1
|
Cardeira-da-Silva J, Wang Q, Sagvekar P, Mintcheva J, Latting S, Günther S, Ramadass R, Yekelchyk M, Preussner J, Looso M, Junker JP, Stainier DYR. Antigen presentation plays positive roles in the regenerative response to cardiac injury in zebrafish. Nat Commun 2024; 15:3637. [PMID: 38684665 PMCID: PMC11058276 DOI: 10.1038/s41467-024-47430-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.
Collapse
Affiliation(s)
- João Cardeira-da-Silva
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| | - Qianchen Wang
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Pooja Sagvekar
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
| | - Janita Mintcheva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- Humboldt University of Berlin, Berlin, Germany
| | - Stephan Latting
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Radhan Ramadass
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Michail Yekelchyk
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jens Preussner
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Jan Philipp Junker
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin Institute for Medical Systems Biology, Berlin, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
2
|
Morello G, La Cognata V, Guarnaccia M, D’Agata V, Cavallaro S. Cracking the Code of Neuronal Cell Fate. Cells 2023; 12:1057. [PMID: 37048129 PMCID: PMC10093029 DOI: 10.3390/cells12071057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Transcriptional regulation is fundamental to most biological processes and reverse-engineering programs can be used to decipher the underlying programs. In this review, we describe how genomics is offering a systems biology-based perspective of the intricate and temporally coordinated transcriptional programs that control neuronal apoptosis and survival. In addition to providing a new standpoint in human pathology focused on the regulatory program, cracking the code of neuronal cell fate may offer innovative therapeutic approaches focused on downstream targets and regulatory networks. Similar to computers, where faults often arise from a software bug, neuronal fate may critically depend on its transcription program. Thus, cracking the code of neuronal life or death may help finding a patch for neurodegeneration and cancer.
Collapse
Affiliation(s)
- Giovanna Morello
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Valentina La Cognata
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Maria Guarnaccia
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| | - Velia D’Agata
- Section of Human Anatomy and Histology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council (CNR-IRIB), 95126 Catania, Italy
| |
Collapse
|
3
|
Rasmussen TA, Zerbato JM, Rhodes A, Tumpach C, Dantanarayana A, McMahon JH, Lau JS, Chang JJ, Gubser C, Brown W, Hoh R, Krone M, Pascoe R, Chiu CY, Bramhall M, Lee HJ, Haque A, Fromentin R, Chomont N, Milush J, Van der Sluis RM, Palmer S, Deeks SG, Cameron PU, Evans V, Lewin SR. Memory CD4 + T cells that co-express PD1 and CTLA4 have reduced response to activating stimuli facilitating HIV latency. Cell Rep Med 2022; 3:100766. [PMID: 36198308 PMCID: PMC9589005 DOI: 10.1016/j.xcrm.2022.100766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 02/03/2022] [Accepted: 09/14/2022] [Indexed: 11/05/2022]
Abstract
Programmed cell death 1 (PD1) and cytotoxic T lymphocyte-associated protein 4 (CTLA4) suppress CD4+ T cell activation and may promote latent HIV infection. By performing leukapheresis (n = 21) and lymph node biopsies (n = 8) in people with HIV on antiretroviral therapy (ART) and sorting memory CD4+ T cells into subsets based on PD1/CTLA4 expression, we investigate the role of PD1 and CTLA 4 in HIV persistence. We show that double-positive (PD1+CTLA4+) cells in blood contain more HIV DNA compared with double-negative (PD1−CTLA4−) cells but still have a lower proportion of cells producing multiply spliced HIV RNA after stimulation as well as reduced upregulation of T cell activation and proliferation markers. Transcriptomics analyses identify differential expression of key genes regulating T cell activation and proliferation with MAF, KLRB1, and TIGIT being upregulated in double-positive compared with double-negative cells, whereas FOS is downregulated. We conclude that, in addition to being enriched for HIV DNA, double-positive cells are characterized by negative signaling and a reduced capacity to respond to stimulation, favoring HIV latency. CD4+ T cells co-expressing PD1 and CTLA4 (double positive [DP]) are enriched for HIV DNA DP cells contain virus that is more resistant to stimulation DP cells display differential expression of genes regulating T cell activation These features favor persistence of HIV latency in cells co-expressing PD1 and CTLA4
Collapse
Affiliation(s)
- Thomas A. Rasmussen
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Jennifer M. Zerbato
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Ajantha Rhodes
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Carolin Tumpach
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Ashanti Dantanarayana
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - James H. McMahon
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia
| | - Jillian S.Y. Lau
- Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Department of Infectious Diseases, Monash Medical Centre, Melbourne, VIC, Australia,Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - J. Judy Chang
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Celine Gubser
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Wendy Brown
- Monash University Department of Surgery, Alfred Health, Melbourne, VIC, Australia
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Melissa Krone
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Rachel Pascoe
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Chris Y. Chiu
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Michael Bramhall
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Rèmi Fromentin
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, QC, Canada
| | - Jeffrey Milush
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Renee M. Van der Sluis
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Aarhus Institute of Advanced Studies and Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Paul U. Cameron
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia
| | - Vanessa Evans
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,School of Medicine and Dentistry, Griffith University, Sunshine Coast, QLD, Australia
| | - Sharon R. Lewin
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St., Melbourne, VIC 3000, Australia,Department of Infectious Diseases, Alfred Hospital, Melbourne, VIC, Australia,Victorian Infectious Diseases Service, Royal Melbourne Hospital at The Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia,Corresponding author
| |
Collapse
|
4
|
