1
|
Zheng W, Zhou Z, Guo X, Zuo X, Zhang J, An Y, Zheng H, Yue Y, Wang G, Wang F. Efferocytosis and Respiratory Disease. Int J Mol Sci 2023; 24:14871. [PMID: 37834319 PMCID: PMC10573909 DOI: 10.3390/ijms241914871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Cells are the smallest units that make up living organisms, which constantly undergo the processes of proliferation, differentiation, senescence and death. Dead cells need to be removed in time to maintain the homeostasis of the organism and keep it healthy. This process is called efferocytosis. If the process fails, this may cause different types of diseases. More and more evidence suggests that a faulty efferocytosis process is closely related to the pathological processes of respiratory diseases. In this review, we will first introduce the process and the related mechanisms of efferocytosis of the macrophage. Secondly, we will propose some methods that can regulate the function of efferocytosis at different stages of the process. Next, we will discuss the role of efferocytosis in different lung diseases and the related treatment approaches. Finally, we will summarize the drugs that have been applied in clinical practice that can act upon efferocytosis, in order to provide new ideas for the treatment of lung diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Guoqiang Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.Z.); (Z.Z.); (X.G.); (X.Z.); (J.Z.); (Y.A.); (H.Z.); (Y.Y.)
| | - Fang Wang
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, China; (W.Z.); (Z.Z.); (X.G.); (X.Z.); (J.Z.); (Y.A.); (H.Z.); (Y.Y.)
| |
Collapse
|
2
|
Yang XF, Shang DJ. The role of peroxisome proliferator-activated receptor γ in lipid metabolism and inflammation in atherosclerosis. Cell Biol Int 2023; 47:1469-1487. [PMID: 37369936 DOI: 10.1002/cbin.12065] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 05/09/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
Cardiovascular disease events are the result of functional and structural abnormalities in the arteries and heart. Atherosclerosis is the main cause and pathological basis of cardiovascular diseases. Atherosclerosis is a multifactorial disease associated with dyslipidemia, inflammation, and oxidative stress, among which dyslipidemia and chronic inflammation occur in all processes. Under the influence of lipoproteins, the arterial intima causes inflammation, necrosis, fibrosis, and calcification, leading to plaque formation in specific parts of the artery, which further develops into plaque rupture and secondary thrombosis. Foam cell formation from macrophages is an early event in the development of atherosclerosis. Lipid uptake causes a vascular inflammatory response, and persistent inflammatory infiltration in the lesion area further promotes the development of the disease. Inhibition of macrophage differentiation into foam cell and reduction of the level of proinflammatory factors in macrophages can effectively alleviate the occurrence and development of atherosclerosis. Peroxisome proliferator-activated receptor γ (PPARγ) is a ligand-activated nuclear receptor that plays an important antiatherosclerotic role by regulating triglyceride metabolism, lipid uptake, cholesterol efflux, macrophage polarity, and inhibiting inflammatory signaling pathways. In addition, PPARγ shifts its binding to ligands and co-activators or co-repressors of transcription of target genes through posttranslational modification, thereby affecting the regulation of its downstream target genes. Many ligand agonists have also been developed targeting PPARγ. In this review, we summarized the role of PPARγ in lipid metabolism and inflammation in development of atherosclerosis, the posttranslational regulatory mechanism of PPARγ, and further discusses the value of PPARγ as an antiatherosclerosis target.
Collapse
Affiliation(s)
- Xue-Feng Yang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
- Department of Physiology, School of Basic Medical Sciences, Jinzhou Medical University, Jinzhou, China
| | - De-Jing Shang
- School of Life Science, Liaoning Provincial Key Laboratory of Biotechnology and Drug Discovery, Liaoning Normal University, Dalian, China
| |
Collapse
|
3
|
Bekbossynova M, Tauekelova A, Sailybayeva A, Kozhakhmetov S, Mussabay K, Chulenbayeva L, Kossumov A, Khassenbekova Z, Vinogradova E, Kushugulova A. Unraveling Acute and Post-COVID Cytokine Patterns to Anticipate Future Challenges. J Clin Med 2023; 12:5224. [PMID: 37629267 PMCID: PMC10455949 DOI: 10.3390/jcm12165224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/25/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The aims of this study were to analyze cytokine profiles in patients with COVID-19, gain insights into the immune response during acute infection, identify cytokines associated with disease severity and post-COVID complications, and explore potential biomarkers for prognosis and therapeutic targets. Using a multiplex analysis, we studied the cytokine pattern in 294 acute COVID-19 and post-COVID patients with varying severities of infection. Our findings revealed that disease severity was associated with elevated levels of IL-15, IL-8, and fractalkine. Severe/extremely severe forms in comparison with mild/moderate disease were associated with MCP-1, IFNa2, IL-7, IL-15, EGF, IP-10, IL-8, Eotaxin, FGF-2, GROa, sCD40L, and IL-10. The key cytokines of post-COVID are FGF-2, VEGF-A, EGF, IL-12(p70), IL-13, and IL-6. By the sixth month after recovering from a coronavirus infection, regardless of disease severity, some patients may develop complications such as arterial hypertension, type 2 diabetes mellitus, glucose intolerance, thyrotoxicosis, atherosclerosis, and rapid progression of previously diagnosed conditions. Each complication is characterized by distinct cytokine profiles. Importantly, these complications can also be predicted during the acute phase of the coronavirus infection. Understanding cytokine patterns can aid in predicting disease progression, identifying high-risk patients, and developing targeted interventions to improve the outcomes of COVID-19.
Collapse
Affiliation(s)
- Makhabbat Bekbossynova
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
| | - Ainur Tauekelova
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
| | - Aliya Sailybayeva
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
| | - Samat Kozhakhmetov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Karakoz Mussabay
- Department of Microbiology and Virology Named after Sh.I.Sarbasova, Astana Medical University, Astana 010000, Kazakhstan;
| | - Laura Chulenbayeva
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Alibek Kossumov
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Zhanagul Khassenbekova
- Department of General Pharmacology, Astana Medical University, Astana 010000, Kazakhstan;
| | - Elizaveta Vinogradova
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
| | - Almagul Kushugulova
- National Research Cardiac Surgery Center, Astana 020000, Kazakhstan; (M.B.); (A.T.); (A.S.)
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan; (S.K.); (L.C.); (A.K.); (E.V.)
- Almagul Kushugulova, Laboratory of Microbiome, Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Kabanbay Batyr Ave., 53, Block S1, Office 303, Astana 010000, Kazakhstan
| |
Collapse
|
4
|
Tajbakhsh A, Gheibihayat SM, Karami N, Savardashtaki A, Butler AE, Rizzo M, Sahebkar A. The regulation of efferocytosis signaling pathways and adipose tissue homeostasis in physiological conditions and obesity: Current understanding and treatment options. Obes Rev 2022; 23:e13487. [PMID: 35765849 DOI: 10.1111/obr.13487] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/02/2022] [Accepted: 06/03/2022] [Indexed: 12/14/2022]
Abstract
Obesity is associated with changes in the resolution of acute inflammation that contribute to the clinical complications. The exact mechanisms underlying unresolved inflammation in obesity are not fully understood. Adipocyte death leads to pro-inflammatory adipose tissue macrophages, stimulating additional adipocyte apoptosis. Thus, a complex and tightly regulated process to inhibit inflammation and maintain homeostasis after adipocyte apoptosis is needed to maintain health. In normal condition, a specialized phagocytic process (efferocytosis) performs this function, clearing necrotic and apoptotic cells (ACs) and controlling inflammation. For efficient and continued efferocytosis, phagocytes must internalize multiple ACs in physiological conditions and handle the excess metabolic burden in adipose tissue. In obesity, this control is lost and can be an important hallmark of the disease. In this regard, the deficiency of efferocytosis leads to delayed resolution of acute inflammation and can result in ongoing inflammation, immune system dysfunction, and insulin resistance in obesity. Hence, efficient clearance of ACs by M2 macrophages could limit long-term inflammation and ensue clinical complications, such as cardiovascular disease and diabetes. This review elaborates upon the molecular mechanisms to identify efferocytosis regulators in obesity, and the mechanisms that can improve efferocytosis and reduce obesity-related complications, such as the use of pharmacological agents and regular exercise.
Collapse
Affiliation(s)
- Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Gheibihayat
- Department of Medical Biotechnology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Neda Karami
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Infertility Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland Bahrain, Adliya, 15503, Bahrain
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Western Australia, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Egyptian propolis and selenium nanoparticles against murine trichinosis: a novel therapeutic insight. J Helminthol 2022; 96:e50. [PMID: 35856263 DOI: 10.1017/s0022149x22000359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Trichinosis is a serious zoonotic disease that causes human morbidity and mortality. New effective natural remedies with minimal side effects that are well tolerated are needed to treat both enteral and parenteral trichinosis. This study evaluated the efficacy of selenium (Se), Se nanoparticles (SeNPs) and Egyptian propolis compared with albendazole as antiparasitic, anti-inflammatory and anti-angiogenic agents for treating murine trichinosis. We used parasitological, histopathological and immunohistochemical assays, as well as scanning electron microscopy, to examine adult worms. Overall, 80 Swiss albino male mice were divided into eight groups, with ten mice in each group, as follows: negative control, positive control, albendazole, propolis, Se, combination of propolis and Se, SeNPs and combination of SeNPs and propolis. Mice were slaughtered seven and 35 days after infection to examine the intestinal and muscular phases, respectively. This study demonstrated the efficacy of the combination of SeNPs and propolis. As revealed by electron microscopy, this combination caused damage to the adult worm cuticle. Additionally, compared with albendazole, it resulted in a significant reduction in adult worm and total larval counts; moreover, it caused a decrease in the number of larvae deposited in muscles, with a highly significant decrease in the inflammatory cell infiltrate around the larvae and a considerable decrease in the expression of the angiogenic marker vascular endothelial growth factor in muscles. In conclusion, the combination of SeNPs and propolis had antiparasitic, anti-inflammatory and anti-angiogenic effects on trichinosis. Consequently, this combination could be used as a natural alternative therapy to albendazole for treating trichinosis.
Collapse
|
6
|
Lee YJ, Kim K, Kim M, Ahn YH, Kang JL. Inhibition of STAT6 Activation by AS1517499 Inhibits Expression and Activity of PPARγ in Macrophages to Resolve Acute Inflammation in Mice. Biomolecules 2022; 12:447. [PMID: 35327639 PMCID: PMC8946515 DOI: 10.3390/biom12030447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 12/10/2022] Open
Abstract
Signal transducer and activator of transcription 6 (STAT6) promotes an anti-inflammatory process by inducing the development of M2 macrophages. We investigated whether modulating STAT6 activity in macrophages using AS1517499, the specific STAT6 inhibitor, affects the restoration of homeostasis after an inflammatory insult by regulating PPARγ expression and activity. Administration of AS1517499 suppressed the enhanced STAT6 phosphorylation and nuclear translocation observed in peritoneal macrophages after zymosan injection. In addition, AS1517499 delayed resolution of acute inflammation as evidenced by enhanced secretion of pro-inflammatory cytokines, reduced secretion of anti-inflammatory cytokines in PLF and supernatants from peritoneal macrophages, and exaggerated neutrophil numbers and total protein levels in PLF. We demonstrate temporal increases in annexin A1 (AnxA1) protein and mRNA levels in peritoneal lavage fluid (PLF), peritoneal macrophages, and spleen in a murine model of zymosan-induced acute peritonitis. In vitro priming of mouse bone marrow-derived macrophages (BMDM) and peritoneal macrophages with AnxA1 induced STAT6 activation with enhanced PPARγ expression and activity. Using AS1517499, we demonstrate that inhibition of STAT6 activation delayed recovery of PPARγ expression and activity, as well as impaired efferocytosis. Taken together, these results suggest that activation of the STAT6 signaling pathway mediates PPARγ expression and activation in macrophages to resolve acute inflammation.
