1
|
Bernardi C, Charvet C, Zeiser R, Simonetta F. Granulocyte-Macrophage Colony-Stimulating Factor in Allogenic Hematopoietic Stem Cell Transplantation: From Graft-versus-Host Disease to the Graft-versus-Tumor Effect. Transplant Cell Ther 2024; 30:386-395. [PMID: 38224950 DOI: 10.1016/j.jtct.2024.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/30/2023] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
Allogenic hematopoietic stem cell transplantation (allo-HSCT) is a widely used treatment for a broad range of hematologic malignancies because of its graft-versus-tumor (GVT) effect. Unfortunately, allo-HSCT is still associated with morbidity and mortality related to relapse and transplantation complications, namely graft-versus-host-disease (GVHD). In an era of therapies specifically targeting molecular pathways, transcription factors, and cytokines, a better understanding of GVHD physiopathology is essential for the development of new therapeutic approaches. In this review, we outline the current knowledge of the role of granulocyte- macrophage colony-stimulating factor (GM-CSF) in allo-HSCT. We first discuss the biology of GM-CSF and its signaling pathways, with a focus on the main producing cells, T cells. We discuss recent preclinical studies pointing to a pivotal role of GM-CSF in GVHD, in particular gastrointestinal GVHD. We then summarize the potential role of GM-CSF in the GVT effect, discussing some potential strategies for exploiting GM-CSF in the context of allo-HSCT.
Collapse
Affiliation(s)
- Chiara Bernardi
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| | - Céline Charvet
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France; Université de Strasbourg, Strasbourg, France
| | - Robert Zeiser
- Hematology, Oncology and Stem Cell Transplantation, Department of Medicine I, Medical Center University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Comprehensive Cancer Center Freiburg, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; German Cancer Consortium Partner Site Freiburg and German Cancer Research Center, Heidelberg, Germany; Signaling Research Centres BIOSS and Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Center for Oncohematology, Department of Medicine and Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
2
|
Dharra R, Kumar Sharma A, Datta S. Emerging aspects of cytokine storm in COVID-19: The role of proinflammatory cytokines and therapeutic prospects. Cytokine 2023; 169:156287. [PMID: 37402337 PMCID: PMC10291296 DOI: 10.1016/j.cyto.2023.156287] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
COVID-19 has claimed millions of lives during the last 3 years since initial cases were reported in Wuhan, China, in 2019. Patients with COVID-19 suffer from severe pneumonia, high fever, acute respiratory distress syndrome (ARDS), and multiple-organ dysfunction, which may also result in fatality in extreme cases. Cytokine storm (CS) is hyperactivation of the immune system, wherein the dysregulated production of proinflammatory cytokines could result in excessive immune cell infiltrations in the pulmonary tissues, resulting in tissue damage. The immune cell infiltration could also occur in other tissues and organs and result in multiple organs' dysfunction. The key cytokines implicated in the onset of disease severity include TNF-α, IFN-γ, IL-6, IL-1β, GM-CSF, and G-CSF. Controlling the CS is critical in treating COVID-19 disease. Therefore, different strategies are employed to mitigate the effects of CS. These include using monoclonal antibodies directed against soluble cytokines or the cytokine receptors, combination therapies, mesenchymal stem cell therapy, therapeutic plasma exchange, and some non-conventional treatment methods to improve patient immunity. The current review describes the role/s of critical cytokines in COVID-19-mediated CS and the respective treatment modalities.
Collapse
Affiliation(s)
- Renu Dharra
- CSIR-Institute of Microbial Technology, Sector 39 A, Chandigarh 160036, India
| | - Anil Kumar Sharma
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India
| | - Sonal Datta
- Department of Bio-Science and Technology, M. M. Engineering College, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, India.
| |
Collapse
|
3
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
4
|
Piper C, Hainstock E, Yin-Yuan C, Chen Y, Khatun A, Kasmani MY, Evans J, Miller JA, Gorski J, Cui W, Drobyski WR. Single-cell immune profiling reveals a developmentally distinct CD4+ GM-CSF+ T-cell lineage that induces GI tract GVHD. Blood Adv 2022; 6:2791-2804. [PMID: 35015822 PMCID: PMC9092418 DOI: 10.1182/bloodadvances.2021006084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/29/2021] [Indexed: 11/20/2022] Open
Abstract
Gastrointestinal (GI) tract involvement is a major determinant for subsequent morbidity and mortality arising during graft-versus-host disease (GVHD). CD4+ T cells that produce granulocyte-macrophage colony stimulating factor (GM-CSF) have emerged as central mediators of inflammation in this tissue site as GM-CSF serves as a critical cytokine link between the adaptive and innate arms of the immune system. However, cellular heterogeneity within the CD4+ GM-CSF+ T-cell population due to the concurrent production of other inflammatory cytokines has raised questions as to whether these cells have a common ontology or if a unique CD4+ GM-CSF+ subset exists that differs from other defined T helper subtypes. Using single-cell RNA sequencing analysis (scRNAseq), we identified two CD4+ GM-CSF+ T-cell populations that arose during GVHD and were distinguishable according to the presence or absence of interferon-γ (IFN-γ) coexpression. CD4+ GM-CSF+ IFN-γ- T cells, which emerged preferentially in the colon, had a distinct transcriptional profile, used unique gene regulatory networks, and possessed a nonoverlapping T-cell receptor repertoire compared with CD4+ GM-CSF+ IFN-γ+ T cells as well as all other transcriptionally defined CD4+ T-cell populations in the colon. Functionally, this CD4+ GM-CSF+ T-cell population contributed to pathologic damage in the GI tract that was critically dependent on signaling through the interleukin-17 (IL-7) receptor but was independent of type 1 interferon signaling. Thus, these studies help to unravel heterogeneity within CD4+ GM-CSF+ T cells that arise during GVHD and define a developmentally distinct colitogenic T helper subtype GM-CSF+ subset that mediates immunopathology.
Collapse
Affiliation(s)
- Clint Piper
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Emma Hainstock
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Cheng Yin-Yuan
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
| | - Yao Chen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Achia Khatun
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Moujtaba Y. Kasmani
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | | | | | - Jack Gorski
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - Weiguo Cui
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Blood Research Institute, Versiti, Milwaukee, WI; and
| | - William R. Drobyski
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
5
|
Feng G, Bajpai G, Ma P, Koenig A, Bredemeyer A, Lokshina I, Lai L, Förster I, Leuschner F, Kreisel D, Lavine KJ. CCL17 Aggravates Myocardial Injury by Suppressing Recruitment of Regulatory T Cells. Circulation 2022; 145:765-782. [PMID: 35113652 PMCID: PMC8957788 DOI: 10.1161/circulationaha.121.055888] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/07/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent studies have established that CCR2 (C-C chemokine receptor type 2) marks proinflammatory subsets of monocytes, macrophages, and dendritic cells that contribute to adverse left ventricle (LV) remodeling and heart failure progression. Elucidation of the effector mechanisms that mediate adverse effects of CCR2+ monocytes, macrophages, and dendritic cells will yield important insights into therapeutic strategies to suppress myocardial inflammation. METHODS We used mouse models of reperfused myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation to investigate CCL17 (C-C chemokine ligand 17). We used Ccl17 knockout mice, flow cytometry, RNA sequencing, biochemical assays, cell trafficking studies, and in vivo cell depletion to identify the cell types that generate CCL17, define signaling pathways that controlled its expression, delineate the functional importance of CCL17 in adverse LV remodeling and heart failure progression, and determine the mechanistic basis by which CCL17 exerts its effects. RESULTS We demonstrated that CCL17 is expressed in CCR2+ macrophages and cluster of differentiation 11b+ conventional dendritic cells after myocardial infarction, angiotensin II and phenylephrine infusion, and diphtheria toxin cardiomyocyte ablation. We clarified the transcriptional signature of CCL17+ macrophages and dendritic cells and identified granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling as a key regulator of CCL17 expression through cooperative activation of STAT5 (signal transducer and activator of transcription 5) and canonical NF-κB (nuclear factor κ-light-chain-enhancer of activated B cells) signaling. Ccl17 deletion resulted in reduced LV remodeling, decreased myocardial fibrosis and cardiomyocyte hypertrophy, and improved LV systolic function after myocardial infarction and angiotensin II and phenylephrine infusion. We observed increased abundance of regulatory T cells (Tregs) in the myocardium of injured Ccl17 knockout mice. CCL17 inhibited Treg recruitment through biased activation of CCR4. CCL17 activated Gq signaling and CCL22 (C-C chemokine ligand 22) activated both Gq and ARRB (β-arrestin) signaling downstream of CCR4. CCL17 competitively inhibited CCL22 stimulated ARRB signaling and Treg migration. We provide evidence that Tregs mediated the protective effects of Ccl17 deletion on myocardial inflammation and adverse LV remodeling. CONCLUSIONS These findings identify CCL17 as a proinflammatory mediator of CCR2+ macrophages and dendritic cells and suggest that inhibition of CCL17 may serve as an effective strategy to promote Treg recruitment and suppress myocardial inflammation.
Collapse
Affiliation(s)
- Guoshuai Feng
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Geetika Bajpai
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Pan Ma
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Andrew Koenig
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Andrea Bredemeyer
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Inessa Lokshina
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | - Lulu Lai
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
| | | | - Florian Leuschner
- LIMES Institute, University of Bonn, Department of Internal Medicine III, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany (F.L.)
| | - Daniel Kreisel
- Department of Surgery, Washington University, Saint Louis, Missouri, USA (D.K.)
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri, USA (D.K., K.L.)
| | - Kory J. Lavine
- Cardiovascular Division, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA (G.F., G.B., P.M., A.K., A.B., I.L., L.L., K.L.)
- Department of Pathology and Immunology, Washington University, Saint Louis, Missouri, USA (D.K., K.L.)
