1
|
CD8 + T cell metabolic rewiring defined by scRNA-seq identifies a critical role of ASNS expression dynamics in T cell differentiation. Cell Rep 2022; 41:111639. [PMID: 36384124 DOI: 10.1016/j.celrep.2022.111639] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/05/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
T cells dynamically rewire their metabolism during an immune response. We applied single-cell RNA sequencing to CD8+ T cells activated and differentiated in vitro in physiological medium to resolve these metabolic dynamics. We identify a differential time-dependent reliance of activating T cells on the synthesis versus uptake of various non-essential amino acids, which we corroborate with functional assays. We also identify metabolic genes that potentially dictate the outcome of T cell differentiation, by ranking them based on their expression dynamics. Among them, we find asparagine synthetase (Asns), whose expression peaks for effector T cells and decays toward memory formation. Disrupting these expression dynamics by ASNS overexpression promotes an effector phenotype, enhancing the anti-tumor response of adoptively transferred CD8+ T cells in a mouse melanoma model. We thus provide a resource of dynamic expression changes during CD8+ T cell activation and differentiation, and identify ASNS expression dynamics as a modulator of CD8+ T cell differentiation.
Collapse
|
2
|
Lanitis E, Rota G, Kosti P, Ronet C, Spill A, Seijo B, Romero P, Dangaj D, Coukos G, Irving M. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression. J Exp Med 2020; 218:211522. [PMID: 33156338 PMCID: PMC7653685 DOI: 10.1084/jem.20192203] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 07/24/2020] [Accepted: 09/10/2020] [Indexed: 12/12/2022] Open
Abstract
Limited clinical benefit has been demonstrated for chimeric antigen receptor (CAR) therapy of solid tumors, but coengineering strategies to generate so-called fourth-generation (4G) CAR-T cells are advancing toward overcoming barriers in the tumor microenvironment (TME) for improved responses. In large part due to technical challenges, there are relatively few preclinical CAR therapy studies in immunocompetent, syngeneic tumor-bearing mice. Here, we describe optimized methods for the efficient retroviral transduction and expansion of murine T lymphocytes of a predominantly central memory T cell (TCM cell) phenotype. We present a bicistronic retroviral vector encoding both a tumor vasculature–targeted CAR and murine interleukin-15 (mIL-15), conferring enhanced effector functions, engraftment, tumor control, and TME reprogramming, including NK cell activation and reduced presence of M2 macrophages. The 4G-CAR-T cells coexpressing mIL-15 were further characterized by up-regulation of the antiapoptotic marker Bcl-2 and lower cell-surface expression of the inhibitory receptor PD-1. Overall, this work introduces robust tools for the development and evaluation of 4G-CAR-T cells in immunocompetent mice, an important step toward the acceleration of effective therapies reaching the clinic.
Collapse
Affiliation(s)
- Evripidis Lanitis
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Giorgia Rota
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Paris Kosti
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Catherine Ronet
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | | | - Bili Seijo
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Pedro Romero
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Denarda Dangaj
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Abstract
While impressive clinical responses have been observed using chimeric antigen receptor (CAR) T cells targeting CD19+ hematologic malignancies, limited clinical benefit has been observed using CAR T cells for a variety of solid tumors. Results of clinical studies have highlighted several obstacles which CAR T cells face in the context of solid tumors, including insufficient homing to tumor sites, lack of expansion and persistence, encountering a highly immunosuppressive tumor microenvironment, and heterogeneous antigen expression. In this review, we review clinical outcomes and discuss strategies to improve the antitumor activity of CAR T cells for solid tumors.
