1
|
Sabe H, Yahara Y, Ishii M. Cell fusion dynamics: mechanisms of multinucleation in osteoclasts and macrophages. Inflamm Regen 2024; 44:49. [PMID: 39605032 PMCID: PMC11600601 DOI: 10.1186/s41232-024-00360-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
Cell-cell fusion is a vital biological process where the membranes of two or more cells merge to form a syncytium. This phenomenon is critical in various physiological and pathological contexts, including embryonic development, tissue repair, immune responses, and the progression of several diseases. Osteoclasts, which are cells from the monocyte/macrophage lineage responsible for bone resorption, have enhanced functionality due to cell fusion. Additionally, other multinucleated giant cells (MGCs) also arise from the fusion of monocytes and macrophages, typically during chronic inflammation and reactions to foreign materials such as prostheses or medical devices. Foreign body giant cells (FBGCs) and Langhans giant cells (LGCs) emerge only under pathological conditions and are involved in phagocytosis, antigen presentation, and the secretion of inflammatory mediators. This review provides a comprehensive overview of the mechanisms underlying the formation of multinucleated cells, with a particular emphasis on macrophages and osteoclasts. Elucidating the intracellular structures, signaling cascades, and fusion-mediating proteins involved in cell-cell fusion enhances our understanding of this fundamental biological process and helps identify potential therapeutic targets for disorders mediated by cell fusion.
Collapse
Affiliation(s)
- Hideaki Sabe
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
- Department of Orthopaedic Surgery, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasuhito Yahara
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan.
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
- WPI-Immunology Frontier Research Center, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Cai F, Jiang B, He F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater 2024; 188:1-26. [PMID: 39245307 DOI: 10.1016/j.actbio.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli. Moreover, a wide range of material-specific characteristics, such as surface chemical and physical properties, has been proven to influence the fusion of macrophages into FBGCs. Multifaceted biological activities of FBGCs are also explored, with emphasis on their phagocytic capabilities and extracellular secretory functions, which profoundly affect the vascularization, degradation, and encapsulation of the biomaterials. This review further elucidates the heterogeneity of FBGCs and their diverse roles during FBR, as demonstrated by their distinct behaviors in response to different materials. By presenting a comprehensive understanding of FBGCs, this review intends to provide strategies and insights into optimizing biocompatibility and the therapeutic potential of biomaterials for enhanced stability and efficacy in clinical applications. STATEMENT OF SIGNIFICANCE: As a hallmark of the foreign body response (FBR), foreign body giant cells (FBGCs) significantly impact the success of implantable biomaterials, potentially leading to complications such as chronic inflammation, fibrosis, and device failure. Understanding the role of FBGCs and modulating their responses are vital for successful material applications. This review provides a comprehensive overview of the molecules and signaling pathways guiding macrophage fusion into FBGCs. By elucidating the physical and chemical properties of materials inducing distinct levels of FBGCs, potential strategies of materials in modulating FBGC formation are investigated. Additionally, the biological activities of FBGCs and their heterogeneity in responses to different material categories in vivo are highlighted in this review, offering crucial insights for improving the biocompatibility and efficacy of biomaterials.
Collapse
Affiliation(s)
- Fangyuan Cai
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bulin Jiang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Stewart CL, Hook AL, Zelzer M, Marlow M, Piccinini AM. Cellular and microenvironmental cues that promote macrophage fusion and foreign body response. Front Immunol 2024; 15:1411872. [PMID: 39034997 PMCID: PMC11257916 DOI: 10.3389/fimmu.2024.1411872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/13/2024] [Indexed: 07/23/2024] Open
Abstract
During the foreign body response (FBR), macrophages fuse to form foreign body giant cells (FBGCs). Modulation of FBGC formation can prevent biomaterial degradation and loss of therapeutic efficacy. However, the microenvironmental cues that dictate FBGC formation are poorly understood with conflicting reports. Here, we identified molecular and cellular factors involved in driving FBGC formation in vitro. Macrophages demonstrated distinct fusion competencies dependent on monocyte differentiation. The transition from a proinflammatory to a reparative microenvironment, characterised by specific cytokine and growth factor programmes, accompanied FBGC formation. Toll-like receptor signalling licensed the formation of FBGCs containing more than 10 nuclei but was not essential for cell-cell fusion to occur. Moreover, the fibroblast-macrophage crosstalk influenced FBGC development, with the fibroblast secretome inducing macrophages to secrete more PDGF, which enhanced large FBGC formation. These findings advance our understanding as to how a specific and timely combination of cellular and microenvironmental factors is required for an effective FBR, with monocyte differentiation and fibroblasts being key players.
Collapse
Affiliation(s)
- Chloe L Stewart
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Institute of Developmental and Regenerative Medicine, University of Oxford, Oxford, United Kingdom
| | - Andrew L Hook
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Mischa Zelzer
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Maria Marlow
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - Anna M Piccinini
- School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Hassan N, Krieg T, Kopp A, Bach AD, Kröger N. Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. Int J Mol Sci 2024; 25:6242. [PMID: 38892430 PMCID: PMC11172609 DOI: 10.3390/ijms25116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50937 Cologne, Germany
| | | | - Alexander D. Bach
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| |
Collapse
|
5
|
Panez-Toro I, Heymann D, Gouin F, Amiaud J, Heymann MF, Córdova LA. Roles of inflammatory cell infiltrate in periprosthetic osteolysis. Front Immunol 2023; 14:1310262. [PMID: 38106424 PMCID: PMC10722268 DOI: 10.3389/fimmu.2023.1310262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Classically, particle-induced periprosthetic osteolysis at the implant-bone interface has explained the aseptic loosening of joint replacement. This response is preceded by triggering both the innate and acquired immune response with subsequent activation of osteoclasts, the bone-resorbing cells. Although particle-induced periprosthetic osteolysis has been considered a foreign body chronic inflammation mediated by myelomonocytic-derived cells, current reports describe wide heterogeneous inflammatory cells infiltrating the periprosthetic tissues. This review aims to discuss the role of those non-myelomonocytic cells in periprosthetic tissues exposed to wear particles by showing original data. Specifically, we discuss the role of T cells (CD3+, CD4+, and CD8+) and B cells (CD20+) coexisting with CD68+/TRAP- multinucleated giant cells associated with both polyethylene and metallic particles infiltrating retrieved periprosthetic membranes. This review contributes valuable insight to support the complex cell and molecular mechanisms behind the aseptic loosening theories of orthopedic implants.
Collapse
Affiliation(s)
- Isidora Panez-Toro
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Dominique Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
- The University of Sheffield, Dept of Oncology and Metabolism, Sheffield, United Kingdom
| | - François Gouin
- Department of Surgical Oncology, Centre Léon Bérard, Lyon, France
| | - Jérôme Amiaud
- Nantes Université, Laboratory of Histology and Embryology, Medical School, Nantes, France
| | - Marie-Françoise Heymann
- Nantes Université, Centre National de Recherche Scientifique (CNRS), UMR6286, US2B, Nantes, France
- Institut de Cancérologie de l’Ouest, Tumor Heterogeneity and Precision Medicine Laboratory, Saint-Herblain, France
| | - Luis A. Córdova
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, University of Chile, Independencia, Santiago, Chile
- IMPACT, Center of Interventional Medicine for Precision and Advanced Cellular Therapy, Santiago, Chile
- Oral and Maxillofacial Surgery, Clínica MEDS, Santiago, Chile
| |
Collapse
|
6
|
Dietschmann A, Ruhl A, Murray PJ, Günther C, Becker C, Fallon P, Voehringer D. Th2-dependent disappearance and phenotypic conversion of mouse alveolar macrophages. Eur J Immunol 2023; 53:e2350475. [PMID: 37452620 DOI: 10.1002/eji.202350475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Alveolar macrophages (alvMs) play an important role for maintenance of lung function by constant removal of cellular debris in the alveolar space. They further contribute to defense against microbial or viral infections and limit tissue damage during acute lung injury. alvMs arise from embryonic progenitor cells, seed the alveoli before birth, and have life-long self-renewing capacity. However, recruited monocytes may also help to restore the alvM population after depletion caused by toxins or influenza virus infection. At present, the population dynamics and cellular plasticity of alvMs during allergic lung inflammation is poorly defined. To address this point, we used a mouse model of Aspergillus fumigatus-induced allergic lung inflammation and observed that Th2-derived IL-4 and IL-13 caused almost complete disappearance of alvMs. This effect required STAT6 expression in alvMs and also occurred in various other settings of type 2 immunity-mediated lung inflammation or administration of IL-4 complexes to the lung. In addition, Th2 cells promoted conversion of alvMs to alternatively activated macrophages and multinucleated giant cells. Given the well-established role of alvMs for maintenance of lung function, this process may have implications for resolution of inflammation and tissue homeostasis in allergic asthma.
Collapse
Affiliation(s)
- Axel Dietschmann
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andreas Ruhl
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter J Murray
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Claudia Günther
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Padraic Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - David Voehringer
- Department of Infection Biology, University Hospital Erlangen and Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
7
|
Ahmadzadeh K, Pereira M, Vanoppen M, Bernaerts E, Ko J, Mitera T, Maksoudian C, Manshian BB, Soenen S, Rose CD, Matthys P, Wouters C, Behmoaras J. Multinucleation resets human macrophages for specialized functions at the expense of their identity. EMBO Rep 2023; 24:e56310. [PMID: 36597777 PMCID: PMC9986822 DOI: 10.15252/embr.202256310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Macrophages undergo plasma membrane fusion and cell multinucleation to form multinucleated giant cells (MGCs) such as osteoclasts in bone, Langhans giant cells (LGCs) as part of granulomas or foreign-body giant cells (FBGCs) in reaction to exogenous material. How multinucleation per se contributes to functional specialization of mature mononuclear macrophages remains poorly understood in humans. Here, we integrate comparative transcriptomics with functional assays in purified mature mononuclear and multinucleated human osteoclasts, LGCs and FBGCs. Strikingly, in all three types of MGCs, multinucleation causes a pronounced downregulation of macrophage identity. We show enhanced lysosome-mediated intracellular iron homeostasis promoting MGC formation. The transition from mononuclear to multinuclear state is accompanied by cell specialization specific to each polykaryon. Enhanced phagocytic and mitochondrial function associate with FBGCs and osteoclasts, respectively. Moreover, human LGCs preferentially express B7-H3 (CD276) and can form granuloma-like clusters in vitro, suggesting that their multinucleation potentiates T cell activation. These findings demonstrate how cell-cell fusion and multinucleation reset human macrophage identity as part of an advanced maturation step that confers MGC-specific functionality.
