregulation of c‐kit. Eur J Immunol 2013; 44:511-20. [DOI: 10.1002/eji.201343868] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/02/2013] [Accepted: 10/14/2013] [Indexed: 11/09/2022]
Affiliation(s)
- Amandine Pradier
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Severine Tabone‐Eglinger
- Department of Cell Physiology and MetabolismGeneva Medical SchoolUniversity of Geneva Geneva Switzerland
| | - Vincent Huber
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Carine Bosshard
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Emmanuel Rigal
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| | - Bernhard Wehrle‐Haller
- Department of Cell Physiology and MetabolismGeneva Medical SchoolUniversity of Geneva Geneva Switzerland
| | - Eddy Roosnek
- Division of HematologyDepartment of Internal MedicineGeneva University Hospitals and University of Geneva Switzerland
| |
Collapse
|
29
|
Jiang NG, Jin YM, Niu Q, Zeng TT, Su J, Zhu HL. Flow cytometric immunophenotyping is of great value to diagnosis of natural killer cell neoplasms involving bone marrow and peripheral blood. Ann Hematol 2012; 92:89-96. [PMID: 22992980 DOI: 10.1007/s00277-012-1574-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/03/2012] [Indexed: 02/05/2023]
Abstract
Natural killer (NK) cell neoplasms are unusual disorders. In this study we compared results of flow cytometric immunophenotype (FCI) with cytomorphology, histopathology and clinical findings in a series of patients with NK cell neoplasms with peripheral blood and/or bone marrow involvement, and the FCI of neoplastic and normal NK cells were compared. Retrospective data and specimens (bone marrow aspiration or peripheral blood) from 71 cases of NK cell neoplasms were obtained. All patients have been demonstrated laboratory and clinical features consistent with NK cell neoplasms, and the subtypes were determined by integrated clinical estimation. Routine 4-color flow cytometry (FCM) using a NK/T cell related antibody panels was performed. NK cell neoplasms were divided into two major subtypes by FCI, namely malignant NK cell lymphoma, including extranodal nasal type NK cell lymphoma (ENKL, 11 cases) and aggressive NK cell lymphoma/leukemia (ANKL, 43 cases), and relative indolent chronic lymphoproliferative disorder of NK cell (CLPD-NK, 17 cases). The former exhibited stronger CD56-expressing, larger forward scatter (FSC) and more usually CD7- and CD16-missing. FCI of CLPD-NK was similar to normal NK cells, but CD56-expressing was abnormal, which was negative in five cases and partially or dimly expressed in eight cases. Cytomorphologic abnormal cells were found on bone marrow slides of 4 cases of ENKL and 30 cases of ANKL. Eight cases of ENKL were positive in bone marrow biopsies, and other three cases were negative. In 32 cases of ANKL which bone marrow biopsies were applied, 21 cases were positive in the first biopsies. Lymphocytosis was found only in six cases of CLPD-NK by cytomorphology, and biopsy pathology was not much useful for diagnosing CLPD-NK. These results suggest that FCM analysis of bone marrow and peripheral blood was superior to cytomorphology, bone marrow biopsy, and immunohistochemistry in sensitivity and early diagnosis for ANKL, stage III/IV ENKL and CLPD-NK. FCI could not only define abnormal NK cells but also determine the malignant classification. It is beneficial for clinical management and further study of NK cell neoplasms.