Collapse
|
4
|
Shin KS, Jeon I, Kim BS, Kim IK, Park YJ, Koh CH, Song B, Lee JM, Lim J, Bae EA, Seo H, Ban YH, Ha SJ, Kang CY. Monocyte-Derived Dendritic Cells Dictate the Memory Differentiation of CD8 + T Cells During Acute Infection. Front Immunol 2019; 10:1887. [PMID: 31474983 PMCID: PMC6706816 DOI: 10.3389/fimmu.2019.01887] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/25/2019] [Indexed: 11/13/2022] Open
Abstract
Monocyte-derived dendritic cells (moDCs) have been shown to robustly expand during infection; however, their roles in anti-infectious immunity remain unclear. Here, we found that moDCs were dramatically increased in the secondary lymphoid organs during acute LCMV infection in an interferon-γ (IFN-γ)-dependent manner. We also found that priming by moDCs enhanced the differentiation of memory CD8+ T cells compared to differentiation primed by conventional dendritic cells (cDCs) through upregulation of Eomesodermin (Eomes) and T cell factor-1 (TCF-1) expression in CD8+ T cells. Consequently, impaired memory formation of CD8+ T cells in mice that had reduced numbers of moDCs led to defective clearance of pathogens upon rechallenge. Mechanistically, attenuated interleukin-2 (IL-2) signaling in CD8+ T cells primed by moDCs was responsible for the enhanced memory programming of CD8+ T cells. Therefore, our findings unveil a specialization of the antigen-presenting cell subsets in the fate determination of CD8+ T cells during infection and pave the way for the development of a novel therapeutic intervention on infection.
Collapse
Affiliation(s)
- Kwang-Soo Shin
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Insu Jeon
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Byung-Seok Kim
- Laboratory of Immune Regulation, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Il-Kyu Kim
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Young-Jun Park
- Laboratory of Immune Regulation, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Choong-Hyun Koh
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Boyeong Song
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Jeong-Mi Lee
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jiyoung Lim
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Eun-Ah Bae
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Hyungseok Seo
- Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Young Ho Ban
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Chang-Yuil Kang
- Laboratory of Immunology, College of Pharmacy, Seoul National University, Seoul, South Korea.,Laboratory of Immunology, Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Lee JH, Tak WY, Lee Y, Heo MK, Song JS, Kim HY, Park SY, Bae SH, Lee JH, Heo J, Kim KH, Bae YS, Kim YJ. Adjuvant immunotherapy with autologous dendritic cells for hepatocellular carcinoma, randomized phase II study. Oncoimmunology 2017; 6:e1328335. [PMID: 28811965 DOI: 10.1080/2162402x.2017.1328335] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/04/2017] [Accepted: 05/05/2017] [Indexed: 02/06/2023] Open
Abstract
Our previous phase I/IIA study showed that autologous dendritic cells (DCs) pulsed with tumor-associated antigens are well tolerated in patients with hepatocellular carcinoma (HCC). In this randomized, multicenter, open-label, phase II trial, we investigated the efficacy and safety of this DC-based adjuvant immunotherapy with 156 patients, who treated for HCC with no evidence of residual tumor after standard treatment modalities. Patients were randomly assigned to immunotherapy (n = 77; injection of 3 × 107 DC cells, six times over 14 weeks) or control (n = 79; no treatment). The primary end point was recurrence-free survival (RFS), and the secondary endpoints were immune response and safety. The RFS between the immunotherapy and control groups was not significantly different (hazard ratio [HR], 0.97; 95% confidence interval [CI], 0.60-1.56; p = 0.90). However, post-hoc subgroup analyses revealed that DC immunotherapy significantly reduced the risk of tumor recurrence of non-radiofrequency ablation (non-RFA) group patients (n = 83, HR, 0.49; 95% CI, 0.26-0.94; p = 0.03), whereas unexpectedly increased the risk of recurrence in RFA group (n = 61, p = 0.01). Tumor-specific immune responses were significantly enhanced (both p < 0.01) in the immunotherapy group. Baseline serum interleukin (IL)-15 was statistically correlated with RFS prolongation (HR, 0.16; 95% CI, 0.03-1.58; p = 0.001) within the immunotherapy groups. Overall adverse events were more frequent in the immunotherapy group (p < 0.001) but were mainly mild to moderate in severity. In conclusion, adjuvant immunotherapy with DC vaccine reduces the risk of tumor recurrence in HCC patients who underwent standard treatment modalities other than RFA. Baseline IL-15 might be a candidate biomarker for DC-based HCC immunotherapy.