Collapse
Affiliation(s)
- Kourosh Ahmadzadeh
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Marie Pereira
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
| | - Margot Vanoppen
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Eline Bernaerts
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Jeong‐Hun Ko
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
| | - Tania Mitera
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Christy Maksoudian
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Bella B Manshian
- Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Stefaan Soenen
- NanoHealth and Optical Imaging Group, Translational Cell and Tissue Research Unit, Department of Imaging and PathologyKU LeuvenLeuvenBelgium
| | - Carlos D Rose
- Division of Pediatric Rheumatology Nemours Children's HospitalThomas Jefferson UniversityPhiladelphiaPAUSA
| | - Patrick Matthys
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
| | - Carine Wouters
- Laboratory of Immunobiology, Department Microbiology, Immunology and Transplantation, Rega InstituteKU Leuven—University of LeuvenLeuvenBelgium
- Division Pediatric RheumatologyUZ LeuvenLeuvenBelgium
- European Reference Network for Rare ImmunodeficiencyAutoinflammatory and Autoimmune Diseases (RITA) at University Hospital LeuvenLeuvenBelgium
| | - Jacques Behmoaras
- Centre for Inflammatory Disease, Department of Immunology and Inflammation, Hammersmith HospitalImperial College LondonLondonUK
- Programme in Cardiovascular and Metabolic Disorders and Centre for Computational BiologyDuke‐NUS Medical School SingaporeSingaporeSingapore
| |
Collapse
|
8
|
Mechanisms of Foreign Body Giant Cell Formation in Response to Implantable Biomaterials. Polymers (Basel) 2023; 15:polym15051313. [PMID: 36904554 PMCID: PMC10007405 DOI: 10.3390/polym15051313] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/08/2023] Open
Abstract
Long term function of implantable biomaterials are determined by their integration with the host's body. Immune reactions against these implants could impair the function and integration of the implants. Some biomaterial-based implants lead to macrophage fusion and the formation of multinucleated giant cells, also known as foreign body giant cells (FBGCs). FBGCs may compromise the biomaterial performance and may lead to implant rejection and adverse events in some cases. Despite their critical role in response to implants, there is a limited understanding of cellular and molecular mechanisms involved in forming FBGCs. Here, we focused on better understanding the steps and mechanisms triggering macrophage fusion and FBGCs formation, specifically in response to biomaterials. These steps included macrophage adhesion to the biomaterial surface, fusion competency, mechanosensing and mechanotransduction-mediated migration, and the final fusion. We also described some of the key biomarkers and biomolecules involved in these steps. Understanding these steps on a molecular level would lead to enhance biomaterials design and improve their function in the context of cell transplantation, tissue engineering, and drug delivery.
Collapse
|
9
|
Mamilos A, Winter L, Schmitt VH, Barsch F, Grevenstein D, Wagner W, Babel M, Keller K, Schmitt C, Gürtler F, Schreml S, Niedermair T, Rupp M, Alt V, Brochhausen C. Macrophages: From Simple Phagocyte to an Integrative Regulatory Cell for Inflammation and Tissue Regeneration-A Review of the Literature. Cells 2023; 12:276. [PMID: 36672212 PMCID: PMC9856654 DOI: 10.3390/cells12020276] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/29/2022] [Accepted: 01/07/2023] [Indexed: 01/12/2023] Open
Abstract
The understanding of macrophages and their pathophysiological role has dramatically changed within the last decades. Macrophages represent a very interesting cell type with regard to biomaterial-based tissue engineering and regeneration. In this context, macrophages play a crucial role in the biocompatibility and degradation of implanted biomaterials. Furthermore, a better understanding of the functionality of macrophages opens perspectives for potential guidance and modulation to turn inflammation into regeneration. Such knowledge may help to improve not only the biocompatibility of scaffold materials but also the integration, maturation, and preservation of scaffold-cell constructs or induce regeneration. Nowadays, macrophages are classified into two subpopulations, the classically activated macrophages (M1 macrophages) with pro-inflammatory properties and the alternatively activated macrophages (M2 macrophages) with anti-inflammatory properties. The present narrative review gives an overview of the different functions of macrophages and summarizes the recent state of knowledge regarding different types of macrophages and their functions, with special emphasis on tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Andreas Mamilos
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Lina Winter
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker H. Schmitt
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, 55131 Mainz, Germany
| | - Friedrich Barsch
- Medical Center, Faculty of Medicine, Institute for Exercise and Occupational Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - David Grevenstein
- Clinic and Polyclinic for Orthopedics and Trauma Surgery, University Hospital of Cologne, 50937 Cologne, Germany
| | - Willi Wagner
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Translational Lung Research Centre Heidelberg (TLRC), German Lung Research Centre (DZL), 69120 Heidelberg, Germany
| | - Maximilian Babel
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Karsten Keller
- Department of Cardiology, University Medical Centre, Johannes Gutenberg University of Mainz, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg-University Mainz, 55131 Mainz, Germany
- Department of Sports Medicine, Medical Clinic VII, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Christine Schmitt
- Department of Internal Medicine, St. Vincenz and Elisabeth Hospital of Mainz (KKM), 55131 Mainz, Germany
| | - Florian Gürtler
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Stephan Schreml
- Department of Dermatology, University Medical Centre Regensburg, 93053 Regensburg, Germany
| | - Tanja Niedermair
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
| | - Markus Rupp
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Volker Alt
- Department for Trauma Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Christoph Brochhausen
- Institute of Pathology, University of Regensburg, 93053 Regensburg, Germany
- Central Biobank Regensburg, University and University Hospital Regensburg, 93053 Regensburg, Germany
- Institute of Pathology, University Medical Centre Mannheim, Ruprecht-Karls-University Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
10
|
Monocyte-Macrophage Lineage Cell Fusion. Int J Mol Sci 2022; 23:ijms23126553. [PMID: 35742997 PMCID: PMC9223484 DOI: 10.3390/ijms23126553] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/07/2022] [Accepted: 06/10/2022] [Indexed: 02/06/2023] Open
Abstract
Cell fusion (fusogenesis) occurs in natural and pathological conditions in prokaryotes and eukaryotes. Cells of monocyte–macrophage lineage are highly fusogenic. They create syncytial multinucleated giant cells (MGCs) such as osteoclasts (OCs), MGCs associated with the areas of infection/inflammation, and foreign body-induced giant cells (FBGCs). The fusion of monocytes/macrophages with tumor cells may promote cancer metastasis. We describe types and examples of monocyte–macrophage lineage cell fusion and the role of actin-based structures in cell fusion.
Collapse
|
11
|
Generation of Cancer Stem/Initiating Cells by Cell-Cell Fusion. Int J Mol Sci 2022; 23:ijms23094514. [PMID: 35562905 PMCID: PMC9101717 DOI: 10.3390/ijms23094514] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
CS/ICs have raised great expectations in cancer research and therapy, as eradication of this key cancer cell type is expected to lead to a complete cure. Unfortunately, the biology of CS/ICs is rather complex, since no common CS/IC marker has yet been identified. Certain surface markers or ALDH1 expression can be used for detection, but some studies indicated that cancer cells exhibit a certain plasticity, so CS/ICs can also arise from non-CS/ICs. Another problem is intratumoral heterogeneity, from which it can be inferred that different CS/IC subclones must be present in the tumor. Cell–cell fusion between cancer cells and normal cells, such as macrophages and stem cells, has been associated with the generation of tumor hybrids that can exhibit novel properties, such as an enhanced metastatic capacity and even CS/IC properties. Moreover, cell–cell fusion is a complex process in which parental chromosomes are mixed and randomly distributed among daughter cells, resulting in multiple, unique tumor hybrids. These, if they have CS/IC properties, may contribute to the heterogeneity of the CS/IC pool. In this review, we will discuss whether cell–cell fusion could also lead to the origin of different CS/ICs that may expand the overall CS/IC pool in a primary tumor.
Collapse
|
12
|
Kato S, Sakai Y, Okabe A, Kawashima Y, Kuwahara K, Shiogama K, Abe M, Ito H, Morimoto S. Histology of Cardiac Sarcoidosis with Novel Considerations Arranged upon a Pathologic Basis. J Clin Med 2022; 11:jcm11010251. [PMID: 35011991 PMCID: PMC8746035 DOI: 10.3390/jcm11010251] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
Sarcoidosis is a rare disease of isolated or diffuse granulomatous inflammation. Although any organs can be affected by sarcoidosis, cardiac sarcoidosis is a fatal disorder, and it is crucial to accurately diagnose it to prevent sudden death due to dysrhythmia. Although endomyocardial biopsy is invasive and has limited sensitivity for identifying granulomas, it is the only modality that yields a definitive diagnosis of cardiac sarcoidosis. It is imperative to develop novel pathological approaches for the precise diagnosis of cardiac sarcoidosis. Here, we aimed to discuss commonly used diagnostic criteria for cardiac sarcoidosis and to summarize useful and novel histopathologic criteria of cardiac sarcoidosis. While classical histologic observations including noncaseating granulomas and multinucleated giant cells (typically Langhans type) are the most important findings, others such as microgranulomas, CD68+ CD163- pro-inflammatory (M1) macrophage accumulation, CD4/CD8 T-cell ratio, Cutibacterium acnes components, lymphangiogenesis, confluent fibrosis, and fatty infiltration may help to improve the sensitivity of endomyocardial biopsy for detecting cardiac sarcoidosis. These novel histologic findings are based on the pathology of cardiac sarcoidosis. We also discussed the principal histologic differential diagnoses of cardiac sarcoidosis, such as tuberculosis myocarditis, fungal myocarditis, giant cell myocarditis, and dilated cardiomyopathy.
Collapse
Affiliation(s)
- Shu Kato
- Postgraduate Clinical Training Center, Fujita Health University Hospital, Aichi 470-1192, Japan;
| | - Yasuhiro Sakai
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Aichi 470-1192, Japan;
- Correspondence: ; Tel.: +81-562-93-9934
| | - Asako Okabe
- Department of Diagnostic Pathology, Kansai Medical University Hospital, Osaka 573-1191, Japan;
| | - Yoshiaki Kawashima
- Department of Pathology, Fujita Health University Bantane Hospital, Aichi 454-8509, Japan;
| | - Kazuhiko Kuwahara
- Department of Diagnostic Pathology, Fujita Health University School of Medicine, Aichi 470-1192, Japan;
| | - Kazuya Shiogama
- Department of Morphology and Pathological Diagnosis, Fujita Health University School of Medical Sciences, Aichi 470-1192, Japan; (K.S.); (M.A.)
| | - Masato Abe
- Department of Morphology and Pathological Diagnosis, Fujita Health University School of Medical Sciences, Aichi 470-1192, Japan; (K.S.); (M.A.)
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, Aichi 470-1192, Japan;
| | - Shin’ichiro Morimoto
- Department of Cardiology, Fujita Health University School of Medicine, Aichi 470-1192, Japan;
| |
Collapse
|
13
|
Velickovic M, Arsenijevic A, Acovic A, Arsenijevic D, Milovanovic J, Dimitrijevic J, Todorovic Z, Milovanovic M, Kanjevac T, Arsenijevic N. Galectin-3, Possible Role in Pathogenesis of Periodontal Diseases and Potential Therapeutic Target. Front Pharmacol 2021; 12:638258. [PMID: 33815121 PMCID: PMC8017193 DOI: 10.3389/fphar.2021.638258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/11/2021] [Indexed: 12/11/2022] Open
Abstract
Periodontal diseases are chronic inflammatory diseases that occur due to the imbalance between microbial communities in the oral cavity and the immune response of the host that lead to destruction of tooth supporting structures and finally to alveolar bone loss. Galectin-3 is a β-galactoside-binding lectin with important roles in numerous biological processes. By direct binding to microbes and modulation of their clearence, Galectin-3 can affect the composition of microbial community in the oral cavity. Galectin-3 also modulates the function of many immune cells in the gingiva and gingival sulcus and thus can affect immune homeostasis. Few clinical studies demonstrated increased expression of Galectin-3 in different forms of periodontal diseases. Therefore, the objective of this mini review is to discuss the possible effects of Galectin-3 on the process of immune homeostasis and the balance between oral microbial community and host response and to provide insights into the potential therapeutic targeting of Gal-3 in periodontal disease.