Jiang Q, Mao H, He G, Mao X. Targeting the oncogenic transcription factor c-Maf for the treatment of multiple myeloma. Cancer Lett 2022; 543:215791. [PMID: 35700821 DOI: 10.1016/j.canlet.2022.215791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022]
Abstract
Multiple myeloma (MM) is a hematologic malignancy derived from clonal expansion of plasma cells within the bone marrow and it may progress to the extramedullary region in late stage of the disease course. c-Maf, an oncogenic zipper leucine transcription factor, is overexpressed in more than 50% MM cell lines and primary species in association with chromosomal translocation, aberrant signaling transduction and modulation of stability. By triggering the transcription of critical genes including CCND2, ITGB7, CCR1, ARK5, c-Maf promotes MM progress, proliferation, survival and chemoresistance. Notably, c-Maf is usually expressed at the embryonic stage to promote cell differentiation but less expressed in healthy adult cells. c-Maf has long been proposed as a promising therapeutic target of MM and a panel of small molecule compounds have been identified to downregulate c-Maf and display potent anti-myeloma activities. In the current article, we take a concise summary on the advances in c-Maf biology, pathophysiology, and targeted drug discovery in the potential treatment of MM.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Guangdong Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Key Laboratory of Protein Modifications and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hongwu Mao
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Guisong He
- Department of Orthopaedics, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, PR China; Key Laboratory of Protein Modifications and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
5
|
Gautam S, Fioravanti J, Zhu W, Le Gall JB, Brohawn P, Lacey NE, Hu J, Hocker JD, Hawk NV, Kapoor V, Telford WG, Gurusamy D, Yu Z, Bhandoola A, Xue HH, Roychoudhuri R, Higgs BW, Restifo NP, Bender TP, Ji Y, Gattinoni L. The transcription factor c-Myb regulates CD8 + T cell stemness and antitumor immunity. Nat Immunol 2019; 20:337-349. [PMID: 30778251 PMCID: PMC6489499 DOI: 10.1038/s41590-018-0311-z] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 12/19/2018] [Indexed: 12/13/2022]
Abstract
Stem cells are maintained by transcriptional programs that promote self-renewal and repress differentiation. Here, we found that the transcription factor c-Myb was essential for generating and maintaining stem cells in the CD8+ T cell memory compartment. Following viral infection, CD8+ T cells lacking Myb underwent terminal differentiation and generated fewer stem cell-like central memory cells than did Myb-sufficient T cells. c-Myb acted both as a transcriptional activator of Tcf7 (which encodes the transcription factor Tcf1) to enhance memory development and as a repressor of Zeb2 (which encodes the transcription factor Zeb2) to hinder effector differentiation. Domain-mutagenesis experiments revealed that the transactivation domain of c-Myb was necessary for restraining differentiation, whereas its negative regulatory domain was critical for cell survival. Myb overexpression enhanced CD8+ T cell memory formation, polyfunctionality and recall responses that promoted curative antitumor immunity after adoptive transfer. These findings identify c-Myb as a pivotal regulator of CD8+ T cell stemness and highlight its therapeutic potential.
Collapse
Affiliation(s)
- Sanjivan Gautam
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jessica Fioravanti
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wei Zhu
- Department of Bioinformatics, Inova Translational Medicine Institute, Fairfax, VA, USA
| | - John B Le Gall
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Neal E Lacey
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jinhui Hu
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - James D Hocker
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Nga Voong Hawk
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Veena Kapoor
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - William G Telford
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Devikala Gurusamy
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Zhiya Yu
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Avinash Bhandoola
- Laboratory of Genome Integrity, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hai-Hui Xue
- Department of Microbiology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Rahul Roychoudhuri
- Laboratory of Lymphocyte Signaling and Development, Babraham Institute, Cambridge, UK
| | | | - Nicholas P Restifo
- Surgery Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Timothy P Bender
- Department of Microbiology, University of Virginia, Charlottesville, VA, USA
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
| | - Yun Ji
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Cellular Biomedicine Group, Gaithersburg, MD, USA
| | - Luca Gattinoni
- Experimental Transplantation and Immunology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
6
|
Leask M, Dowdle A, Salvesen H, Topless R, Fadason T, Wei W, Schierding W, Marsman J, Antony J, O'Sullivan JM, Merriman TR, Horsfield JA. Functional Urate-Associated Genetic Variants Influence Expression of lincRNAs LINC01229 and MAFTRR. Front Genet 2019; 9:733. [PMID: 30719032 PMCID: PMC6348267 DOI: 10.3389/fgene.2018.00733] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/22/2018] [Indexed: 12/02/2022] Open
Abstract
Genetic variation in the genomic regulatory landscape likely plays a crucial role in the pathology of disease. Non-coding variants associated with disease can influence the expression of long intergenic non-coding RNAs (lincRNAs), which in turn function in the control of protein-coding gene expression. Here, we investigate the function of two independent serum urate-associated signals (SUA1 and SUA2) in close proximity to lincRNAs and an enhancer that reside ∼60 kb and ∼300 kb upstream of MAF, respectively. Variants within SUA1 are expression quantitative trait loci (eQTL) for LINC01229 and MAFTRR, both co-expressed with MAF. We have also identified that variants within SUA1 are trans-eQTL for genes that are active in kidney- and serum urate-relevant pathways. Serum urate-associated variants rs4077450 and rs4077451 within SUA2 lie within an enhancer that recruits the transcription factor HNF4α and forms long range interactions with LINC01229 and MAFTRR. The urate-raising alleles of rs4077450 and rs4077451 increase enhancer activity and associate with increased expression of LINC01229. We show that the SUA2 enhancer region drives expression in the zebrafish pronephros, recapitulating endogenous MAF expression. Depletion of MAFTRR and LINC01229 in HEK293 cells in turn lead to increased MAF expression. Collectively, our results are consistent with serum urate variants mediating long-range transcriptional regulation of the lincRNAs LINC01229 and MAFTRR and urate relevant genes (e.g., SLC5A8 and EHHADH) in trans.