- Department of Developmental Biology, Washington University, Saint Louis, Missouri, USA (K.L.)
| |
Collapse
|
6
|
Ataya A, Knight V, Carey BC, Lee E, Tarling EJ, Wang T. The Role of GM-CSF Autoantibodies in Infection and Autoimmune Pulmonary Alveolar Proteinosis: A Concise Review. Front Immunol 2021; 12:752856. [PMID: 34880857 PMCID: PMC8647160 DOI: 10.3389/fimmu.2021.752856] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
Autoantibodies to multiple cytokines have been identified and some, including antibodies against granulocyte-macrophage colony-stimulating factor (GM-CSF), have been associated with increased susceptibility to infection. High levels of GM-CSF autoantibodies that neutralize signaling cause autoimmune pulmonary alveolar proteinosis (aPAP), an ultrarare autoimmune disease characterized by accumulation of excess surfactant in the alveoli, leading to pulmonary insufficiency. Defective GM-CSF signaling leads to functional deficits in multiple cell types, including macrophages and neutrophils, with impaired phagocytosis and host immune responses against pulmonary and systemic infections. In this article, we review the role of GM-CSF in aPAP pathogenesis and pulmonary homeostasis along with the increased incidence of infections (particularly opportunistic infections). Therefore, recombinant human GM-CSF products may have potential for treatment of aPAP and possibly other infectious and pulmonary diseases due to its pleotropic immunomodulatory actions.
Collapse
Affiliation(s)
- Ali Ataya
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, FL, United States
| | - Vijaya Knight
- Department of Pediatrics, Section of Allergy and Immunology, University of Colorado School of Medicine and Children's Hospital, Aurora, CO, United States
| | - Brenna C Carey
- Translational Pulmonary Science Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Elinor Lee
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Elizabeth J Tarling
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| | - Tisha Wang
- Division of Pulmonary, Critical Care, and Sleep Medicine, David Geffen School of Medicine at University of California, Los Angeles (UCLA), Los Angeles, CA, United States
| |
Collapse
|
7
|
Wu Z, Hu T, Chintoan-Uta C, Macdonald J, Stevens MP, Sang H, Hume DA, Kaiser P, Balic A. Development of novel reagents to chicken FLT3, XCR1 and CSF2R for the identification and characterization of avian conventional dendritic cells. Immunology 2021; 165:171-194. [PMID: 34767637 DOI: 10.1111/imm.13426] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/30/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
Conventional dendritic cells (cDC) are bone marrow-derived immune cells that play a central role in linking innate and adaptive immunity. cDCs efficiently uptake, process and present antigen to naïve T cells, driving clonal expansion of antigen-specific T-cell responses. In chicken, vital reagents are lacking for the efficient and precise identification of cDCs. In this study, we have developed several novel reagents for the identification and characterization of chicken cDCs. Chicken FLT3 cDNA was cloned and a monoclonal antibody to cell surface FLT3 was generated. This antibody identified a distinct FLT3HI splenic subset which lack expression of signature markers for B cells, T cells or monocyte/macrophages. By combining anti-FLT3 and CSF1R-eGFP transgenic expression, three major populations within the mononuclear phagocyte system were identified in the spleen. The cDC1 subset of mammalian cDCs express the chemokine receptor XCR1. To characterize chicken cDCs, a synthetic chicken chemokine (C motif) ligand (XCL1) peptide conjugated to Alexa Fluor 647 was developed (XCL1AF647 ). Flow cytometry staining of XCL1AF647 on splenocytes showed that all chicken FLT3HI cells exclusively express XCR1, supporting the hypothesis that this population comprises bona fide chicken cDCs. Further analysis revealed that chicken cDCs expressed CSF1R but lacked the expression of CSF2R. Collectively, the cell surface phenotypes of chicken cDCs were partially conserved with mammalian XCR1+ cDC1, with distinct differences in CSF1R and CSF2R expression compared with mammalian orthologues. These original reagents allow the efficient identification of chicken cDCs to investigate their important roles in the chicken immunity and diseases.
Collapse
Affiliation(s)
- Zhiguang Wu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Tuanjun Hu
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | | | - Joni Macdonald
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Mark P Stevens
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Helen Sang
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - David A Hume
- Translational Research Institute, Mater Research Institute-University of Queensland, Woolloongabba, Qld, Australia
| | - Pete Kaiser
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| | - Adam Balic
- The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK
| |
Collapse
|
8
|
Albumin fusion with granulocyte-macrophage colony-stimulating factor acts as an immunotherapy against chronic tuberculosis. Cell Mol Immunol 2021; 18:2393-2401. [PMID: 32382128 PMCID: PMC8484439 DOI: 10.1038/s41423-020-0439-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 03/20/2020] [Indexed: 02/07/2023] Open
Abstract
A long duration of treatment and emerging drug resistance pose significant challenges for global tuberculosis (TB) eradication efforts. Therefore, there is an urgent need to develop novel strategies to shorten TB treatment regimens and to treat drug-resistant TB. Using an albumin-fusion strategy, we created a novel albumin-fused granulocyte-macrophage colony-stimulating factor (albGM-CSF) molecule that harnesses albumin's long half-life and targeting abilities to enhance the biostability of GM-CSF and direct it to the lymph nodes, where the effects of GM-CSF can increase dendritic cell populations crucial for eliciting a potent immune response. In this study, we demonstrate that albGM-CSF serves as a novel immunotherapy for chronic Mycobacterium tuberculosis (Mtb) infections by enhancing GM-CSF biostability in serum. Specifically, albumin is very safe, stable, and has a long half-life, thereby enhancing the biostability of GM-CSF. In the lungs and draining lymph nodes, albGM-CSF is able to increase the numbers of dendritic cells, which are crucial for the activation of naive T cells and for eliciting potent immune responses. Subcutaneous administration of albGM-CSF alone reduced the mean lung bacillary burden in mice with chronic tuberculosis infection. While GM-CSF administration was associated with IL-1β release from Mtb-infected dendritic cells and macrophages, higher IL-1β levels were observed in albGM-CSF-treated mice with chronic tuberculosis infection than in mice receiving GM-CSF. Albumin fusion with GM-CSF represents a promising strategy for the control of chronic lung tuberculosis infections and serves as a novel therapeutic vaccination platform for other infectious diseases and malignancies.
Collapse
|
9
|
Radandish M, Khalilian P, Esmaeil N. The Role of Distinct Subsets of Macrophages in the Pathogenesis of MS and the Impact of Different Therapeutic Agents on These Populations. Front Immunol 2021; 12:667705. [PMID: 34489926 PMCID: PMC8417824 DOI: 10.3389/fimmu.2021.667705] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 07/31/2021] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis (MS) is a demyelinating inflammatory disorder of the central nervous system (CNS). Besides the vital role of T cells, other immune cells, including B cells, innate immune cells, and macrophages (MФs), also play a critical role in MS pathogenesis. Tissue-resident MФs in the brain’s parenchyma, known as microglia and monocyte-derived MФs, enter into the CNS following alterations in CNS homeostasis that induce inflammatory responses in MS. Although the neuroprotective and anti-inflammatory actions of monocyte-derived MФs and resident MФs are required to maintain CNS tolerance, they can release inflammatory cytokines and reactivate primed T cells during neuroinflammation. In the CNS of MS patients, elevated myeloid cells and activated MФs have been found and associated with demyelination and axonal loss. Thus, according to the role of MФs in neuroinflammation, they have attracted attention as a therapeutic target. Also, due to their different origin, location, and turnover, other strategies may require to target the various myeloid cell populations. Here we review the role of distinct subsets of MФs in the pathogenesis of MS and different therapeutic agents that target these cells.
Collapse
Affiliation(s)
- Maedeh Radandish
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parvin Khalilian
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Nafiseh Esmaeil
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.,Environment Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
10
|
Alekseenko I, Kuzmich A, Kondratyeva L, Kondratieva S, Pleshkan V, Sverdlov E. Step-by-Step Immune Activation for Suicide Gene Therapy Reinforcement. Int J Mol Sci 2021; 22:ijms22179376. [PMID: 34502287 PMCID: PMC8430744 DOI: 10.3390/ijms22179376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022] Open
Abstract
Gene-directed enzyme prodrug gene therapy (GDEPT) theoretically represents a useful method to carry out chemotherapy for cancer with minimal side effects through the formation of a chemotherapeutic agent inside cancer cells. However, despite great efforts, promising preliminary results, and a long period of time (over 25 years) since the first mention of this method, GDEPT has not yet reached the clinic. There is a growing consensus that optimal cancer therapies should generate robust tumor-specific immune responses. The advent of checkpoint immunotherapy has yielded new highly promising avenues of study in cancer therapy. For such therapy, it seems reasonable to use combinations of different immunomodulators alongside traditional methods, such as chemotherapy and radiotherapy, as well as GDEPT. In this review, we focused on non-viral gene immunotherapy systems combining the intratumoral production of toxins diffused by GDEPT and immunomodulatory molecules. Special attention was paid to the applications and mechanisms of action of the granulocyte-macrophage colony-stimulating factor (GM–CSF), a cytokine that is widely used but shows contradictory effects. Another method to enhance the formation of stable immune responses in a tumor, the use of danger signals, is also discussed. The process of dying from GDEPT cancer cells initiates danger signaling by releasing damage-associated molecular patterns (DAMPs) that exert immature dendritic cells by increasing antigen uptake, maturation, and antigen presentation to cytotoxic T-lymphocytes. We hypothesized that the combined action of this danger signal and GM–CSF issued from the same dying cancer cell within a limited space would focus on a limited pool of immature dendritic cells, thus acting synergistically and enhancing their maturation and cytotoxic T-lymphocyte attraction potential. We also discuss the problem of enhancing the cancer specificity of the combined GDEPT–GM–CSF–danger signal system by means of artificial cancer specific promoters or a modified delivery system.
Collapse
Affiliation(s)
- Irina Alekseenko
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
- Institute of Oncogynecology and Mammology, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of the Ministry of Healthcare of Russian Federation, 117997 Moscow, Russia
- Correspondence: (I.A.); (E.S.)
| | - Alexey Kuzmich
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Liya Kondratyeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Sofia Kondratieva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Victor Pleshkan
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (L.K.); (S.K.)
| | - Eugene Sverdlov
- Institute of Molecular Genetics of National Research Centre “Kurchatov Institute”, 123182 Moscow, Russia; (A.K.); (V.P.)