Collapse
Affiliation(s)
- Milica Velickovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Acovic
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Dragana Arsenijevic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia.,Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Jelena Dimitrijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Department of Dentistry, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, Kragujevac, Serbia
| |
Collapse
|
14
|
Queval CJ, Fearns A, Botella L, Smyth A, Schnettger L, Mitermite M, Wooff E, Villarreal-Ramos B, Garcia-Jimenez W, Heunis T, Trost M, Werling D, Salguero FJ, Gordon SV, Gutierrez MG. Macrophage-specific responses to human- and animal-adapted tubercle bacilli reveal pathogen and host factors driving multinucleated cell formation. PLoS Pathog 2021; 17:e1009410. [PMID: 33720986 PMCID: PMC7993774 DOI: 10.1371/journal.ppat.1009410] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/25/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The Mycobacterium tuberculosis complex (MTBC) is a group of related pathogens that cause tuberculosis (TB) in mammals. MTBC species are distinguished by their ability to sustain in distinct host populations. While Mycobacterium bovis (Mbv) sustains transmission cycles in cattle and wild animals and causes zoonotic TB, M. tuberculosis (Mtb) affects human populations and seldom causes disease in cattle. The host and pathogen determinants underlying host tropism between MTBC species are still unknown. Macrophages are the main host cell that encounters mycobacteria upon initial infection, and we hypothesised that early interactions between the macrophage and mycobacteria influence species-specific disease outcome. To identify factors that contribute to host tropism, we analysed blood-derived primary human and bovine macrophages (hMϕ or bMϕ, respectively) infected with Mbv and Mtb. We show that Mbv and Mtb reside in different cellular compartments and differentially replicate in hMϕ whereas both Mbv and Mtb efficiently replicate in bMϕ. Specifically, we show that out of the four infection combinations, only the infection of bMϕ with Mbv promoted the formation of multinucleated giant cells (MNGCs), a hallmark of tuberculous granulomas. Mechanistically, we demonstrate that both MPB70 from Mbv and extracellular vesicles released by Mbv-infected bMϕ promote macrophage multinucleation. Importantly, we extended our in vitro studies to show that granulomas from Mbv-infected but not Mtb-infected cattle contained higher numbers of MNGCs. Our findings implicate MNGC formation in the contrasting pathology between Mtb and Mbv for the bovine host and identify MPB70 from Mbv and extracellular vesicles from bMϕ as mediators of this process. The identification of host and pathogen factors contributing to host-pathogen interaction is crucial to understand the pathogenesis and dissemination of tuberculosis. This is particularly the case in deciphering the mechanistic basis for host-tropism across the MTBC. Here, we show that in vitro, M. bovis but not M. tuberculosis induces multinucleated cell formation in bovine macrophages. We identified host and pathogen mechanistic drivers of multinucleated cell formation: MPB70 as the M. bovis factor and bovine macrophage extracellular vesicles. Using a cattle experimental infection model, we confirmed differential multinucleated cell formation in vivo. Thus, we have identified host and pathogen factors that contribute to host tropism in human/bovine tuberculosis. Additionally, this work provides an explanation for the long-standing association of multinucleated cells with tuberculosis pathogenesis.
Collapse
Affiliation(s)
| | | | | | - Alicia Smyth
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | | - Morgane Mitermite
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Esen Wooff
- Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Bernardo Villarreal-Ramos
- Animal and Plant Health Agency, Addlestone, United Kingdom
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Waldo Garcia-Jimenez
- Department of Pathology an Infectious Diseases. School of Veterinary Medicine. University of Surrey, Guildford, United Kingdom
| | - Tiaan Heunis
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Matthias Trost
- Biosciences Institute, Newcastle University, Newcastle, United Kingdom
| | - Dirk Werling
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, University of London, Hatfield Hertfordshire, United Kingdom
| | - Francisco J. Salguero
- Department of Pathology an Infectious Diseases. School of Veterinary Medicine. University of Surrey, Guildford, United Kingdom
- National Infection Service, Public Health England (PHE), Porton Down, Salisbury, United Kingdom
| | - Stephen V. Gordon
- UCD School of Veterinary Medicine and UCD Conway Institute, University College Dublin, Dublin, Ireland
| | | |
Collapse
|
15
|
Braune J, Lindhorst A, Fröba J, Hobusch C, Kovacs P, Blüher M, Eilers J, Bechmann I, Gericke M. Multinucleated Giant Cells in Adipose Tissue Are Specialized in Adipocyte Degradation. Diabetes 2021; 70:538-548. [PMID: 33158932 DOI: 10.2337/db20-0293] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 10/30/2020] [Indexed: 11/13/2022]
Abstract
Obesity is associated with chronic low-grade inflammation of visceral adipose tissue (AT) characterized by an increasing number of AT macrophages (ATMs) and linked to type 2 diabetes. AT inflammation is histologically indicated by the formation of so-called crown-like structures, as ATMs accumulate around dying adipocytes, and the occurrence of multinucleated giant cells (MGCs). However, to date, the function of MGCs in obesity is unknown. Therefore, the aim of this study was to characterize MGCs in AT and unravel the function of these cells. We demonstrated that MGCs occurred in obese patients and after 24 weeks of a high-fat diet in mice, accompanying signs of AT inflammation and then representing ∼3% of ATMs in mice. Mechanistically, we found evidence that adipocyte death triggered MGC formation. Most importantly, MGCs in obese AT had a higher capacity to phagocytize oversized particles, such as adipocytes, as shown by live imaging of AT, 45-µm bead uptake ex vivo, and higher lipid content in vivo. Finally, we showed that interleukin-4 treatment was sufficient to increase the number of MGCs in AT, whereas other factors may be more important for endogenous MGC formation in vivo. Most importantly, our data suggest that MGCs are specialized for clearance of dead adipocytes in obesity.
Collapse
Affiliation(s)
- Julia Braune
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Andreas Lindhorst
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Janine Fröba
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | | | - Peter Kovacs
- Medical Department III, Leipzig University, Leipzig, Germany
| | - Matthias Blüher
- Medical Department III, Leipzig University, Leipzig, Germany
| | - Jens Eilers
- Carl-Ludwig Institute of Physiology, Leipzig University, Leipzig, Germany
| | - Ingo Bechmann
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Martin Gericke
- Institute of Anatomy and Cell Biology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
16
|
Multinucleated Giant Cell Formation as a Portal to Chronic Bacterial Infections. Microorganisms 2020; 8:microorganisms8111637. [PMID: 33113944 PMCID: PMC7690659 DOI: 10.3390/microorganisms8111637] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/21/2020] [Indexed: 12/20/2022] Open
Abstract
This review provides a snapshot of chronic bacterial infections through the lens of Burkholderia pseudomallei and detailing its ability to establish multi-nucleated giant cells (MNGC) within the host, potentially leading to the formation of pyogranulomatous lesions. We explore the role of MNGC in melioidosis disease progression and pathology by comparing the similarities and differences of melioidosis to tuberculosis, outline the concerted events in pathogenesis that lead to MNGC formation, discuss the factors that influence MNGC formation, and consider how they fit into clinical findings reported in chronic cases. Finally, we speculate about future models and techniques that can be used to delineate the mechanisms of MNGC formation and function.
Collapse
|
17
|
Locke LW, Schlesinger LS, Crouser ED. Current Sarcoidosis Models and the Importance of Focusing on the Granuloma. Front Immunol 2020; 11:1719. [PMID: 32849608 PMCID: PMC7417311 DOI: 10.3389/fimmu.2020.01719] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/29/2020] [Indexed: 12/24/2022] Open
Abstract
The inability to effectively model sarcoidosis in the laboratory or in animals continues to hinder the discovery and translation of new, targeted treatments. The granuloma is the signature pathological hallmark of sarcoidosis, yet there are significant knowledge gaps that exist with regard to how granulomas form. Significant progress toward improved therapeutic and prognostic strategies in sarcoidosis hinges on tractable experimental models that recapitulate the process of granuloma formation in sarcoidosis and allow for mechanistic insights into the molecular events involved. Through its inherent representation of the complex genetics underpinning immune cell dysregulation in sarcoidosis, a recently developed in vitro human granuloma model holds promise in providing detailed mechanistic insight into sarcoidosis–specific disease regulating pathways at play during early stages of granuloma formation. The purpose of this review is to critically evaluate current sarcoidosis models and assess their potential to progress the field toward the goal of improved therapies in this disease. We conclude with the potential integrated use of preclinical models to accelerate progress toward identifying and testing new drugs and drug combinations that can be rapidly brought to clinical trials.
Collapse
Affiliation(s)
- Landon W Locke
- Department of Microbial Infection and Immunity, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| | - Larry S Schlesinger
- Host-Pathogens Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Elliott D Crouser
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States
| |
Collapse
|
18
|
Balabiyev A, Podolnikova NP, Mursalimov A, Lowry D, Newbern JM, Roberson RW, Ugarova TP. Transition of podosomes into zipper-like structures in macrophage-derived multinucleated giant cells. Mol Biol Cell 2020; 31:2002-2020. [PMID: 32579434 PMCID: PMC7543064 DOI: 10.1091/mbc.e19-12-0707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Macrophage fusion resulting in the formation of multinucleated giant cells (MGCs) is a multistage process that requires many adhesion-dependent steps and involves the rearrangement of the actin cytoskeleton. The diversity of actin-based structures and their role in macrophage fusion is poorly understood. In this study, we revealed hitherto unrecognized actin-based zipper-like structures (ZLSs) that arise between MGCs formed on the surface of implanted biomaterials. We established an in vitro model for the induction of these structures in mouse macrophages undergoing IL-4–mediated fusion. Using this model, we show that over time MGCs develop cell–cell contacts containing ZLSs. Live-cell imaging using macrophages isolated from mRFP- or eGFP-LifeAct mice demonstrated that ZLSs are dynamic formations undergoing continuous assembly and disassembly and that podosomes are precursors of these structures. Immunostaining experiments showed that vinculin, talin, integrin αMβ2, and other components of podosomes are present in ZLSs. Macrophages deficient in WASp or Cdc42, two key molecules involved in actin core organization in podosomes, as well as cells treated with the inhibitors of the Arp2/3 complex, failed to form ZLSs. Furthermore, E-cadherin and nectin-2 were found between adjoining membranes, suggesting that the transition of podosomes into ZLSs is induced by bridging plasma membranes by junctional proteins.