Collapse
Affiliation(s)
- Jeong-Hoon Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Won Young Tak
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Yoon Lee
- Department of Biological Science, Sungkyunkwan University, Suwon, Korea.,JW CreaGene Research Institute, JW CreaGene Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Min-Kyu Heo
- JW CreaGene Research Institute, JW CreaGene Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Jae-Sung Song
- JW CreaGene Research Institute, JW CreaGene Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Hak-Yeop Kim
- JW CreaGene Research Institute, JW CreaGene Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Soo Young Park
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, Korea
| | - Si Hyun Bae
- The Catholic University Liver Research Center, The Catholic University of Korea, Seoul, Korea
| | - Joon Hyeok Lee
- Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jeong Heo
- Department of Internal Medicine, Pusan National University School of Medicine, Busan, Republic of Korea
| | - Ki-Hwan Kim
- JW CreaGene Research Institute, JW CreaGene Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Yong-Soo Bae
- Department of Biological Science, Sungkyunkwan University, Suwon, Korea.,JW CreaGene Research Institute, JW CreaGene Inc., Seongnam-si, Gyeonggi-do, Korea
| | - Yoon Jun Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
6
|
Nada MH, Wang H, Workalemahu G, Tanaka Y, Morita CT. Enhancing adoptive cancer immunotherapy with Vγ2Vδ2 T cells through pulse zoledronate stimulation. J Immunother Cancer 2017; 5:9. [PMID: 28239463 PMCID: PMC5319075 DOI: 10.1186/s40425-017-0209-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2016] [Accepted: 01/06/2017] [Indexed: 01/14/2023] Open
Abstract
Background Human γδ T cells expressing Vγ2Vδ2 T cell receptors monitor foreign- and self-prenyl pyrophosphate metabolites in isoprenoid biosynthesis to mediate immunity to microbes and tumors. Adoptive immunotherapy with Vγ2Vδ2 T cells has been used to treat cancer patients with partial and complete remissions. Most clinical trials and preclinical studies have used continuous zoledronate exposure to expand Vγ2Vδ2 cells where zoledronate is slowly diluted over the course of the culture. Zoledronate inhibits farnesyl diphosphate synthase (FDPS) in monocytes causing isopentenyl pyrophosphate to accumulate that then stimulates Vγ2Vδ2 cells. Because zoledronate inhibition of FDPS is also toxic for T cells, we hypothesized that a short period of exposure would reduce T cell toxicity but still be sufficient for monocytes uptake. Additionally, IL-15 increases the anti-tumor activity of murine αβ T cells in mice but its effect on the in vivo anti-tumor activity of human Vγ2Vδ2 cells has not been assessed. Methods Human Vγ2Vδ2 T cells were expanded by pulse or continuous zoledronate stimulation with IL-2 or IL-15. Expanded Vγ2Vδ2 cells were tested for their expression of effector molecules and killing of tumor cells as well as their in vivo control of human prostate cancer tumors in immunodeficient NSG mice. Results Pulse zoledronate stimulation with either IL-2 or IL-15 resulted in more uniform expansion of Vγ2Vδ2 cells with higher purity and cell numbers as compared with continuous exposure. The Vγ2Vδ2 cells had higher levels of CD107a and perforin and increased tumor cytotoxicity. Adoptive immunotherapy with Vγ2Vδ2 cells derived by pulse stimulation controlled human PC-3 prostate cancer tumors in NSG mice significantly better than those derived by continuous stimulation, halting tumor growth. Although pulse zoledronate stimulation with IL-15 preserved early memory subsets, adoptive