- Correspondence: (I.A.); (E.S.)
| |
Collapse
|
11
|
Petrina M, Martin J, Basta S. Granulocyte macrophage colony-stimulating factor has come of age: From a vaccine adjuvant to antiviral immunotherapy. Cytokine Growth Factor Rev 2021; 59:101-110. [PMID: 33593661 PMCID: PMC8064670 DOI: 10.1016/j.cytogfr.2021.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/28/2020] [Accepted: 01/04/2021] [Indexed: 12/19/2022]
Abstract
GM-CSF acts as a pro-inflammatory cytokine and a key growth factor produced by several immune cells such as macrophages and activated T cells. In this review, we discuss recent studies that point to the crucial role of GM-CSF in the immune response against infections. Upon induction, GM-CSF activates four main signalling networks including the JAK/STAT, PI3K, MAPK, and NFκB pathways. Many of these transduction pathways such as JAK/STAT signal via proteins commonly activated with other antiviral signalling cascades, such as those induced by IFNs. GM-CSF also helps defend against respiratory infections by regulating alveolar macrophage differentiation and enhancing innate immunity in the lungs. Here, we also summarize the numerous clinical trials that have taken advantage of GM-CSF's mechanistic attributes in immunotherapy. Moreover, we discuss how GM-CSF is used as an adjuvant in vaccines and how its activity is interfered with to reduce inflammation such as in the case of COVID-19. This review brings forth the current knowledge on the antiviral actions of GM-CSF, the associated signalling cascades, and its application in immunotherapy.
Collapse
Affiliation(s)
- Maria Petrina
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Jacqueline Martin
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada
| | - Sameh Basta
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Canada.
| |
Collapse
|
12
|
Ifergan I, Miller SD. Potential for Targeting Myeloid Cells in Controlling CNS Inflammation. Front Immunol 2020; 11:571897. [PMID: 33123148 PMCID: PMC7573146 DOI: 10.3389/fimmu.2020.571897] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Multiple Sclerosis (MS) is characterized by immune cell infiltration to the central nervous system (CNS) as well as loss of myelin. Characterization of the cells in lesions of MS patients revealed an important accumulation of myeloid cells such as macrophages and dendritic cells (DCs). Data from the experimental autoimmune encephalomyelitis (EAE) model of MS supports the importance of peripheral myeloid cells in the disease pathology. However, the majority of MS therapies focus on lymphocytes. As we will discuss in this review, multiple strategies are now in place to target myeloid cells in clinical trials. These strategies have emerged from data in both human and mouse studies. We discuss strategies targeting myeloid cell migration, growth factors and cytokines, biological functions (with a focus on miRNAs), and immunological activities (with a focus on nanoparticles).
Collapse
Affiliation(s)
- Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
13
|
Pathogenic Bhlhe40+ GM-CSF+ CD4+ T cells promote indirect alloantigen presentation in the GI tract during GVHD. Blood 2020; 135:568-581. [PMID: 31880771 DOI: 10.1182/blood.2019001696] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/10/2019] [Indexed: 12/23/2022] Open
Abstract
Gastrointestinal (GI) tract involvement is the major cause of morbidity and mortality in acute graft-versus-host disease (GVHD), and pathological damage is largely attributable to inflammatory cytokine production. Recently, granulocyte-macrophage colony stimulating factor (GM-CSF) has been identified as a cytokine that mediates inflammation in the GI tract, but the transcriptional program that governs GM-CSF production and the mechanism by which GM-CSF links adaptive to innate immunity within this tissue site have not been defined. In the current study, we identified Bhlhe40 as a key transcriptional regulator that governs GM-CSF production by CD4+ T cells and mediates pathological damage in the GI tract during GVHD. In addition, we observed that GM-CSF was not regulated by either interleukin 6 (IL-6) or IL-23, which are both potent inducers of GVHD-induced colonic pathology, indicating that GM-CSF constitutes a nonredundant inflammatory pathway in the GI tract. Mechanistically, GM-CSF had no adverse effect on regulatory T-cell reconstitution, but linked adaptive to innate immunity by enhancing the activation of donor-derived dendritic cells in the colon and subsequent accumulation of these cells in the mLNs. In addition, GM-CSF promoted indirect alloantigen presentation, resulting in the accumulation of donor-derived T cells with a proinflammatory cytokine phenotype in the colon. Thus, Bhlhe40+ GM-CSF+ CD4+ T cells constitute a colitogenic T-cell population that promotes indirect alloantigen presentation and pathological damage within the GI tract, positioning GM-CSF as a key regulator of GVHD in the colon and a potential therapeutic target for amelioration of this disease.
Collapse
|
14
|
Abstract
A limited number of peripheral targets generate pain. Inflammatory mediators can sensitize these. The review addresses targets acting exclusively or predominantly on sensory neurons, mediators involved in inflammation targeting sensory neurons, and mediators involved in a more general inflammatory process, of which an analgesic effect secondary to an anti-inflammatory effect can be expected. Different approaches to address these systems are discussed, including scavenging proinflammatory mediators, applying anti-inflammatory mediators, and inhibiting proinflammatory or facilitating anti-inflammatory receptors. New approaches are contrasted to established ones; the current stage of progress is mentioned, in particular considering whether there is data from a molecular and cellular level, from animals, or from human trials, including an early stage after a market release. An overview of publication activity is presented, considering a IuPhar/BPS-curated list of targets with restriction to pain-related publications, which was also used to identify topics.
Collapse
Affiliation(s)
- Cosmin I Ciotu
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria
| | - Michael J M Fischer
- Center of Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstrasse 17, 1090, Vienna, Austria.
| |
Collapse
|
15
|
SOCS3 Attenuates GM-CSF/IFN-γ-Mediated Inflammation During Spontaneous Spinal Cord Regeneration. Neurosci Bull 2020; 36:778-792. [PMID: 32306216 PMCID: PMC7340708 DOI: 10.1007/s12264-020-00493-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
SOCS3, a feedback inhibitor of the JAK/STAT signal pathway, negatively regulates axonal regrowth and inflammation in the central nervous system (CNS). Here, we demonstrated a distinct role of SOCS3 in the injured spinal cord of the gecko following tail amputation. Severing the gecko spinal cord did not evoke an inflammatory cascade except for an injury-stimulated elevation of the granulocyte/macrophage colony-stimulating factor (GM-CSF) and interferon gamma (IFN-γ) cytokines. Simultaneously, the expression of SOCS3 was upregulated in microglia, and unexpectedly not in neurons. Enforced expression of SOCS3 was sufficient to suppress the GM-CSF/IFN-γ-driven inflammatory responses through its KIR domain by attenuating the activities of JAK1 and JAK2. SOCS3 was also linked to GM-CSF/IFN-γ-induced cross-tolerance. Transfection of adenovirus overexpressing SOCS3 in the injured cord resulted in a significant decrease of inflammatory cytokines. These results reveal a distinct role of SOCS3 in the regenerating spinal cord, and provide new hints for CNS repair in mammals.
Collapse
|
16
|
Damiani G, McCormick TS, Leal LO, Ghannoum MA. Recombinant human granulocyte macrophage-colony stimulating factor expressed in yeast (sargramostim): A potential ally to combat serious infections. Clin Immunol 2020; 210:108292. [DOI: 10.1016/j.clim.2019.108292] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/09/2019] [Accepted: 10/23/2019] [Indexed: 12/27/2022]
|
17
|
Shafiee F, Aucoin MG, Jahanian-Najafabadi A. Targeted Diphtheria Toxin-Based Therapy: A Review Article. Front Microbiol 2019; 10:2340. [PMID: 31681205 PMCID: PMC6813239 DOI: 10.3389/fmicb.2019.02340] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/25/2019] [Indexed: 12/26/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Conventional therapeutic strategies usually offer limited specificity, resulting in severe side effects and toxicity to normal tissues. Targeted cancer therapy, on the other hand, can improve the therapeutic potential of anti-cancer agents and decrease unwanted side effects. Targeted applications of cytolethal bacterial toxins have been found to be especially useful for the specific eradication of cancer cells. Targeting is either mediated by peptides or by protein-targeting moieties, such as antibodies, antibody fragments, cell-penetrating peptides (CPPs), growth factors, or cytokines. Together with a toxin domain, these molecules are more commonly referred to as immunotoxins. Targeting can also be achieved through gene delivery and cell-specific expression of a toxin. Of the available cytolethal toxins, diphtheria toxin (DT) is one of the most frequently used for these strategies. Of the many DT-based therapeutic strategies investigated to date, two immunotoxins, OntakTM and TagraxofuspTM, have gained FDA approval for clinical application. Despite some success with immunotoxins, suicide-gene therapy strategies, whereby controlled tumor-specific expression of DT is used for the eradication of malignant cells, are gaining prominence. The first part of this review focuses on DT-based immunotoxins, and it then discusses recent developments in tumor-specific expression of DT.
Collapse
Affiliation(s)
- Fatemeh Shafiee
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Marc G Aucoin
- Department of Chemical Engineering, Faculty of Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Ali Jahanian-Najafabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
18
|
Reggiani F, Labanca V, Mancuso P, Rabascio C, Talarico G, Orecchioni S, Manconi A, Bertolini F. Adipose Progenitor Cell Secretion of GM-CSF and MMP9 Promotes a Stromal and Immunological Microenvironment That Supports Breast Cancer Progression. Cancer Res 2017; 77:5169-5182. [PMID: 28754674 DOI: 10.1158/0008-5472.can-17-0914] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/23/2017] [Accepted: 07/14/2017] [Indexed: 11/16/2022]
Abstract
A cell population with progenitor-like phenotype (CD45-CD34+) resident in human white adipose tissue (WAT) is known to promote the progression of local and metastatic breast cancer and angiogenesis. However, the molecular mechanisms of the interaction have not been elucidated. In this study, we identified two proteins that were significantly upregulated in WAT-derived progenitors after coculture with breast cancer: granulocyte macrophage colony-stimulating factor (GM-CSF) and matrix metallopeptidase 9 (MMP9). These proteins were released by WAT progenitors in xenograft and transgenic breast cancer models. GM-CSF was identified as an upstream modulator. Breast cancer-derived GM-CSF induced GM-CSF and MMP9 release from WAT progenitors, and GM-CSF knockdown in breast cancer cells neutralized the protumorigenic activity of WAT progenitors in preclinical models. GM-CSF neutralization in diet-induced obese mice significantly reduced immunosuppression, intratumor vascularization, and local and metastatic breast cancer progression. Similarly, MMP9 inhibition reduced neoplastic angiogenesis and significantly decreased local and metastatic tumor growth. Combined GM-CSF neutralization and MMP9 inhibition synergistically reduced angiogenesis and tumor progression. High-dose metformin inhibited GM-CSF and MMP9 release from WAT progenitors in in vitro and xenograft models. In obese syngeneic mice, metformin treatment mimicked the effects observed with GM-CSF neutralization and MMP9 inhibition, suggesting these proteins as new targets for metformin. These findings support the hypothesis that GM-CSF and MMP9 promote the protumorigenic effect of WAT progenitors on local and metastatic breast cancer. Cancer Res; 77(18); 5169-82. ©2017 AACR.