Collapse
Affiliation(s)
- Arnat Balabiyev
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | - Aibek Mursalimov
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - David Lowry
- Eyring Materials Center, Arizona State University, Tempe, AZ 85287
| | - Jason M Newbern
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | | | | |
Collapse
|
19
|
Saleh LS, Vanderheyden C, Frederickson A, Bryant SJ. Prostaglandin E2 and Its Receptor EP2 Modulate Macrophage Activation and Fusion in Vitro. ACS Biomater Sci Eng 2020; 6:2668-2681. [PMID: 33463295 DOI: 10.1021/acsbiomaterials.9b01180] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The foreign body response (FBR) has impaired progress of new implantable medical devices through its hallmark of chronic inflammation and foreign body giant cell (FBGC) formation leading to fibrous encapsulation. Macrophages are known to drive the FBR, but efforts to control macrophage polarization remain challenging. The goal for this study was to investigate whether prostaglandin E2 (PGE2), and specifically its receptors EP2 and/or EP4, attenuate classically activated (i.e., inflammatory) macrophages and macrophage fusion into FBGCs in vitro. Lipopolysaccharide (LPS)-stimulated macrophages exhibited a dose-dependent decrease in gene expression and protein production of tumor necrosis factor alpha (TNF-α) when treated with PGE2. This attenuation was primarily by the EP4 receptor, as the addition of the EP2 antagonist PF 04418948 to PGE2-treated LPS-stimulated cells did not recover TNF-α production while the EP4 antagonist ONO AE3 208 did. However, direct stimulation of EP2 with the agonist butaprost to LPS-stimulated macrophages resulted in a ∼60% decrease in TNF-α secretion after 4 h and corresponded with an increase in gene expression for Cebpb and Il10, suggesting a polarization shift toward alternative activation through EP2 alone. Further, fusion of macrophages into FBGCs induced by interleukin-4 (IL-4) and granulocyte-macrophage colony-stimulating factor (GM-CSF) was inhibited by PGE2 via EP2 signaling and by an EP2 agonist, but not an EP4 agonist. The attenuation by PGE2 was confirmed to be primarily by the EP2 receptor. Mrc1, Dcstamp, and Retlna expressions increased upon IL-4/GM-CSF stimulation, but only Retnla expression with the EP2 agonist returned to levels that were not different from controls. This study identified that PGE2 attenuates classically activated macrophages and macrophage fusion through distinct EP receptors, while targeting EP2 is able to attenuate both. In summary, this study identified EP2 as a potential therapeutic target for reducing the FBR to biomaterials.
Collapse
Affiliation(s)
- Leila S Saleh
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Casey Vanderheyden
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Andrew Frederickson
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States.,BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States.,Material Science and Engineering Program, University of Colorado, 3415 Colorado Avenue, Boulder, Colorado 80309, United States
| |
Collapse
|
20
|
Belhomme N, Gaignon T, Jouneau S, Misery L, Abasq-Thomas C, Cador B, Lecureur V, Cadiou S, Ballerie A, Polard E, Mensi S, Jego P, Lescoat A. Drug-induced granulomatosis: is dupilumab the new kid on the block? J Eur Acad Dermatol Venereol 2020; 34:e312-e313. [PMID: 31958359 DOI: 10.1111/jdv.16218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- N Belhomme
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital and University of Rennes 1, Rennes, France
| | - T Gaignon
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital and University of Rennes 1, Rennes, France
| | - S Jouneau
- Department of Respiratory Medicine, Rennes University Hospital and University of Rennes 1, Rennes, France.,INSERM-IRSET UMR1085 and University of Rennes 1, Rennes, France
| | - L Misery
- Department of Dermatology, Brest University Hospital and Brest University, Brest, France
| | - C Abasq-Thomas
- Department of Dermatology, Brest University Hospital and Brest University, Brest, France
| | - B Cador
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital and University of Rennes 1, Rennes, France
| | - V Lecureur
- Inserm, EHESP, IRSET UMR1085, Rennes University Hospital and University of Rennes 1, Rennes, France
| | - S Cadiou
- Department of Rheumatology, Rennes University Hospital and University of Rennes 1, Rennes, France
| | - A Ballerie
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital and University of Rennes 1, Rennes, France.,INSERM-IRSET UMR1085 and University of Rennes 1, Rennes, France
| | - E Polard
- Pharmacovigilance, Pharmacoepidemiology and Drug Information Centre, Department of Clinical Pharmacology, Rennes University Hospital, Rennes, France
| | - S Mensi
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital and University of Rennes 1, Rennes, France
| | - P Jego
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital and University of Rennes 1, Rennes, France.,INSERM-IRSET UMR1085 and University of Rennes 1, Rennes, France
| | - A Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital and University of Rennes 1, Rennes, France.,INSERM-IRSET UMR1085 and University of Rennes 1, Rennes, France
| |
Collapse
|
21
|
Frazão LP, Vieira de Castro J, Neves NM. In Vivo Evaluation of the Biocompatibility of Biomaterial Device. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1250:109-124. [PMID: 32601941 DOI: 10.1007/978-981-15-3262-7_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials are widely used to produce devices for regenerative medicine. After its implantation, an interaction between the host immune system and the implanted biomaterial occurs, leading to biomaterial-specific cellular and tissue responses. These responses may include inflammatory, wound healing responses, immunological and foreign-body reactions, and even fibrous encapsulation of the implanted biomaterial device. In fact, the cellular and molecular events that regulate the success of the implant and tissue regeneration are played at the interface between the foreign body and the host inflammation, determined by innate and adaptive immune responses. This chapter focuses on host responses that must be taken into consideration in determining the biocompatibility of biomaterial devices when implanted in vivo of animal models.
Collapse
Affiliation(s)
- L P Frazão
- I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - J Vieira de Castro
- I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno M Neves
- I3B's - Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho: 3Bs Research Group, Guimarães, Portugal.
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
22
|
Locke LW, Crouser ED, White P, Julian MW, Caceres EG, Papp AC, Le VT, Sadee W, Schlesinger LS. IL-13-regulated Macrophage Polarization during Granuloma Formation in an In Vitro Human Sarcoidosis Model. Am J Respir Cell Mol Biol 2019; 60:84-95. [PMID: 30134122 DOI: 10.1165/rcmb.2018-0053oc] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mechanisms underlying abnormal granuloma formation in patients with sarcoidosis are complex and remain poorly understood. A novel in vitro human granuloma model was used to determine the molecular mechanisms of granuloma genesis in patients with sarcoidosis in response to putative disease-causing mycobacterial antigens. Peripheral blood mononuclear cells (PBMCs) from patients with active sarcoidosis and from normal, disease-free control subjects were incubated for 7 days with purified protein derivative-coated polystyrene beads. Molecular responses, as reflected by differential expression of genes, extracellular cytokine patterns, and cell surface receptor expression, were analyzed. Unbiased systems biology approaches were used to identify signaling pathways engaged during granuloma formation. Model findings were compared with human lung and mediastinal lymph node gene expression profiles. Compared with identically treated PBMCs of control subjects (n = 5), purified protein derivative-treated sarcoidosis PBMCs (n = 6) were distinguished by the formation of cellular aggregates resembling granulomas. Ingenuity Pathway Analysis of differential expression gene patterns identified molecular pathways that are primarily regulated by IL-13, which promotes alternatively activated (M2) macrophage polarization. M2 polarization was further demonstrated by immunohistochemistry performed on the in vitro sarcoidosis granuloma-like structures. IL-13-regulated gene pathways were confirmed in human sarcoidosis lung and mediastinal lymph node tissues. The in vitro human sarcoidosis granuloma model provides novel insights into early granuloma formation, particularly IL-13 regulation of molecular networks that regulate M2 macrophage polarization. M2 macrophages are predisposed to aggregation and multinucleated giant cell formation, which are characteristic features of sarcoidosis granulomas. Clinical trial registered with www.clinicaltrials.gov (NCT01857401).
Collapse
Affiliation(s)
- Landon W Locke
- 1 Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| | - Elliott D Crouser
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute
| | - Peter White
- 4 Department of Pediatrics, College of Medicine, and.,3 The Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio; and
| | - Mark W Julian
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute
| | - Evelyn Guirado Caceres
- 1 Department of Microbial Infection and Immunity, Center for Microbial Interface Biology
| | - Audrey C Papp
- 5 Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | - Van T Le
- 2 Division of Pulmonary, Critical Care, and Sleep Medicine, The Dorothy M. Davis Heart and Lung Research Institute
| | - Wolfgang Sadee
- 5 Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio; and
| | | |
Collapse
|
23
|
Yan M, Wang R, Liu S, Chen Y, Lin P, Li T, Wang Y. The Mechanism of Electroacupuncture at Zusanli Promotes Macrophage Polarization during the Fibrotic Process in Contused Skeletal Muscle. Eur Surg Res 2019; 60:196-207. [PMID: 31694021 DOI: 10.1159/000503130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 09/04/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Currently, many clinical experiments are being conducted to study the effect of acupuncture on skeletal muscle contusions, and its therapeutic effect has been confirmed to some extent. However, the mechanism of recovery by electroacupuncture (EA) in skeletal muscles after blunt trauma remains unknown. OBJECTIVE To determine whether EA at Zusanli can contribute to the regeneration of contused skeletal muscle and the molecular mechanism involved. METHODS Masson's trichrome staining and hematoxylin and eosin staining were used to measure the area of fibrotic tissue and determine the number of centrally nucleated muscle fibers respectively. The different immune phenotypes of macrophages were determined by flow cytometry. Then, ELISA was used to analyze the levels of interleukin-4 (IL-4), IL-6, interferon-α (IFN-α) and interferon-γ (IFN-γ) in the injured tissue. Finally, the expression of MyoD in the tissue was detected by quantitative real-time polymerase chain reaction. RESULTS EA at Zusanli helped regenerate contused skeletal muscle by alleviating fibrosis and increasing the size of the regenerating myofibres in the injured skeletal muscle. EA at Zusanli increased the number of M2 macrophages and decreased the number of M1 macrophages in contused skeletal muscle. EA at Zusanli decreased the level of cytokine IFN-γ and increased the levels of IL-4, interleukin-13 (IL-13), and IFN-α, which promoted macrophage polarization during the fibrosis recovery process in the contused skeletal muscle. EA at Zusanli could increase the expression of MyoD in tissues. CONCLUSIONS EA at Zusanli promoted macrophage polarization during the fibrotic process in contused skeletal muscle by decreasing cytokine IFN-γ and increasing IL-4, IL-13, and IFN-α, which contributed to the regeneration of the contused skeletal muscle.