immunotherapy with IL-15-derived Vγ2Vδ2 cells equally inhibited PC-3 tumor growth as those derived with IL-2. Conclusions Pulse zoledronate stimulation maximizes the purity, quantity, and quality of expanded Vγ2Vδ2 cells for adoptive immunotherapy but there is no advantage to using IL-15 over IL-2 in our humanized mouse model. Pulse zoledronate stimulation is a simple modification to existing protocols that will enhance the effectiveness of adoptively transferred Vγ2Vδ2 cells by increasing their numbers and anti-tumor activity. Electronic supplementary material The online version of this article (doi:10.1186/s40425-017-0209-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mohanad H Nada
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Pathology, College of Medicine, Tikrit University, Tikrit, Iraq
| | - Hong Wang
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA
| | - Grefachew Workalemahu
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA
| | - Yoshimasa Tanaka
- Center for Bioinformatics and Molecular Medicine, Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Craig T Morita
- Division of Immunology, Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA.,Department of Veterans Affairs, Iowa City Health Care System, Iowa City, IA 52246 USA.,Interdisciplinary Graduate Program in Immunology, University of Iowa Carver College of Medicine, Iowa City, IA 52242 USA
| |
Collapse
|
7
|
Wang J, Zhou P. New Approaches in CAR-T Cell Immunotherapy for Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1026:371-381. [PMID: 29282693 DOI: 10.1007/978-981-10-6020-5_17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite significant advances in surgery, chemotherapy, radiotherapy, endocrine therapy, and molecular-targeted therapy, breast cancer remains the leading cause of death from malignant tumors among women. Immunotherapy has recently become a critical component of breast cancer treatment with encouraging activity and mild safety profiles. CAR-T therapy using genetically modifying T cells with chimeric antigen receptors (CAR) is the most commonly used approach to generate tumor-specific T cells. It has shown good curative effect for a variety of malignant diseases, especially for hematological malignancies. In this review, we briefly introduce the history and the present state of CAR research. Then we discuss the barriers of solid tumors for CARs application and possible strategies to improve therapeutic response with a focus on breast cancer. At last, we outlook the future directions of CAR-T therapy including managing toxicities and developing universal CAR-T cells.
Collapse
Affiliation(s)
- Jinghua Wang
- Department of Hematology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Penghui Zhou
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| |
Collapse
|
8
|
Hanoteau A, Moser M. Chemotherapy and immunotherapy: A close interplay to fight cancer? Oncoimmunology 2016; 5:e1190061. [PMID: 27622046 DOI: 10.1080/2162402x.2016.1190061] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 05/10/2016] [Indexed: 10/21/2022] Open
Abstract
In theory, the immunotherapy of cancer should induce the selective destruction of cancer cells and a long-term specific protection, based on the specificity and memory of immunity. This contrasts with the collateral damages of conventional therapies and their toxic effects on host tissues. However, recent data suggest that chemotherapy may potentiate ongoing immune responses, through homeostatic mechanisms. Massive tumor death, empty "immune" niches and selected cytokines may act as a danger signal, alerting the immune system and amplifying pre-existing antitumor reactivity.