Collapse
Affiliation(s)
- Megan Leask
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Amy Dowdle
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Hamish Salvesen
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Ruth Topless
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Tayaza Fadason
- Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Wenhua Wei
- Department of Women's and Children's Health, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - William Schierding
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Judith Marsman
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Justin M O'Sullivan
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,Liggins Institute, The University of Auckland, Auckland, New Zealand
| | - Tony R Merriman
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand.,Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
7
|
Hsu CY, Yeh LT, Fu SH, Chien MW, Liu YW, Miaw SC, Chang DM, Sytwu HK. SUMO-defective c-Maf preferentially transactivates Il21 to exacerbate autoimmune diabetes. J Clin Invest 2018; 128:3779-3793. [PMID: 30059018 DOI: 10.1172/jci98786] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
SUMOylation is involved in the development of several inflammatory diseases, but the physiological significance of SUMO-modulated c-Maf in autoimmune diabetes is not completely understood. Here, we report that an age-dependent attenuation of c-Maf SUMOylation in CD4+ T cells is positively correlated with the IL-21-mediated diabetogenesis in NOD mice. Using 2 strains of T cell-specific transgenic NOD mice overexpressing wild-type c-Maf (Tg-WTc) or SUMOylation site-mutated c-Maf (Tg-KRc), we demonstrated that Tg-KRc mice developed diabetes more rapidly than Tg-WTc mice in a CD4+ T cell-autonomous manner. Moreover, SUMO-defective c-Maf preferentially transactivated Il21 to promote the development of CD4+ T cells with an extrafollicular helper T cell phenotype and expand the numbers of granzyme B-producing effector/memory CD8+ T cells. Furthermore, SUMO-defective c-Maf selectively inhibited recruitment of Daxx/HDAC2 to the Il21 promoter and enhanced histone acetylation mediated by CREB-binding protein (CBP) and p300. Using pharmacological interference with CBP/p300, we illustrated that CBP30 treatment ameliorated c-Maf-mediated/IL-21-based diabetogenesis. Taken together, our results show that the SUMOylation status of c-Maf has a stronger regulatory effect on IL-21 than the level of c-Maf expression, through an epigenetic mechanism. These findings provide new insights into how SUMOylation modulates the pathogenesis of autoimmune diabetes in a T cell-restricted manner and on the basis of a single transcription factor.
Collapse
Affiliation(s)
| | - Li-Tzu Yeh
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Wen Liu
- Graduate Institute of Life Sciences and.,Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Deh-Ming Chang
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences and.,Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
8
|
Identifying Novel Candidate Genes Related to Apoptosis from a Protein-Protein Interaction Network. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2015; 2015:715639. [PMID: 26543496 PMCID: PMC4620916 DOI: 10.1155/2015/715639] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 06/29/2015] [Indexed: 12/31/2022]
Abstract
Apoptosis is the process of programmed cell death (PCD) that occurs in multicellular organisms. This process of normal cell death is required to maintain the balance of homeostasis. In addition, some diseases, such as obesity, cancer, and neurodegenerative diseases, can be cured through apoptosis, which produces few side effects. An effective comprehension of the mechanisms underlying apoptosis will be helpful to prevent and treat some diseases. The identification of genes related to apoptosis is essential to uncover its underlying mechanisms. In this study, a computational method was proposed to identify novel candidate genes related to apoptosis. First, protein-protein interaction information was used to construct a weighted graph. Second, a shortest path algorithm was applied to the graph to search for new candidate genes. Finally, the obtained genes were filtered by a permutation test. As a result, 26 genes were obtained, and we discuss their likelihood of being novel apoptosis-related genes by collecting evidence from published literature.
Collapse
|
9
|
Bianchi E, Bulgarelli J, Ruberti S, Rontauroli S, Sacchi G, Norfo R, Pennucci V, Zini R, Salati S, Prudente Z, Ferrari S, Manfredini R. MYB controls erythroid versus megakaryocyte lineage fate decision through the miR-486-3p-mediated downregulation of MAF. Cell Death Differ 2015; 22:1906-21. [PMID: 25857263 PMCID: PMC4816102 DOI: 10.1038/cdd.2015.30] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 01/23/2015] [Accepted: 02/20/2015] [Indexed: 01/13/2023] Open
Abstract
The transcription factor MYB has a key role in hematopoietic progenitor cells (HPCs) lineage choice, by enhancing erythropoiesis at the expense of megakaryopoiesis. We previously demonstrated that MYB controls erythroid versus megakaryocyte lineage decision by transactivating KLF1 and LMO2 expression. To further unravel the molecular mechanisms through which MYB affects lineage fate decision, we performed the integrative analysis of miRNA and mRNA changes in MYB-silenced human primary CD34+ HPCs. Among the miRNAs with the highest number of predicted targets, we focused our studies on hsa-miR-486-3p by demonstrating that MYB controls miR-486-3p expression through the transactivation of its host gene, ankyrin-1 (ANK1) and that miR-486-3p affects HPCs commitment. Indeed, overexpression and knockdown experiments demonstrated that miR-486-3p supports the erythropoiesis while restraining the megakaryopoiesis. Of note, miR-486-3p also favors granulocyte differentiation while repressing the macrophage differentiation. To shed some light on the molecular mechanisms through which miR-486-3p affects HPCs lineage commitment, we profiled the gene expression changes upon miR-486-3p overexpression in CD34+ cells. Among the genes downregulated in miR-486-3p-overexpressing HPCs and computationally predicted to be miR-486-3p targets, we identified MAF as a miR-486-3p target by 3′UTR luciferase reporter assay. Noteworthy, MAF overexpression was able to partially reverse the effects of miR-486-3p overexpression on erythroid versus megakaryocyte lineage choice. Moreover, the MYB/MAF co-silencing constrained the skewing of erythroid versus megakaryocyte lineage commitment in MYB-silenced CD34+ cells, by restraining the expansion of megakaryocyte lineage while partially rescuing the impairment of erythropoiesis. Therefore, our data collectively demonstrate that MYB favors erythropoiesis and restrains megakaryopoiesis through the transactivation of miR-486-3p expression and the subsequent downregulation of MAF. As a whole, our study uncovers the MYB/miR-486-3p/MAF axis as a new mechanism underlying the MYB-driven control of erythroid versus megakaryocyte lineage fate decision.