Collapse
Affiliation(s)
- Mingyang Yan
- Department of Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Rongguo Wang
- College of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Shouyao Liu
- Department of Traditional Chinese Medical Surgery, China-Japan Friendship Hospital, Beijing, China
| | - Ying Chen
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Peng Lin
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China
| | - Tengqi Li
- Department of Graduate School, Peking University of Health Science Center, Beijing, China
| | - Yunting Wang
- Department of Orthopedics, China-Japan Friendship Hospital, Beijing, China,
| |
Collapse
|
24
|
Trout KL, Holian A. Factors influencing multinucleated giant cell formation in vitro. Immunobiology 2019; 224:834-842. [PMID: 31439452 PMCID: PMC6874761 DOI: 10.1016/j.imbio.2019.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/18/2019] [Accepted: 08/03/2019] [Indexed: 12/11/2022]
Abstract
Macrophages fuse together to form multinucleated giant cells (MGC) in granulomas associated with various pathological conditions. Improved in vitro methods are required to better enable investigations of MGC biology and potential contribution to disease. There is a need for standardization of MGC quantification, purification of MGC populations, and characterization of how cell culture variables influence MGC formation. This study examined solutions to address these needs while providing context with other current and alternative methods. Primary mouse bone marrow-derived macrophages were treated with interleukin-4, a cytokine known to induce fusion into MGC. This model was used to systematically assess the influence of cell stimulant timing, cell seeding density, colony stimulating factors, and culture vessel type. Results indicated that MGC formation is greatly impacted by alterations in certain culture variables. An assessment of previously published research showed that these culture conditions varied widely between different laboratories, which may explain inconsistencies in the literature. A particularly novel and unexpected observation was that MGC formation appears to be greatly increased by silicone, which is a component of a chamber slide system commonly used for MGC studies. The most successful quantification method was fluorescent staining with semi-automated morphological evaluation. The most successful enrichment method was microfiltration. Overall, this study takes steps toward standardizing in vitro methods, enhancing replicability, and guiding investigators attempting to culture, quantify, and enrich MGC.
Collapse
Affiliation(s)
- Kevin L Trout
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States
| | - Andrij Holian
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT, United States.
| |
Collapse
|
25
|
Fontaine MAC, Westra MM, Bot I, Jin H, Franssen AJPM, Bot M, de Jager SCA, Dzhagalov I, He YW, van Vlijmen BJM, Gijbels MJJ, Reutelingsperger CP, van Berkel TJC, Sluimer JC, Temmerman L, Biessen EAL. Low human and murine Mcl-1 expression leads to a pro-apoptotic plaque phenotype enriched in giant-cells. Sci Rep 2019; 9:14547. [PMID: 31601924 PMCID: PMC6787218 DOI: 10.1038/s41598-019-51020-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/23/2019] [Indexed: 12/21/2022] Open
Abstract
The anti-apoptotic protein myeloid cell leukemia 1 (Mcl-1) plays an important role in survival and differentiation of leukocytes, more specifically of neutrophils. Here, we investigated the impact of myeloid Mcl-1 deletion in atherosclerosis. Western type diet fed LDL receptor-deficient mice were transplanted with either wild-type (WT) or LysMCre Mcl-1fl/fl (Mcl-1−/−) bone marrow. Mcl-1 myeloid deletion resulted in enhanced apoptosis and lipid accumulation in atherosclerotic plaques. In vitro, Mcl-1 deficient macrophages also showed increased lipid accumulation, resulting in increased sensitivity to lipid-induced cell death. However, plaque size, necrotic core and macrophage content were similar in Mcl-1−/− compared to WT mice, most likely due to decreased circulating and plaque-residing neutrophils. Interestingly, Mcl-1−/− peritoneal foam cells formed up to 45% more multinucleated giant cells (MGCs) in vitro compared to WT, which concurred with an increased MGC presence in atherosclerotic lesions of Mcl-1−/− mice. Moreover, analysis of human unstable atherosclerotic lesions also revealed a significant inverse correlation between MGC lesion content and Mcl-1 gene expression, coinciding with the mouse data. Taken together, these findings suggest that myeloid Mcl-1 deletion leads to a more apoptotic, lipid and MGC-enriched phenotype. These potentially pro-atherogenic effects are however counteracted by neutropenia in circulation and plaque.
Collapse
Affiliation(s)
- Margaux A C Fontaine
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Marijke M Westra
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Ilze Bot
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Han Jin
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Aimée J P M Franssen
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Martine Bot
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Saskia C A de Jager
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands.,Laboratory for Experimental Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Ivan Dzhagalov
- Institue of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - You-Wen He
- Institue of Microbiology and Immunology, National Yang-Ming University, Taipei, 112, Taiwan
| | - Bart J M van Vlijmen
- Einthoven Laboratory for Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.,Department of Internal Medicine, Division of Thrombosis and Hemostasis, Leiden University Medical Center, Leiden, the Netherlands
| | - Marion J J Gijbels
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.,Department of Molecular Genetics, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Chris P Reutelingsperger
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands
| | - Theo J C van Berkel
- Division of BioTherapeutics, Leiden Amsterdam Centre for Drug Research, Leiden University, Leiden, the Netherlands
| | - Judith C Sluimer
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.,Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Lieve Temmerman
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands.
| | - Erik A L Biessen
- Experimental Vascular Pathology Group, Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
26
|
Al-Khoury H, Espinosa-Cano E, Aguilar MR, Román JS, Syrowatka F, Schmidt G, Groth T. Anti-inflammatory Surface Coatings Based on Polyelectrolyte Multilayers of Heparin and Polycationic Nanoparticles of Naproxen-Bearing Polymeric Drugs. Biomacromolecules 2019; 20:4015-4025. [DOI: 10.1021/acs.biomac.9b01098] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hala Al-Khoury
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Heinrich Damerow Strasse 4, 06120 Halle (Saale), Germany
- Interdisciplinary Centre of Materials Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Eva Espinosa-Cano
- Biomaterials Group, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - María Rosa Aguilar
- Biomaterials Group, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Julio San Román
- Biomaterials Group, Department of Polymeric Nanomaterials and Biomaterials, Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
- Networking Biomedical Research Centre in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN, 28029 Madrid, Spain
| | - Frank Syrowatka
- Interdisciplinary Centre of Materials Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Georg Schmidt
- Interdisciplinary Centre of Materials Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle Wittenberg, Heinrich Damerow Strasse 4, 06120 Halle (Saale), Germany
- Interdisciplinary Centre of Materials Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
- Interdisciplinary Centre of Applied Science, Martin Luther University Halle-Wittenberg, 06099 Halle (Saale), Germany
| |
Collapse
|
27
|
Faust JJ, Balabiyev A, Heddleston JM, Podolnikova NP, Baluch DP, Chew TL, Ugarova TP. An actin-based protrusion originating from a podosome-enriched region initiates macrophage fusion. Mol Biol Cell 2019; 30:2254-2267. [PMID: 31242090 PMCID: PMC6743464 DOI: 10.1091/mbc.e19-01-0009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/15/2019] [Accepted: 06/17/2019] [Indexed: 01/24/2023] Open
Abstract
Macrophage fusion resulting in the formation of multinucleated giant cells occurs in a variety of chronic inflammatory diseases, yet the mechanism responsible for initiating this process is unknown. Here, we used live cell imaging to show that actin-based protrusions at the leading edge initiate macrophage fusion. Phase-contrast video microscopy demonstrated that in the majority of events, short protrusions (∼3 µm) between two closely apposed cells initiated fusion, but occasionally we observed long protrusions (∼12 µm). Using macrophages isolated from LifeAct mice and imaging with lattice light sheet microscopy, we further found that fusion-competent protrusions formed at sites enriched in podosomes. Inducing fusion in mixed populations of GFP- and mRFP-LifeAct macrophages showed rapid spatial overlap between GFP and RFP signal at the site of fusion. Cytochalasin B strongly reduced fusion and when rare fusion events occurred, protrusions were not observed. Fusion of macrophages deficient in Wiskott-Aldrich syndrome protein and Cdc42, key molecules involved in the formation of actin-based protrusions and podosomes, was also impaired both in vitro and in vivo. Finally, inhibiting the activity of the Arp2/3 complex decreased fusion and podosome formation. Together these data suggest that an actin-based protrusion formed at the leading edge initiates macrophage fusion.
Collapse
Affiliation(s)
- James J. Faust
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Arnat Balabiyev
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - John M. Heddleston
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA 20147
| | | | - D. Page Baluch
- School of Life Sciences, Arizona State University, Tempe, AZ 85287
| | - Teng-Leong Chew
- Advanced Imaging Center, HHMI Janelia Research Campus, Ashburn, VA 20147
| | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW A relatively new class of CD4 expressing T cells that also express and release interleukin-17 (Th17 cells) is gaining attention based on their capacity to regulate inflammatory responses in a spectrum of chronic autoimmune diseases. The purpose of this review is to consider recent studies relating to the critical role played by Th17 cells in the pathogenesis of sarcoidosis. RECENT FINDINGS Th17 cells are unique in their capacity to adapt to local molecular cues to variably promote or suppress inflammation. On the basis of knowledge established originally in the context of autoimmune disorders, recent investigations indicate that Th17 cells are instrumental in all stages of granuloma evolution, including granuloma formation, maintenance and resolution. Recent research shed light on the mechanisms regulating Th17 cell plasticity and the implications for sarcoidosis disease progression, such as the mechanisms by which regulatory T cells (Tregs) promote resolution of Th17-mediated inflammation. SUMMARY The balance between Th17 cells and Tregs in sarcoidosis patients has important implications for clinicians and clinical researchers seeking more reliable prognostic markers and more targeted therapeutic agents.
Collapse
|
29
|
Podolnikova NP, Hlavackova M, Wu Y, Yakubenko VP, Faust J, Balabiyev A, Wang X, Ugarova TP. Interaction between the integrin Mac-1 and signal regulatory protein α (SIRPα) mediates fusion in heterologous cells. J Biol Chem 2019; 294:7833-7849. [PMID: 30910815 DOI: 10.1074/jbc.ra118.006314] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/15/2019] [Indexed: 12/11/2022] Open
Abstract
Macrophage fusion leading to the formation of multinucleated giant cells is a hallmark of chronic inflammation. Several membrane proteins have been implicated in mediating cell-cell attachment during fusion, but their binding partners remain unknown. Recently, we demonstrated that interleukin-4 (IL-4)-induced fusion of mouse macrophages depends on the integrin macrophage antigen 1 (Mac-1). Surprisingly, the genetic deficiency of intercellular adhesion molecule 1 (ICAM-1), an established ligand of Mac-1, did not impair macrophage fusion, suggesting the involvement of other counter-receptors. Here, using various approaches, including signal regulatory protein α (SIRPα) knockdown, recombinant proteins, adhesion and fusion assays, biolayer interferometry, and peptide libraries, we show that SIRPα, which, similar to ICAM-1, belongs to the Ig superfamily and has previously been implicated in cell fusion, interacts with Mac-1. The following results support the conclusion that SIRPα is a ligand of Mac-1: (a) recombinant ectodomain of SIRPα supports adhesion of Mac-1-expressing cells; (b) Mac-1-SIRPα interaction is mediated through the ligand-binding αMI-domain of Mac-1; (c) recognition of SIRPα by the αMI-domain conforms to general principles governing binding of Mac-1 to many of its ligands; (d) SIRPα reportedly binds CD47; however, anti-CD47 function-blocking mAb produced only a limited inhibition of macrophage adhesion to SIRPα; and (e) co-culturing of SIRPα- and Mac-1-expressing HEK293 cells resulted in the formation of multinucleated cells. Taken together, these results identify SIRPα as a counter-receptor for Mac-1 and suggest that the Mac-1-SIRPα interaction may be involved in macrophage fusion.