Collapse
Affiliation(s)
- Aurélie Hanoteau
- Laboratory of Immunobiology, Department of Molecular Biology, Université Libre de Bruxelles , Brussels, Belgium
| | - Muriel Moser
- Laboratory of Immunobiology, Department of Molecular Biology, Université Libre de Bruxelles , Brussels, Belgium
| |
Collapse
|
9
|
Ghosh S, Sarkar M, Ghosh T, Guha I, Bhuniya A, Biswas J, Mallick A, Bose A, Baral R. Absence of CD4(+) T cell help generates corrupt CD8(+) effector T cells in sarcoma-bearing Swiss mice treated with NLGP vaccine. Immunol Lett 2016; 175:31-9. [PMID: 27178306 DOI: 10.1016/j.imlet.2016.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/09/2016] [Accepted: 05/09/2016] [Indexed: 12/19/2022]
Abstract
One of the prime objectives of cancer immunology and immunotherapy is to study the issues related to rescue and/or maintenance of the optimum effector CD8(+) T cell functions by minimizing tumor-induced negative factors. In this regard the influence of host intrinsic CD4(+) helper T cells towards generation and maintenance of CD8(+) effector T cells appears controversial in different experimental settings. Therefore, the present study was aimed to re-analyze the influence of CD4(+) helper T cells towards effector T cells during neem leaf glycoprotein (NLGP)-vaccine-mediated tumor growth restriction. CD4 depletion (mAb; Clone GK1.5) surprisingly resulted in significant increase in CD8(+) T cells in different immune organs from NLGP-treated sarcoma-bearing mice. However, such CD8 surge could not restrict the sarcoma growth in NLGP-treated CD4-depleted mice. Furthermore, CD4 depletion in early phase hinders CD8(+) T cell activation and terminal differentiation by targeting crucial transcription factor Runx3. CD4 depletion decreases accumulation of CD8α(+) dendritic cells within tumor draining lymph node, hampers antigen cross priming and CD86-CD28 interactions for optimum CD8(+) T cell functions. In order to search the mechanism of CD4(+) T cell help on NLGP-mediated CD8 effector functions, the role of CD4(+) helper T cell-derived IL-2 on optimization of CD8 functions was found using STAT5 signaling, but complete response requires physical contact of CD4(+) helper T cells with its CD8 counterpart. In conclusion, it was found that CD4(+) T cell help is not required to generate CD8(+) T cells but was found to be an integral phenomenon in maintenance of its anti-tumor functions even in NLGP-vaccine-mediated sarcoma growth restriction.
Collapse
Affiliation(s)
- Sarbari Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Madhurima Sarkar
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Tithi Ghosh
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Ipsita Guha
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Avishek Bhuniya
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Jaydip Biswas
- Department of Surgical Oncology and Medical Oncology, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Atanu Mallick
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Anamika Bose
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India
| | - Rathindranath Baral
- Department of Immunoregulation and Immunodiagnostics, Chittaranjan National Cancer Institute (CNCI), 37, S.P. Mukherjee Road, Kolkata 700 026, India.
| |
Collapse
|
10
|
Hong E, Usiskin IM, Bergamaschi C, Hanlon DJ, Edelson RL, Justesen S, Pavlakis GN, Flavell RA, Fahmy TM. Configuration-dependent Presentation of Multivalent IL-15:IL-15Rα Enhances the Antigen-specific T Cell Response and Anti-tumor Immunity. J Biol Chem 2015; 291:8931-50. [PMID: 26719339 DOI: 10.1074/jbc.m115.695304] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 01/08/2023] Open
Abstract
Here we report a "configuration-dependent" mechanism of action for IL-15:IL-15Rα (heterodimeric IL-15 or hetIL-15) where the manner by which IL-15:IL-15Rα molecules are presented to target cells significantly affects its function as a vaccine adjuvant. Although the cellular mechanism of IL-15 trans-presentation via IL-15Rα and its importance for IL-15 function have been described, the full effect of the IL-15:IL-15Rα configuration on responding cells is not yet known. We found that trans-presenting IL-15:IL-15Rα in a multivalent fashion on the surface of antigen-encapsulating nanoparticles enhanced the ability of nanoparticle-treated dendritic cells (DCs) to stimulate antigen-specific CD8(+) T cell responses. Localization of multivalent IL-15:IL-15Rα and encapsulated antigen to the same DC led to maximal T cell responses. Strikingly, DCs incubated with IL-15:IL-15Rα-coated nanoparticles displayed higher levels of functional IL-15 on the cell surface, implicating a mechanism for nanoparticle-mediated transfer of IL-15 to the DC surface. Using artificial antigen-presenting cells to highlight the effect of IL-15 configuration on DCs, we showed that artificial antigen-presenting cells presenting IL-15:IL-15Rα increased the sensitivity and magnitude of the T cell response, whereas IL-2 enhanced the T cell response only when delivered in a paracrine fashion. Therefore, the mode of cytokine presentation (configuration) is important for optimal immune responses. We tested the effect of configuration dependence in an aggressive model of murine melanoma and demonstrated significantly delayed tumor progression induced by IL-15:IL-15Rα-coated nanoparticles in comparison with monovalent IL-15:IL-15Rα. The novel mechanism of IL-15 transfer to the surface of antigen-processing DCs may explain the enhanced potency of IL-15:IL-15Rα-coated nanoparticles for antigen delivery.