Collapse
Affiliation(s)
- Francesca Reggiani
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Valentina Labanca
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Patrizia Mancuso
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Cristina Rabascio
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Giovanna Talarico
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Stefania Orecchioni
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy
| | - Andrea Manconi
- Division of Plastic Surgery, European Institute of Oncology, Milan, Italy
| | - Francesco Bertolini
- Laboratory of Hematology-Oncology, European Institute of Oncology, Milan, Italy.
| |
Collapse
|
19
|
Abstract
In multiple sclerosis (MS), there is a growing interest in inhibiting the pro-inflammatory effects of granulocyte-macrophage colony-stimulating factor (GM-CSF). We sought to evaluate the therapeutic potential and underlying mechanisms of GM-CSF receptor alpha (Rα) blockade in animal models of MS. We show that GM-CSF signaling inhibition at peak of chronic experimental autoimmune encephalomyelitis (EAE) results in amelioration of disease progression. Similarly, GM-CSF Rα blockade in relapsing-remitting (RR)-EAE model prevented disease relapses and inhibited T cell responses specific for both the inducing and spread myelin peptides, while reducing activation of mDCs and inflammatory monocytes. In situ immunostaining of lesions from human secondary progressive MS (SPMS), but not primary progressive MS patients shows extensive recruitment of GM-CSF Rα+ myeloid cells. Collectively, this study reveals a pivotal role of GM-CSF in disease relapses and the benefit of GM-CSF Rα blockade as a potential novel therapeutic approach for treatment of RRMS and SPMS.
Collapse
|
20
|
Dohlman TH, Ding J, Dana R, Chauhan SK. T Cell-Derived Granulocyte-Macrophage Colony-Stimulating Factor Contributes to Dry Eye Disease Pathogenesis by Promoting CD11b+ Myeloid Cell Maturation and Migration. Invest Ophthalmol Vis Sci 2017; 58:1330-1336. [PMID: 28241321 PMCID: PMC5341624 DOI: 10.1167/iovs.16-20789] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Purpose Growing evidence suggests that granulocyte-macrophage colony-stimulating factor (GM-CSF) contributes to T helper 17 (Th17) cell-associated immunoinflammatory diseases. The purpose of this study was to evaluate the effect of T cell-derived GM-CSF on CD11b+ myeloid cell function in dry eye disease (DED). Methods In a murine model of DED, quantitative real-time PCR and ELISA were used to measure GM-CSF expression at the ocular surface, and flow cytometry was used to enumerate GM-CSF producing Th17 cells. A granulocyte-macrophage colony-stimulating factor neutralizing antibody was used topically in vivo and in an in vitro culture system to evaluate the role of GM-CSF in recruiting and maturing CD11b+ cells. Clinical disease severity was evaluated after topical administration of GM-CSF neutralizing antibody. Results In dry eye disease, GM-CSF is significantly upregulated at the ocular surface and the frequency of GM-CSF producing Th17 cells is significantly increased in the draining lymph nodes. In vitro neutralization of GM-CSF from CD4+ T cells derived from DED mice suppresses major histocompatibility complex II expression by CD11b+ cells and CD11b+ cell migration. Topical neutralization of GM-CSF in a murine model of DED suppresses CD11b+ maturation and migration, as well as Th17 cell induction, yielding a reduction in clinical signs of disease. Conclusions T helper 17 cell-derived GM-CSF contributes to DED pathogenesis by promoting CD11b+ cell activation and migration to the ocular surface.
Collapse
Affiliation(s)
- Thomas H Dohlman
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Julia Ding
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Reza Dana
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Sunil K Chauhan
- Schepens Eye Research Institute, Massachusetts Eye & Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
21
|
Liao CT, Andrews R, Wallace LE, Khan MWA, Kift-Morgan A, Topley N, Fraser DJ, Taylor PR. Peritoneal macrophage heterogeneity is associated with different peritoneal dialysis outcomes. Kidney Int 2017; 91:1088-1103. [PMID: 28065517 PMCID: PMC5402633 DOI: 10.1016/j.kint.2016.10.030] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 09/20/2016] [Accepted: 10/20/2016] [Indexed: 12/20/2022]
Abstract
Peritonitis remains the major obstacle for the maintenance of long-term peritoneal dialysis and dysregulated host peritoneal immune responses may compromise local anti-infectious defense, leading to treatment failure. Whilst, tissue mononuclear phagocytes, comprising macrophages and dendritic cells, are central to a host response to pathogens and the development of adaptive immune responses, they are poorly characterized in the human peritoneum. Combining flow cytometry with global transcriptome analysis, the phenotypic features and lineage identity of the major CD14+ macrophage and CD1c+ dendritic cell subsets in dialysis effluent were defined. Their functional specialization was reflected in cytokine generation, phagocytosis, and antigen processing/presentation. By analyzing acute bacterial peritonitis, stable (infection-free) and new-starter patients receiving peritoneal dialysis, we identified a skewed distribution of macrophage to dendritic cell subsets (increasing ratio) that associated with adverse peritonitis outcomes, history of multiple peritonitis episodes, and early catheter failure, respectively. Intriguingly, we also noted significant alterations of macrophage heterogeneity, indicative of different maturation and activation states that were associated with different peritoneal dialysis outcomes. Thus, our studies delineate peritoneal dendritic cells from macrophages within dialysate, and define cellular characteristics associated with peritoneal dialysis treatment failure. These are the first steps to unravelling the detrimental adaptive immune responses occurring as a consequence of peritonitis.
Collapse
Affiliation(s)
- Chia-Te Liao
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Robert Andrews
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Leah E Wallace
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Mohd Wajid A Khan
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Ann Kift-Morgan
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Nicholas Topley
- Wales Kidney Research Unit, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Donald J Fraser
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK; Wales Kidney Research Unit, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Philip R Taylor
- Systems Immunity University Research Institute and Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
22
|
Ahn S, Jeong D, Oh SJ, Ahn J, Lee SH, Chung DH. GM-CSF and IL-4 produced by NKT cells inversely regulate IL-1β production by macrophages. Immunol Lett 2017; 182:50-56. [PMID: 28063891 DOI: 10.1016/j.imlet.2017.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 12/02/2016] [Accepted: 01/03/2017] [Indexed: 11/17/2022]
Abstract
Natural Killer T (NKT) cells are distinct T cell subset that link innate and adaptive immune responses. IL-1β, produced by various immune cells, plays a key role in the regulation of innate immunity in vivo. However, it is unclear whether NKT cells regulate IL-1β production by macrophages. To address this, we co-cultured NKT cells and peritoneal macrophages in the presence of TCR stimulation and inflammasome activators. Among cytokines secreted from NKT cells, GM-CSF enhanced IL-1β production by macrophages via regulating LPS-mediated pro-IL-1β expression and NLRP3-dependent inflammasome activation, whereas IL-4 enhanced M2-differentiation of macrophages and decreased IL-1β production. Together, our findings suggest the NKT cells have double-sided effects on IL-1β-mediated innate immune responses by producing IL-4 and GM-CSF. These findings may be helpful for a comprehensive understanding of NKT cell-mediated regulatory mechanisms of the pro-inflammatory effects of IL-1β in inflammatory diseases in vivo.
Collapse
Affiliation(s)
- Sehee Ahn
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dongjin Jeong
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sae Jin Oh
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jiye Ahn
- Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seung Hyo Lee
- Graduate School of Medical Science and Engineering, Biomedical Research Center, Korean Advanced Institute of Science and Technology (KAIST), Daejeon 305-701, Republic of Korea
| | - Doo Hyun Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea; Laboratory of Immune Regulation in Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea; Ischemic/Hypoxia Institute, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
23
|
Lachmann G, Kurth J, von Haefen C, Yuerek F, Wernecke KD, Spies C. In vivo application of Granulocyte-Macrophage Colony-stimulating Factor enhances postoperative qualitative monocytic function. Int J Med Sci 2017; 14:367-375. [PMID: 28553169 PMCID: PMC5436479 DOI: 10.7150/ijms.18288] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/30/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND: Granulocyte macrophage colony-stimulating factor (GM-CSF) can be used as a potent stimulator for immune suppressed patients as defined by a decrease of human leukocyte antigen-D related expression on monocytes (mHLA-DR) after surgery. However, the exact role of GM-CSF on monocytic and T cell function is unclear. METHODS: In this retrospective randomized controlled trial (RCT) subgroup analysis, monocytic respectively T cell function and T cell subspecies of 20 immune suppressed (i.e. mHLA-DR levels below 10,000 monoclonal antibodies (mAb) per cell at the first day after surgery) patients after esophageal or pancreatic resection were analyzed. Each 10 patients received either GM-CSF (250 μg/m²/d) or placebo for a maximum of three consecutive days if mHLA-DR levels remained below 10,000 mAb per cell. mHLA-DR and further parameters of immune function were measured preoperatively (od) until day 5 after surgery (pod5). Statistical analyses were performed using nonparametric statistical procedures. RESULTS: In multivariate analysis, mHLA-DR significantly differed between the groups (p < 0.001). mHLA-DR was increased on pod2 (p < 0.001) and pod3 (p = 0.002) after GM-CSF application. Tumor necrosis factor-α (TNF-α) release of lipopolysaccharide (LPS) stimulated monocytes multivariately significantly differed between the groups (p < 0.008) and was increased in the GM-CSF group on pod2 (p < 0.001) and pod3 (p = 0.046). Th17/regulatory T (Treg) cell ratio was higher after GM-CSF treatment on pod2 (p = 0.041). No differences were seen in lymphocytes and T helper cell (Th)1/Th2 specific cytokine production after T cell stimulation with Concanavalin (Con) A between the groups. CONCLUSIONS: Postoperative application of GM-CSF significantly enhanced qualitative monocytic function by increased mHLA-DR and TNF-α release after LPS stimulation and apparently enhanced Th17/Treg ratio. Clinical trial registered with www.controlled-trials.com (ISRCTN27114642) 05 December 2008.