Collapse
Affiliation(s)
- Ye-Ji Lee
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| | - Kiyoon Kim
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| | - Minsuk Kim
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
- Department of Pharmacology, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Young-Ho Ahn
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
- Department of Molecular Medicine, College of Medicine, Ewha Womans University, Seoul 07804, Korea
| | - Jihee Lee Kang
- Department of Physiology, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (Y.-J.L.); (K.K.)
- Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul 07804, Korea; (M.K.); (Y.-H.A.)
| |
Collapse
|
7
|
Ma J, Zeng P, Liu L, Zhu M, Zheng J, Wang C, Zhao X, Hu W, Yang X, Duan Y, Han J, Miao QR, Chen Y. Peroxisome Proliferator-Activated Receptor-Gamma Reduces ER Stress and Inflammation via Targeting NGBR Expression. Front Pharmacol 2022; 12:817784. [PMID: 35111067 PMCID: PMC8801792 DOI: 10.3389/fphar.2021.817784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/27/2021] [Indexed: 01/01/2023] Open
Abstract
Increased Nogo-B receptor (NGBR) expression in the liver improves insulin sensitivity by reducing endoplasmic reticulum stress (ER stress) and activating the AMPK pathway, although it remains elusive the mechanisms by which NGBR is induced. In this study, we found that PPARγ ligands (rosiglitazone or pioglitazone) increased NGBR expression in hepatic cells and HUVECs. Furthermore, promoter analysis defined two PPREs (PPARγ-responsive elements) in the promoter region of NGBR, which was further confirmed by the ChIP assay. In vivo, using liver-specific PPARγ deficient (PPARγLKO) mice, we identified the key role of PPARγ expression in pioglitazone-induced NGBR expression. Meanwhile, the basal level of ER stress and inflammation was slightly increased by NGBR knockdown. However, the inhibitory effect of rosiglitazone on inflammation was abolished while rosiglitazone-inhibited ER stress was weakened by NGBR knockdown. Taken together, these findings show that NGBR is a previously unrecognized target of PPARγ activation and plays an essential role in PPARγ-reduced ER stress and inflammation.
Collapse
Affiliation(s)
- Jialing Ma
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Peng Zeng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Lipei Liu
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Mengmeng Zhu
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Juan Zheng
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Chengyi Wang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Xiaokang Zhao
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wenquan Hu
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xiaoxiao Yang
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yajun Duan
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Jihong Han
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China.,College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, China
| | - Qing R Miao
- Diabetes and Obesity Research Center, New York University Long Island School of Medicine, New York, NY, United States
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
8
|
Lv J, Wang W, Zhu X, Xu X, Yan Q, Lu J, Shi X, Wang Z, Zhou J, Huang X, Wang J, Duan W, Shen X. DW14006 as a direct AMPKα1 activator improves pathology of AD model mice by regulating microglial phagocytosis and neuroinflammation. Brain Behav Immun 2020; 90:55-69. [PMID: 32739363 DOI: 10.1016/j.bbi.2020.07.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is a progressively neurodegenerative disease with typical hallmarks of amyloid β (Aβ) plaque accumulation, neurofibrillary tangle (NFT) formation and neuronal death extension. In AD brain, activated microglia phagocytose Aβ and neuronal debris, but also aggravate inflammation stress by releasing inflammatory factors and cytotoxins. Improving microglia on Aβ catabolism and neuroinflammatory intervention is thus believed to be a promising therapeutic strategy for AD. AMP-activated protein kinase (AMPK) is highly expressed in microglia with AMPKα1 being tightly implicated in neuroinflammatory events. Since indirect AMPKα1 activators may cause side effects with undesired intracellular AMP/ATP ratio, we focused on direct AMPKα1 activator study by exploring its potential function in ameliorating AD-like pathology of AD model mice. Here, we reported that direct AMPKα1 activator DW14006 (2-(3-(7-chloro-6-(2'-hydroxy-[1,1'-biphenyl]-4-yl)-2-oxo-1,2-dihydroquinolin-3-yl)phenyl)acetic acid) effectively improved learning and memory impairments of APP/PS1 mice, and the underlying mechanisms have been intensively investigated. DW14006 reduced amyloid plaque deposition by promoting microglial o-Aβ42 phagocytosis and ameliorated innate immune response by polarizing microglia to an anti-inflammatory phenotype. It selectively enhanced microglial phagocytosis of o-Aβ42 by upgrading scavenger receptor CD36 through AMPKα1/PPARγ/CD36 signaling and suppressed inflammation by AMPKα1/IκB/NFκB signaling. Together, our work has detailed the crosstalk between AMPKα1 and microglia in AD model mice, and highlighted the potential of DW14006 in the treatment of AD.
Collapse
Affiliation(s)
- Jianlu Lv
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wei Wang
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China
| | - Xialin Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoju Xu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Qiuying Yan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaofan Shi
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China; Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Zhengyu Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Jinpei Zhou
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjia Xiang, Nanjing 210009, China
| | - Xi Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jiaying Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Wenhu Duan
- Department of Medicinal Chemistry, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China.
| | - Xu Shen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
9
|
Delicate Role of PD-L1/PD-1 Axis in Blood Vessel Inflammatory Diseases: Current Insight and Future Significance. Int J Mol Sci 2020; 21:ijms21218159. [PMID: 33142805 PMCID: PMC7663405 DOI: 10.3390/ijms21218159] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Immune checkpoint molecules are the antigen-independent generator of secondary signals that aid in maintaining the homeostasis of the immune system. The programmed death ligand-1 (PD-L1)/PD-1 axis is one among the most extensively studied immune-inhibitory checkpoint molecules, which delivers a negative signal for T cell activation by binding to the PD-1 receptor. The general attributes of PD-L1's immune-suppressive qualities and novel mechanisms on the barrier functions of vascular endothelium to regulate blood vessel-related inflammatory diseases are concisely reviewed. Though targeting the PD-1/PD-L1 axis has received immense recognition-the Nobel Prize in clinical oncology was awarded in the year 2018 for this discovery-the use of therapeutic modulating strategies for the PD-L1/PD-1 pathway in chronic inflammatory blood vessel diseases is still limited to experimental models. However, studies using clinical specimens that support the role of PD-1 and PD-L1 in patients with underlying atherosclerosis are also detailed. Of note, delicate balances in the expression levels of PD-L1 that are needed to preserve T cell immunity and to curtail acute as well as chronic infections in underlying blood vessel diseases are discussed. A significant link exists between altered lipid and glucose metabolism in different cells and the expression of PD-1/PD-L1 molecules, and its possible implications on vascular inflammation are justified. This review summarizes the most recent insights concerning the role of the PD-L1/PD-1 axis in vascular inflammation and, in addition, provides an overview exploring the novel therapeutic approaches and challenges of manipulating these immune checkpoint proteins, PD-1 and PD-L1, for suppressing blood vessel inflammation.
Collapse
|
10
|
Cai W, Dai X, Chen J, Zhao J, Xu M, Zhang L, Yang B, Zhang W, Rocha M, Nakao T, Kofler J, Shi Y, Stetler RA, Hu X, Chen J. STAT6/Arg1 promotes microglia/macrophage efferocytosis and inflammation resolution in stroke mice. JCI Insight 2019; 4:131355. [PMID: 31619589 PMCID: PMC6824303 DOI: 10.1172/jci.insight.131355] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
Efferocytosis, or phagocytic clearance of dead/dying cells by brain-resident microglia and/or infiltrating macrophages, is instrumental for inflammation resolution and restoration of brain homeostasis after stroke. Here, we identify the signal transducer and activator of transcription 6/arginase1 (STAT6/Arg1) signaling axis as a potentially novel mechanism that orchestrates microglia/macrophage responses in the ischemic brain. Activation of STAT6 was observed in microglia/macrophages in the ischemic territory in a mouse model of stroke and in stroke patients. STAT6 deficiency resulted in reduced clearance of dead/dying neurons, increased inflammatory gene signature in microglia/macrophages, and enlarged infarct volume early after experimental stroke. All of these pathological changes culminated in an increased brain tissue loss and exacerbated long-term functional deficits. Combined in vivo analyses using BM chimeras and in vitro experiments using microglia/macrophage-neuron cocultures confirmed that STAT6 activation in both microglia and macrophages was essential for neuroprotection. Adoptive transfer of WT macrophages into STAT6-KO mice reduced accumulation of dead neurons in the ischemic territory and ameliorated brain infarction. Furthermore, decreased expression of Arg1 in STAT6-/- microglia/macrophages was responsible for impairments in efferocytosis and loss of antiinflammatory modality. Our study suggests that efferocytosis via STAT6/Arg1 modulates microglia/macrophage phenotype, accelerates inflammation resolution, and improves stroke outcomes.
Collapse
Affiliation(s)
- Wei Cai
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xuejiao Dai
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jie Chen
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Jingyan Zhao
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mingyue Xu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lili Zhang
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Boyu Yang
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Wenting Zhang
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Marcelo Rocha
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Toshimasa Nakao
- T.E. Starzl Transplantation Institute and Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Yejie Shi
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - R. Anne Stetler
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Xiaoming Hu
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| | - Jun Chen
- Pittsburgh Institute of Brain Disorders and Recovery, and Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Vallée A, Vallée JN, Lecarpentier Y. Metabolic reprogramming in atherosclerosis: Opposed interplay between the canonical WNT/β-catenin pathway and PPARγ. J Mol Cell Cardiol 2019; 133:36-46. [PMID: 31153873 DOI: 10.1016/j.yjmcc.2019.05.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/27/2019] [Accepted: 05/29/2019] [Indexed: 01/08/2023]
Abstract
Atherosclerosis, a chronic inflammatory and age-related disease, is a complex mechanism presenting a dysregulation of vessel structures. During this process, the canonical WNT/β-catenin pathway is increased whereas PPARγ is downregulated. The two systems act in an opposite manner. This paper reviews the opposing interplay of these systems and their metabolic-reprogramming pathway in atherosclerosis. Activation of the WNT/β-catenin pathway enhances the transcription of targets involved in inflammation, endothelial dysfunction, the proliferation of vascular smooth muscle cells, and vascular calcification. This complex mechanism, which is partly controlled by the WNT/β-catenin pathway, presents several metabolic dysfunctions. This phenomenon, called aerobic glycolysis (or the Warburg effect), consists of a shift in ATP production from mitochondrial oxidative phosphorylation to aerobic glycolysis, leading to the overproduction of intracellular lactate. This mechanism is partially due to the injury of mitochondrial respiration and an increase in the glycolytic pathway. In contrast, PPARγ agonists downregulate the WNT/β-catenin pathway. Therefore, the development of therapeutic targets, such as PPARγ agonists, for the treatment of atherosclerosis could be an interesting and innovative way of counteracting the canonical WNT pathway.