Collapse
Affiliation(s)
- Enping Hong
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511
| | - Ilana M Usiskin
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511
| | - Cristina Bergamaschi
- the Vaccine Branch, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, and
| | - Douglas J Hanlon
- Dermatology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Richard L Edelson
- Dermatology, Yale University School of Medicine, New Haven, Connecticut 06510
| | - Sune Justesen
- the Department of Science, University of Copenhagen, Copenhagen 1017, Denmark
| | - George N Pavlakis
- the Vaccine Branch, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, and
| | | | - Tarek M Fahmy
- From the Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, the Departments of Immunobiology and
| |
Collapse
|
11
|
Ligocki AJ, Brown JR, Niederkorn JY. Role of interferon-γ and cytotoxic T lymphocytes in intraocular tumor rejection. J Leukoc Biol 2015; 99:735-47. [PMID: 26578649 DOI: 10.1189/jlb.3a0315-093rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 10/28/2015] [Indexed: 12/22/2022] Open
Abstract
The eye is normally an immunosuppressive environment. This condition is better known as immune privilege and protects the eye from immune-mediated inflammation of tissues that cannot regenerate. However, immune privilege creates a dilemma for the eye when intraocular neoplasms arise. In some cases, immune privilege is suspended, resulting in the immune rejection of intraocular tumors. This study employed a mouse model in which interferon-γ-dependent intraocular tumor rejection occurs. We tested the hypothesis that this rejection requires interferon-γ for the generation and functional capacity of cytotoxic T lymphocyte-mediated rejection of intraocular tumors. Tumors grew progressively in the eyes of interferon-γ knockout mice, even though the mice generated tumor-specific cytotoxic T lymphocyte responses in the periphery. However, interferon-γ knockout mice rejected tumors that were introduced into extraocular sites. Subcutaneous tumor immunization before intraocular challenge led to tumor rejection and preservation of the eye in wild-type mice. By contrast, tumors grew progressively in the eyes of interferon-γ knockout mice despite their ability to generate peripheral tumor-specific cytotoxic T lymphocytes as well as the capacity of CD8(+) T cells to enter the eye as shown by the presence of CD8 and perforin message and CD3(+)CD8(+) leukocytes within the tumor-bearing eye. We found that cytotoxic T lymphocytes generated in wild-type mice and adoptively transferred into interferon-γ knockout mice mediated the rejection of intraocular tumors in interferon-γ knockout hosts. The results indicate that interferon-γ is critical for the initial priming and differentiation of cytotoxic T lymphocytes residing in the periphery to produce the most effect antitumor function within the eye.
Collapse
Affiliation(s)
- Ann J Ligocki
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joseph R Brown
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jerry Y Niederkorn
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
12
|
Abstract
Lymphomas arise from clonal expansions of B, T, or NK cells at different stages of differentiation. Because they occur in the immunocyte-rich lymphoid tissues, they are easily accessible to antibodies and cell-based immunotherapy. Expressing chimeric antigen receptors (CARs) on T cells is a means of combining the antigen-binding site of a monoclonal antibody with the activating machinery of a T cell, enabling antigen recognition independent of major histocompatibility complex restriction, while retaining the desirable antitumor properties of a T cell. Here, we discuss the basic design of CARs and their potential advantages and disadvantages over other immune therapies for lymphomas. We review current clinical trials in the field and consider strategies to improve the in vivo function and safety of immune cells expressing CARs. The ultimate driver of CAR development and implementation for lymphoma will be the demonstration of their ability to safely and cost-effectively cure these malignancies.