Collapse
Affiliation(s)
- Nataly P Podolnikova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Marketa Hlavackova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Yifei Wu
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Valentin P Yakubenko
- the College of Medicine, East Tennessee State University, Johnson City, Tennessee 37614
| | - James Faust
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Arnat Balabiyev
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| | - Xu Wang
- School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287 and
| | - Tatiana P Ugarova
- From the Center for Metabolic and Vascular Biology, School of Life Sciences, and
| |
Collapse
|
30
|
Multinucleation of Incubated Cells and Their Morphological Differences Compared to Mononuclear Cells. MICROMACHINES 2019; 10:mi10020156. [PMID: 30823567 PMCID: PMC6412785 DOI: 10.3390/mi10020156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 01/08/2023]
Abstract
Some cells cultured in vitro have multiple nuclei. Since cultured cells are used in various fields of science, including tissue engineering, the nature of the multinucleated cells must be determined. However, multinucleated cells are not frequently observed. In this study, a method to efficiently obtain multinucleated cells was established and their morphological properties were investigated. Initially, we established conditions to quickly and easily generate multinucleated cells by seeding a Xenopus tadpole epithelium tissue-derived cell line (XTC-YF) on less and more hydrophilic dishes, and incubating the cultures with medium supplemented with or without Y-27632-a ROCK inhibitor-to reduce cell contractility. Notably, 88% of the cells cultured on a less hydrophilic dish in medium supplemented with Y-27632 became multinucleate 48 h after seeding, whereas less than 5% of cells cultured under other conditions exhibited this morphology. Some cells showed an odd number (three and five) of cell nuclei 72 h after seeding. Multinucleated cells displayed a significantly smaller nuclear area, larger cell area, and smaller nuclear circularity. As changes in the morphology of the cells correlated with their functions, the proposed method would help researchers understand the functions of multinucleated cells.
Collapse
|
31
|
Zhou G, Groth T. Host Responses to Biomaterials and Anti-Inflammatory Design-a Brief Review. Macromol Biosci 2018; 18:e1800112. [DOI: 10.1002/mabi.201800112] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/08/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Guoying Zhou
- Biomedical Materials Group; Institute of Pharmacy; Martin Luther University Halle-Wittenberg; 06099 Halle (Saale) Germany
| | - Thomas Groth
- Biomedical Materials Group; Institute of Pharmacy and, Interdisciplinary Center of Material Science and Interdisciplinary Center for Transfer-Oriented Research in Natural Sciences; Martin Luther University Halle-Wittenberg; 06099 Halle (Saale) Germany
| |
Collapse
|
32
|
Abstract
Granulomas are organized aggregates of macrophages, often with characteristic morphological changes, and other immune cells. These evolutionarily ancient structures form in response to persistent particulate stimuli-infectious or noninfectious-that individual macrophages cannot eradicate. Granulomas evolved as protective responses to destroy or sequester particles but are frequently pathological in the context of foreign bodies, infections, and inflammatory diseases. We summarize recent findings that suggest that the granulomatous response unfolds in a stepwise program characterized by a series of macrophage activations and transformations that in turn recruit additional cells and produce structural changes. We explore why different granulomas vary and the reasons that granulomas are protective and pathogenic. Understanding the mechanisms and role of granuloma formation may uncover new therapies for the multitude of granulomatous diseases that constitute serious medical problems while enhancing the protective function of granulomas in infections.
Collapse
Affiliation(s)
- Antonio J Pagán
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; , .,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, United Kingdom; , .,MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
33
|
Sciacchitano S, Lavra L, Morgante A, Ulivieri A, Magi F, De Francesco GP, Bellotti C, Salehi LB, Ricci A. Galectin-3: One Molecule for an Alphabet of Diseases, from A to Z. Int J Mol Sci 2018; 19:ijms19020379. [PMID: 29373564 PMCID: PMC5855601 DOI: 10.3390/ijms19020379] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 01/18/2018] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Galectin-3 (Gal-3) regulates basic cellular functions such as cell-cell and cell-matrix interactions, growth, proliferation, differentiation, and inflammation. It is not surprising, therefore, that this protein is involved in the pathogenesis of many relevant human diseases, including cancer, fibrosis, chronic inflammation and scarring affecting many different tissues. The papers published in the literature have progressively increased in number during the last decades, testifying the great interest given to this protein by numerous researchers involved in many different clinical contexts. Considering the crucial role exerted by Gal-3 in many different clinical conditions, Gal-3 is emerging as a new diagnostic, prognostic biomarker and as a new promising therapeutic target. The current review aims to extensively examine the studies published so far on the role of Gal-3 in all the clinical conditions and diseases, listed in alphabetical order, where it was analyzed.
Collapse
Affiliation(s)
- Salvatore Sciacchitano
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Luca Lavra
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Morgante
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Alessandra Ulivieri
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Fiorenza Magi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
| | - Gian Paolo De Francesco
- Department of Oncological Science, Breast Unit, St Andrea University Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Carlo Bellotti
- Operative Unit Surgery of Thyroid and Parathyroid, Sapienza University of Rome, S. Andrea Hospital, Via di Grottarossa, 1035/39, 00189 Rome, Italy.
| | - Leila B Salehi
- Laboratory of Biomedical Research, Niccolò Cusano University Foundation, Via Don Carlo Gnocchi 3, 00166 Rome, Italy.
- Department of Biopathology and Diagnostic Imaging, Tor Vergata University, Via Montpellier 1, 00133 Rome, Italy.
| | - Alberto Ricci
- Department of Clinical and Molecular Medicine, Sapienza University, Policlinico Umberto I, Viale Regina Elena 324, 00161 Rome, Italy.
| |
Collapse
|
34
|
Shamaei M, Mortaz E, Pourabdollah M, Garssen J, Tabarsi P, Velayati A, Adcock IM. Evidence for M2 macrophages in granulomas from pulmonary sarcoidosis: A new aspect of macrophage heterogeneity. Hum Immunol 2017; 79:63-69. [PMID: 29107084 DOI: 10.1016/j.humimm.2017.10.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Sarcoidosis is a granulomatous disease of unknown etiology. Macrophages play a key role in granuloma formation with the T cells, having a significant impact on macrophage polarization (M1 and M2) and the cellular composition of the granuloma. This study evaluates macrophage polarization in granulomas in pulmonary sarcoidosis. MATERIALS AND METHODS Tissue specimens from the Department of Pathology biobank at the Masih Daneshvari Hospital were obtained. Paraffin sections from 10 sarcoidosis patients were compared with those from 12 cases of tuberculosis using immunohistochemical staining. These sections consisted of mediastinal lymph nodes and transbronchial lung biopsy (TBLB) for sarcoidosis patients versus pleural tissue, neck, axillary lymph nodes and TBLB for tuberculosis patients. The sections were stained for T-cells (CD4+, CD8+) and mature B lymphocytes (CD22+). CD14+ and CD68+ staining was used as a marker of M1 macrophages and CD163+ as a marker for M2 macrophages. RESULTS Immunohistochemical staining revealed a 4/1 ratio of CD4+/CD8+ T-cells in sarcoidosis granuloma sections and a 3/1 ratio in tuberculosis sections. There was no significance difference in single CD4+, CD8+, CD22+, CD14+ and CD68+ staining between sarcoidosis and tuberculosis sections. CD163 expression was significantly increased in sarcoidosis sections compared with those from tuberculosis subjects. CONCLUSION Enhanced CD163+ staining indicates a shift towards M2 macrophage subsets in granulomas from sarcoidosis patients. Further research is required to determine the functional role of M2 macrophages in the immunopathogenesis of sarcoidosis.
Collapse
Affiliation(s)
- Masoud Shamaei
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Mihan Pourabdollah
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Johan Garssen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands; Nutricia Research Centre for Specialized Nutrition, Utrecht, Netherlands
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aliakbar Velayati
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Airways Disease Section, National Heart & Lung Institute, Imperial College London, London, UK; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia.
| |
Collapse
|
35
|
Meunier I, Kaufmann E, Downey J, Divangahi M. Unravelling the networks dictating host resistance versus tolerance during pulmonary infections. Cell Tissue Res 2017; 367:525-536. [PMID: 28168323 PMCID: PMC7088083 DOI: 10.1007/s00441-017-2572-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/05/2017] [Indexed: 12/19/2022]
Abstract
The appearance of single cell microorganisms on earth dates back to more than 3.5 billion years ago, ultimately leading to the development of multicellular organisms approximately 3 billion years later. The evolutionary burst of species diversity and the “struggle for existence”, as proposed by Darwin, generated a complex host defense system. Host survival during infection in vital organs, such as the lung, requires a delicate balance between host defense, which is essential for the detection and elimination of pathogens and host tolerance, which is critical for minimizing collateral tissue damage. Whereas the cellular and molecular mechanisms of host defense against many invading pathogens have been extensively studied, our understanding of host tolerance as a key mechanism in maintaining host fitness is extremely limited. This may also explain why current therapeutic and preventive approaches targeting only host defense mechanisms have failed to provide full protection against severe infectious diseases, including pulmonary influenza virus and Mycobacterium tuberculosis infections. In this review, we aim to outline various host strategies of resistance and tolerance for effective protection against acute or chronic pulmonary infections.
Collapse
Affiliation(s)
- Isabelle Meunier
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Eva Kaufmann
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Jeffrey Downey
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada
| | - Maziar Divangahi
- Department of Medicine, Department of Microbiology & Immunology, and Department of Pathology, McGill University Health Centre, McGill International TB Centre, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Montreal, Quebec, H4A 3J1, Canada. .,RI-MUHC, Centre for Translational Biology, Meakins-Christie Laboratories, McGill University, 1001 Decarie Boulevard, Block E (EM3.2248), Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
36
|
Miron RJ, Zohdi H, Fujioka-Kobayashi M, Bosshardt DD. Giant cells around bone biomaterials: Osteoclasts or multi-nucleated giant cells? Acta Biomater 2016; 46:15-28. [PMID: 27667014 DOI: 10.1016/j.actbio.2016.09.029] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 12/31/2022]
Abstract
Recently accumulating evidence has put into question the role of large multinucleated giant cells (MNGCs) around bone biomaterials. While cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials, it was originally thought that specifically in bone tissues, all giant cells were bone-resorbing osteoclasts whereas foreign body giant cells (FBGCs) were found associated with a connective tissue foreign body reaction resulting in fibrous encapsulation and/or material rejection. Despite the great majority of bone grafting materials routinely found with large osteoclasts, a special subclass of bone biomaterials has more recently been found surrounded by large giant cells virtually incapable of resorbing bone grafts even years after their implantation. While original hypotheses believed that a 'foreign body reaction' may be taking place, histological data retrieved from human samples years after their implantation have put these original hypotheses into question by demonstrating better and more stable long-term bone volume around certain bone grafts. Exactly how or why this 'special' subclass of giant cells is capable of maintaining long-term bone volume, or methods to scientifically distinguish them from osteoclasts remains extremely poorly studied. The aim of this review article was to gather the current available literature on giant cell markers and differences in expression patterns between osteoclasts and MNGCs utilizing 19 specific markers including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. STATEMENT OF SIGNIFICANCE This review article presents 19 specific cell-surface markers to distinguish between osteoclasts and MNGCs including an array of CD-cell surface markers. Furthermore, the concept of now distinguishing between pro-inflammatory M1-MNGCs (often previously referred to as FBGCs) as well as wound-healing M2-MNGCs is introduced and discussed. The proposed concepts and guidelines aims to guide the next wave of research facilitating the differentiation between osteoclast/MNGCs formation, as well as provides the basis for increasing our understanding of the exact function of MNGCs in bone tissue/biomaterial homeostasis.