Collapse
Affiliation(s)
- Alexandre Vallée
- Diagnosis and Therapeutic Center, Hypertension and Cardiovascular Prevention Unit, Hotel-Dieu Hospital, AP-HP, Université Paris Descartes, Paris, France.
| | - Jean-Noël Vallée
- Centre Hospitalier Universitaire (CHU) Amiens Picardie, Université Picardie Jules Verne (UPJV), 80054 Amiens, France; Laboratoire de Mathématiques et Applications (LMA), UMR CNRS 7348, Université de Poitiers, Poitiers, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien (GHEF), 6-8 rue Saint-fiacre, 77100 Meaux, France
| |
Collapse
|
12
|
Tamburini BAJ, Finlon JM, Gillen AE, Kriss MS, Riemondy KA, Fu R, Schuyler RP, Hesselberth JR, Rosen HR, Burchill MA. Chronic Liver Disease in Humans Causes Expansion and Differentiation of Liver Lymphatic Endothelial Cells. Front Immunol 2019; 10:1036. [PMID: 31156626 PMCID: PMC6530422 DOI: 10.3389/fimmu.2019.01036] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
Liver lymphatic vessels support liver function by draining interstitial fluid, cholesterol, fat, and immune cells for surveillance in the liver draining lymph node. Chronic liver disease is associated with increased inflammation and immune cell infiltrate. However, it is currently unknown if or how lymphatic vessels respond to increased inflammation and immune cell infiltrate in the liver during chronic disease. Here we demonstrate that lymphatic vessel abundance increases in patients with chronic liver disease and is associated with areas of fibrosis and immune cell infiltration. Using single-cell mRNA sequencing and multi-spectral immunofluorescence analysis we identified liver lymphatic endothelial cells and found that chronic liver disease results in lymphatic endothelial cells (LECs) that are in active cell cycle with increased expression of CCL21. Additionally, we found that LECs from patients with NASH adopt a transcriptional program associated with increased IL13 signaling. Moreover, we found that oxidized low density lipoprotein, associated with NASH pathogenesis, induced the transcription and protein production of IL13 in LECs both in vitro and in a mouse model. Finally, we show that oxidized low density lipoprotein reduced the transcription of PROX1 and decreased lymphatic stability. Together these data indicate that LECs are active participants in the liver, expanding in an attempt to maintain tissue homeostasis. However, when inflammatory signals, such as oxidized low density lipoprotein are increased, as in NASH, lymphatic function declines and liver homeostasis is impeded.
Collapse
Affiliation(s)
- Beth A Jiron Tamburini
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, United States.,Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States.,RNA Biosciences Initiative, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Jeffrey M Finlon
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Austin E Gillen
- RNA Biosciences Initiative, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Michael S Kriss
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Kent A Riemondy
- RNA Biosciences Initiative, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Rui Fu
- RNA Biosciences Initiative, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Ronald P Schuyler
- Department of Immunology and Microbiology, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Jay R Hesselberth
- RNA Biosciences Initiative, School of Medicine, University of Colorado, Aurora, CO, United States.,Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO, United States
| | - Hugo R Rosen
- Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthew A Burchill
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of Colorado, Aurora, CO, United States.,RNA Biosciences Initiative, School of Medicine, University of Colorado, Aurora, CO, United States
| |
Collapse
|
13
|
Benmoussa K, Garaude J, Acín-Pérez R. How Mitochondrial Metabolism Contributes to Macrophage Phenotype and Functions. J Mol Biol 2018; 430:3906-3921. [PMID: 30006265 DOI: 10.1016/j.jmb.2018.07.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 01/02/2023]
Abstract
Metabolic reprogramming of cells from the innate immune system is one of the most noteworthy topics in immunological research nowadays. Upon infection or tissue damage, innate immune cells, such as macrophages, mobilize various immune and metabolic signals to mount a response best suited to eradicate the threat. Current data indicate that both the immune and metabolic responses are closely interconnected. On account of its peculiar position in regulating both of these processes, the mitochondrion has emerged as a critical organelle that orchestrates the coordinated metabolic and immune adaptations in macrophages. Significant effort is now underway to understand how metabolic features of differentiated macrophages regulate their immune specificities with the eventual goal to manipulate cellular metabolism to control immunity. In this review, we highlight some of the recent work that place cellular and mitochondrial metabolism in a central position in the macrophage differentiation program.
Collapse
Affiliation(s)
- Khaddouj Benmoussa
- Laboratoire Maladies Rares, Génétique et Métabolisme, INSERM U1211, Université de Bordeaux, CHU Pellegrin, École de Sages-Femmes, 33000 Bordeaux, France
| | - Johan Garaude
- Laboratoire Maladies Rares, Génétique et Métabolisme, INSERM U1211, Université de Bordeaux, CHU Pellegrin, École de Sages-Femmes, 33000 Bordeaux, France.
| | - Rebeca Acín-Pérez
- UCLA Division of Endocrinology, Diabetes and Metabolism, David Geffen School of Medicine, 10833 Le Conte Avenue, CHS 27-200, Los Angeles, CA 90025, USA; Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernandez de Almagro 3, 28029 Madrid, Spain.
| |
Collapse
|
14
|
IL-13 may be involved in the development of CAD via different mechanisms under different conditions in a Chinese Han population. Sci Rep 2018; 8:6182. [PMID: 29670225 PMCID: PMC5906444 DOI: 10.1038/s41598-018-24592-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/05/2018] [Indexed: 01/23/2023] Open
Abstract
Interleukin-13 (IL-13) has important functions in atherosclerosis, but its role in coronary artery disease (CAD) is unclear. Here, we studied the genetic role of IL-13 in CAD in a Chinese Han population using tag SNPs covering the whole IL13 gene (i.e., rs1881457, rs2069744 and rs20541) and a two-stage cohort containing 1863 CAD cases and 1841 controls. Traditional risk factors for CAD, such as age, BMI, and other factors, were used as covariates in logistic regression analysis. In the total population, we found that two haplotypes of IL13 (ATG and ATA, ordered rs1881457C-rs2069744T-rs20541A) significantly contributed to the risk of CAD with adjusted p values less than 0.05 (padj = 0.019 and padj = 0.042, respectively). In subgroup population analyses, the variant rs1881457C was found to significantly contribute to a nearly two fold increase in the risk of CAD in men (padj = 0.023, OR = 1.91, 95% CI: 1.09-3.33). The variant rs1881457C also significantly contributed to a nearly twofold risk of late-onset CAD (padj = 0.024, OR = 1.93, 95% CI: 1.09-3.42). In conclusion, IL13 might be involved in CAD via different mechanisms under different conditions in the Chinese Han population.
Collapse
|
15
|
Chen IJ, Hee SW, Liao CH, Lin SY, Su L, Shun CT, Chuang LM. Targeting the 15-keto-PGE2-PTGR2 axis modulates systemic inflammation and survival in experimental sepsis. Free Radic Biol Med 2018; 115:113-126. [PMID: 29175486 DOI: 10.1016/j.freeradbiomed.2017.11.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/14/2017] [Accepted: 11/19/2017] [Indexed: 12/21/2022]
Abstract
Sepsis is a systemic inflammation accompanied by multi-organ dysfunction due to microbial infection. Prostaglandins and their metabolites have long been studied for their importance in regulating the innate immune response. 15-keto-PGE2 (15k-PGE2) is a prostaglandin E2 (PGE2) metabolite, whose further processing is catalyzed by prostaglandin reductase 2 (PTGR2). We showed disruption of the Ptgr2 gene in mice improves the survival rate under both LPS- and cecum ligation/puncture (CLP)-induced experimental sepsis. Knockdown of PTGR2 showed significant accumulation of intracellular 15k-PGE2 in activated macrophages. Both PTGR2 knockdown and exogenous treatment with 15k-PGE2 resulted in reduced pro-inflammatory cytokines production in LPS-stimulated RAW264.7 cells or bone marrow-derived macrophages (BMDM). The same treatment in RAW264.7 and BMDM also led to increased levels of the anti-oxidative transcription factor, Nuclear factor (erythroid-2) related factor-2 (NRF2), augmented anti-oxidant response element (ARE)-mediated reporter activity and upregulated expression of the corresponding anti-oxidant genes. 15k-PGE2 further demonstrated modification to Kelch-like ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, at cysteine 288 (Cys288) site post-translationally. Finally, 15k-PGE2-treated mice were found to be more resistant to experimental sepsis. Taken together, our study affirms the significance of PTGR2 and 15k-PGE2 in mitigating inflammatory responses and suggests a novel anti-oxidative and anti-inflammatory therapy for sepsis through targeting PTGR2 and administering15k-PGE2.
Collapse
Affiliation(s)
- Ing-Jung Chen
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Siow-Wey Hee
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chun-Hsing Liao
- Department of Internal Medicine, Far Eastern Memorial Hospital, Taipei, Taiwan
| | - Shih-Yao Lin
- AbGenomics BV, Taiwan Branch, Neihu, Taipei, Taiwan
| | - Lynn Su
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chia-Tung Shun
- Department of Forensic Medicine and Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Lee-Ming Chuang
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
16
|
Davies SP, Reynolds GM, Stamataki Z. Clearance of Apoptotic Cells by Tissue Epithelia: A Putative Role for Hepatocytes in Liver Efferocytosis. Front Immunol 2018; 9:44. [PMID: 29422896 PMCID: PMC5790054 DOI: 10.3389/fimmu.2018.00044] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 12/11/2022] Open
Abstract
Toxic substances and microbial or food-derived antigens continuously challenge the liver, which is tasked with their safe neutralization. This vital organ is also important for the removal of apoptotic immune cells during inflammation and has been previously described as a “graveyard” for dying lymphocytes. The clearance of apoptotic and necrotic cells is known as efferocytosis and is a critical liver function to maintain tissue homeostasis. Much of the research into this form of immunological control has focused on Kupffer cells, the liver-resident macrophages. However, hepatocytes (and other liver resident cells) are competent efferocytes and comprise 80% of the liver mass. Little is known regarding the mechanisms of apoptotic and necrotic cell capture by epithelia, which lack key receptors that mediate phagocytosis in macrophages. Herein, we discuss recent developments that increased our understanding of efferocytosis in tissues, with a special focus on the liver parenchyma. We discuss the impact of efferocytosis in health and in inflammation, highlighting the role of phagocytic epithelia.