Collapse
Affiliation(s)
- E Bianchi
- Department of Life Sciences, Center for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - J Bulgarelli
- Department of Life Sciences, Center for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - S Ruberti
- Department of Life Sciences, Center for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - S Rontauroli
- Department of Life Sciences, Center for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - G Sacchi
- Department of Life Sciences, Center for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - R Norfo
- Department of Life Sciences, Center for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - V Pennucci
- Department of Life Sciences, Center for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - R Zini
- Department of Life Sciences, Center for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - S Salati
- Department of Life Sciences, Center for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - Z Prudente
- Department of Life Sciences, Center for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - S Ferrari
- Department of Life Sciences, Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - R Manfredini
- Department of Life Sciences, Center for Regenerative Medicine 'Stefano Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
10
|
Vahl JC, Drees C, Heger K, Heink S, Fischer JC, Nedjic J, Ohkura N, Morikawa H, Poeck H, Schallenberg S, Rieß D, Hein MY, Buch T, Polic B, Schönle A, Zeiser R, Schmitt-Gräff A, Kretschmer K, Klein L, Korn T, Sakaguchi S, Schmidt-Supprian M. Continuous T cell receptor signals maintain a functional regulatory T cell pool. Immunity 2014; 41:722-36. [PMID: 25464853 DOI: 10.1016/j.immuni.2014.10.012] [Citation(s) in RCA: 243] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 10/22/2014] [Indexed: 12/13/2022]
Abstract
Regulatory T (Treg) cells maintain immune homeostasis and prevent inflammatory and autoimmune responses. During development, thymocytes bearing a moderately self-reactive T cell receptor (TCR) can be selected to become Treg cells. Several observations suggest that also in the periphery mature Treg cells continuously receive self-reactive TCR signals. However, the importance of this inherent autoreactivity for Treg cell biology remains poorly defined. To address this open question, we genetically ablated the TCR of mature Treg cells in vivo. These experiments revealed that TCR-induced Treg lineage-defining Foxp3 expression and gene hypomethylation were uncoupled from TCR input in mature Treg cells. However, Treg cell homeostasis, cell-type-specific gene expression and suppressive function critically depend on continuous triggering of their TCR.
Collapse
Affiliation(s)
- J Christoph Vahl
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Christoph Drees
- Department of Hematology, Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 15, 81675 Munich, Germany
| | - Klaus Heger
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Hematology, Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 15, 81675 Munich, Germany
| | - Sylvia Heink
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 15, 81675 Munich, Germany
| | - Julius C Fischer
- Department of Hematology, Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 15, 81675 Munich, Germany
| | - Jelena Nedjic
- Institute for Immunology, Ludwig-Maximilians University, Goethestraße 31, 80336 Munich, Germany
| | - Naganari Ohkura
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Hiromasa Morikawa
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Hendrik Poeck
- Department of Hematology, Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 15, 81675 Munich, Germany
| | - Sonja Schallenberg
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - David Rieß
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Hematology, Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 15, 81675 Munich, Germany
| | - Marco Y Hein
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Thorsten Buch
- Institute for Medical Microbiology, Immunology & Hygiene, Trogerstraße 30, Technische Universität München, 81675 Munich, Germany and Institute of Laboratory Animal Sciences, University of Zurich, Winterthurer Straße 190, 8057 Zurich, Switzerland
| | - Bojan Polic
- University of Rijeka School of Medicine, B. Branchetta 20, HR-51000 Rijeka, Croatia
| | - Anne Schönle
- Department of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Robert Zeiser
- Department of Hematology, Oncology and Stem Cell Transplantation, University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Annette Schmitt-Gräff
- Department of Pathology, University Hospital Freiburg, Breisacher Straße 115a, 79106 Freiburg Germany
| | - Karsten Kretschmer
- Molecular and Cellular Immunology/Immune Regulation, DFG-Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, 01307 Dresden, Germany
| | - Ludger Klein
- Institute for Immunology, Ludwig-Maximilians University, Goethestraße 31, 80336 Munich, Germany
| | - Thomas Korn
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 15, 81675 Munich, Germany
| | - Shimon Sakaguchi
- Department of Experimental Immunology, World Premier International Immunology Frontier Research Center, Osaka University, Suita 565-0871, Japan
| | - Marc Schmidt-Supprian
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Department of Hematology, Oncology, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 15, 81675 Munich, Germany.