Collapse
|
37
|
Mouthuy PA, Snelling SJ, Dakin SG, Milković L, Gašparović AČ, Carr AJ, Žarković N. Biocompatibility of implantable materials: An oxidative stress viewpoint. Biomaterials 2016; 109:55-68. [PMID: 27669498 DOI: 10.1016/j.biomaterials.2016.09.010] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 12/13/2022]
|
38
|
Klopfleisch R, Jung F. The pathology of the foreign body reaction against biomaterials. J Biomed Mater Res A 2016; 105:927-940. [PMID: 27813288 DOI: 10.1002/jbm.a.35958] [Citation(s) in RCA: 292] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/13/2016] [Accepted: 11/01/2016] [Indexed: 12/19/2022]
Abstract
The healing process after implantation of biomaterials involves the interaction of many contributing factors. Besides their in vivo functionality, biomaterials also require characteristics that allow their integration into the designated tissue without eliciting an overshooting foreign body reaction (FBR). The targeted design of biomaterials with these features, thus, needs understanding of the molecular mechanisms of the FBR. Much effort has been put into research on the interaction of engineered materials and the host tissue. This elucidated many aspects of the five FBR phases, that is protein adsorption, acute inflammation, chronic inflammation, foreign body giant cell formation, and fibrous capsule formation. However, in practice, it is still difficult to predict the response against a newly designed biomaterial purely based on the knowledge of its physical-chemical surface features. This insufficient knowledge leads to a high number of factors potentially influencing the FBR, which have to be analyzed in complex animal experiments including appropriate data-based sample sizes. This review is focused on the current knowledge on the general mechanisms of the FBR against biomaterials and the influence of biomaterial surface topography and chemical and physical features on the quality and quantity of the reaction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 927-940, 2017.
Collapse
Affiliation(s)
- R Klopfleisch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Straße 15, Berlin, 14163, Germany
| | - F Jung
- Institute of Biomaterial Science and Berlin-Brandenburg, Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| |
Collapse
|
39
|
McClean CM, Tobin DM. Macrophage form, function, and phenotype in mycobacterial infection: lessons from tuberculosis and other diseases. Pathog Dis 2016; 74:ftw068. [PMID: 27402783 DOI: 10.1093/femspd/ftw068] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Macrophages play a central role in mycobacterial pathogenesis. Recent work has highlighted the importance of diverse macrophage types and phenotypes that depend on local environment and developmental origins. In this review, we highlight how distinct macrophage phenotypes may influence disease progression in tuberculosis. In addition, we draw on work investigating specialized macrophage populations important in cancer biology and atherosclerosis in order to suggest new areas of investigation relevant to mycobacterial pathogenesis. Understanding the mechanisms controlling the repertoire of macrophage phenotypes and behaviors during infection may provide opportunities for novel control of disease through modulation of macrophage form and function.
Collapse
Affiliation(s)
- Colleen M McClean
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3020, Durham, NC 27710, USA Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA Medical Scientist Training Program, Duke University School of Medicine, Durham, NC 27710, USA
| | - David M Tobin
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, DUMC 3020, Durham, NC 27710, USA Department of Immunology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
40
|
The Role of Integrins αMβ2 (Mac-1, CD11b/CD18) and αDβ2 (CD11d/CD18) in Macrophage Fusion. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:2105-2116. [PMID: 27315778 DOI: 10.1016/j.ajpath.2016.04.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/11/2016] [Accepted: 04/06/2016] [Indexed: 11/22/2022]
Abstract
The subfamily of β2 integrins is implicated in macrophage fusion, a hallmark of chronic inflammation. Among β2 family members, integrin Mac-1 (αMβ2, CD11b/CD18) is abundantly expressed on monocyte/macrophages and mediates critical adhesive reactions of these cells. However, the role of Mac-1 in macrophage fusion leading to the formation of multinucleated giant cells remains unclear. Moreover, the role of integrin αDβ2 (CD11d/CD18), a receptor with recognition specificity overlapping that of Mac-1, is unknown. We found that multinucleated giant cells are formed in the inflamed mouse peritoneum during the resolution phase of inflammation, and their numbers were approximately twofold higher in wild-type mice than in Mac-1(-/-) mice. Analyses of isolated inflammatory peritoneal macrophages showed that IL-4-induced fusion of Mac-1-deficient cells was strongly reduced compared with wild-type counterparts. The examination of adhesive reactions known to be required for fusion showed that spreading, but not adhesion and migration, was reduced in Mac-1-deficient macrophages. Fusion of αDβ2-deficient macrophages was also significantly decreased, albeit to a smaller degree. Deficiency of intercellular adhesion molecule 1, a counter-receptor for Mac-1 and αDβ2, did not alter the fusion rate. The results indicate that both Mac-1 and αDβ2 support macrophage fusion with Mac-1 playing a dominant role and suggest that Mac-1 may mediate cell-cell interactions with a previously unrecognized counter-receptor(s).
Collapse
|
41
|
Moon H, Cremmel CVM, Kulpa A, Jaeger NAF, Kappelhoff R, Overall CM, Waterfield JD, Brunette DM. Novel grooved substrata stimulate macrophage fusion, CCL2 and MMP-9 secretion. J Biomed Mater Res A 2016; 104:2243-54. [PMID: 27102570 DOI: 10.1002/jbm.a.35757] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 04/14/2016] [Accepted: 04/20/2016] [Indexed: 01/21/2023]
Abstract
Rough surface topographies on implants attract macrophages but the influence of topography on macrophage fusion to produce multinucleated giant cells (MGC) and foreign body giant cells (FBGC) is unclear. Two rough novel grooved substrata, G1 and G2, fabricated by anisotropic etching of Silicon <110> crystals without the use of photolithographic patterning, and a control smooth surface (Pol) were produced and replicated in epoxy. The surfaces were compared for their effects on RAW264.7 macrophage morphology, gene expression, cyto/chemokine secretion, and fusion for one and five days. Macrophages on grooved surfaces exhibited an elongated morphology similar to M2 macrophages and increased cell alignment with surface directionality, roughness and cell culture time. Up-regulated expression of macrophage chemoattractants at gene and protein level was observed on both grooved surfaces relative to Pol. Grooved surfaces showed time-dependent increase in soluble mediators involved in cell fusion, CCL2 and MMP-9, and an increased proportion of multinucleated cells at Day 5. Collectively, this study demonstrated that a rough surface with surface directionality produced changes in macrophage shape and macrophage attractant chemokines and soluble mediators involved in cell fusion. These in vitro results suggest a possible explanation for the observed accumulation of macrophages and MGCs on rough surfaced implants in vivo. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2243-2254, 2016.
Collapse
Affiliation(s)
- Haisle Moon
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Clément V M Cremmel
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Zurich, Switzerland
| | - Alina Kulpa
- Advanced Materials and Process Engineering Laboratory (AMPEL) Advanced Nanofabrication Facility (ANF), University of British Columbia, Vancouver, Canada
| | - Nicolas A F Jaeger
- Department of Electrical and Computer Engineering, Faculty of Applied Science, University of British Columbia, Vancouver, Canada
| | - Reinhild Kappelhoff
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Christopher M Overall
- Centre for Blood Research, Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - J Douglas Waterfield
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| | - Donald M Brunette
- Department of Oral Biological & Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, Canada
| |
Collapse
|
42
|
Hrčková G, Vendelova E, Velebný S. Phagocytosis in Mesocestoides vogae-induced peritoneal monocytes/macrophages via opsonin-dependent or independent pathways. Helminthologia 2016. [DOI: 10.1515/helmin-2015-0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Summary
Intraperitoneal infection with larvae of cestode Mesocestoides vogae offers the opportunity to study dynamic changes in the proportion and functions of individual cell types under a direct influence of parasites. The phagocytic activity is one of the basic effector functions of professional phagocytes and receptor-mediated uptake is a central in implementation of inflammatory responses. Present study extends information on this issue by exploring several phagocytosis pathways in M. vogae-induced myelo-monocytic cells. In addition, we analyzed proportions of morphologically distinct phenotypes within macrophage compartments after oral inoculation of larvae to mice. In gradually elevated population of peritoneal exudate cells, monocytes/ macrophages and giant cell were dominant cell types from day 21 p.i. Phagocytic activity of these cells had biphasic behaviour for both opsonin-dependent and independent pathways, whereas uptake by multinucleated macrophages was profoundly reduced. Highly elevated proportions of activated phagocytic cells were found from day 7 to 14 p.i., regardless particle type (latex beads, HEMA, liposomes) and opsonisation. Source of opsonins used for coating of liposomes suggested higher expression of complement receptors than Fc receptors on these cells, although the uptake of non-opsonized liposomes had different kinetics and was very high by activated cells early p.i. Present data indicate that early recruited macrophages/monocytes attain pro-inflammatory functions as indicated by highly elevated phagocytosis of immunologically inert particles as well as opsonized liposomes what is down-regulated once larvae start to proliferate in the peritoneal cavity, suggesting the role of parasite-derived molecules in modulation of this key phagocytes function.