Collapse
Affiliation(s)
- Scott P Davies
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| | - Gary M Reynolds
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,Centre for Liver Research and National Institute for Health Research (NIHR) Birmingham Liver Biomedical Research Unit, College of Medical and Dental Sciences, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Zania Stamataki
- Centre for Liver Research, College of Medical and Dental Sciences, Institute for Immunology and Immunotherapy, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
17
|
Benmoussa K, Authier H, Prat M, AlaEddine M, Lefèvre L, Rahabi MC, Bernad J, Aubouy A, Bonnafé E, Leprince J, Pipy B, Treilhou M, Coste A. P17, an Original Host Defense Peptide from Ant Venom, Promotes Antifungal Activities of Macrophages through the Induction of C-Type Lectin Receptors Dependent on LTB4-Mediated PPARγ Activation. Front Immunol 2017; 8:1650. [PMID: 29250064 PMCID: PMC5716351 DOI: 10.3389/fimmu.2017.01650] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 11/10/2017] [Indexed: 11/30/2022] Open
Abstract
Despite the growing knowledge with regard to the immunomodulatory properties of host defense peptides, their impact on macrophage differentiation and on its associated microbicidal functions is still poorly understood. Here, we demonstrated that the P17, a new cationic antimicrobial peptide from ant venom, induces an alternative phenotype of human monocyte-derived macrophages (h-MDMs). This phenotype is characterized by a C-type lectin receptors (CLRs) signature composed of mannose receptor (MR) and Dectin-1 expression. Concomitantly, this activation is associated to an inflammatory profile characterized by reactive oxygen species (ROS), interleukin (IL)-1β, and TNF-α release. P17-activated h-MDMs exhibit an improved capacity to recognize and to engulf Candida albicans through the overexpression both of MR and Dectin-1. This upregulation requires arachidonic acid (AA) mobilization and the activation of peroxisome proliferator-activated receptor gamma (PPARγ) nuclear receptor through the leukotriene B4 (LTB4) production. AA/LTB4/PPARγ/Dectin-1-MR signaling pathway is crucial for P17-mediated anti-fungal activity of h-MDMs, as indicated by the fact that the activation of this axis by P17 triggered ROS production and inflammasome-dependent IL-1β release. Moreover, we showed that the increased anti-fungal immune response of h-MDMs by P17 was dependent on intracellular calcium mobilization triggered by the interaction of P17 with pertussis toxin-sensitive G-protein-coupled receptors on h-MDMs. Finally, we also demonstrated that P17-treated mice infected with C. albicans develop less severe gastrointestinal infection related to a higher efficiency of their macrophages to engulf Candida, to produce ROS and IL-1β and to kill the yeasts. Altogether, these results identify P17 as an original activator of the fungicidal response of macrophages that acts upstream PPARγ/CLRs axis and offer new immunomodulatory therapeutic perspectives in the field of infectious diseases.
Collapse
Affiliation(s)
- Khaddouj Benmoussa
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France.,EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Hélène Authier
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Mélissa Prat
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Mohammad AlaEddine
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Lise Lefèvre
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Mouna Chirine Rahabi
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - José Bernad
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Agnès Aubouy
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Elsa Bonnafé
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Jérome Leprince
- INSERM U982, PRIMACEN, IRIB, Université de Rouen, Mont-Saint-Aignan, France
| | - Bernard Pipy
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| | - Michel Treilhou
- EA7417 BTSB, Université Fédérale Toulouse Midi-Pyrénées, INU Champollion, Albi, France
| | - Agnès Coste
- UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France.,IRD, UMR 152, Toulouse, France
| |
Collapse
|
18
|
PPARγ Modulates Long Chain Fatty Acid Processing in the Intestinal Epithelium. Int J Mol Sci 2017; 18:ijms18122559. [PMID: 29182565 PMCID: PMC5751162 DOI: 10.3390/ijms18122559] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 12/26/2022] Open
Abstract
Nuclear receptor PPARγ affects lipid metabolism in several tissues, but its role in intestinal lipid metabolism has not been explored. As alterations have been observed in the plasma lipid profile of ad libitum fed intestinal epithelium-specific PPARγ knockout mice (iePPARγKO), we submitted these mice to lipid gavage challenges. Within hours after gavage with long chain unsaturated fatty acid (FA)-rich canola oil, the iePPARγKO mice had higher plasma free FA levels and lower gastric inhibitory polypeptide levels than their wild-type (WT) littermates, and altered expression of incretin genes and lipid metabolism-associated genes in the intestinal epithelium. Gavage with the medium chain saturated FA-rich coconut oil did not result in differences between the two genotypes. Furthermore, the iePPARγKO mice did not exhibit defective lipid uptake and stomach emptying; however, their intestinal transit was more rapid than in WT mice. When fed a canola oil-rich diet for 4.5 months, iePPARγKO mice had higher body lean mass than the WT mice. We conclude that intestinal epithelium PPARγ is activated preferentially by long chain unsaturated FAs compared to medium chain saturated FAs. Furthermore, we hypothesize that the iePPARγKO phenotype originates from altered lipid metabolism and release in epithelial cells, as well as changes in intestinal motility.
Collapse
|
19
|
Seki T, Obata-Ninomiya K, Shimogawara-Furushima R, Arai T, Akao N, Hoshino T, Ohta N. IL-33/ST2 contributes to severe symptoms in Plasmodium chabaudi-infected BALB/c mice. Parasitol Int 2017; 67:64-69. [PMID: 28359899 DOI: 10.1016/j.parint.2017.03.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 02/07/2023]
Abstract
It has been reported that IL-33 contributes to potentiation of Th2 inflammatory diseases and protection against helminth infection. Increased plasma IL-33 levels have been observed in patients with severe falciparum malaria, however, the role of IL-33 in malaria remains unclear. Here we report that IL-33 enhances inflammatory responses in malaria infection. ST2-deficiency altered severity of inflammation in the liver and serum levels of pro-inflammatory cytokines such as TNF-α and IL-6, and IL-13 that is a Th2 cytokine during Plasmodium chabaudi infection. IL-13-deficient mice have similar phenotype with ST2-deficient mice during P. chabaudi infection. Furthermore, ST2- and IL-13-deficiency reduced mortality from P. chabaudi infection. These results indicate that IL-33/ST2 can induce production of proinflammatory cytokines, such as TNF-α and IL-6, through production of IL-13 in P. chabaudi-infected BALB/c mice, suggesting that IL-33/ST2 play a critical role in inflammatory responses to malaria infection. Thus, these findings may define a novel therapeutic target for patients with severe malaria.
Collapse
Affiliation(s)
- Takenori Seki
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kazushige Obata-Ninomiya
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan; Department of Immune Regulation, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | | | - Toshio Arai
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Nobuaki Akao
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tomoaki Hoshino
- Division of Respirology, Neurology, and Rheumatology, Department of Medicine 1, Kurume University School of Medicine, Fukuoka, Japan
| | - Nobuo Ohta
- Department of Environmental Parasitology, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
20
|
Song J, Choi SM, Kim BC. Adiponectin Regulates the Polarization and Function of Microglia via PPAR-γ Signaling Under Amyloid β Toxicity. Front Cell Neurosci 2017; 11:64. [PMID: 28326017 PMCID: PMC5339235 DOI: 10.3389/fncel.2017.00064] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 02/23/2017] [Indexed: 12/17/2022] Open
Abstract
Alzheimer’s disease (AD), characterized by the abnormal accumulation of amyloid beta (Aβ), is gradually increasing globally. Given that AD is considered a neuroinflammatory disease, recent studies have focused on the cellular mechanisms in brain inflammatory conditions that underlie AD neuropathology. Microglia are macrophage cells in the central nervous system (CNS) that are activated in response to Aβ condition. The function of microglia contributes to the neuroinflammation in AD brain, suggesting that microglia regulate the production of inflammatory mediators and contribute to the regeneration of damaged tissues. Adiponectin, an adipokine derived from adipose tissue, has been known to regulate inflammation and control macrophages during oxidative stress conditions. In present study, we investigated whether adiponectin influences the polarization and function of microglia under Aβ toxicity by examining alterations of BV2 microglia function and polarization by Acrp30 (a globular form of adiponectin) treatment using reverse transcription PCR, western blotting and immunofluorescence staining. Acrp30 promoted the induction of the M2 phenotype, and regulated the inflammatory responses through peroxisome proliferator-activated receptor (PPAR)-γ signaling under Aβ toxicity. In addition, Acrp30 boosted the capacity of Aβ scavenging in microglia. Taken together, we suggest that adiponectin may control the function of microglia by promoting anti-inflammatory responses through PPAR- γ signaling. Hence, we conclude that adiponectin may act as a critical controller of microglia function in the AD brain.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University Gwangju, South Korea
| | - Seong-Min Choi
- Department of Neurology, Chonnam National University Medical School Gwangju, South Korea
| | - Byeong C Kim
- Department of Neurology, Chonnam National University Medical School Gwangju, South Korea
| |
Collapse
|
21
|
Röszer T. Transcriptional control of apoptotic cell clearance by macrophage nuclear receptors. Apoptosis 2016; 22:284-294. [DOI: 10.1007/s10495-016-1310-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Xu R, Wang S, Li W, Liu Z, Tang J, Tang X. Activation of peroxisome proliferator-activated receptor-γ by a 12/15-lipoxygenase product of arachidonic acid: a possible neuroprotective effect in the brain after experimental intracerebral hemorrhage. J Neurosurg 2016; 127:522-531. [PMID: 27739938 DOI: 10.3171/2016.7.jns1668] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
OBJECTIVE In this study, the authors investigated the involvement of 15( S)-hydroxyeicosatetraenoic acid (15(S)-HETE) in the regulation of peroxisome proliferator-activated receptor-γ (PPARγ) after intracerebral hemorrhage (ICH) and its effects on hemorrhage-induced inflammatory response and oxidative stress in an experimental rodent model. METHODS To simulate ICH in a rat model, the authors injected autologous whole blood into the right striatum of male Sprague-Dawley rats. The distribution and expression of 12/15-lipoxygenase (12/15-LOX) were determined by immunohistochemistry and Western blot analysis, respectively. Immunofluorescent double labeling was used to study the cellular localization of 12/15-LOX, and 15(S)-HETE was measured with a 15(S)-HETE enzyme immunoassay kit. Neurological deficits in the animals were assessed through behavioral testing, and apoptotic cell death was determined with terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick-end labeling. RESULTS Rats with ICH had increased expression of 12/15-LOX predominantly in neurons and also in oligodendrocytes, astrocytes, and microglia. Moreover, ICH elevated production of 15(S)-HETE in the brain area ipsilateral to the blood injection. The PPARγ agonist, exogenous 15(S)-HETE, significantly increased PPARγ protein levels and increased PPARγ-regulated gene (i.e., catalase) expression in the ICH rats. Reduced expression of the gene for the proinflammatory protein nuclear factor κB coincided with decreased neuron damage and improved functional recovery from ICH. A PPARγ antagonist, GW9662, reversed the effects of exogenous 15(S)-HETE on the PPARγ-regulated genes. CONCLUSIONS The induction of 15(S)-HETE during simulated ICH suggests generation of endogenous signals of neuroprotection. The effects of exogenous 15(S)-HETE on brain hemorrhage-induced inflammatory responses and oxidative stress might be mediated via PPARγ.
Collapse
Affiliation(s)
- Ruobing Xu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Heilongjiang; and
| | - Shu Wang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Heilongjiang; and
| | - Weishan Li
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Heilongjiang; and
| | - Zhen Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Heilongjiang; and
| | - Jiaxin Tang
- The Ninth People's Hospital, School of Medicine, Shanghai Jiaotong University, China
| | - Xiaobo Tang
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University, Heilongjiang; and
| |
Collapse
|
23
|
May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2016; 75:89-116. [PMID: 26255210 DOI: 10.1016/j.cyto.2015.05.018] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.