Collapse
Affiliation(s)
- Gunnar Lachmann
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | - Johannes Kurth
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | - Clarissa von Haefen
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | - Fatima Yuerek
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| | | | - Claudia Spies
- Department of Anesthesiology and Intensive Care Medicine, Campus Charité Mitte and Campus Virchow-Klinikum, Charité - Universitätsmedizin Berlin, Germany
| |
Collapse
|
24
|
Cook AD, Louis C, Robinson MJ, Saleh R, Sleeman MA, Hamilton JA. Granulocyte macrophage colony-stimulating factor receptor α expression and its targeting in antigen-induced arthritis and inflammation. Arthritis Res Ther 2016; 18:287. [PMID: 27908288 PMCID: PMC5134062 DOI: 10.1186/s13075-016-1185-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 11/16/2016] [Indexed: 12/23/2022] Open
Abstract
Background Blockade of granulocyte macrophage colony-stimulating factor (GM-CSF) and its receptor (GM-CSFRα) is being successfully tested in trials in rheumatoid arthritis (RA) with clinical results equivalent to those found with neutralization of the current therapeutic targets, TNF and IL-6. To explore further the role of GM-CSF as a pro-inflammatory cytokine, we examined the effect of anti-GM-CSFRα neutralization on myeloid cell populations in antigen-driven arthritis and inflammation models and also compared its effect with that of anti-TNF and anti-IL-6. Methods Cell population changes upon neutralization by monoclonal antibodies (mAbs) in the antigen-induced arthritis (AIA) and antigen-induced peritonitis (AIP) models were monitored by flow cytometry and microarray. Adoptive transfer of monocytes into the AIP cavity was used to assess the GM-CSF dependence of the development of macrophages and monocyte-derived dendritic cells (Mo-DCs) at a site of inflammation. Results Therapeutic administration of a neutralizing anti-GM-CSF mAb, but not of an anti-colony-stimulating factor (anti-CSF)-1 or an anti-CSF-1R mAb, ameliorated AIA disease. Using the anti-GM-CSFRα mAb, the relative surface expression of different inflammatory myeloid populations was found to be similar in the inflamed tissues in both the AIA and AIP models; however, the GM-CSFRα mAb, but not neutralizing anti-TNF and anti-IL-6 mAbs, preferentially depleted Mo-DCs from these sites. In addition, we were able to show that locally acting GM-CSF upregulated macrophage/Mo-DC numbers via GM-CSFR signalling in donor monocytes. Conclusions Our findings suggest that GM-CSF blockade modulates inflammatory responses differently to TNF and IL-6 blockade and may provide additional insight into how targeting the GM-CSF/GM-CSFRα system is providing efficacy in RA. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-1185-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Andrew D Cook
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3050, Australia.
| | - Cynthia Louis
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3050, Australia
| | - Matthew J Robinson
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd, Granta Park, Cambridge, CB21 6GH, UK
| | - Reem Saleh
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3050, Australia
| | - Matthew A Sleeman
- Department of Respiratory, Inflammation and Autoimmunity, MedImmune Ltd, Granta Park, Cambridge, CB21 6GH, UK.,, Present Address: Regeneron, 777 Old Saw Mill River Rd, Tarrytown, NY, USA
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Parkville, Victoria, 3050, Australia
| |
Collapse
|
25
|
Role of Serum Amyloid A, Granulocyte-Macrophage Colony-Stimulating Factor, and Bone Marrow Granulocyte-Monocyte Precursor Expansion in Segmented Filamentous Bacterium-Mediated Protection from Entamoeba histolytica. Infect Immun 2016; 84:2824-32. [PMID: 27456830 DOI: 10.1128/iai.00316-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/18/2016] [Indexed: 02/07/2023] Open
Abstract
Intestinal segmented filamentous bacteria (SFB) protect from ameba infection, and protection is transferable with bone marrow dendritic cells (BMDCs). SFB cause an increase in serum amyloid A (SAA), suggesting that SAA might mediate SFB's effects on BMDCs. Here we further explored the role of bone marrow in SFB-mediated protection. Transient gut colonization with SFB or SAA administration alone transiently increased the H3K27 histone demethylase Jmjd3, persistently increased bone marrow Csf2ra expression and granulocyte monocyte precursors (GMPs), and protected from ameba infection. Pharmacologic inhibition of Jmjd3 H3K27 demethylase activity during SAA treatment or blockade of granulocyte-macrophage colony-stimulating factor (GM-CSF) signaling in SFB-colonized mice prevented GMP expansion, decreased gut neutrophils, and blocked protection from ameba infection. These results indicate that alteration of the microbiota and systemic exposure to SAA can influence myelopoiesis and susceptibility to amebiasis via epigenetic mechanisms. Gut microbiota-marrow communication is a previously unrecognized mechanism of innate protection from infection.
Collapse
|
26
|
Liao CT, Rosas M, Davies LC, Giles PJ, Tyrrell VJ, O'Donnell VB, Topley N, Humphreys IR, Fraser DJ, Jones SA, Taylor PR. IL-10 differentially controls the infiltration of inflammatory macrophages and antigen-presenting cells during inflammation. Eur J Immunol 2016; 46:2222-32. [PMID: 27378515 PMCID: PMC5026061 DOI: 10.1002/eji.201646528] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 05/19/2016] [Accepted: 06/29/2016] [Indexed: 12/31/2022]
Abstract
The inflammatory activation and recruitment of defined myeloid populations is essential for controlling the bridge between innate and adaptive immunity and shaping the immune response to microbial challenge. However, these cells exhibit significant functional heterogeneity and the inflammatory signals that differentially influence their effector characteristics are poorly characterized. In this study, we defined the phenotype of discrete subsets of effective antigen‐presenting cells (APCs) in the peritoneal cavity during peritonitis. When the functional properties of these cells were compared to inflammatory monocyte‐derived macrophages we noted differential responses to the immune‐modulatory cytokine IL‐10. In contrast to the suppressive actions of IL‐10 on inflammatory macrophages, the recruitment of APCs was relatively refractory and we found no evidence for selective inhibition of APC differentiation. This differential response of myeloid cell subsets to IL‐10 may thus have limited impact on development of potentially tissue‐damaging adaptive immune responses, while restricting the magnitude of the inflammatory response. These findings may have clinical relevance in the context of peritoneal dialysis patients, where recurrent infections are associated with immune‐mediated membrane dysfunction, treatment failure, and increased morbidity.
Collapse
Affiliation(s)
- Chia-Te Liao
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Marcela Rosas
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Luke C Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Peter J Giles
- Central Biotechnology Services, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Victoria J Tyrrell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Valerie B O'Donnell
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Nicholas Topley
- Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Ian R Humphreys
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Donald J Fraser
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Simon A Jones
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK.,Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Philip R Taylor
- Division of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK. .,Systems Immunity University Research Institute, Cardiff University School of Medicine, Heath Park, Cardiff, UK.
| |
Collapse
|
27
|
Shiomi A, Usui T, Mimori T. GM-CSF as a therapeutic target in autoimmune diseases. Inflamm Regen 2016; 36:8. [PMID: 29259681 PMCID: PMC5725926 DOI: 10.1186/s41232-016-0014-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/10/2016] [Indexed: 12/23/2022] Open
Abstract
Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been known as a hematopoietic growth factor and immune modulator. Recent studies revealed that GM-CSF also had pro-inflammatory functions and contributed to the pathogenicity of Th17 cells in the development of Th17-mediated autoimmune diseases. GM-CSF inhibition in some animal models of autoimmune diseases showed significant beneficial effects. Therefore, several agents targeting GM-CSF are being developed and are expected to be a useful strategy for the treatment of autoimmune diseases. Particularly, in clinical trials for rheumatoid arthritis (RA) patients, GM-CSF inhibition showed rapid and significant efficacy with no serious side effects. This article summarizes recent findings of GM-CSF and information of clinical trials targeting GM-CSF in autoimmune diseases.
Collapse
Affiliation(s)
- Aoi Shiomi
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Takashi Usui
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical Immunology, Graduate School of Medicine, Kyoto University, 54-Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507 Japan
| |
Collapse
|
28
|
Ushach I, Zlotnik A. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 2016; 100:481-9. [PMID: 27354413 DOI: 10.1189/jlb.3ru0316-144r] [Citation(s) in RCA: 324] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/07/2016] [Indexed: 12/14/2022] Open
Abstract
M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved.