| |
Collapse
|
11
|
De Schutter T, Andrei G, Topalis D, Naesens L, Snoeck R. Cidofovir selectivity is based on the different response of normal and cancer cells to DNA damage. BMC Med Genomics 2013; 6:18. [PMID: 23702334 PMCID: PMC3681722 DOI: 10.1186/1755-8794-6-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/17/2013] [Indexed: 12/05/2022] Open
Abstract
Background Cidofovir (CDV) proved efficacious in treatment of human papillomaviruses (HPVs) hyperplasias. Antiproliferative effects of CDV have been associated with apoptosis induction, S-phase accumulation, and increased levels of tumor suppressor proteins. However, the molecular mechanisms for the selectivity and antitumor activity of CDV against HPV-transformed cells remain unexplained. Methods We evaluated CDV drug metabolism and incorporation into cellular DNA, in addition to whole genome gene expression profiling by means of microarrays in two HPV+ cervical carcinoma cells, HPV- immortalized keratinocytes, and normal keratinocytes. Results Determination of the metabolism and drug incorporation of CDV into genomic DNA demonstrated a higher rate of drug incorporation in HPV+ tumor cells and immortalized keratinocytes compared to normal keratinocytes. Gene expression profiling clearly showed distinct and specific drug effects in the cell types investigated. Although an effect on inflammatory response was seen in all cell types, different pathways were identified in normal keratinocytes compared to immortalized keratinocytes and HPV+ tumor cells. Notably, Rho GTPase pathways, LXR/RXR pathways, and acute phase response signaling were exclusively activated in immortalized cells. CDV exposed normal keratinocytes displayed activated cell cycle regulation upon DNA damage signaling to allow DNA repair via homologous recombination, resulting in genomic stability and survival. Although CDV induced cell cycle arrest in HPV- immortalized cells, DNA repair was not activated in these cells. In contrast, HPV+ cells lacked cell cycle regulation, leading to genomic instability and eventually apoptosis. Conclusions Taken together, our data provide novel insights into the mechanism of action of CDV and its selectivity for HPV-transformed cells. The proposed mechanism suggests that this selectivity is based on the inability of HPV+ cells to respond to DNA damage, rather than on a direct anti-HPV effect. Since cell cycle control is deregulated by the viral oncoproteins E6 and E7 in HPV+ cells, these cells are more susceptible to DNA damage than normal keratinocytes. Our findings underline the therapeutic potential of CDV for HPV-associated malignancies as well as other neoplasias.
Collapse
Affiliation(s)
- Tim De Schutter
- Rega Institute for Medical Research, Laboratory of Virology and Chemotherapy, KU Leuven, Leuven, Belgium
| | | | | | | | | |
Collapse
|
12
|
Hong E, Yik J, Amanatullah DF, Di Cesare PE, Haudenschild DR. c-Maf Transcription Factor Regulates ADAMTS-12 Expression in Human Chondrogenic Cells. Cartilage 2013; 4:177-86. [PMID: 26069660 PMCID: PMC4297105 DOI: 10.1177/1947603512472697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE ADAMTS (a disintegrin and metalloproteinase with thrombospondin type-1 motif) zinc metalloproteinases are important during the synthesis and breakdown of cartilage extracellular matrix. ADAMTS-12 is up-regulated during in vitro chondrogenesis and embryonic limb development; however, the regulation of ADAMTS-12 expression in cartilage remains unknown. The transcription factor c-Maf is a member of Maf family of basic ZIP (bZIP) transcription factors. Expression of c-Maf is highest in hypertrophic chondrocytes during embryonic development and postnatal growth. We hypothesize that c-Maf and ADAMTS-12 are co-expressed during chondrocyte differentiation and that c-Maf regulates ADAMTS-12 expression during chondrogenesis. DESIGN Promoter analysis and species alignments identified potential c-Maf binding sites in the ADAMTS-12 promoter. c-Maf and ADAMTS-12 co-expression was monitored during chondrogenesis of stem cell pellet cultures. Luciferase expression driven by ADAMTS-12 promoter segments was measured in the presence and absence of c-Maf, and synthetic oligonucleotides were used to confirm specific binding of c-Maf to ADAMTS-12 promoter sequences. RESULTS In vitro chondrogenesis from human mesenchymal stem cells revealed co-expression of ADAMTS-12 and c-Maf during differentiation. Truncation and point mutations of the ADAMTS-12 promoter evaluated in reporter assays localized the response to the proximal 315 bp of the ADAMTS-12 promoter, which contained a predicted c-Maf recognition element (MARE) at position -61. Electorphoretic mobility shift assay confirmed that c-Maf directly interacted with the MARE at position -61. CONCLUSIONS These data suggest that c-Maf is involved in chondrocyte differentiation and hypertrophy, at least in part, through the regulation of ADAMTS-12 expression at a newly identified MARE in its proximal promoter.
Collapse
Affiliation(s)
- Eunmee Hong
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | - Jasper Yik
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | - Derek F. Amanatullah
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | - Paul E. Di Cesare
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| | - Dominik R. Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, CA, USA
| |
Collapse
|
13
|
Matalová E, Buchtová M, Tucker AS, Bender TP, Janečková E, Lungová V, Balková S, Smarda J. Expression and characterization of c-Myb in prenatal odontogenesis. Dev Growth Differ 2011; 53:793-803. [PMID: 21762405 DOI: 10.1111/j.1440-169x.2011.01287.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The transcription factor c-Myb is involved in the control of cell proliferation, survival and differentiation. As these processes accompany the morphogenesis of developing teeth, this work investigates the possible role of c-Myb during odontogenesis. Analysis of the expression of c-Myb in the monophyodont mouse was followed by similar analysis in a diphyodont species, the pig, which has a dentition more closely resembling that of the human. The distribution of c-Myb was correlated with the pattern of proliferation and apoptosis and the tooth phenotype of c-Myb mutant mice was also assessed. In the mouse, c-Myb expression was detected throughout prenatal development of the first molar tooth. Negative temporospatial correlation was found between c-Myb expression and apoptosis, while c-Myb expression positively correlated with proliferation. c-Myb-positive cells, however, were more abundant than the proliferating cell nuclear antigen positive cells, suggesting other roles of c-Myb in odontogenesis. In the minipig, in contrast to the mouse, there was an asymmetrical arrangement of c-Myb positive cells, with a higher presence on the labial side of the tooth germ and dental lamina. A cluster of negative cells was situated in the mesenchyme close to the tooth bud. At later stages, the number of positive cells decreased and these cells were situated in the upper part of the dental papilla in the areas of future cusp formation. The expression of c-Myb in both species was strong in the odontoblasts and ameloblasts at the stage of dentin and enamel production suggesting a possible novel role of c-Myb during tooth mineralization.