Collapse
|
24
|
Di Rosa M, Malaguarnera L. Chitotriosidase: A New Inflammatory Marker in Diabetic Complications. Pathobiology 2016; 83:211-9. [PMID: 27116685 DOI: 10.1159/000443932] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/11/2016] [Indexed: 11/19/2022] Open
Abstract
Chitotriosidase (CHIT1) belongs to chitinase family. So far this enzyme has been the best investigated human chitinase regarding its biological activity and association with various disorders. In a healthy population, CHIT1 activity is very low and originates in the circulating polymorphonuclear cells. Conversely, during the development of acute/chronic inflammatory disorders, the enzymatic activity of CHIT1 increases significantly. Recently, CHIT1 has also been involved in the pathogenesis of diabetes mellitus (DM). Mounting evidence from experimental studies revealing the increase of CHIT1 levels in pathological conditions, such as atherosclerosis, coronary artery disease, acute ischemic stroke, cerebrovascular dementia, nonalcoholic fatty liver disease, and osteolytic processes suggest its critical role in the evolutions and complications of DM. This review is addressed to provide mechanistic insights by highlighting the relationship between CHIT1 and diabetes, and their contribution in the exacerbation of this disease.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | | |
Collapse
|
25
|
Di Rosa M, Distefano G, Zorena K, Malaguarnera L. Chitinases and immunity: Ancestral molecules with new functions. Immunobiology 2015; 221:399-411. [PMID: 26686909 DOI: 10.1016/j.imbio.2015.11.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/30/2015] [Indexed: 02/07/2023]
Abstract
Chitinases belonging to 18 glycosyl hydrolase family is an ancient gene family that is widely expressed from prokaryotes to eukaryotes. In humans, despite the absence of endogenous chitin, a number of Chitinases and Chitinase-like Proteins (C/CLPs) have been identified. Chitinases with enzymatic activity have a chitin binding domain containing six cysteine residues responsible for their binding to chitin. In contrast, CLPs do not contain such typical chitin-binding domains, but still can bind to chitin with high affinity. Molecular phylogenetic analyses suggest that active Chitinases result from an early gene duplication event. Further duplication events, followed by mutations leading to loss of chitinase activity, allowed evolution of the chi-lectins. For the majority of the mammalian chitinases the last decades have witnessed the appearance of a substantial number of studies describing their expression differentially regulated during more specific immunologic activities. It is becoming increasingly clear that their function is not exclusive to catalyse the hydrolysis of chitin producing pathogens, but include crucial role in bacterial infections and inflammatory diseases. Here we provide an overview of all family members to shed light on the mechanisms and molecular interactions of Chitinases and CLPs in relation to immune response regulation, in order to delineate their future utilization as diagnostic and prognostic markers for numerous diseases.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Biomedical and Biotechnology Sciences, University of Catania, Italy
| | - Gisella Distefano
- Department of Biomedical and Biotechnology Sciences, University of Catania, Italy
| | - Katarzyna Zorena
- Department of Immunobiology and Environment Microbiology Medical University of Gdańsk, Poland
| | - Lucia Malaguarnera
- Department of Biomedical and Biotechnology Sciences, University of Catania, Italy.
| |
Collapse
|
26
|
Nelson SM, Shay AE, James JL, Carlson BA, Urban JF, Prabhu KS. Selenoprotein Expression in Macrophages Is Critical for Optimal Clearance of Parasitic Helminth Nippostrongylus brasiliensis. J Biol Chem 2015; 291:2787-98. [PMID: 26644468 DOI: 10.1074/jbc.m115.684738] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Indexed: 12/20/2022] Open
Abstract
The plasticity of macrophages is evident in helminthic parasite infections, providing protection from inflammation. Previously we demonstrated that the micronutrient selenium induces a phenotypic switch in macrophage activation from a classically activated (pro-inflammatory; M1/CAM) toward an alternatively activated (anti-inflammatory; M2/AAM) phenotype, where cyclooxygenase (COX)-dependent cyclopentenone prostaglandin J2 (15d-PGJ2) plays a key role. Here, we hypothesize that dietary selenium modulates macrophage polarization toward an AAM phenotype to assist in the increasing clearance of adult Nippostrongylus brasiliensis, a gastrointestinal nematode parasite. Mice on a selenium-adequate (0.08 ppm) diet significantly augmented intestinal AAM presence while decreasing adult worms and fecal egg production when compared with infection of mice on selenium-deficient (<0.01 ppm) diet. Further increase in dietary selenium to supraphysiological levels (0.4 ppm) had very little or no impact on worm expulsion. Normal adult worm clearance and enhanced AAM marker expression were observed in the selenium-supplemented Trsp(fl/fl)Cre(WT) mice that express selenoproteins driven by tRNA(Sec) (Trsp), whereas N. brasiliensis-infected Trsp(fl/fl)Cre(LysM) selenium-supplemented mice showed a decreased clearance, with lowered intestinal expression of several AAM markers. Inhibition of the COX pathway with indomethacin resulted in delayed worm expulsion in selenium-adequate mice. This was rescued with 15d-PGJ2, which partially recapitulated the effect of selenium supplementation on fecal egg output in addition to increasing markers of AAMs in the small intestine. Antagonism of PPARγ blocked the effect of selenium. These results suggest that optimal expression of selenoproteins and selenium-dependent production of COX-derived endogenous prostanoids, such as Δ(12)-PGJ2 and 15d-PGJ2, may regulate AAM activation to enhance anti-helminthic parasite responses.
Collapse
Affiliation(s)
- Shakira M Nelson
- From the Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, Division of Cancer Epidemiology and Genetics, NCI, National Institutes of Health, Rockville, Maryland 20850
| | - Ashley E Shay
- From the Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Jamaal L James
- From the Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bradley A Carlson
- Molecular Biology of Selenium Section, Mouse Cancer Genetics Program, NCI, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Joseph F Urban
- United States Department of Agriculture, Agriculture Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, Maryland 20705
| | - K Sandeep Prabhu
- From the Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802,
| |
Collapse
|
27
|
PPARγ and the Innate Immune System Mediate the Resolution of Inflammation. PPAR Res 2015; 2015:549691. [PMID: 26713087 PMCID: PMC4680113 DOI: 10.1155/2015/549691] [Citation(s) in RCA: 403] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/15/2015] [Indexed: 11/18/2022] Open
Abstract
The resolution of inflammation is an active and dynamic process, mediated in large part by the innate immune system. Resolution represents not only an increase in anti-inflammatory actions, but also a paradigm shift in immune cell function to restore homeostasis. PPARγ, a ligand activated transcription factor, has long been studied for its anti-inflammatory actions, but an emerging body of literature is investigating the role of PPARγ and its ligands (including thiazolidinediones, prostaglandins, and oleanolic acids) in all phases of resolution. PPARγ can shift production from pro- to anti-inflammatory mediators by neutrophils, platelets, and macrophages. PPARγ and its ligands further modulate platelet and neutrophil function, decreasing trafficking, promoting neutrophil apoptosis, and preventing platelet-leukocyte interactions. PPARγ alters macrophage trafficking, increases efferocytosis and phagocytosis, and promotes alternative M2 macrophage activation. There are also roles for this receptor in the adaptive immune response, particularly regarding B cells. These effects contribute towards the attenuation of multiple disease states, including COPD, colitis, Alzheimer's disease, and obesity in animal models. Finally, novel specialized proresolving mediators-eicosanoids with critical roles in resolution-may act through PPARγ modulation to promote resolution, providing another exciting area of therapeutic potential for this receptor.
Collapse
|
28
|
Peroxisome proliferator-activated receptor (PPAR) gamma in cardiovascular disorders and cardiovascular surgery. J Cardiol 2015; 66:271-8. [DOI: 10.1016/j.jjcc.2015.05.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 05/08/2015] [Accepted: 05/14/2015] [Indexed: 12/28/2022]
|
29
|
Lin L, Lin H, Wang L, Wang B, Hao X, Shi Y. miR-130a regulates macrophage polarization and is associated with non-small cell lung cancer. Oncol Rep 2015; 34:3088-96. [PMID: 26398698 DOI: 10.3892/or.2015.4301] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 07/13/2015] [Indexed: 11/06/2022] Open
Abstract
Lung cancer is the most common cancer as well as the leading cause of cancer-related mortalities worldwide. Macrophages are the most abundant immune cells in primary and metastatic tumors, and contribute to tumor initiation, progression and metastasis. Macrophages have been shown to demonstrate a high level of plasticity, with the ability to undergo dynamic transition between M1 and M2 polarized phenotypes. In the present study, we investigated a pivotal role of miR-130a in macrophage polarization and whether it was associated with poor prognosis in non-small cell lung cancer (NSCLC), using RT-qPCR and western blot analyses. The in vitro experiments showed that miRNA-130a was expressed at a higher level in M1 compared to M2 macrophages. The enforced expression of miR-130a in macrophages resulted in a significantly increased production of proinflammatory cytokines, whereas deletion of miR-130a impaired the M2‑associated gene expression and led to an M1-biased response. Mechanistically, the bioinformatics analysis revealed that proliferator-activated receptor γ (PPARγ) is a potential target of miR-130a. Additionally, the luciferase assay confirmed that PPARγ translation was suppressed by miR-130a through the interaction with the 3'UTR of PPARγ mRNA. A subsequent analysis revaled that the induction of miR-130a suppressed PPARγ protein expression. In NSCLC patients, the results showed that miR-130a downregulation exhibited clinical relevance as it was correlated with poor prognosis and increased tumor stage and metastasis. In addition, miR‑130a was inversely correlated with the macrophage marker, CD163, and target gene, PPARγ. Taken together, the results established miR-130a as a molecular switch during macrophage development and as a potential target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Lin Lin
- Department of Medical Oncology, Cancer Hospital Institute, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100021, P.R. China
| | - Haibo Lin
- Department of Thoracic Surgery, Peking University, First Hospital, Beijing 100034, P.R. China
| | - Lin Wang
- Department of Medical Oncology, Cancer Hospital Institute, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100021, P.R. China
| | - Bin Wang
- Department of Medical Oncology, Cancer Hospital Institute, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100021, P.R. China
| | - Xuezhi Hao
- Department of Medical Oncology, Cancer Hospital Institute, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100021, P.R. China
| | - Yuankai Shi
- Department of Medical Oncology, Cancer Hospital Institute, Chinese Academy of Medical Science, Peking Union Medical College, Beijing 100021, P.R. China
| |
Collapse
|
30
|
Abstract
Introduction Basal-like breast cancer (BLBC) is an aggressive subtype often characterized by distant metastasis, poor patient prognosis, and limited treatment options. Therefore, the discovery of alternative targets to restrain its metastatic potential is urgently needed. In this study, we aimed to identify novel genes that drive metastasis of BLBC and to elucidate the underlying mechanisms of action. Methods An unbiased approach using gene expression profiling of a BLBC progression model and in silico leveraging of pre-existing tumor transcriptomes were used to uncover metastasis-promoting genes. Lentiviral-mediated knockdown of interleukin-13 receptor alpha 2 (IL13Ralpha2) coupled with whole-body in vivo bioluminescence imaging was performed to assess its role in regulating breast cancer tumor growth and lung metastasis. Gene expression microarray analysis was followed by in vitro validation and cell migration assays to elucidate the downstream molecular pathways involved in this process. Results We found that overexpression of the decoy receptor IL13Ralpha2 is significantly enriched in basal compared with luminal primary breast tumors as well as in a subset of metastatic basal-B breast cancer cells. Importantly, breast cancer patients with high-grade tumors and increased IL13Ralpha2 levels had significantly worse prognosis for metastasis-free survival compared with patients with low expression. Depletion of IL13Ralpha2 in metastatic breast cancer cells modestly delayed primary tumor growth but dramatically suppressed lung metastasis in vivo. Furthermore, IL13Ralpha2 silencing was associated with enhanced IL-13-mediated phosphorylation of signal transducer and activator of transcription 6 (STAT6) and impaired migratory ability of metastatic breast cancer cells. Interestingly, genome-wide transcriptional analysis revealed that IL13Ralpha2 knockdown and IL-13 treatment cooperatively upregulated the metastasis suppressor tumor protein 63 (TP63) in a STAT6-dependent manner. These observations are consistent with increased metastasis-free survival of breast cancer patients with high levels of TP63 and STAT6 expression and suggest that the STAT6-TP63 pathway could be involved in impairing metastatic dissemination of breast cancer cells to the lungs. Conclusion Our findings indicate that IL13Ralpha2 could be used as a promising biomarker to predict patient outcome and provide a rationale for assessing the efficacy of anti-IL13Ralpha2 therapies in a subset of highly aggressive basal-like breast tumors as a strategy to prevent metastatic disease. Electronic supplementary material The online version of this article (doi:10.1186/s13058-015-0607-y) contains supplementary material, which is available to authorized users.