Collapse
Affiliation(s)
- Neng-Gang Jiang
- Department of Laboratory Medicine, West China Hospital of Sichuan University, Chengdu, China, 610041
| | | | | | | | | | | |
Collapse
|
30
|
Agudelo O, Bueno J, Villa A, Maestre A. High IFN-gamma and TNF production by peripheral NK cells of Colombian patients with different clinical presentation of Plasmodium falciparum. Malar J 2012; 11:38. [PMID: 22316273 PMCID: PMC3292975 DOI: 10.1186/1475-2875-11-38] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Colombia, Plasmodium falciparum infection rarely results in severe disease or mortality compared to infections in African populations. During natural infection NK cells exhibit a cytolytic effect and regulate dendritic cells, macrophages, neutrophils as well as affect antigen specific T and B cell responses. To characterize the NK cells in P. falciparum infected patients of a highly endemic region of Colombia, the degree of NK proliferation and production of IFN gamma and TNF production in these cells were explored. METHODS Seventeen patients with acute and three with severe P. falciparum malaria patients from the Northwest region of the country were recruited in the study. In addition, 20 healthy controls were included: 10 from Medellin (no-transmission area) and 10 from the Uraba region (a malaria endemic area). Immunophenotypic analysis of peripheral mononuclear cells was performed by FACS to detect total number of NK cells, subtypes and intracellular IFNγ and TNF production by NK cells in the different patient groups. RESULTS The total mean CD56(+)/CD3(-) NK cell proportions in acute and severe malaria subjects were 9.14% (7.15%CD56(dim), 2.01%CD56(bright)) and 19.62% (16.05%CD56(dim), 3.58%CD56(bright)), respectively, in contrast to healthy controls from endemic (total mean CD56(+)/CD3(-)1.2%) and non-endemic area (total mean CD56(+)/CD3(-) 0.67%). Analysis of basal IFNγ and TNF levels confirmed the CD56(bright) NK population as the main cytokine producer (p < 0.0001) in the groups affected with malaria, with the CD56(dim) NK cell exhibiting the highest potential of TNF production after stimulus in the acute malaria group. CONCLUSIONS The results confirm the important role of not only CD56(bright) but also of CD56(dim) NK cell populations as producers of the two cytokines in malaria patients in Colombia.
Collapse
Affiliation(s)
- Olga Agudelo
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | | | | |
Collapse
|
31
|
Patankar MS, Gubbels JAA, Felder M, Connor JP. The immunomodulating roles of glycoproteins in epithelial ovarian cancer. Front Biosci (Elite Ed) 2012; 4:631-50. [PMID: 22201900 DOI: 10.2741/405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The complexity of the immune system demands an intricate defense mechanism by tumors. Ovarian and other tumors employ specific glycoproteins and the associated glycan sequences to modulate immune responses. Glycoproteins enable tumor cells that express or secrete these molecules to evade immune cell attack and induce the immune system to promote tumor growth. This review focuses first on the immune environment in ovarian cancer, and the mechanisms of activation and inhibition that immune cells undergo in order to either attack or ignore a target cell. Next we illustrate the immunomodulatory roles of ovarian cancer-associated glycans and glycoproteins in 1. preventing immune synapse formation, 2. serving as ligands of immune cell receptors, 3. scavenging cytokines and chemokines, and 4. participating in the formation of autoantibodies against the tumor. The importance of these immunomodulating strategies from the view points of understanding the tumor immunology of ovarian tumors, potential origin of such mechanisms, and specific strategies to circumvent the glycoconjugate-mediated suppression of immune responses is discussed in this review.
Collapse
Affiliation(s)
- Manish S Patankar
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, WI 53792-6188, USA.
| | | | | | | |
Collapse
|
32
|
Moustaki A, Argyropoulos KV, Baxevanis CN, Papamichail M, Perez SA. Effect of the simultaneous administration of glucocorticoids and IL-15 on human NK cell phenotype, proliferation and function. Cancer Immunol Immunother 2011; 60:1683-95. [PMID: 21706285 PMCID: PMC11029608 DOI: 10.1007/s00262-011-1067-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 06/15/2011] [Indexed: 02/08/2023]
Abstract