Collapse
Affiliation(s)
- Eva Matalová
- Institute of Animal Physiology and Genetics, v.v.i., Academy of Sciences of the Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhao L, Glazov EA, Pattabiraman DR, Al-Owaidi F, Zhang P, Brown MA, Leo PJ, Gonda TJ. Integrated genome-wide chromatin occupancy and expression analyses identify key myeloid pro-differentiation transcription factors repressed by Myb. Nucleic Acids Res 2011; 39:4664-79. [PMID: 21317192 PMCID: PMC3113568 DOI: 10.1093/nar/gkr024] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 12/28/2022] Open
Abstract
To gain insight into the mechanisms by which the Myb transcription factor controls normal hematopoiesis and particularly, how it contributes to leukemogenesis, we mapped the genome-wide occupancy of Myb by chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-Seq) in ERMYB myeloid progenitor cells. By integrating the genome occupancy data with whole genome expression profiling data, we identified a Myb-regulated transcriptional program. Gene signatures for leukemia stem cells, normal hematopoietic stem/progenitor cells and myeloid development were overrepresented in 2368 Myb regulated genes. Of these, Myb bound directly near or within 793 genes. Myb directly activates some genes known critical in maintaining hematopoietic stem cells, such as Gfi1 and Cited2. Importantly, we also show that, despite being usually considered as a transactivator, Myb also functions to repress approximately half of its direct targets, including several key regulators of myeloid differentiation, such as Sfpi1 (also known as Pu.1), Runx1, Junb and Cebpb. Furthermore, our results demonstrate that interaction with p300, an established coactivator for Myb, is unexpectedly required for Myb-mediated transcriptional repression. We propose that the repression of the above mentioned key pro-differentiation factors may contribute essentially to Myb's ability to suppress differentiation and promote self-renewal, thus maintaining progenitor cells in an undifferentiated state and promoting leukemic transformation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Thomas J. Gonda
- The University of Queensland Diamantina Institute, Brisbane, Queensland 4102, Australia
| |
Collapse
|
15
|
Abstract
Chondrocyte differentiation in the growth plate is an important process for the longitudinal growth of endochondral bones. Sox9 and Runx2 are the most often-studied transcriptional regulators of the chondrocyte differentiation process, but the importance of additional factors is also becoming apparent. Mafs are a subfamily of the basic ZIP (bZIP) transcription factor superfamily, which act as key regulators of tissue-specific gene expression and terminal differentiation in many tissues. There is increasing evidence that c-Maf and its splicing variant Lc-Maf play a role in chondrocyte differentiation in a temporal-spatial manner. This review summarizes the functions of c-Maf in chondrocyte differentiation and discusses the possible role of c-Maf in osteoarthritis progression.
Collapse
Affiliation(s)
| | | | - Dominik R. Haudenschild
- Dominik R. Haudenschild, Department of Orthopaedic Surgery, Division of Orthopaedic Research, University of California Davis Medical Center, 4635 Second Street, Sacramento, CA 95817, USA
| |
Collapse
|
16
|
Cai L, Pan H, Trzciński K, Thompson CM, Wu Q, Kramnik I. MYBBP1A: a new Ipr1's binding protein in mice. Mol Biol Rep 2010; 37:3863-8. [PMID: 20221700 PMCID: PMC3084015 DOI: 10.1007/s11033-010-0042-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/24/2010] [Indexed: 12/16/2022]
Abstract
Infection with mycobacterium tuberculosis (MTB) can cause different outcomes in hosts with variant genetic backgrounds. Previously, we identified an intracellular pathogen resistance 1 (Ipr1) gene with the role of resistance of MTB infection in mice model. However, until now, its binding proteins have been little known even for its human homology, SP110. In this study, the homology for mouse Ipr1 in canines was found to have an extra domain structure, h.1.5.1. And 30 potential candidate proteins were predicted to bind canine Ipr1, which were characterized of the interacting structure with the h.1.5.1. Among them, MYBBP1A was verified to bind with both Ipr1 and eGFP-Ipr1 in mouse macrophage J774A.1 clone 21 cells using co-immunoprecipitation method. And with the constructed high-confidence Ipr1-involved network, we suggested that Ipr1 might be involved in apoptosis pathway via MYBBP1A.
Collapse
Affiliation(s)
- Lei Cai
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 667 Huntington Avenue, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
17
|
MYB suppresses differentiation and apoptosis of human breast cancer cells. Breast Cancer Res 2010; 12:R55. [PMID: 20659323 PMCID: PMC2949644 DOI: 10.1186/bcr2614] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Revised: 06/25/2010] [Accepted: 07/26/2010] [Indexed: 11/10/2022] Open
Abstract
INTRODUCTION MYB is highly expressed in estrogen receptor positive (ER + ve) breast tumours and tumour cell lines. We recently demonstrated that MYB is essential for the proliferation of ER + ve breast cancer cells, and have now investigated its role in mammary epithelial differentiation. METHODS MCF-7 breast cancer cells were treated with sodium butyrate, vitamin E succinate or 12-O-tetradecanoylphorbol-13-acetate to induce differentiation as measured by Nile Red staining of lipid droplets and β-casein expression. The non-tumorigenic murine mammary epithelial cell (MEC) line, HC11, was induced to differentiate with lactogenic hormones. MYB levels were manipulated by inducible lentiviral shRNA-mediated knockdown and retroviral overexpression. RESULTS We found that MYB expression decreases following chemically-induced differentiation of the human breast cancer cell line MCF-7, and hormonally-induced differentiation of a non-tumorigenic murine mammary epithelial cell (MEC) line, HC11. We also found that shRNA-mediated MYB knockdown initiated differentiation of breast cancer cells, and greatly sensitised them to the differentiative and pro-apoptotic effects of differentiation-inducing agents (DIAs). Sensitisation to the pro-apoptotic effects DIAs is mediated by decreased expression of BCL2, which we show here is a direct MYB target in breast cancer cells. Conversely, enforced expression of MYB resulted in the cells remaining in an undifferentiated state, with concomitant suppression of apoptosis, in the presence of DIAs. CONCLUSIONS Taken together, these data imply that MYB function is critical in regulating the balance between proliferation, differentiation, and apoptosis in MECs. Moreover, our findings suggest MYB may be a viable therapeutic target in breast cancer and suggest specific approaches for exploiting this possibility.