Collapse
|
31
|
Kim W, Kim HU, Lee HN, Kim SH, Kim C, Cha YN, Joe Y, Chung HT, Jang J, Kim K, Suh YG, Jin HO, Lee JK, Surh YJ. Taurine Chloramine Stimulates Efferocytosis Through Upregulation of Nrf2-Mediated Heme Oxygenase-1 Expression in Murine Macrophages: Possible Involvement of Carbon Monoxide. Antioxid Redox Signal 2015; 23:163-77. [PMID: 25816687 PMCID: PMC4492774 DOI: 10.1089/ars.2013.5825] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AIMS To examine the pro-resolving effects of taurine chloramine (TauCl). RESULTS TauCl injected into the peritoneum of mice enhanced the resolution of zymosan A-induced peritonitis. Furthermore, when the macrophages obtained from peritoneal exudates were treated with TauCl, their efferocytic ability was elevated. In the murine macrophage-like RAW264.7 cells exposed to TauCl, the proportion of macrophages engulfing the apoptotic neutrophils was also increased. In these macrophages treated with TauCl, expression of heme oxygenase-1 (HO-1) was elevated along with increased nuclear translocation of the nuclear factor E2-related factor 2 (Nrf2). TauCl binds directly to Kelch-like ECH association protein 1 (Keap1), which appears to retard the Keap1-driven degradation of Nrf2. This results in stabilization and enhanced nuclear translocation of Nrf2 and upregulation of HO-1 expression. TauCl, when treated to peritoneal macrophages isolated from either Nrf2 or HO-1 wild-type mice, stimulated efferocytosis (phagocytic engulfment of apoptotic neutrophils by macrophages), but not in the macrophages from Nrf2 or HO-1 knockout mice. Furthermore, transcriptional expression of some scavenger receptors recognizing the phosphatidylserines exposed on the surface of apoptotic cells was increased in RAW264.7 cells treated with TauCl. Pharmacologic inhibition of HO-1 activity or knockdown of HO-1 gene in RAW264.7 cells abolished the TauCl-induced efferocytosis, whereas both overexpression of HO-1 and treatment with carbon monoxide (CO), the product of HO, potentiated the efferocytic activity of macrophages. INNOVATION This work provides the first evidence that TauCl stimulates efferocytosis by macrophages. The results of this study suggest the therapeutic potential of TauCl in the management of inflammatory disorders. CONCLUSION TauCl can facilitate resolution of inflammation by increasing the efferocytic activity of macrophages through Nrf2-mediated HO-1 upregulation and subsequent production of CO.
Collapse
Affiliation(s)
- Wonki Kim
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Hoon-Ui Kim
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Ha-Na Lee
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Seung Hyeon Kim
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Chaekyun Kim
- 2 Department of Pharmacology and Toxicology, College of Medicine, Inha University , Incheon, Republic of Korea
| | - Young-Nam Cha
- 2 Department of Pharmacology and Toxicology, College of Medicine, Inha University , Incheon, Republic of Korea
| | - Yeonsoo Joe
- 3 Meta-Inflammation Basic Research Laboratory, School of Biological Sciences, University of Ulsan , Ulsan, Republic of Korea
| | - Hun Taeg Chung
- 3 Meta-Inflammation Basic Research Laboratory, School of Biological Sciences, University of Ulsan , Ulsan, Republic of Korea
| | - Jaebong Jang
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Kyeojin Kim
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Young-Ger Suh
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea
| | - Hyeon-Ok Jin
- 4 KIRAMS Radiation Biobank, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Jin Kyung Lee
- 4 KIRAMS Radiation Biobank, Korea Institute of Radiological & Medical Sciences , Seoul, Republic of Korea
| | - Young-Joon Surh
- 1 Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul, Republic of Korea.,5 Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University , Seoul, Republic of Korea.,6 Cancer Research Institute, Seoul National University , Seoul, Republic of Korea
| |
Collapse
|
32
|
Zizzo G, Cohen PL. The PPAR-γ antagonist GW9662 elicits differentiation of M2c-like cells and upregulation of the MerTK/Gas6 axis: a key role for PPAR-γ in human macrophage polarization. JOURNAL OF INFLAMMATION-LONDON 2015; 12:36. [PMID: 25972766 PMCID: PMC4429687 DOI: 10.1186/s12950-015-0081-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 04/24/2015] [Indexed: 11/10/2022]
Abstract
Background The nuclear receptors PPAR-γ and LXRs regulate macrophage lipid metabolism and macrophage mediated inflammation. We examined the influence of these molecules on macrophage alternative activation, with particular focus on differentiation of “M2c” anti-inflammatory cells. Methods We cultured human monocytes in M0, M1, M2a or M2c macrophage differentiating conditions, in the presence or absence of PPAR-γ and LXR ligands. Flow cytometry was used to analyze membrane expression of phenotypic markers. Basal and LPS-stimulated production of soluble mediators was measured by ELISA. Efferocytosis assays were performed by coincubating monocytes/macrophages with apoptotic neutrophils. Results We found that PPAR-γ inhibition, using the PPAR-γ antagonist GW9662, elicits differentiation of M2c-like (CD206+ CD163+ CD16+) cells and upregulation of the MerTK/Gas6 axis. Exposure of differentiating macrophages to IFN-γ, GM-CSF or LPS (M1 conditions), however, hampers GW9662 induction of MerTK and Gas6. When macrophages are differentiated with IL-4 (M2a conditions), addition of GW9662 results into an M2a (CD206+ CD209+ CD163− MerTK−) to M2c (CD206high CD209− CD163+ MerTK+) polarization shift. Conversely, in the presence of dexamethasone (M2c conditions), the PPAR-γ agonist rosiglitazone attenuates CD163 and MerTK upregulation. The LXR agonist T0901317 induces MerTK independently of M2c polarization; indeed, CD206, CD163 and CD16 are downregulated. GW9662-differentiated M2c-like cells secrete high levels of Gas6 and low amounts of TNF-α and IL-10, mimicking dexamethasone effects in vitro. However, unlike conventional M2c cells, GW9662-differentiated cells do not show enhanced efferocytic ability. Conclusions Our results provide new insights into the role of PPAR-γ and LXR receptors in human macrophage activation and reveal the existence of different patterns regulating MerTK expression. Unexpectedly, PPAR-γ appears to negatively control the expansion of a discrete subset of M2c-like anti-inflammatory macrophages.
Collapse
Affiliation(s)
- Gaetano Zizzo
- Temple Autoimmunity Center, Temple University, 3500 N. Broad Street, 19140 Philadelphia, PA USA ; Department of Medicine, Section of Rheumatology, Temple University, 3322 N. Broad Street, 19140 Philadelphia, PA USA
| | - Philip L Cohen
- Temple Autoimmunity Center, Temple University, 3500 N. Broad Street, 19140 Philadelphia, PA USA ; Department of Medicine, Section of Rheumatology, Temple University, 3322 N. Broad Street, 19140 Philadelphia, PA USA
| |
Collapse
|
33
|
Treatment in vitro with PPARα and PPARγ ligands drives M1-to-M2 polarization of macrophages from T. cruzi-infected mice. Biochim Biophys Acta Mol Basis Dis 2015; 1852:893-904. [DOI: 10.1016/j.bbadis.2014.12.019] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/02/2014] [Accepted: 12/26/2014] [Indexed: 01/04/2023]
|
34
|
Lefèvre L, Authier H, Stein S, Majorel C, Couderc B, Dardenne C, Eddine MA, Meunier E, Bernad J, Valentin A, Pipy B, Schoonjans K, Coste A. LRH-1 mediates anti-inflammatory and antifungal phenotype of IL-13-activated macrophages through the PPARγ ligand synthesis. Nat Commun 2015; 6:6801. [PMID: 25873311 PMCID: PMC4410638 DOI: 10.1038/ncomms7801] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/27/2015] [Indexed: 12/21/2022] Open
Abstract
Liver receptor homologue-1 (LRH-1) is a nuclear receptor involved in the repression of inflammatory processes in the hepatointestinal tract. Here we report that LRH-1 is expressed in macrophages and induced by the Th2 cytokine IL-13 via a mechanism involving STAT6. We show that loss-of-function of LRH-1 in macrophages impedes IL-13-induced macrophage polarization due to impaired generation of 15-HETE PPARγ ligands. The incapacity to generate 15-HETE metabolites is at least partially caused by the compromised regulation of CYP1A1 and CYP1B1. Mice with LRH-1-deficient macrophages are, furthermore, highly susceptible to gastrointestinal and systemic Candida albicans infection. Altogether, these results identify LRH-1 as a critical component of the anti-inflammatory and fungicidal response of alternatively activated macrophages that acts upstream from the IL-13-induced 15-HETE/PPARγ axis.
Collapse
Affiliation(s)
- Lise Lefèvre
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - Hélène Authier
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - Sokrates Stein
- Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | | | - Bettina Couderc
- EA4553 Individualisation des traitements des cancers ovariens et ORL, UPS, Toulouse 31400, France
| | - Christophe Dardenne
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | | | - Etienne Meunier
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - José Bernad
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - Alexis Valentin
- Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - Bernard Pipy
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| | - Kristina Schoonjans
- Metabolic Signaling, Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Agnès Coste
- 1] UMR MD3, EA2405 Polarisation des Macrophages et Récepteurs Nucléaires dans les Pathologies Inflammatoires et Infectieuses, UPS, Toulouse 31400, France [2] Université de Toulouse, UMR 152, UPS, Toulouse 31400, France
| |
Collapse
|
35
|
Sun L, Xu YW, Han J, Liang H, Wang N, Cheng Y. 12/15-Lipoxygenase metabolites of arachidonic acid activate PPARγ: a possible neuroprotective effect in ischemic brain. J Lipid Res 2015; 56:502-514. [PMID: 25605873 DOI: 10.1194/jlr.m053058] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The enzyme 12/15-lipoxygenase (LOX) oxidizes various free fatty acids, including arachidonic acid (AA). In the brain, the principal 12/15-LOX metabolites of AA are 12(S)-HETE and 15(S)-HETE. PPARγ is a nuclear receptor whose activation is neuroprotective through its anti-inflammatory properties. In this study, we investigate the involvement of 12(S)- and 15(S)-HETE in the regulation of PPARγ following cerebral ischemia and their effects on ischemia-induced inflammatory response. We show here the increased expression of 12/15-LOX, predominantly in neurons, and elevated production of 12(S)-HETE and 15(S)-HETE in ischemic brain. The exogenous 12(S)- and 15(S)-HETE increase PPARγ protein level, nuclear translocation, and DNA-binding activity in ischemic rats, suggesting the activation of PPARγ. This effect was further confirmed by showing the increased PPARγ transcriptional activity in primary cortical neurons when incubated with 12(S)- or 15(S)-HETE. Moreover, both 12(S)- and 15(S)-HETE potently inhibited the induction of nuclear factor-κB, inducible NO synthase, and cyclooxygenase-2 in ischemic rats, and elicited neuroprotection. The reversal of the effects of 12(S)- and 15(S)-HETE on pro-inflammatory factors by PPARγ antagonist GW9662 indicated their actions were mediated via PPARγ. Thus, the induction of 12(S)- and 15(S)-HETE during brain ischemia suggests that endogenous signals of neuroprotection may be generated.