Collapse
Affiliation(s)
- Irina Ushach
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| | - Albert Zlotnik
- Department of Physiology and Biophysics, Institute for Immunology, University of California, Irvine, California, USA
| |
Collapse
|
29
|
Bhattacharya P, Thiruppathi M, Elshabrawy HA, Alharshawi K, Kumar P, Prabhakar BS. GM-CSF: An immune modulatory cytokine that can suppress autoimmunity. Cytokine 2015; 75:261-71. [PMID: 26113402 DOI: 10.1016/j.cyto.2015.05.030] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/22/2015] [Accepted: 05/25/2015] [Indexed: 12/12/2022]
Abstract
GM-CSF was originally identified as a colony stimulating factor (CSF) because of its ability to induce granulocyte and macrophage populations from precursor cells. Multiple studies have demonstrated that GM-CSF is also an immune-modulatory cytokine, capable of affecting not only the phenotype of myeloid lineage cells, but also T-cell activation through various myeloid intermediaries. This property has been implicated in the sustenance of several autoimmune diseases like arthritis and multiple sclerosis. In contrast, several studies using animal models have shown that GM-CSF is also capable of suppressing many autoimmune diseases such as Crohn's disease, Type-1 diabetes, Myasthenia gravis and experimental autoimmune thyroiditis. Knockout mouse studies have suggested that the role of GM-CSF in maintaining granulocyte and macrophage populations in the physiological steady state is largely redundant. Instead, its immune-modulatory role plays a significant role in the development or resolution of autoimmune diseases. This is mediated either through the differentiation of precursor cells into specialized non-steady state granulocytes, macrophages and dendritic cells, or through the modulation of the phenotype of mature myeloid cells. Thus, outside of myelopoiesis, GM-CSF has a profound role in regulating the immune response and maintaining immunological tolerance.
Collapse
Affiliation(s)
- Palash Bhattacharya
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Muthusamy Thiruppathi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Hatem A Elshabrawy
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Khaled Alharshawi
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
30
|
Bhattacharya P, Budnick I, Singh M, Thiruppathi M, Alharshawi K, Elshabrawy H, Holterman MJ, Prabhakar BS. Dual Role of GM-CSF as a Pro-Inflammatory and a Regulatory Cytokine: Implications for Immune Therapy. J Interferon Cytokine Res 2015; 35:585-99. [PMID: 25803788 DOI: 10.1089/jir.2014.0149] [Citation(s) in RCA: 177] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Granulocyte macrophage colony stimulating factor (GM-CSF) is generally recognized as an inflammatory cytokine. Its inflammatory activity is primarily due its role as a growth and differentiation factor for granulocyte and macrophage populations. In this capacity, among other clinical applications, it has been used to bolster anti-tumor immune responses. GM-CSF-mediated inflammation has also been implicated in certain types of autoimmune diseases, including rheumatoid arthritis and multiple sclerosis. Thus, agents that can block GM-CSF or its receptor have been used as anti-inflammatory therapies. However, a review of literature reveals that in many situations GM-CSF can act as an anti-inflammatory/regulatory cytokine. We and others have shown that GM-CSF can modulate dendritic cell differentiation to render them "tolerogenic," which, in turn, can increase regulatory T-cell numbers and function. Therefore, the pro-inflammatory and regulatory effects of GM-CSF appear to depend on the dose and the presence of other relevant cytokines in the context of an immune response. A thorough understanding of the various immunomodulatory effects of GM-CSF will facilitate more appropriate use and thus further enhance its clinical utility.
Collapse
Affiliation(s)
- Palash Bhattacharya
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Isadore Budnick
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Medha Singh
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Muthusamy Thiruppathi
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Khaled Alharshawi
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Hatem Elshabrawy
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| | - Mark J Holterman
- 2 Department of Surgery, College of Medicine, University of Illinois , Chicago, Illinois
| | - Bellur S Prabhakar
- 1 Department of Microbiology and Immunology, College of Medicine, University of Illinois , Chicago, Illinois
| |
Collapse
|
31
|
Pivotal roles of GM-CSF in autoimmunity and inflammation. Mediators Inflamm 2015; 2015:568543. [PMID: 25838639 PMCID: PMC4370199 DOI: 10.1155/2015/568543] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 02/23/2015] [Indexed: 12/14/2022] Open
Abstract
Granulocyte macrophage-colony stimulating factor (GM-CSF) is a hematopoietic growth factor, which stimulates the proliferation of granulocytes and macrophages from bone marrow precursor cells. In autoimmune and inflammatory diseases, Th17 cells have been considered as strong inducers of tissue inflammation. However, recent evidence indicates that GM-CSF has prominent proinflammatory functions and that this growth factor (not IL-17) is critical for the pathogenicity of CD4+ T cells. Therefore, the mechanism of GM-CSF-producing CD4+ T cell differentiation and the role of GM-CSF in the development of autoimmune and inflammatory diseases are gaining increasing attention. This review summarizes the latest knowledge of GM-CSF and its relationship with autoimmune and inflammatory diseases. The potential therapies targeting GM-CSF as well as their possible side effects have also been addressed in this review.
Collapse
|
32
|
Rosas M, Davies LC, Giles PJ, Liao CT, Kharfan B, Stone TC, O'Donnell VB, Fraser DJ, Jones SA, Taylor PR. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science 2014; 344:645-648. [PMID: 24762537 DOI: 10.1126/science.1251414] [Citation(s) in RCA: 279] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tissue-resident macrophages are heterogeneous as a consequence of anatomical niche-specific functions. Many populations self-renew independently of bone marrow in the adult, but the molecular mechanisms of this are poorly understood. We determined a transcriptional profile for the major self-renewing population of peritoneal macrophages in mice. These cells specifically expressed the transcription factor Gata6. Selective deficiency of Gata6 in myeloid cells caused substantial alterations in the transcriptome of peritoneal macrophages. Gata6 deficiency also resulted in dysregulated peritoneal macrophage proliferative renewal during homeostasis and in response to inflammation, which was associated with delays in the resolution of inflammation. Our investigations reveal that the tissue macrophage phenotype is under discrete tissue-selective transcriptional control and that this is fundamentally linked to the regulation of their proliferation renewal.
Collapse
Affiliation(s)
- Marcela Rosas
- Cardiff Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Luke C Davies
- Cardiff Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Peter J Giles
- Central Biotechnology Services, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Chia-Te Liao
- Cardiff Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Bashar Kharfan
- Cardiff Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Timothy C Stone
- Central Biotechnology Services, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Valerie B O'Donnell
- Cardiff Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Donald J Fraser
- Institute of Molecular Medicine, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Simon A Jones
- Cardiff Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| | - Philip R Taylor
- Cardiff Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, CF14 4XN, UK
| |
Collapse
|
33
|
Hilgendorf I, Theurl I, Gerhardt LMS, Robbins CS, Weber GF, Gonen A, Iwamoto Y, Degousee N, Holderried TAW, Winter C, Zirlik A, Lin HY, Sukhova GK, Butany J, Rubin BB, Witztum JL, Libby P, Nahrendorf M, Weissleder R, Swirski FK. Innate response activator B cells aggravate atherosclerosis by stimulating T helper-1 adaptive immunity. Circulation 2014; 129:1677-87. [PMID: 24488984 DOI: 10.1161/circulationaha.113.006381] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND Atherosclerotic lesions grow via the accumulation of leukocytes and oxidized lipoproteins in the vessel wall. Leukocytes can attenuate or augment atherosclerosis through the release of cytokines, chemokines, and other mediators. Deciphering how leukocytes develop, oppose, and complement each other's function and shape the course of disease can illuminate our understanding of atherosclerosis. Innate response activator (IRA) B cells are a recently described population of granulocyte macrophage colony-stimulating factor-secreting cells of hitherto unknown function in atherosclerosis. METHODS AND RESULTS Here, we show that IRA B cells arise during atherosclerosis in mice and humans. In response to a high-cholesterol diet, IRA B cell numbers increase preferentially in secondary lymphoid organs via Myd88-dependent signaling. Mixed chimeric mice lacking B cell-derived granulocyte macrophage colony-stimulating factor develop smaller lesions with fewer macrophages and effector T cells. Mechanistically, IRA B cells promote the expansion of classic dendritic cells, which then generate interferon γ-producing T helper-1 cells. This IRA B cell-dependent T helper-1 skewing manifests in an IgG1-to-IgG2c isotype switch in the immunoglobulin response against oxidized lipoproteins. CONCLUSIONS Granulocyte macrophage colony-stimulating factor-producing IRA B cells alter adaptive immune processes and shift the leukocyte response toward a T helper-1-associated milieu that aggravates atherosclerosis.
Collapse
Affiliation(s)
- Ingo Hilgendorf
- Center for Systems Biology, Massachusetts General Hospital, Boston (I.H., I.T., L.M.S.G., C.S.R., G.F.W., Y.I., C.W., H.Y.L., M.N., R.W., F.K.S.); Department of Internal Medicine VI, Infectious Diseases, Immunology Rheumatology, Pneumology, University Hospital of Innsbruck, Innsbruck, Austria (I.T.); Toronto General Research Institute, University Health Network, Toronto, ON, Canada (C.S.R., N.D.); Department of Medicine, University of California, San Diego, La Jolla (A.G., J.L.W.); Department of Gastroenterology, Hepatology and Infectious Diseases, University of Duesseldorf, Duesseldorf, Germany (T.A.W.H.); Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany (C.W., A.Z.); Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA (G.K.S., P.L.); Department of Pathology (J.B.) and Division of Vascular Surgery (B.B.R.), Peter Munk Cardiac Centre, Toronto General Hospital, Toronto, ON, Canada; and Department of Systems Biology, Harvard Medical School, Boston, MA (R.W.)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
van Nieuwenhuijze AE, Coghill E, Gray D, Prato S, Metcalf D, Alexander WS, Wicks IP. Transgenic Expression of GM-CSF in T Cells Causes Disseminated Histiocytosis. THE AMERICAN JOURNAL OF PATHOLOGY 2014; 184:184-99. [DOI: 10.1016/j.ajpath.2013.09.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 09/13/2013] [Accepted: 09/16/2013] [Indexed: 02/04/2023]
|
35
|
Davies LC, Rosas M, Jenkins SJ, Liao CT, Scurr MJ, Brombacher F, Fraser DJ, Allen JE, Jones SA, Taylor PR. Distinct bone marrow-derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat Commun 2013; 4:1886. [PMID: 23695680 PMCID: PMC3842019 DOI: 10.1038/ncomms2877] [Citation(s) in RCA: 237] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/12/2013] [Indexed: 12/18/2022] Open
Abstract
The general paradigm is that monocytes are recruited to sites of inflammation and terminally-differentiate into macrophages. There has been no demonstration of proliferation of peripherally-derived inflammatory macrophages under physiological conditions. Here we show that proliferation of both bone marrow-derived inflammatory and tissue resident macrophage lineage branches is a key feature of the inflammatory process with major implications for the mechanisms underlying recovery from inflammation. Both macrophage lineage branches are dependent on M-CSF during inflammation, and thus the potential for therapeutic interventions is marked. Furthermore, these observations are independent of Th2 immunity. These studies indicate that the proliferation of distinct macrophage populations provides a general mechanism for macrophage expansion at key stages during inflammation, and separate control mechanisms are implicated.