We have previously reported a synergistic effect between hydrocortisone (HC) and IL-15 on promoting natural killer (NK) cell expansion and function. In the present study, we extend our findings to methylprednisolone (MeP) and dexamethasone (Dex), thus ascribing to glucocorticoids (GCs) a general feature as positive regulators of IL-15-mediated effects on NK cells. We demonstrate that each GC when combined with IL-15 in cultures of peripheral blood (PB)-derived CD56(+) cells induces increased expansion of CD56(+)CD3(-) cells displaying high cytolytic activity, IFN-γ production potential and activating receptor expression, including NKp30, NKp44, NKp46, 2B4, NKG2D and DNAM-1. Furthermore, GCs protected NK cells from IL-15-induced cell death. The combination of IL-15 with GCs favored the expansion of a relatively more immature CD16(low/neg) NK cell population, with high expression of NKG2A and CD94, and significantly lower expression of KIR (CD158a and CD158b) and CD57, compared to IL-15 alone. IL-15-expanded NK cells, in the presence or absence of GCs, did not express CD62L, CXCR1 or CCR7. However, the presence of GCs significantly increased the density of CXCR3 and induced strong CXCR4 expression on the surface of NK cells. Our data indicate that IL-15/GC-expanded NK cells, apart from their increased proliferation rate, retain their functional integrity and exhibit a migratory potential rendering them useful for adoptive transfer in NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Ardiana Moustaki
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | - Kimon V. Argyropoulos
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | - Constantin N. Baxevanis
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | - Michael Papamichail
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| | - Sonia A. Perez
- Cancer Immunology and Immunotherapy Center, Saint Savas Cancer Hospital, 171 Alexandras Avenue, 11522 Athens, Greece
| |
Collapse
|
33
|
Antitumor immunity produced by the liver Kupffer cells, NK cells, NKT cells, and CD8 CD122 T cells. Clin Dev Immunol 2011; 2011:868345. [PMID: 22190974 PMCID: PMC3235445 DOI: 10.1155/2011/868345] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/30/2011] [Accepted: 09/03/2011] [Indexed: 12/18/2022]
Abstract
Mouse and human livers contain innate immune leukocytes, NK cells, NKT cells, and macrophage-lineage Kupffer cells. Various bacterial components, including Toll-like receptor (TLR) ligands and an NKT cell ligand (α-galactocylceramide), activate liver Kupffer cells, which produce IL-1, IL-6, IL-12, and TNF. IL-12 activates hepatic NK cells and NKT cells to produce IFN-γ, which further activates hepatic T cells, in turn activating phagocytosis and cytokine production by Kupffer cells in a positive feedback loop. These immunological events are essentially evoked to protect the host from bacterial and viral infections; however, these events also contribute to antitumor and antimetastatic immunity in the liver by activated liver NK cells and NKT cells. Bystander CD8+CD122+ T cells, and tumor-specific memory CD8+T cells, are also induced in the liver by α-galactocylceramide. Furthermore, adoptive transfer experiments have revealed that activated liver lymphocytes may migrate to other organs to inhibit tumor growth, such as the lungs and kidneys. The immunological mechanism underlying the development of hepatocellular carcinoma in cirrhotic livers in hepatitis C patients and liver innate immunity as a double-edged sword (hepatocyte injury/regeneration, septic shock, autoimmune disease, etc.) are also discussed.
Collapse
|
34
|
Hamann I, Unterwalder N, Cardona AE, Meisel C, Zipp F, Ransohoff RM, Infante-Duarte C. Analyses of phenotypic and functional characteristics of CX3CR1-expressing natural killer cells. Immunology 2011. [PMID: 21320123 DOI: 10.1111/j.1365-2567.2011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We previously demonstrated a correlation between the frequency of CX3CR1-expressing human natural killer (NK) cells and disease activity in multiple sclerosis and showed that CX3CR1(high) NK cells were more cytotoxic than their CX3CR1(neg/low) counterparts. Here we aimed to determine whether human NK cell fractions defined by CX3CR1 represent distinct subtypes. Phenotypic and functional NK cell analyses revealed that, distinct from CX3CR1(high), CX3CR1(neg/low) NK cells expressed high amounts of type 2 cytokines, proliferated robustly in response to interleukin-2 and promoted a strong up-regulation of the key co-stimulatory molecule CD40 on monocytes. Co-expression analyses of CX3CR1 and CD56 demonstrated the existence of different NK cell fractions based on the surface expression of these two surface markers, the CX3CR1(neg) CD56(bright), CX3CR1(neg) CD56(dim) and CX3CR1(high) CD56(dim) fractions. Additional investigations on the expression of NK cell receptors (KIR, NKG2A, NKp30 and NKp46) and the maturation markers CD27, CD62L and CD57 indicated that CX3CR1 expression of CD56(dim) discriminated between an intermediary CX3CR1(neg) CD56(dim) and fully mature CX3CR1(high) CD56(dim) NK cell fractions. Hence, CX3CR1 emerges as an additional differentiation marker that may link NK cell maturation with the ability to migrate to different organs including the central nervous system.