Collapse
|
18
|
Sadlon TJ, Wilkinson BG, Pederson S, Brown CY, Bresatz S, Gargett T, Melville EL, Peng K, D'Andrea RJ, Glonek GG, Goodall GJ, Zola H, Shannon MF, Barry SC. Genome-wide identification of human FOXP3 target genes in natural regulatory T cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:1071-81. [PMID: 20554955 DOI: 10.4049/jimmunol.1000082] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The transcription factor FOXP3 is essential for the formation and function of regulatory T cells (Tregs), and Tregs are essential for maintaining immune homeostasis and tolerance. This is demonstrated by a lethal autoimmune defect in mice lacking Foxp3 and in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome patients. However, little is known about the molecular basis of human FOXP3 function or the relationship between direct and indirect targets of FOXP3 in human Tregs. To investigate this, we have performed a comprehensive genome-wide analysis for human FOXP3 target genes from cord blood Tregs using chromatin immunoprecipitation array profiling and expression profiling. We have identified 5579 human FOXP3 target genes and derived a core Treg gene signature conserved across species using mouse chromatin immunoprecipitation data sets. A total of 739 of the 5579 FOXP3 target genes were differentially regulated in Tregs compared with Th cells, thus allowing the identification of a number of pathways and biological functions overrepresented in Tregs. We have identified gene families including cell surface molecules and microRNAs that are differentially expressed in FOXP3(+) Tregs. In particular, we have identified a novel role for peptidase inhibitor 16, which is expressed on the cell surface of >80% of resting human CD25(+)FOXP3(+) Tregs, suggesting that in conjunction with CD25 peptidase inhibitor 16 may be a surrogate surface marker for Tregs with potential clinical application.
Collapse
Affiliation(s)
- Timothy J Sadlon
- Molecular Immunology Laboratory, Women's and Children's Health Research Institute, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Peng S, Wu H, Mo YY, Watabe K, Pauza ME. c-Maf increases apoptosis in peripheral CD8 cells by transactivating Caspase 6. Immunology 2009; 127:267-78. [PMID: 19476513 DOI: 10.1111/j.1365-2567.2008.03014.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
In addition to transactivation of interleukin-4 (IL-4), cellular muscular aponeurotic fibrosarcoma (c-Maf) enhances CD4 cell apoptosis by limiting Bcl-2 expression. The CD8 cells also express c-Maf and peripheral CD8 cell numbers are reduced in c-Maf transgenic mice, suggesting that c-Maf may influence CD8 cell survival in a manner similar to CD4 cells. Here we confirm that, similar to CD4 cells, c-Maf enhances CD8 cell susceptibility to apoptosis induced by multiple stimuli, independent of IL-4. However, unlike CD4 cells, c-Maf enhancement of apoptosis is independent of Bcl-2, suggesting that c-Maf uses other mechanisms to regulate CD8 cell apoptosis. Real-time reverse transcription-polymerase chain reaction reveals that the pro-apoptotic gene Caspase 6 is upregulated in c-Maf transgenic CD8 cells, suggesting that Caspase 6 is a novel c-Maf target gene. Luciferase reporter assays and site-directed mutagenesis reveal a functional c-Maf recognition element (MARE) within the first intron of Caspase 6. Binding of c-Maf to the MARE site is detectable by chromatin immunoprecipitation using non-transgenic T-cell lysates, so c-Maf can interact with the Caspase 6 MARE site in normal T cells. Furthermore, caspase 6 activity is increased among CD8 cells from c-Maf transgenic mice following T-cell receptor engagement. As expected, activity of the downstream caspases 3 and 7 is also increased. Consistent with the ability of caspase 6 to participate in positive feedback loops, cytochrome c release and caspase 8 activation are also increased. Together these results indicated that c-Maf increases CD8 cell sensitivity to apoptotic stimuli, at least in part, by direct transactivation of Caspase 6, providing increased substrate for Caspase 6-dependent apoptosis pathways.
Collapse
Affiliation(s)
- Siying Peng
- Department of Medical Microbiology, Southern Illinois University School of Medicine, Springfield, 62794, USA
| | | | | | | | | |
Collapse
|
20
|
Leavenworth JW, Ma X, Mo YY, Pauza ME. SUMO conjugation contributes to immune deviation in nonobese diabetic mice by suppressing c-Maf transactivation of IL-4. THE JOURNAL OF IMMUNOLOGY 2009; 183:1110-9. [PMID: 19553542 DOI: 10.4049/jimmunol.0803671] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is not clear why the development of protective Th2 cells is poor in type 1 diabetes (T1D). c-Maf transactivates the IL-4 gene promoting Th2 cell development; therefore, abnormalities in c-Maf may contribute to reduced IL-4 production by CD4 cells from nonobese diabetic (NOD) mice. In this study we demonstrate that despite normal expression, c-Maf binds poorly to the IL-4 promoter (IL-4p) in NOD CD4 cells. Immunoblotting demonstrates that c-Maf can be modified at lysine 33 by SUMO-1 (small ubiquitin-like modifier 1). Sumoylation is facilitated by direct interaction with the E2-conjugating enzyme Ubc9 and increases following T cell stimulation. In transfected cells, sumoylation decreases c-Maf transactivation of IL-4p-driven luciferase reporter activity, reduces c-Maf binding to the IL-4p in chromatin immunoprecipitation assays, and enhances c-Maf localization into promyelocytic leukemia nuclear bodies. Sumoylation of c-Maf is increased in NOD CD4 cells as compared with CD4 cells from diabetes-resistant B10.D2 mice, suggesting that increased c-Maf sumoylation contributes to immune deviation in T1D by reducing c-Maf access to and transactivation of the IL-4 gene.