Collapse
Affiliation(s)
- Li Sun
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China.
| | - Yan-Wei Xu
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China
| | - Jing Han
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China
| | - Hao Liang
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China
| | - Ning Wang
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China
| | - Yan Cheng
- Tianjin Medical University General Hospital, Tianjin Neurological Institute, Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, 300052, People's Republic of China
| |
Collapse
|
36
|
Chang HY, Lee HN, Kim W, Surh YJ. Docosahexaenoic acid induces M2 macrophage polarization through peroxisome proliferator-activated receptor γ activation. Life Sci 2015; 120:39-47. [DOI: 10.1016/j.lfs.2014.10.014] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/02/2014] [Accepted: 10/10/2014] [Indexed: 11/29/2022]
|
37
|
Zhang Z, Li M, Wang Y, Wu J, Li J. Higenamine promotes M2 macrophage activation and reduces Hmgb1 production through HO-1 induction in a murine model of spinal cord injury. Int Immunopharmacol 2014; 23:681-7. [DOI: 10.1016/j.intimp.2014.10.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/06/2014] [Accepted: 10/22/2014] [Indexed: 02/04/2023]
|
38
|
Li X, Melief E, Postupna N, Montine KS, Keene CD, Montine TJ. Prostaglandin E2 receptor subtype 2 regulation of scavenger receptor CD36 modulates microglial Aβ42 phagocytosis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 185:230-9. [PMID: 25452117 DOI: 10.1016/j.ajpath.2014.09.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 09/14/2014] [Accepted: 09/18/2014] [Indexed: 12/18/2022]
Abstract
Recent studies underline the potential relevance of microglial innate immune activation in Alzheimer disease. Primary mouse microglia that lack prostaglandin E2 receptor subtype 2 (EP2) show decreased innate immune-mediated neurotoxicity and increased amyloid β (Aβ) peptide phagocytosis, features that were replicated in vivo. Here, we tested the hypothesis that scavenger receptor CD36 is an effector of EP2-regulated Aβ phagocytosis. CD36 expression was 143-fold greater in mouse primary microglia than in primary astrocytes. Three different means of suppressing EP2 signaling increased and an agonist of EP2 decreased CD36 expression in primary wild-type microglia. Activation of Toll-like receptor (TLR) 3, TLR4, and TLR7, but not TLR2 or TLR9, reduced primary microglial CD36 transcription and cell surface CD36 protein and reduced Aβ42 phagocytosis as well. At each step, the effects of innate immune activation on CD36 were reversed by at least 50% by an EP2 antagonist, and this partial rescue of microglia Aβ42 phagocytosis was largely mediated by CD36 activity. Finally, we showed in hippocampus of wild-type mice that innate immune activation suppressed CD36 expression by an EP2-dependent mechanism. Taken together with results of others that found brain clearance of Aβ peptides and behavioral improvements mediated by CD36 in mice, regulation of CD36-mediated Aβ phagocytosis by suppression of EP2 signaling may provide a new approach to suppressing some aspects of Alzheimer disease pathogenesis.
Collapse
Affiliation(s)
- Xianwu Li
- Department of Pathology, University of Washington, Seattle, Washington.
| | - Erica Melief
- Department of Pathology, University of Washington, Seattle, Washington
| | - Nadia Postupna
- Department of Pathology, University of Washington, Seattle, Washington
| | | | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, Washington
| | - Thomas J Montine
- Department of Pathology, University of Washington, Seattle, Washington
| |
Collapse
|
39
|
Cathcart MK, Bhattacharjee A. Monoamine oxidase A (MAO-A): a signature marker of alternatively activated monocytes/macrophages. INFLAMMATION AND CELL SIGNALING 2014; 1. [PMID: 26052543 DOI: 10.14800/ics.161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Monocytes/macrophages are versatile cells centrally involved in host defense and immunity. Th1 cytokines induce a classical activation program in monocytes/macrophages leading to a proinflammatory M1 macrophage phenotype while Th2 cytokines IL-4 and IL-13 promote monocyte differentiation into an alternatively activated, anti-inflammatory M2 macrophage phenotype. Although monoamine oxidase A (MAO-A) is primarily known for its action in the nervous system, several recent studies have identified MAO-A as a signature marker of alternative activation of monocytes/macrophages. In this brief review we explore the signaling pathways/molecules that regulate MAO-A expression in alternatively activated monocytes/macrophages. We further discuss the contribution of MAO-A to the resolution of inflammation and identify potential therapeutic targets for controlling inflammation. Altogether this review provides deeper insight into the role of MAO-A in alternative activation of monocytes/macrophages and their participation in the inflammatory response.
Collapse
Affiliation(s)
- Martha K Cathcart
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, OH 44195, USA
| | - Ashish Bhattacharjee
- Department of Biotechnology, National Institute of Technology, Durgapur-713209, West Bengal, India
| |
Collapse
|
40
|
Le Lamer AC, Authier H, Rouaud I, Coste A, Boustie J, Pipy B, Gouault N. Protolichesterinic acid derivatives: α-methylene-γ-lactones as potent dual activators of PPARγ and Nrf2 transcriptional factors. Bioorg Med Chem Lett 2014; 24:3819-22. [PMID: 25027935 DOI: 10.1016/j.bmcl.2014.06.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/18/2014] [Accepted: 06/20/2014] [Indexed: 01/11/2023]
Abstract
PPARγ and Nrf2 are important transcriptional factors involved in many signaling pathways, especially in the anti-infectious response of macrophages. Compounds bearing a Michael acceptor moiety are well known to activate such transcriptional factors, we thus evaluated the potency of α,β-unsaturated lactones synthesized using fluorous phase organic synthesis. Compounds were first screened for their cytotoxicity in order to select lactones for PPARγ and Nrf2 activation evaluation. Among them, two α-methylene-γ-lactones were identified as potent dual activators of PPARγ and Nrf2 in macrophages.
Collapse
Affiliation(s)
- Anne-Cécile Le Lamer
- Equipe PNSCM, UMR CNRS 6226, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France; Université de Toulouse III, 118, Route de Narbonne, F-31062 Toulouse Cedex 09, France.
| | - Hélène Authier
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Isabelle Rouaud
- Equipe PNSCM, UMR CNRS 6226, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| | - Agnès Coste
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Joël Boustie
- Equipe PNSCM, UMR CNRS 6226, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| | - Bernard Pipy
- Université de Toulouse III, UPS, PHARMA-DEV, UMR 152, 118, Route de Narbonne, F-31062 Toulouse Cedex 9, France; IRD, UMR 152, F-31062 Toulouse Cedex 9, France
| | - Nicolas Gouault
- Equipe PNSCM, UMR CNRS 6226, Université de Rennes 1, 2 Avenue du Pr. Léon Bernard, F-35043 Rennes, France
| |
Collapse
|
41
|
Di Rosa M, Malaguarnera G, De Gregorio C, D'Amico F, Mazzarino MC, Malaguarnera L. Modulation of chitotriosidase during macrophage differentiation. Cell Biochem Biophys 2013; 66:239-47. [PMID: 23152091 DOI: 10.1007/s12013-012-9471-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages as a principal component of immune system play an important role in the initiation, modulation, and final activation of the immune response against pathogens. Upon stimulation with different cytokines, macrophages can undergo classical or alternative activation to become M1 or M2 macrophages, which have different functions during infections. Although chitotriosidase is widely accepted as a marker of activated macrophages and is thought to participate in innate immunity, particularly in defense mechanisms against chitin containing pathogens, little is known about its expression during macrophages full maturation and polarization. In this study we analyzed CHIT-1 modulation during monocyte-to-macrophage maturation and during their polarization. The levels of CHIT-1 expression was investigated in human monocytes obtained from buffy coat of healthy volunteers, polarized to classically activated macrophages (or M1), whose prototypical activating stimuli are interferon-γ and lipopolysaccharide, and alternatively activated macrophages (or M2) obtained by interleukin-4 exposure by real-time PCR and by Western blot analysis. During monocyte-macrophage differentiation both protein synthesis and mRNA analysis showed that CHIT-1 rises significantly and is modulated in M1 and M2 macrophages.Our results demonstrated that variations of CHIT-1 production are strikingly associated with macrophages polarization, indicating a different rule of this enzyme in the specialized macrophages.
Collapse
Affiliation(s)
- Michelino Di Rosa
- Department of Bio-medical Sciences, University of Catania, Via Androne, 83, 95124, Catania, Italy
| | | | | | | | | | | |
Collapse
|
42
|
Evaluation of CHI3L-1 and CHIT-1 expression in differentiated and polarized macrophages. Inflammation 2013; 36:482-92. [PMID: 23149946 DOI: 10.1007/s10753-012-9569-8] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chitinase 3-like protein 1 (CHI3L-1) and chitotriosidase (CHIT-1) are members of the chitinase family. CHI3L-1 is a newly recognized protein that is secreted by activated macrophages and neutrophils and expressed in a broad spectrum of inflammatory conditions and cancers. In human plasma, CHIT-1 activity has been proposed as a biochemical marker of macrophage activation. Although CHI3L-1 expression in inflammation is under examination, little is known regarding its regulation during macrophages' full maturation and polarization. In this study, we compared CHI3L-1 and CHIT-1 modulation during monocyte to macrophage transition and polarization. Gene expression analysis was investigated by real-time PCR. We found that during the maturation of monocytes into macrophages, the expression of both CHI3L-1 and CHIT-1 increased exponentially over time. Additionally, we observed a different regulation of CHI3L-1 and CHIT-1 in undifferentiated monocytes under stimulation with lipopolysaccharide, interferon-γ, and interleukin-4, at the same concentration used to polarize macrophages. Our finding suggests that in the immune response, the role of CHI3L-1 and CHIT-1 is not restricted to innate immunity, but they are also protagonists in acquired immunity.
Collapse
|
43
|
Björkbacka H. Atherosclerosis: cell biology and lipoproteins. Curr Opin Lipidol 2013; 24:279-80. [PMID: 23652474 DOI: 10.1097/mol.0b013e328361632b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Cardilo-Reis L, Gruber S, Schreier SM, Drechsler M, Papac-Milicevic N, Weber C, Wagner O, Stangl H, Soehnlein O, Binder CJ. Interleukin-13 protects from atherosclerosis and modulates plaque composition by skewing the macrophage phenotype. EMBO Mol Med 2013; 4:1072-86. [PMID: 23027612 PMCID: PMC3491837 DOI: 10.1002/emmm.201201374] [Citation(s) in RCA: 195] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Atherosclerotic lesions are characterized by the accumulation of oxidized LDL (OxLDL) and the infiltration of macrophages and T cells. Cytokine expression in the microenvironment of evolving lesions can profoundly contribute to plaque development. While the pro-atherogenic effect of T helper (Th) 1 cytokines, such as IFN-γ, is well established, the role of Th2 cytokines is less clear. Therefore, we characterized the role of the Th2 cytokine interleukin (IL)-13 in murine atherosclerosis. Here, we report that IL-13 administration favourably modulated the morphology of already established atherosclerotic lesions by increasing lesional collagen content and reducing vascular cell adhesion molecule-1 (VCAM-1)-dependent monocyte recruitment, resulting in decreased plaque macrophage content. This was accompanied by the induction of alternatively activated (M2) macrophages, which exhibited increased clearance of OxLDL compared to IFN-γ-activated (M1) macrophages in vitro. Importantly, deficiency of IL-13 results in accelerated atherosclerosis in LDLR−/− mice without affecting plasma cholesterol levels. Thus, IL-13 protects from atherosclerosis and promotes a favourable plaque morphology, in part through the induction of alternatively activated macrophages.