Collapse
Affiliation(s)
- Isabell Hamann
- Experimental and Clinical Research Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Hamann I, Unterwalder N, Cardona AE, Meisel C, Zipp F, Ransohoff RM, Infante-Duarte C. Analyses of phenotypic and functional characteristics of CX3CR1-expressing natural killer cells. Immunology 2011; 133:62-73. [PMID: 21320123 DOI: 10.1111/j.1365-2567.2011.03409.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We previously demonstrated a correlation between the frequency of CX3CR1-expressing human natural killer (NK) cells and disease activity in multiple sclerosis and showed that CX3CR1(high) NK cells were more cytotoxic than their CX3CR1(neg/low) counterparts. Here we aimed to determine whether human NK cell fractions defined by CX3CR1 represent distinct subtypes. Phenotypic and functional NK cell analyses revealed that, distinct from CX3CR1(high), CX3CR1(neg/low) NK cells expressed high amounts of type 2 cytokines, proliferated robustly in response to interleukin-2 and promoted a strong up-regulation of the key co-stimulatory molecule CD40 on monocytes. Co-expression analyses of CX3CR1 and CD56 demonstrated the existence of different NK cell fractions based on the surface expression of these two surface markers, the CX3CR1(neg) CD56(bright), CX3CR1(neg) CD56(dim) and CX3CR1(high) CD56(dim) fractions. Additional investigations on the expression of NK cell receptors (KIR, NKG2A, NKp30 and NKp46) and the maturation markers CD27, CD62L and CD57 indicated that CX3CR1 expression of CD56(dim) discriminated between an intermediary CX3CR1(neg) CD56(dim) and fully mature CX3CR1(high) CD56(dim) NK cell fractions. Hence, CX3CR1 emerges as an additional differentiation marker that may link NK cell maturation with the ability to migrate to different organs including the central nervous system.
Collapse
Affiliation(s)
- Isabell Hamann
- Experimental and Clinical Research Centre, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
36
|
Ham MF, Ko YH. Natural killer cell neoplasm: biology and pathology. Int J Hematol 2010; 92:681-9. [PMID: 21132576 DOI: 10.1007/s12185-010-0738-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/13/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
Natural killer (NK) cell neoplasm is a heterogeneous disease group. In the latest World Health Organization (WHO) classification of tumours of hematopoietic and lymphoid tissues (2008), disease entities considered as NK-cell derivation include NK-lymphoblastic leukemia/lymphoma, chronic lymphoproliferative disorders of NK cells, aggressive NK-cell leukemia, and extranodal NK-cell lymphoma, nasal-type. Despite recent advances in NK-cell research, which have expanded our understanding of the biology of NK-cell neoplasm, it cannot yet be sharply delineated from myeloid neoplasms and T-cell neoplasms even in some "well-known" entity, such as extranodal NK/T-cell lymphoma. This review describes current knowledge of the biology of NK cells and pathology of NK neoplasms as classified in the 2008 WHO classification of tumours of hematopoietic and lymphoid tissues.
Collapse
Affiliation(s)
- Maria Francisca Ham
- Department of Anatomic Pathology, University of Indonesia/Cipto Mangunkusumo National Central General Hospital, Jakarta, Indonesia.
| | | |
Collapse
|
37
|
Lichtfuss GF, Meehan AC, Cheng WJ, Cameron PU, Lewin SR, Crowe SM, Jaworowski A. HIV inhibits early signal transduction events triggered by CD16 cross-linking on NK cells, which are important for antibody-dependent cellular cytotoxicity. J Leukoc Biol 2010; 89:149-58. [DOI: 10.1189/jlb.0610371] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
38
|
CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 2010; 116:3865-74. [PMID: 20733159 DOI: 10.1182/blood-2010-04-282301] [Citation(s) in RCA: 541] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Natural killer (NK) cells are innate immune lymphocytes that express a heterogeneous repertoire of germline-encoded receptors and undergo a distinct pattern of maturation. CD57 is a marker of terminal differentiation on human CD8(+) T cells. Very few newborn or fetal NK cells express CD57; however, the frequency of CD57-bearing NK cells increases with age. We assessed the transcriptional, phenotypic, and functional differences between CD57(+) and CD57(-) NK cells within the CD56(dim) mature NK subset. CD57(+) NK cells express a repertoire of NK-cell receptors, suggestive of a more mature phenotype, and proliferate less when stimulated with target cells and/or cytokines. By contrast, a higher frequency of CD57(+) NK cells produced interferon-γ and demonstrated more potent lytic activity when these cells were stimulated through the activating receptor CD16; however, they are less responsive to stimulation by interleukin-12 and interleukin-18. Finally, CD57 expression is induced on CD57(-)CD56(dim) NK cells after activation by interleukin-2. A combination of a mature phenotype, a higher cytotoxic capacity, a higher sensitivity to stimulation via CD16, with a decreased responsiveness to cytokines, and a decreased capacity to proliferate suggest that CD57(+) NK cells are highly mature and might be terminally differentiated.