Collapse
Affiliation(s)
- Luke C Davies
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
GM-CSF as a therapeutic target in inflammatory diseases. Mol Immunol 2013; 56:675-82. [PMID: 23933508 DOI: 10.1016/j.molimm.2013.05.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 04/29/2013] [Accepted: 05/04/2013] [Indexed: 11/22/2022]
Abstract
GM-CSF is a well-known haemopoietic growth factor that is used in the clinic to correct neutropaenia, usually as a result of chemotherapy. GM-CSF also has many pro-inflammatory functions and recent data implicates GM-CSF as a key factor in Th17 driven autoimmune inflammatory conditions. In this review we summarize the findings that have led to the development of GM-CSF antagonists for the treatment of autoimmune diseases like rheumatoid arthritis (RA) and discuss some results of recent clinical trials of these agents.
Collapse
|
37
|
Reece P, Baatjes AJ, Cyr MM, Sehmi R, Denburg JA. Toll-like receptor-mediated eosinophil-basophil differentiation: autocrine signalling by granulocyte-macrophage colony-stimulating factor in cord blood haematopoietic progenitors. Immunology 2013; 139:256-64. [PMID: 23347362 DOI: 10.1111/imm.12078] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 01/10/2013] [Accepted: 01/17/2013] [Indexed: 12/30/2022] Open
Abstract
Eosinophils are multi-functional leucocytes that play a role in inflammatory processes including allergy and infection. Although bone marrow (BM) inflammatory cells are the main source of eosinophil-basophil (Eo/B) differentiation-inducing cytokines, a recent role has been demonstrated for cytokine induction through Toll-like receptor (TLR)-mediated signalling in BM progenitors. Having previously demonstrated that cord blood (CB) progenitors induce Eo/B colony-forming units (CFU) after lipopolysaccharide (LPS) stimulation, we sought to investigate the intracellular mechanisms by which LPS induces Eo/B differentiation. Freshly isolated CD34-enriched human CB cells were stimulated with LPS (and/or pharmacological inhibitors) and assessed for alterations in haematopoietic cytokine receptor expression and signalling pathways by flow cytometry, Eo/B CFU in methylcellulose cultures, and cytokine secretion using Luminex assays. The LPS stimulation resulted in a significant increase in granulocyte-macrophage colony-stimulating factor (GM-CSF)-responsive, as opposed to interleukin-5-responsive, Eo/B CFU, which also correlated with significant increases in CD34(+) cell GM-CSFRα expression. Functionally, CB CD34(+) cells secrete abundant amounts of GM-CSF following LPS stimulation, via a p38 mitogen-activated protein kinase (MAPK)-dependent mechanism; this secretion was responsible for Eo/B CFU formation ex vivo, as shown by antibody blockade. We show for the first time that LPS stimulation of CB progenitor cells results in autocrine activation of p38 MAPK-dependent GM-CSF secretion facilitating Eo/B differentiation ex vivo. This work provides evidence that early life exposure to products of bacterial agents can modulate Eo/B differentiation, representing a novel mechanism by which progenitor cells can respond to microbial stimuli and so affect immune and inflammatory responses.
Collapse
Affiliation(s)
- Pia Reece
- Division of Clinical Immunology and Allergy, McMaster University, Hamilton, ON, Canada
| | | | | | | | | |
Collapse
|
38
|
Davies LC, Rosas M, Smith PJ, Fraser DJ, Jones SA, Taylor PR. A quantifiable proliferative burst of tissue macrophages restores homeostatic macrophage populations after acute inflammation. Eur J Immunol 2011; 41:2155-64. [PMID: 21710478 DOI: 10.1002/eji.201141817] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macrophage (MØ) biology is routinely modelled in the peritoneal cavity, a vascular tissue readily infiltrated by leukocytes during inflammation. After several decades of study, no consensus has emerged regarding the importance of in situ proliferation versus peripheral monocyte recruitment for the maintenance of tissue resident MØs. By applying specific measures of mitosis, we have monitored tissue MØ proliferation during newborn development, adulthood and acute resolving inflammation in young adult mice. Despite the vascular nature of the tissue and ease of peripheral leukocyte entry, tissue MØs in the newborn increase in number by local proliferation. On the contrary, in the adult, tissue MØ proliferation is considerably reduced and most likely provides homeostatic control of cell numbers. Importantly, during an acute inflammatory response, when substantial numbers of inflammatory MØs are recruited from the circulation, tissue-resident MØs survive and then undergo a transient and intense proliferative burst in situ to repopulate the tissue. Our data indicate that local proliferation is a general mechanism for the self-sufficient renewal of tissue MØs during development and acute inflammation and not one restricted to non-vascular tissues, which has implications for the therapeutic modulation of MØ activity during the resolution of inflammation.
Collapse
Affiliation(s)
- Luke C Davies
- Department of Infection, Immunity and Biochemistry, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | | | | | | | | | | |
Collapse
|
39
|
Santos AXS, Maia JE, Crespo PM, Pettenuzzo LF, Daniotti JL, Barbé-Tuana FM, Martins LM, Trindade VMT, Borojevic R, Guma FCR. GD1a modulates GM-CSF-induced cell proliferation. Cytokine 2011; 56:600-7. [PMID: 21930390 DOI: 10.1016/j.cyto.2011.08.032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 07/30/2011] [Accepted: 08/24/2011] [Indexed: 01/13/2023]
Abstract
Gangliosides have been extensively described to be involved in the proliferation and differentiation of various cell types, such including hematopoietic cells. Our previous studies on murine models of stroma-mediated myelopoiesis have shown that gangliosides are required for optimal capacity of stromal cells to support proliferation of myeloid precursor cells, being shed to the supernatant and selectively incorporated into myeloid cell membranes. Here we describe the effect of gangliosides on the specific granulocyte-macrophage colony-stimulating factor (GM-CSF)-induced proliferation. For that, we used the monocytic FDC-P1 cell line, which is dependent upon GM-CSF for survival and proliferation. Cells were cultured in the presence of GM-CSF and exogenous gangliosides (GM3, GD1a or GM1) or in the absence of endogenous ganglioside synthesis by the use of a ceramide-synthase inhibitor, D-PDMP. We observed that exogenous addition of GD1a enhanced the GM-CSF-induced proliferation of the FDC-P1 cells. Also, we detected an increase in the expression of the α isoform of the GM-CSF receptor (GMRα) as well as of the transcription factor C/EBPα. On the contrary, inhibition of glucosylceramide synthesis was accompanied by a decrease in cell proliferation, which was restored upon the addition of exogenous GD1a. We also show a co-localization of GD1a and GMR by immunocytochemistry. Taken together, our results suggest for the first time that ganglioside GD1a play a role on the modulation of GM-CSF-mediated proliferative response, which might be of great interest not only in hematopoiesis, but also in other immunological processes, Alzheimer disease, alveolar proteinosis and wherever GM-CSF exerts its effects.
Collapse
Affiliation(s)
- A X S Santos
- Laboratório de Bioquímica e Biologia Celular de Lipídios, Depto Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Endogenous oncogenic Nras mutation promotes aberrant GM-CSF signaling in granulocytic/monocytic precursors in a murine model of chronic myelomonocytic leukemia. Blood 2010; 116:5991-6002. [PMID: 20921338 DOI: 10.1182/blood-2010-04-281527] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Oncogenic NRAS mutations are frequently identified in myeloid diseases involving monocyte lineage. However, its role in the genesis of these diseases remains elusive. We report a mouse bone marrow transplantation model harboring an oncogenic G12D mutation in the Nras locus. Approximately 95% of recipient mice develop a myeloproliferative disease resembling the myeloproliferative variant of chronic myelomonocytic leukemia (CMML), with a prolonged latency and acquisition of multiple genetic alterations, including uniparental disomy of oncogenic Nras allele. Based on single-cell profiling of phospho-proteins, a novel population of CMML cells is identified to display aberrant granulocyte-macrophage colony stimulating factor (GM-CSF) signaling in both the extracellular signal-regulated kinase (ERK) 1/2 and signal transducer and activator of transcription 5 (Stat5) pathways. This abnormal signaling is acquired during CMML development. Further study suggests that aberrant Ras/ERK signaling leads to expansion of granulocytic/monocytic precursors, which are highly responsive to GM-CSF. Hyperactivation of Stat5 in CMML cells is mainly through expansion of these precursors rather than up-regulation of surface expression of GM-CSF receptors. Our results provide insights into the aberrant cytokine signaling in oncogenic NRAS-associated myeloid diseases.
Collapse
|
41
|
King IL, Kroenke MA, Segal BM. GM-CSF-dependent, CD103+ dermal dendritic cells play a critical role in Th effector cell differentiation after subcutaneous immunization. ACTA ACUST UNITED AC 2010; 207:953-61. [PMID: 20421390 PMCID: PMC2867280 DOI: 10.1084/jem.20091844] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) play an important role in CD4+ T helper (Th) cell differentiation and in the initiation of both protective and pathogenic immunity. Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a DC growth factor critical for the induction of experimental autoimmune encephalomyelitis (EAE) and other autoimmune diseases, yet its mechanism of action in vivo is not fully defined. We show that GM-CSF is directly required for the accumulation of radiosensitive dermal-derived langerin+CD103+ DCs in the skin and peripheral lymph nodes under steady-state and inflammatory conditions. Langerin+CD103+ DCs stimulated naive myelin-reactive T cells to proliferate and produce IFN-γ and IL-17. They were superior to other DC subsets in inducing expression of T-bet and promoting Th1 cell differentiation. Ablation of this subset in vivo conferred resistance to EAE. The current report reveals a previously unidentified role for GM-CSF in DC ontogeny and identifies langerin+CD103+ DCs as an important subset in CD4+ T cell–mediated autoimmune disease.