Collapse
Affiliation(s)
- G. Hrčková
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - E. Vendelova
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| | - S. Velebný
- Institute of Parasitology of the Slovak Academy of Sciences, Hlinkova 3, 04001 Košice, Slovak Republic
| |
Collapse
|
43
|
Macrophage and Multinucleated Giant Cell Classification. CURRENT TOPICS IN ENVIRONMENTAL HEALTH AND PREVENTIVE MEDICINE 2016. [DOI: 10.1007/978-4-431-55732-6_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
44
|
Miron RJ, Bosshardt DD. OsteoMacs: Key players around bone biomaterials. Biomaterials 2015; 82:1-19. [PMID: 26735169 DOI: 10.1016/j.biomaterials.2015.12.017] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 12/12/2022]
Abstract
Osteal macrophages (OsteoMacs) are a special subtype of macrophage residing in bony tissues. Interesting findings from basic research have pointed to their vast and substantial roles in bone biology by demonstrating their key function in bone formation and remodeling. Despite these essential findings, much less information is available concerning their response to a variety of biomaterials used for bone regeneration with the majority of investigation primarily focused on their role during the foreign body reaction. With respect to biomaterials, it is well known that cells derived from the monocyte/macrophage lineage are one of the first cell types in contact with implanted biomaterials. Here they demonstrate extremely plastic phenotypes with the ability to differentiate towards classical M1 or M2 macrophages, or subsequently fuse into osteoclasts or multinucleated giant cells (MNGCs). These MNGCs have previously been characterized as foreign body giant cells and associated with biomaterial rejection, however more recently their phenotypes have been implicated with wound healing and tissue regeneration by studies demonstrating their expression of key M2 markers around biomaterials. With such contrasting hypotheses, it becomes essential to better understand their roles to improve the development of osteo-compatible and osteo-promotive biomaterials. This review article expresses the necessity to further study OsteoMacs and MNGCs to understand their function in bone biomaterial tissue integration including dental/orthopedic implants and bone grafting materials.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Oral Surgery and Stomatology, Department of Periodontology, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| | - Dieter D Bosshardt
- Department of Oral Surgery and Stomatology, Department of Periodontology, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.
| |
Collapse
|
45
|
Milde R, Ritter J, Tennent GA, Loesch A, Martinez FO, Gordon S, Pepys MB, Verschoor A, Helming L. Multinucleated Giant Cells Are Specialized for Complement-Mediated Phagocytosis and Large Target Destruction. Cell Rep 2015; 13:1937-48. [PMID: 26628365 PMCID: PMC4675895 DOI: 10.1016/j.celrep.2015.10.065] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/03/2015] [Accepted: 10/22/2015] [Indexed: 01/05/2023] Open
Abstract
Multinucleated giant cells (MGCs) form by fusion of macrophages and are presumed to contribute to the removal of debris from tissues. In a systematic in vitro analysis, we show that IL-4-induced MGCs phagocytosed large and complement-opsonized materials more effectively than their unfused M2 macrophage precursors. MGC expression of complement receptor 4 (CR4) was increased, but it functioned primarily as an adhesion integrin. In contrast, although expression of CR3 was not increased, it became functionally activated during fusion and was located on the extensive membrane ruffles created by excess plasma membrane arising from macrophage fusion. The combination of increased membrane area and activated CR3 specifically equips MGCs to engulf large complement-coated targets. Moreover, we demonstrate these features in vivo in the recently described complement-dependent therapeutic elimination of systemic amyloid deposits by MGCs. MGCs are evidently more than the sum of their macrophage parts. MGCs are specialized for phagocytosis of large and complement-opsonized particles MGCs show extensive membrane ruffles containing pre-activated complement receptor 3 Membrane ruffles provide excess membrane for ingestion of large materials MGCs eliminate systemic amyloid deposits after immunotherapeutic targeting
Collapse
Affiliation(s)
- Ronny Milde
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 Munich, Germany
| | - Julia Ritter
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 Munich, Germany
| | - Glenys A Tennent
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, UK
| | - Andrzej Loesch
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, UK
| | | | - Siamon Gordon
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Mark B Pepys
- Wolfson Drug Discovery Unit, Centre for Amyloidosis and Acute Phase Proteins, Division of Medicine, Royal Free Campus, University College London, London NW3 2PF, UK.
| | - Admar Verschoor
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 Munich, Germany; Institute for Systemic Inflammation Research, Universität zu Lübeck, 23538 Lübeck, Germany.
| | - Laura Helming
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, 81675 Munich, Germany
| |
Collapse
|
46
|
Levaot N, Ottolenghi A, Mann M, Guterman-Ram G, Kam Z, Geiger B. Osteoclast fusion is initiated by a small subset of RANKL-stimulated monocyte progenitors, which can fuse to RANKL-unstimulated progenitors. Bone 2015; 79:21-8. [PMID: 26008608 DOI: 10.1016/j.bone.2015.05.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 05/09/2015] [Accepted: 05/15/2015] [Indexed: 10/23/2022]
Abstract
Osteoclasts are multinucleated, bone-resorbing cells formed via fusion of monocyte progenitors, a process triggered by prolonged stimulation with RANKL, the osteoclast master regulator cytokine. Monocyte fusion into osteoclasts has been shown to play a key role in bone remodeling and homeostasis; therefore, aberrant fusion may be involved in a variety of bone diseases. Indeed, research in the last decade has led to the discovery of genes regulating osteoclast fusion; yet the basic cellular regulatory mechanism underlying the fusion process is poorly understood. Here, we applied a novel approach for tracking the fusion processes, using live-cell imaging of RANKL-stimulated and non-stimulated progenitor monocytes differentially expressing dsRED or GFP, respectively. We show that osteoclast fusion is initiated by a small (~2.4%) subset of precursors, termed "fusion founders", capable of fusing either with other founders or with non-stimulated progenitors (fusion followers), which alone, are unable to initiate fusion. Careful examination indicates that the fusion between a founder and a follower cell consists of two distinct phases: an initial pairing of the two cells, typically lasting 5-35 min, during which the cells nevertheless maintain their initial morphology; and the fusion event itself. Interestingly, during the initial pre-fusion phase, a transfer of the fluorescent reporter proteins from nucleus to nucleus was noticed, suggesting crosstalk between the founder and follower progenitors via the cytoplasm that might directly affect the fusion process, as well as overall transcriptional regulation in the developing heterokaryon.
Collapse
Affiliation(s)
- Noam Levaot
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| | - Aner Ottolenghi
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Mati Mann
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Gali Guterman-Ram
- Department of Physiology and Cell Biology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Zvi Kam
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Geiger
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
47
|
E-cadherin expression in macrophages dampens their inflammatory responsiveness in vitro, but does not modulate M2-regulated pathologies in vivo. Sci Rep 2015; 5:12599. [PMID: 26226941 PMCID: PMC4521155 DOI: 10.1038/srep12599] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 06/02/2015] [Indexed: 01/22/2023] Open
Abstract
IL-4/IL-13-induced alternatively activated macrophages (M(IL-4/IL-13), AAMs or M2) are known to express E-cadherin, enabling them to engage in heterotypic cellular interactions and IL-4-driven macrophage fusion in vitro. Here we show that E-cadherin overexpression in Raw 264.7 macrophages inhibits their inflammatory response to LPS stimulation, as demonstrated by a reduced secretion of inflammatory mediators like interleukin (IL)-6, tumor necrosis factor (TNF) and nitric oxide (NO). To study the function of E-cadherin in M(IL-4/IL-13) macrophages in vivo, we generated macrophage-specific E-cadherin-deficient C57BL/6 mice. Using this new tool, we analyzed immunological parameters during two typical AAM-associated Th2-driven diseases and assessed Th2-associated granuloma formation. Although E-cadherin is strongly induced in AAMs during Taenia crassiceps helminth infections and allergic airway inflammation, its deletion in macrophages does not affect the course of both Th2 cytokine-driven diseases. Moreover, macrophage E-cadherin expression is largely redundant for granuloma formation around Schistosoma mansoni ova. Overall, we conclude that E-cadherin is a valuable AAM marker which suppresses the inflammatory response when overexpressed. Yet E-cadherin deletion in macrophages does not affect M(LPS+IFNγ) and M(IL-4) polarization in vitro, nor in vivo macrophage function, at least in the conditions tested.
Collapse
|
48
|
Bracken SJ, Adami AJ, Szczepanek SM, Ehsan M, Natarajan P, Guernsey LA, Shahriari N, Rafti E, Matson AP, Schramm CM, Thrall RS. Long-Term Exposure to House Dust Mite Leads to the Suppression of Allergic Airway Disease Despite Persistent Lung Inflammation. Int Arch Allergy Immunol 2015; 166:243-58. [PMID: 25924733 DOI: 10.1159/000381058] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 02/18/2015] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Allergic asthma is a major cause of worldwide morbidity and results from inadequate immune regulation in response to innocuous, environmental antigens. The need exists to understand the mechanisms that promote nonreactivity to human-relevant allergens such as house dust mite (HDM) in order to develop curative therapies for asthma. The aim of our study was to compare the effects of short-, intermediate- and long-term HDM administration in a murine asthma model and determine the ability of long-term HDM exposure to suppress allergic inflammation. METHODS C57BL/6 mice were intranasally instilled with HDM for short-term (2 weeks), intermediate-term (5 weeks) and long-term (11 weeks) periods to induce allergic airway disease (AAD). The severity of AAD was compared across all stages of the model via both immunological and pulmonary parameters. RESULTS Short- and intermediate-term HDM exposure stimulated the development of AAD that included eosinophilia in the bronchoalveolar lavage fluid (BALF), pronounced airway hyperreactivity (AHR) and evidence of lung inflammation. Long-term HDM exposure promoted the suppression of AAD, with a loss of BALF eosinophilia and AHR despite persistent mononuclear inflammation in the lungs. Suppression of AAD with long-term HDM exposure was associated with an increase in both Foxp3+ regulatory T cells and IL-10-positive alveolar macrophages at the site of inflammation. CONCLUSIONS This model recapitulates the key features of human asthma and may facilitate investigation into the mechanisms that promote immunological tolerance against clinically relevant aeroallergens.
Collapse
Affiliation(s)
- Sonali J Bracken
- Department of Immunology, University of Connecticut Health Center, Farmington, Conn., USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
E-cadherin is expressed by mono- and multinucleated histiocytes in cutaneous sarcoidal and foreign body granulomas. Am J Dermatopathol 2015; 36:651-4. [PMID: 23719484 DOI: 10.1097/dad.0b013e31828de7e0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
E-cadherin, a member of the cadherin family of transmembrane adhesion receptors, is critical for cutaneous barrier function, as it promotes keratinocyte and Langerhans cell adhesion in the epidermis. Recent murine models of chronic inflammation identified new E-cadherin expressing subsets of mononuclear phagocytes, including alternatively activated macrophages and selected inflammatory dendritic cells. It has been shown in vitro that expression of E-cadherin by murine macrophages promotes their homotypic aggregation and fusion to multinucleated giant cells (MNGCs), a signature cell type of granulomatous inflammation. The purpose of this study was to assess E-cadherin expression on histiocytes and giant cells in cutaneous granulomas in humans. E-cadherin expression was evaluated by immunohistochemistry of formalin-fixed paraffin-embedded skin biopsies of foreign body granulomas (n = 21) and sarcoidosis (n = 21). The results showed consistent membranous E-cadherin staining pattern on mononucleated histiocytes and MNGCs in both granuloma types. These E-cadherin expressing histiocytes are distinct from dermal Langerhans cells because they lacked CD1a expression. Our findings suggest that E-cadherin expressing mononuclear histiocytes are likely precursors for MNGCs in cutaneous granulomas and may play a critical role in disease pathogenesis.
Collapse
|
50
|
Stein P, Vitavska O, Kind P, Hoppe W, Wieczorek H, Schürer NY. The biological basis for poly-l-lactic acid-induced augmentation. J Dermatol Sci 2015; 78:26-33. [DOI: 10.1016/j.jdermsci.2015.01.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 12/29/2014] [Accepted: 01/20/2015] [Indexed: 12/22/2022]
|