Collapse
|
39
|
Soman G, Yang X, Jiang H, Giardina S, Vyas V, Mitra G, Yovandich J, Creekmore SP, Waldmann TA, Quiñones O, Alvord WG. MTS dye based colorimetric CTLL-2 cell proliferation assay for product release and stability monitoring of interleukin-15: assay qualification, standardization and statistical analysis. J Immunol Methods 2009; 348:83-94. [PMID: 19646987 PMCID: PMC2786060 DOI: 10.1016/j.jim.2009.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/10/2009] [Accepted: 07/21/2009] [Indexed: 11/23/2022]
Abstract
A colorimetric cell proliferation assay using soluble tetrazolium salt [(CellTiter 96(R) Aqueous One Solution) cell proliferation reagent, containing the (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, inner salt) and an electron coupling reagent phenazine ethosulfate], was optimized and qualified for quantitative determination of IL-15 dependent CTLL-2 cell proliferation activity. An in-house recombinant Human (rHu)IL-15 reference lot was standardized (IU/mg) against an international reference standard. Specificity of the assay for IL-15 was documented by illustrating the ability of neutralizing anti-IL-15 antibodies to block the product specific CTLL-2 cell proliferation and the lack of blocking effect with anti-IL-2 antibodies. Under the defined assay conditions, the linear dose-response concentration range was between 0.04 and 0.17ng/ml of the rHuIL-15 produced in-house and 0.5-3.0IU/ml for the international standard. Statistical analysis of the data was performed with the use of scripts written in the R Statistical Language and Environment utilizing a four-parameter logistic regression fit analysis procedure. The overall variation in the ED(50) values for the in-house reference standard from 55 independent estimates performed over the period of 1year was 12.3% of the average. Excellent intra-plate and within-day/inter-plate consistency was observed for all four parameter estimates in the model. Different preparations of rHuIL-15 showed excellent intra-plate consistency in the parameter estimates corresponding to the lower and upper asymptotes as well as to the 'slope' factor at the mid-point. The ED(50) values showed statistically significant differences for different lots and for control versus stressed samples. Three R-scripts improve data analysis capabilities allowing one to describe assay variations, to draw inferences between data sets from formal statistical tests, and to set up improved assay acceptance criteria based on comparability and consistency in the four parameters of the model. The assay is precise, accurate and robust and can be fully validated. Applications of the assay were established including process development support, release of the rHuIL-15 product for pre-clinical and clinical studies, and for monitoring storage stability.
Collapse
Affiliation(s)
- Gopalan Soman
- Department of Process Analytics, Biopharmaceutical Development Program, SAIC-Frederick, Inc., United States.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hoshino Y, Tajima M, Takagi S, Osaki T, Okumura M, Fujinaga T. Relative quantification of canine CD56 mRNA expression by real-time polymerase chain reaction method in normal tissues and activated lymphocytes. J Vet Med Sci 2008; 70:309-12. [PMID: 18388435 DOI: 10.1292/jvms.70.309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Real-time PCR was optimized for the quantification of canine CD56 mRNA expression. This study was conducted to easily quantify canine CD56 expression and to identify its expression in normal tissues, peripheral blood mononuclear cells and activated lymphocytes in dogs. This assay revealed the highest level of CD56 mRNA expression in the normal canine brain, followed by the lung, kidney and liver. CD56 mRNA expression level in peripheral blood mononuclear cells was considerably lower; among activated lymphocytes in vitro, CD56 mRNA expression was increased.