Collapse
Affiliation(s)
- Larissa Cardilo-Reis
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Bhattacharjee A, Shukla M, Yakubenko VP, Mulya A, Kundu S, Cathcart MK. IL-4 and IL-13 employ discrete signaling pathways for target gene expression in alternatively activated monocytes/macrophages. Free Radic Biol Med 2013; 54:1-16. [PMID: 23124025 PMCID: PMC3534796 DOI: 10.1016/j.freeradbiomed.2012.10.553] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 10/06/2012] [Accepted: 10/24/2012] [Indexed: 12/12/2022]
Abstract
Monocytes/macrophages are innate immune cells that play a crucial role in the resolution of inflammation. In the presence of the Th2 cytokines interleukin-4 (IL-4) and interleukin-13 (IL-13), they display an anti-inflammatory profile and this activation pathway is known as alternative activation. In this study we compare and differentiate pathways mediated by IL-4 and IL-13 activation of human monocytes/macrophages. Here we report differential regulation of IL-4 and IL-13 signaling in monocytes/macrophages starting from IL-4/IL-13 cytokine receptors to Jak/Stat-mediated signaling pathways that ultimately control expression of several inflammatory genes. Our data demonstrate that although the receptor-associated tyrosine kinases Jak2 and Tyk2 are activated after the recruitment of IL-13 to its receptor (containing IL-4Rα and IL-13Rα1), IL-4 stimulates Jak1 activation. We further show that Jak2 is upstream of Stat3 activation and Tyk2 controls Stat1 and Stat6 activation in response to IL-13 stimulation. In contrast, Jak1 regulates Stat3 and Stat6 activation in IL-4-induced monocytes. Our results further reveal that although IL-13 utilizes both IL-4Rα/Jak2/Stat3 and IL-13Rα1/Tyk2/Stat1/Stat6 signaling pathways, IL-4 can use only the IL-4Rα/Jak1/Stat3/Stat6 cascade to regulate the expression of some critical inflammatory genes, including 15-lipoxygenase, monoamine oxidase A (MAO-A), and the scavenger receptor CD36. Moreover, we demonstrate here that IL-13 and IL-4 can uniquely affect the expression of particular genes such as dual-specificity phosphatase 1 and tissue inhibitor of metalloprotease-3 and do so through different Jaks. As evidence of differential regulation of gene function by IL-4 and IL-13, we further report that MAO-A-mediated reactive oxygen species generation is influenced by different Jaks. Collectively, these results have major implications for understanding the mechanism and function of alternatively activated monocytes/macrophages by IL-4 and IL-13 and add novel insights into the pathogenesis and potential treatment of various inflammatory diseases.
Collapse
Affiliation(s)
- Ashish Bhattacharjee
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Meenakshi Shukla
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Valentin P. Yakubenko
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Anny Mulya
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Suman Kundu
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| | - Martha K. Cathcart
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic and Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland, Ohio 44195
| |
Collapse
|
46
|
Ariel A, Timor O. Hanging in the balance: endogenous anti-inflammatory mechanisms in tissue repair and fibrosis. J Pathol 2012; 229:250-63. [DOI: 10.1002/path.4108] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 09/05/2012] [Accepted: 09/12/2012] [Indexed: 02/06/2023]
Affiliation(s)
- Amiram Ariel
- Department of Biology, Faculty of Natural Sciences; University of Haifa; Haifa Israel
| | - Orly Timor
- Department of Biology, Faculty of Natural Sciences; University of Haifa; Haifa Israel
| |
Collapse
|
47
|
Yakubenko VP, Hsi LC, Cathcart MK, Bhattacharjee A. From macrophage interleukin-13 receptor to foam cell formation: mechanisms for αMβ2 integrin interference. J Biol Chem 2012. [PMID: 23184931 DOI: 10.1074/jbc.m112.381343] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
IL-13 is a potent stimulator of alternative monocyte/macrophage activation. During alternative activation, the expression of several proteins is induced including 15-lipoxygenase (15-LO), a lipid-peroxidating enzyme and the scavenger receptor CD36. We previously reported that α(M)β(2) integrin activation or clustering suppresses the expression of both 15-LO and CD36. In this study we focused on exploring the molecular mechanisms that down-regulate CD36 expression and CD36-mediated foam cell formation in IL-13-stimulated monocytes/macrophages after α(M)β(2) activation. Our studies reveal that α(M)β(2) integrin activation inhibits the IL-13 activation of several critical pathways that are required for macrophage alternative activation; namely, blocking Jak2 and Tyk2 phosphorylation, which bind to the cytoplasmic tails of the IL-4Rα/IL-13Rα1 complex. This leads to the inhibition of tyrosine phosphorylation of Stats (Stat1, Stat3, and Stat6) and prevents the formation of a signaling complex (containing p38MAPK, PKCδ, and Stat3) that are critical for the expression of both 15-LO and CD36. Jak2-mediated Hck activation is also inhibited, thereby preventing Stats serine phosphorylation, which is essential for downstream Stat-dependent gene transcription. Moreover, inhibition of Jak2, Tyk2, or their downstream target 15-LO with antisense oligonucleotides profoundly inhibits IL-13-induced CD36 expression and CD36-dependent foam cell formation, whereas13(S) Hydroperoxyoctadecadienoic acid (HPODE), a 15-LO product and peroxisome proliferator-activated receptor-γ ligand, completely restores CD36 expression in monocytes treated with 15-LO antisense. α(M)β(2) integrin activation controls CD36 expression and foam cell formation in alternatively activated monocyte/macrophages by blocking Tyk2/Jak2 phosphorylation via a 15-LO-dependent pathway. The discovery of this mechanism helps our understanding of the potential role of alternatively activated macrophages in atherogenesis and highlights the impact of integrin α(M)β(2) on this process.
Collapse
Affiliation(s)
- Valentin P Yakubenko
- Department of Cell Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | |
Collapse
|
48
|
Ortiz-Masià D, Díez I, Calatayud S, Hernández C, Cosín-Roger J, Hinojosa J, Esplugues JV, Barrachina MD. Induction of CD36 and thrombospondin-1 in macrophages by hypoxia-inducible factor 1 and its relevance in the inflammatory process. PLoS One 2012; 7:e48535. [PMID: 23119050 PMCID: PMC3485304 DOI: 10.1371/journal.pone.0048535] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 09/26/2012] [Indexed: 12/18/2022] Open
Abstract
Inflammation is part of a complex biological response of vascular tissue to pathogens or damaged cells. First inflammatory cells attempt to remove the injurious stimuli and this is followed by a healing process mediated principally by phagocytosis of senescent cells. Hypoxia and p38-MAPK are associated with inflammation, and hypoxia inducible factor 1 (HIF-1) has been detected in inflamed tissues. We aimed to analyse the role of p38-MAPK and HIF-1 in the transcriptional regulation of CD36, a class B scavenger receptor, and its ligand thrombospondin (TSP-1) in macrophages and to evaluate the involvement of this pathway in phagocytosis of apoptotic neutrophils. We have also assessed HIF-1α, p38-MAPK and CD36 immunostaining in the mucosa of patients with inflammatory bowel disease. Results show that hypoxia increases neutrophil phagocytosis by macrophages and induces the expression of CD36 and TSP-1. Addition of a p38-MAPK inhibitor significantly reduced the increase in CD36 and TSP-1 expression provoked by hypoxia and decreased HIF-1α stabilization in macrophages. Transient transfection of macrophages with a miHIF-1α-targeting vector blocked the increase in mRNA expression of CD36 and TSP-1 during hypoxia and reduced phagocytosis, thus highlighting a role for the transcriptional activity of HIF-1. CD36 and TSP-1 were necessary for the phagocytosis of neutrophils induced by hypoxic macrophages, since functional blockade of these proteins undermined this process. Immunohistochemical studies revealed CD36, HIF-1α and p38-MAPK expression in the mucosa of patients with inflammatory bowel disease. A positive and significant correlation between HIF-1α and CD36 expression and CD36 and p38-MAPK expression was observed in cells of the lamina propria of the damaged mucosa. Our results demonstrate a HIF-1-dependent up-regulation of CD36 and TSP-1 that mediates the increased phagocytosis of neutrophils by macrophages during hypoxia. Moreover, they suggest that CD36 expression in the damaged mucosa of patients with inflammatory bowel disease depends on p38-MAPK and HIF-1 activity.
Collapse
Affiliation(s)
- Dolores Ortiz-Masià
- Departamento de Farmacología and CIBERehd, Facultad de Medicina, Universidad de Valencia, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zamora C, Cantó E, Nieto JC, Angels Ortiz M, Juarez C, Vidal S. Functional consequences of CD36 downregulation by TLR signals. Cytokine 2012; 60:257-65. [PMID: 22795952 DOI: 10.1016/j.cyto.2012.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 06/11/2012] [Accepted: 06/12/2012] [Indexed: 12/20/2022]
Abstract
TLR recognition activates the secretion of pro- and anti-inflammatory cytokines and it also modulates the expression of crucial molecules involved in phagocytosis and antimicrobial activity. Scavenger receptors can act as TLR co-receptors or facilitate antigen loading. However, it remains unknown whether TLR can modulate the expression of these scavenger receptors. We stimulated human peripheral blood mononuclear cells (PBMC) with TLR2 (Pam3CSK4 and FSL1) and TLR4 ligand lipopolysaccharide (LPS) and then analyzed CD36 expression on different monocyte subpopulations by flow cytometry. TLR2 and TLR4 ligands can downregulate CD36 on the surface of monocytes, guiding the protein to intracellular compartments. Even though TLR-activation induced TNFα, IL-10 and IL-6 production, only recombinant TNFα was able to downregulate CD36. Neutralizing anti-TNFα antibodies showed that the Pam3CSK4 and FSL1-induced downregulation was partially mediated by TNFα but not by IL-6 or IL-10. However, LPS-induced downregulation could have also been caused by direct TLR4 targeting and signaling, and/or mediated by other unknown factors. CD36 downregulation reduced the capability of monocytes to phagocyte apoptotic neutrophils. In conclusion, modulation of scavenger receptor expression by TLR targeting on monocytes has functional consequences. Characterization this complex regulation may help us to understand this innate response and develop specific therapeutic drugs for each mechanism.
Collapse
Affiliation(s)
- Carlos Zamora
- Department of Immunology, Institut Recerca Hospital S. Pau, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
50
|
Mimche PN, Thompson E, Taramelli D, Vivas L. Curcumin enhances non-opsonic phagocytosis of Plasmodium falciparum through up-regulation of CD36 surface expression on monocytes/macrophages. J Antimicrob Chemother 2012; 67:1895-904. [DOI: 10.1093/jac/dks132] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|