Collapse
Affiliation(s)
- Irah L King
- Interdepartmental Graduate Program in Neuroscience, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
42
|
Bernasconi E, Favre L, Maillard MH, Bachmann D, Pythoud C, Bouzourene H, Croze E, Velichko S, Parkinson J, Michetti P, Velin D. Granulocyte-macrophage colony-stimulating factor elicits bone marrow-derived cells that promote efficient colonic mucosal healing. Inflamm Bowel Dis 2010; 16:428-41. [PMID: 19639560 DOI: 10.1002/ibd.21072] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND Granulocyte-macrophage colony-stimulating factor (GM-CSF) therapy is effective in treating some Crohn's disease (CD) patients and protects mice from colitis induced by dextran sulfate sodium (DSS) administration. However, its mechanisms of action remain elusive. We hypothesized that GM-CSF affects intestinal mucosal repair. METHODS DSS colitic mice were treated with daily pegylated GM-CSF or saline and clinical, histological, and inflammatory parameters were kinetically evaluated. Further, the role of bone marrow-derived cells in the impact of GM-CSF therapy on DSS colitis was addressed using cell transfers. RESULTS GM-CSF therapy reduced clinical signs of colitis and the release of inflammatory mediators. GM-CSF therapy improved mucosal repair, with faster ulcer reepithelialization, accelerated hyperproliferative response of epithelial cells in ulcer-adjacent crypts, and lower colonoscopic ulceration scores in GM-CSF-administered mice relative to untreated mice. We observed that GM-CSF-induced promotion of mucosal repair is timely associated with a reduction in neutrophil numbers and increased accumulation of CD11b(+) monocytic cells in colon tissues. Importantly, transfer of splenic GM-CSF-induced CD11b(+) myeloid cells into DSS-exposed mice improved colitis, and lethally irradiated GM-CSF receptor-deficient mice reconstituted with wildtype bone marrow cells were protected from DSS-induced colitis upon GM-CSF therapy. Lastly, GM-CSF-induced CD11b(+) myeloid cells were shown to promote in vitro wound repair. CONCLUSIONS Our study shows that GM-CSF-dependent stimulation of bone marrow-derived cells during DSS-induced colitis accelerates colonic tissue repair. These data provide a putative mechanism for the observed beneficial effects of GM-CSF therapy in Crohn's disease.
Collapse
Affiliation(s)
- Eric Bernasconi
- Division of Gastroenterology and Hepatology, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhu SN, Chen M, Jongstra-Bilen J, Cybulsky MI. GM-CSF regulates intimal cell proliferation in nascent atherosclerotic lesions. ACTA ACUST UNITED AC 2009; 206:2141-9. [PMID: 19752185 PMCID: PMC2757868 DOI: 10.1084/jem.20090866] [Citation(s) in RCA: 140] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The contribution of intimal cell proliferation to the formation of early atherosclerotic lesions is poorly understood. We combined 5-bromo-2′-deoxyuridine pulse labeling with sensitive en face immunoconfocal microscopy analysis, and quantified intimal cell proliferation and Ly-6Chigh monocyte recruitment in low density lipoprotein receptor–null mice. Cell proliferation begins in nascent lesions preferentially at their periphery, and proliferating cells accumulate in lesions over time. Although intimal cell proliferation increases in parallel to monocyte recruitment as lesions grow, proliferation continues when monocyte recruitment is inhibited. The majority of proliferating intimal cells are dendritic cells expressing CD11c and major histocompatibility complex class II and 33D1, but not CD11b. Systemic injection of granulocyte/macrophage colony-stimulating factor (GM-CSF) markedly increased cell proliferation in early lesions, whereas function-blocking anti–GM-CSF antibody inhibited proliferation. These findings establish GM-CSF as a key regulator of intimal cell proliferation in lesions, and demonstrate that both proliferation and monocyte recruitment contribute to the inception of atherosclerosis.
Collapse
Affiliation(s)
- Su-Ning Zhu
- Toronto General Research Institute, University Health Network, Toronto, Ontario M5G 2C4, Canada
| | | | | | | |
Collapse
|
44
|
Hida TH, Kawaminami H, Ishibashi KI, Miura NN, Adachi Y, Yadomae T, Ohno N. Effect of GM-CSF on cytokine induction by soluble β-glucan SCGin vitroin β-glucan-treated mice. Microbiol Immunol 2009; 53:391-402. [DOI: 10.1111/j.1348-0421.2009.00139.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
45
|
Dioszeghy V, Rosas M, Maskrey BH, Colmont C, Topley N, Chaitidis P, Kühn H, Jones SA, Taylor PR, O'Donnell VB. 12/15-Lipoxygenase regulates the inflammatory response to bacterial products in vivo. THE JOURNAL OF IMMUNOLOGY 2009; 181:6514-24. [PMID: 18941242 DOI: 10.4049/jimmunol.181.9.6514] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The peritoneal macrophage (Mphi) is the site of greatest 12/15-lipoxygenase (12/15-LOX) expression in the mouse; however, its immunoregulatory role in this tissue has not been explored. Herein, we show that 12/15-LOX is expressed by 95% of resident peritoneal CD11b(high) cells, with the remaining 5% being 12/15-LOX(-). 12/15-LOX(+) cells are phenotypically defined by high F4/80, SR-A, and Siglec1 expression, and enhanced IL-10 and G-CSF generation. In contrast, 12/15-LOX(-) cells are a dendritic cell population. Resident peritoneal Mphi numbers were significantly increased in 12/15-LOX(-/-) mice, suggesting alterations in migratory trafficking or cell differentiation in vivo. In vitro, Mphi from 12/15-LOX(-/-) mice exhibit multiple abnormalities in the regulation of cytokine/growth factor production both basally and after stimulation with Staphylococcus epidermidis cell-free supernatant. Resident adherent cells from 12/15-LOX(-/-) mice generate more IL-1, IL-3, GM-CSF, and IL-17, but less CCL5/RANTES than do cells from wild-type mice, while Staphylococcus epidermidis cell-free supernatant-elicited 12/15-LOX(-/-) adherent cells release less IL-12p40, IL-12p70, and RANTES, but more GM-CSF. This indicates a selective effect of 12/15-LOX on peritoneal cell cytokine production. In acute sterile peritonitis, 12/15-LOX(+) cells and LOX products were cleared, then reappeared during the resolution phase. The peritoneal lavage of 12/15-LOX(-/-) mice showed elevated TGF-beta1, along with increased immigration of monocytes/Mphi, but decreases in several cytokines including RANTES/CCL5, MCP-1/CCL2, G-CSF, IL-12-p40, IL-17, and TNF-alpha. No changes in neutrophil or lymphocyte numbers were seen. In summary, endogenous 12/15-LOX defines the resident MPhi population and regulates both the recruitment of monocytes/Mphi and cytokine response to bacterial products in vivo.
Collapse
Affiliation(s)
- Vincent Dioszeghy
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Rosas M, Liddiard K, Kimberg M, Faro-Trindade I, McDonald JU, Williams DL, Brown GD, Taylor PR. The induction of inflammation by dectin-1 in vivo is dependent on myeloid cell programming and the progression of phagocytosis. THE JOURNAL OF IMMUNOLOGY 2008; 181:3549-57. [PMID: 18714028 DOI: 10.4049/jimmunol.181.5.3549] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dectin-1 is the archetypal signaling, non-Toll-like pattern recognition receptor that plays a protective role in immune defense to Candida albicans as the major leukocyte receptor for beta-glucans. Dectin-1-deficiency is associated with impaired recruitment of inflammatory leukocytes and inflammatory mediator production at the site of infection. In this study, we have used mice to define the mechanisms that regulate the dectin-1-mediated inflammatory responses. Myeloid cell activation by dectin-1 is controlled by inherent cellular programming, with distinct macrophage and dendritic cell populations responding differentially to the engagement of this receptor. The inflammatory response is further modulated by the progression of the phagocytosis, with "frustrated phagocytosis" resulting in dramatically augmented inflammatory responses. These studies demonstrate that dectin-1 in isolation is sufficient to drive a potent inflammatory response in a context-dependent manner. This has implications for the mechanism by which myeloid cells are activated during fungal infections and the processes involved in the therapeutic manipulation of the immune system via exogenous dectin-1 stimulation or blockade.
Collapse
Affiliation(s)
- Marcela Rosas
- Medical Biochemistry and Immunology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Volmar CH, Ait-Ghezala G, Frieling J, Paris D, Mullan MJ. The granulocyte macrophage colony stimulating factor (GM-CSF) regulates amyloid beta (Abeta) production. Cytokine 2008; 42:336-44. [PMID: 18434187 DOI: 10.1016/j.cyto.2008.03.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 02/29/2008] [Accepted: 03/10/2008] [Indexed: 12/16/2022]
Abstract
One of the hallmarks of Alzheimer's disease (AD) is the accumulation of amyloid beta (Abeta) plaques in the brain parenchyma. An inflammatory component to AD has been suggested in association with increased cytokine release. We have previously shown that CD40L stimulation of microglia induces increases in pro-inflammatory cytokines such as interleukin-1beta (IL-1beta), IL-6, IL-8 and GM-CSF. We have also shown that CD40L stimulation increases Abeta levels in HEK-293 cells over-expressing both the amyloid precursor protein (APP) and CD40 (HEK/APPsw/CD40). In this study, we show that GM-CSF neutralizing antibodies mitigate the CD40L-induced production of Abeta in HEK/APPsw/CD40 cells. In addition, we demonstrate that treatment of these cells with recombinant GM-CSF significantly increases Abeta levels. Furthermore, we show that shRNA silencing of the GM-CSF receptor gene significantly reduces Abeta levels to below base line in non-stimulated HEK/APPsw/CD40 cells. Analysis of cell surface proteins revealed that silencing of the GM-CSF receptor also decreases APP endocytosis (therefore reducing the availability of APP to be cleaved in the endosomes). Taken together, our results suggest that GM-CSF operates downstream of CD40/CD40L interaction and that GM-CSF modulates Abeta production by influencing APP trafficking. GM-CSF signaling may be a suitable therapeutic target against Abeta production in AD.
Collapse
|