Collapse
Affiliation(s)
- Yuki Hoshino
- Laboratory of Veterinary Surgery, Department of Veterinary Clinical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan.
| | | | | | | | | | | |
Collapse
|
41
|
Clinical implications of addiction related immunosuppression. J Infect 2008; 56:437-45. [DOI: 10.1016/j.jinf.2008.03.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 03/09/2008] [Accepted: 03/11/2008] [Indexed: 11/20/2022]
|
42
|
Wilk E, Kalippke K, Buyny S, Schmidt RE, Jacobs R. New aspects of NK cell subset identification and inference of NK cells’ regulatory capacity by assessing functional and genomic profiles. Immunobiology 2008; 213:271-83. [DOI: 10.1016/j.imbio.2007.10.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 10/15/2007] [Accepted: 10/29/2007] [Indexed: 01/27/2023]
|
43
|
Carroll HP, Paunovic V, Gadina M. Signalling, inflammation and arthritis: Crossed signals: the role of interleukin-15 and -18 in autoimmunity. Rheumatology (Oxford) 2008; 47:1269-77. [DOI: 10.1093/rheumatology/ken257] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
44
|
Baum C, Schambach A, Modlich U, Thrasher A. [Gene therapy of SCID-X1]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2008; 50:1507-17. [PMID: 18046520 DOI: 10.1007/s00103-007-0385-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
X-linked severe combined immunodeficiency (SCID-X1) is an inherited disease caused by inactivating mutations in the gene encoding the interleukin 2 receptor common gamma chain (IL2RG), which is located on the X-chromosome. Affected boys fail to develop two major effector cell types of the immune system (T cells and NK cells) and suffer from a functional B cell defect. Although drugs such as antibiotics can offer partial protection, the boys normally die in the first year of life in the absence of a curative therapy. For a third of the children, bone marrow transplantation from a fully matched donor is available and can cure the disease without major side effects. Mismatched bone marrow transplantation, however, is complicated by severe and potentially lethal side effects. Over the past decade, scientists worldwide have developed new treatments by introducing a correct copy of the IL2RG-cDNA. Gene therapy was highly effective when applied in young children. However, in a few patients the IL2RG-gene vector has unfortunately caused leukaemia. Activation of cellular proto-oncogenes by accidental integration of the gene vector has been identified as the underlying mechanism. In future clinical trials, improved vector technology in combination with other protocol modifications may reduce the risk of this side effect.
Collapse
Affiliation(s)
- C Baum
- Medizinische Hochschule Hannover, BRD.
| | | | | | | |
Collapse
|
45
|
Phenotypically and functionally distinct subsets of natural killer cells in human PBMCs. Cell Biol Int 2007; 32:188-97. [PMID: 17920947 DOI: 10.1016/j.cellbi.2007.08.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2007] [Revised: 06/28/2007] [Accepted: 08/27/2007] [Indexed: 11/23/2022]
Abstract
Human natural killer (NK) cells are one major component of lymphocytes that mediate early protection against viruses and tumor cells, and play an important role in immune regulatory functions. In this study, we demonstrated that human NK cells could be divided into four subsets, CD56hi CD16(-), CD56lo CD16(-), CD56+CD16+ and CD56(-)CD16+, based on the expression of cell surface CD56 and CD16 molecules. Phenotypic analysis of NK cell subsets indicated that the expression of activation markers, adhesion molecules, memory cell markers, inhibitory and activating receptors, and intracellular proteins (granzyme B and perforin) were heterogeneous. Following interleukin (IL)-2 stimulation, interferon-gamma was preferentially produced by CD56+CD16(-) NK cells and this subset showed more proliferative capacity. The cytolytic activity of both CD56+CD16(-) and CD56+/-CD16+ subsets could be augmented in response to IL-2. The data provided a new definition for NK cell subsets demonstrating their phenotypic and functional diversity and possible stage of NK cell differentiation in peripheral blood.