Collapse
Affiliation(s)
- Jianmei W Leavenworth
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | | | | | | |
Collapse
|
21
|
Li T, Xiao J, Wu Z, Qiu G. Over-expression of c-maf by chondrocytes in osteoarthritis. J Int Med Res 2009; 37:129-35. [PMID: 19215682 DOI: 10.1177/147323000903700115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The c-maf gene expression profile was investigated in normal and osteoarthritic articular cartilage using in situ hybridization, qualitative reverse transcription-polymerase chain reaction (RT-PCR) and quantitative real-time RT-PCR. Osteoarthritic samples were obtained from 10 patients undergoing total knee replacement for severe osteoarthritis of the knee joints, and control samples from 10 trauma patients undergoing amputation. Expression of c-maf was significantly up-regulated in osteoarthritic cartilage compared with normal cartilage. Using in situ hybridization, distribution of a specific c-maf mRNA signal was found in the top zone and a decreased signal was found in the lower middle zone and the deep zone in osteoarthritic cartilage. A prominent c-maf mRNA signal was seen particularly in proliferating 'chondrocyte clusters'. In contrast, in normal cartilage almost no c-maf-positive cells were found. These findings suggest that c-maf may be important in chondrocyte hypertrophy and terminal differentiation, and may be involved in the pathogenesis of osteoarthritis.
Collapse
Affiliation(s)
- T Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | |
Collapse
|
22
|
Demichelis F, Setlur SR, Beroukhim R, Perner S, Korbel JO, Lafargue CJ, Pflueger D, Pina C, Hofer MD, Sboner A, Svensson MA, Rickman DS, Urban A, Snyder M, Meyerson M, Lee C, Gerstein MB, Kuefer R, Rubin MA. Distinct genomic aberrations associated with ERG rearranged prostate cancer. Genes Chromosomes Cancer 2009; 48:366-80. [PMID: 19156837 DOI: 10.1002/gcc.20647] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Emerging molecular and clinical data suggest that ETS fusion prostate cancer represents a distinct molecular subclass, driven most commonly by a hormonally regulated promoter and characterized by an aggressive natural history. The study of the genomic landscape of prostate cancer in the light of ETS fusion events is required to understand the foundation of this molecularly and clinically distinct subtype. We performed genome-wide profiling of 49 primary prostate cancers and identified 20 recurrent chromosomal copy number aberrations, mainly occurring as genomic losses. Co-occurring events included losses at 19q13.32 and 1p22.1. We discovered three genomic events associated with ERG rearranged prostate cancer, affecting 6q, 7q, and 16q. 6q loss in nonrearranged prostate cancer is accompanied by gene expression deregulation in an independent dataset and by protein deregulation of MYO6. To analyze copy number alterations within the ETS genes, we performed a comprehensive analysis of all 27 ETS genes and of the 3 Mbp genomic area between ERG and TMPRSS2 (21q) with an unprecedented resolution (30 bp). We demonstrate that high-resolution tiling arrays can be used to pin-point breakpoints leading to fusion events. This study provides further support to define a distinct molecular subtype of prostate cancer based on the presence of ETS gene rearrangements.
Collapse
Affiliation(s)
- Francesca Demichelis
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical Center, New York, NY 10065
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Engagement of transgenic Ly49A inhibits mouse CD4 cell activation by disrupting T cell receptor, but not CD28, signaling. Cell Immunol 2009; 257:88-96. [DOI: 10.1016/j.cellimm.2009.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 03/05/2009] [Accepted: 03/06/2009] [Indexed: 01/28/2023]
|
24
|
Abstract
Like JUN and FOS, the Maf transcription factors belong to the AP1 family. Besides their established role in human cancer--overexpression of the large Maf genes promotes the development of multiple myeloma--they can display tumour suppressor-like activity in specific cellular contexts, which is compatible with their physiological role in terminal differentiation. However, their oncogenic activity relies mostly on the acquisition of new biological functions relevant to cell transformation, the most striking characteristic of Maf oncoproteins being their ability to enhance pathological interactions between tumour cells and the stroma.
Collapse
Affiliation(s)
- Alain Eychène
- Institut Curie, Centre de Recherche, Orsay F-91405, France
| | | | | |
Collapse
|
25
|
Greig KT, Carotta S, Nutt SL. Critical roles for c-Myb in hematopoietic progenitor cells. Semin Immunol 2008; 20:247-56. [PMID: 18585056 DOI: 10.1016/j.smim.2008.05.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Accepted: 05/14/2008] [Indexed: 11/16/2022]
Abstract
While it has long been known that the transcription factor c-Myb is an essential regulator of hematopoiesis, its precise molecular targets have remained elusive. Cell line studies suggest that c-Myb promotes proliferation and at the same time inhibits differentiation, however the early lethality of c-Myb deficient embryos precluded analysis of its role in adult hematopoiesis. Here we review insights derived from recently developed mouse models of c-Myb deficiency that are viable as adults. These studies reveal a complex array of functions for c-Myb in multiple hematopoietic cell types that will redefine our understanding of this crucial transcription factor.
Collapse
Affiliation(s)
- Kylie T Greig
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3050, Australia.
| | | | | |
Collapse
|