Collapse
|
46
|
Chan A, Hong DL, Atzberger A, Kollnberger S, Filer AD, Buckley CD, McMichael A, Enver T, Bowness P. CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. THE JOURNAL OF IMMUNOLOGY 2007; 179:89-94. [PMID: 17579025 DOI: 10.4049/jimmunol.179.1.89] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human NK cells are divided into CD56(bright)CD16(-) cells and CD56(dim)CD16(+) cells. We tested the hypothesis that CD56(bright) NK cells can differentiate into CD56(dim) cells by prospectively isolating and culturing each NK subset in vitro and in vivo. Our results show that CD56(bright) cells can differentiate into CD56(dim) both in vitro, in the presence of synovial fibroblasts, and in vivo, upon transfer into NOD-SCID mice. In vitro, this differentiation was inhibited by fibroblast growth factor receptor-1 Ab, demonstrating a role of the CD56 and fibroblast growth factor receptor-1 interaction in this process. Differentiated CD56(dim) cells had reduced IFN-gamma production but increased perforin expression and cytolysis of cell line K562 targets. Flow cytometric fluorescent in situ hybridization demonstrated that CD56(bright) NK cells had longer telomere length compared with CD56(dim) NK cells, implying the former are less mature. Our data support a linear differentiation model of human NK development in which immature CD56(bright) NK cells can differentiate into CD56(dim) cells.
Collapse
Affiliation(s)
- Antoni Chan
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Kalinski P, Nakamura Y, Watchmaker P, Giermasz A, Muthuswamy R, Mailliard RB. Helper roles of NK and CD8+ T cells in the induction of tumor immunity. Polarized dendritic cells as cancer vaccines. Immunol Res 2007; 36:137-46. [PMID: 17337774 DOI: 10.1385/ir:36:1:137] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/30/2022]
Abstract
The work in our laboratory addresses two interrelated areas of dendritic cell (DC) biology: (1) the role of DCs as mediators of feedback interactions between NK cells, CD8+ and CD4+ T cells; and (2) the possibility to use such feedback and the paradigms derived from anti-viral responses, to promote the induction of therapeutic immunity against cancer. We observed that CD8+ T cells and NK cells, the classical "effector" cells, also play "helper" roles, regulating ability of DCs to induce type-1 immune immunity, critical for fighting tumors and intracellular pathogens. Our work aims to delineate which pathways of NK and CD8+ T cell activation result in their helper activity, and to identify the molecular mechanisms allowing them to induce type-1 polarized DCs (DC1s) with selectively enhanced ability to promote type-1 responses and anti-cancer immunity. The results of these studies allowed us and our colleagues to design phase I/II clinical trials incorporating the paradigms of DC polarization and helper activity of effector cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Pawel Kalinski
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213-1863, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Quaranta MG, Napolitano A, Sanchez M, Giordani L, Mattioli B, Viora M. HIV-1 Nef impairs the dynamic of DC/NK crosstalk: different outcome of CD56(dim) and CD56(bright) NK cell subsets. FASEB J 2007; 21:2323-34. [PMID: 17431094 DOI: 10.1096/fj.06-7883com] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dendritic cells (DCs) and natural killer (NK) cells are essential components of the innate immunity and play a critical role in the first phase of host defense against infection. Interactions between DCs and NK cells have been demonstrated in a variety of settings, with evidence emerging of complex bidirectional crosstalk between the two cell types. The accessory HIV-1 Nef protein is a crucial determinant for viral replication and pathogenesis. We previously demonstrated that Nef, hijacking DC functional activity, subverts the DC arm of immune response to escape the adaptive immune attack. Here, we monitor the effect of Nef on the outcome of the innate immune response, focusing on the impact of Nef on DC/NK crosstalk. We demonstrate that Nef up-regulates the ability of DCs to stimulate the immunoregulatory NK cells (CD56(bright)) as assessed by the activated phenotype, up-regulation of their proliferative response and INF-gamma release. On the other hand, Nef-pulsed DCs inhibit cytotoxic NK cells (CD56(dim)), as assessed by the reduced HLA-DR surface expression, reduced proliferation and cytotoxic activity. Moreover, in the presence of Nef-pulsed DCs, we found a significant up-regulation of TNF-alpha secretion and a significant reduction of IL-10, GM-CSF, MIP-1alpha and RANTES secretion. Our findings suggest that the Nef-induced dysregulation in the DC/NK cell crosstalk may represent a potential mechanism through which HIV escapes innate immune surveillance.
Collapse
Affiliation(s)
- Maria Giovanna Quaranta
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
49
|
Takahashi E, Kuranaga N, Satoh K, Habu Y, Shinomiya N, Asano T, Seki S, Hayakawa M. Induction of CD16+ CD56bright NK cells with antitumour cytotoxicity not only from CD16- CD56bright NK Cells but also from CD16- CD56dim NK cells. Scand J Immunol 2007; 65:126-38. [PMID: 17257217 DOI: 10.1111/j.1365-3083.2006.01883.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The aim of this study was to examine the effect of cytokines on different subsets of NK cells, while especially focusing on CD16(-) CD56(dim) cells and CD16(-) CD56(bright) cells. When human peripheral blood mononuclear cells (PBMC) were cultured with a combination of IL-2, IL-12 and IL-15 for several days, a minor population of CD56(bright) NK cells expanded up to 15%, and also showed potent cytotoxicities against various cancer cells. Sorting experiments revealed that unconventional CD16(-) CD56(+) NK cells (CD16(-) CD56(dim) NK cells and CD16(-) CD56(bright) NK cells, both of which are less than 1% in PBMC) much more vigorously proliferated after cytokine stimulation, whereas predominant CD16(+) CD56(dim) NK cells proliferated poorly. In addition, many of the resting CD16(-) CD56(bright) NK cells developed into CD16(+) CD56(bright) NK cells, and CD16(-) CD56(dim) NK cells developed into CD16(-) CD56(bright) NK cells and also further into CD16(+) CD56(bright) NK cells by the cytokines. CSFE label experiments further substantiated the proliferation capacity of each subset and the developmental process of CD16(+) CD56(bright) NK cells. Both CD16(-) CD56(dim) NK cells and CD16(-) CD56(bright) NK cells produced large amounts of IFN-gamma and Fas-ligands. The CD16(+) CD56(bright) NK cells showed strong cytotoxicities against not only MHC class I (-) but also MHC class I (+) tumours regardless of their expression of CD94/NKG2A presumably because they expressed NKG2D as well as natural cytotoxicity receptors. The proliferation of CD16(+) CD56(bright) NK cells was also induced when PBMC were stimulated with penicillin-treated Streptococcus pyogenes, thus suggesting their role in tumour immunity and bacterial infections.
Collapse
Affiliation(s)
- E Takahashi
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
McKenna DH, Sumstad D, Bostrom N, Kadidlo DM, Fautsch S, McNearney S, Dewaard R, McGlave PB, Weisdorf DJ, Wagner JE, McCullough J, Miller JS. Good manufacturing practices production of natural killer cells for immunotherapy: a six-year single-institution experience. Transfusion 2007; 47:520-8. [PMID: 17319835 DOI: 10.1111/j.1537-2995.2006.01145.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Natural killer (NK) cells, a subset of lymphocytes and part of the innate immune system, play a crucial role in defense against cancer and viral infection. Herein is a report on the experience of clinical-scale, good manufacturing practices (GMPs) production of NK cells to treat advanced cancer. STUDY DESIGN AND METHODS Two types of NK cell enrichments were performed on nonmobilized peripheral blood mononuclear cell apheresis collections with a cell selection system (CliniMACS, Miltenyi): CD3 cell depletion to enrich for NK cells and CD3 cell depletion followed by CD56 cell selection to obtain a more pure NK cell product. After overnight incubation with interleukin-2 (IL-2), cells were washed, resuspended in 5 percent human serum albumin, and then released for infusion. RESULTS A total of 70 NK cell therapy products have been manufactured for patient infusion since 2000. For the CD3 cell-depleted NK cell products, the mean purity, recovery, and viability were 38, 79, and 86 percent, respectively. For the CD3 cell-depleted/CD56 cell-enriched NK cell products, the mean purity, recovery, and viability were 90, 19, and 85 percent, respectively. Gram stain, sterility, and endotoxin testing were all within acceptable limits for established lot release. Compared to the resting processed cells, IL-2 activation significantly increased the function of cells in cytotoxicity assays. CONCLUSION Clinical-scale production of NK cells is efficient and can be performed under GMPs. The purified NK cell product results in high NK cell purity with minimal contamination by T cells, monocytes, and B cells, but it requires more time for processing and results in a lower NK cell recovery when compared to NK cell enrichment with CD3 cell depletion alone. Additional laboratory studies and results from clinical trials will identify the best source and type of NK cell product.
Collapse
Affiliation(s)
- David H McKenna
- Department of Laboratory Medicine and Pathology, Division of Transfusion Medicine, University of Minnesota Medical School, Minnesota 55108, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|