Collapse
Affiliation(s)
- Carlos A Ramos
- Center for Cell and Gene Therapy, Houston Methodist Hospital, Texas Children's Hospital, and Baylor College of Medicine, Houston, Texas 77030.,Dan L. Duncan Cancer Center.,Department of Medicine, and
| | - Helen E Heslop
- Center for Cell and Gene Therapy, Houston Methodist Hospital, Texas Children's Hospital, and Baylor College of Medicine, Houston, Texas 77030.,Dan L. Duncan Cancer Center.,Department of Medicine, and.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; , ,
| | - Malcolm K Brenner
- Center for Cell and Gene Therapy, Houston Methodist Hospital, Texas Children's Hospital, and Baylor College of Medicine, Houston, Texas 77030.,Dan L. Duncan Cancer Center.,Department of Medicine, and.,Department of Pediatrics, Baylor College of Medicine, Houston, Texas 77030; , ,
| |
Collapse
|
13
|
Heon EK, Wulan H, Macdonald LP, Malek AO, Braunstein GH, Eaves CG, Schattner MD, Allen PM, Alexander MO, Hawkins CA, McGovern DW, Freeman RL, Amir EP, Huse JD, Zaltzman JS, Kauff NP, Meyers PG, Gleason MH, Overholtzer MG, Wiseman SS, Streutker CD, Asa SW, McAlindon TP, Newcomb PO, Sorensen PM, Press OA. IL-15 induces strong but short-lived tumor-infiltrating CD8 T cell responses through the regulation of Tim-3 in breast cancer. Biochem Biophys Res Commun 2015; 464:360-6. [PMID: 26141233 DOI: 10.1016/j.bbrc.2015.06.162] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 06/26/2015] [Indexed: 01/21/2023]
Abstract
IL-15 has pivotal roles in the control of CD8(+) memory T cells and has been investigated as a therapeutic option in cancer therapy. Although IL-15 and IL-2 share many functions together, including the stimulation of CD8 T cell proliferation and IFN-γ production, the different in vivo roles of IL-15 and IL-2 have been increasingly recognized. Here, we explored the different effects of IL-15 and IL-2 on tumor-infiltrating (TI) T cells from resected breast tumors. We found that neither IL-2 nor IL-15 induced intratumoral CD8 T cell proliferation by itself, but after CD3/CD28-stimulation, IL-15 induced significantly higher proliferation than IL-2 during early time points, at day 2, day 3 and day 6. However, the IL-15-induced proliferation leveled off at day 9 and day 12, whereas IL-2 induced lower but progressive proliferation at each time point. Furthermore, IL-15 caused an early and robust increase of IFN-γ in the supernatant of TI cell cultures, which diminished at later time points, while the IL-2-induced IFN-γ production remained constant over time. In addition, the IL-15-costimulated CD8 T cells presented higher frequencies of apoptotic cells. The diminishing IL-15-induced response was possibly due to regulatory and/or exhaustion mechanisms. We did not observe increased IL-10 or PD-1 upregulation, but we have found an increase of Tim-3 upregulation on IL-15-, but not IL-2-stimulated cells. Blocking Tim-3 function using anti-Tim-3 antibodies resulted in increased IL-15-induced proliferation and IFN-γ production for a prolonged period of time, whereas adding Tim-3 ligand galectin 9 led to reduced proliferation and IFN-γ production. Our results suggest that IL-15 in combination of Tim-3 blocking antibodies could potentially act as an IL-2 alternative in tumor CD8 T cell expansion in vitro, a crucial step in adoptive T cell therapy.
Collapse
Affiliation(s)
- Elise K Heon
- University of Maryland Medical Center, Baltimore, MD 21201, United States
| | - Hasi Wulan
- Department of Plastic and Reconstructive Surgery, PLA General Hospital, Beijing, 100853, China
| | | | - Adel O Malek
- Brown University, Providence, RI 02912, United States
| | | | | | | | - Peter M Allen
- University of Wisconsin, Madison, WI 53706, United States
| | | | | | | | | | - Eitan P Amir
- University of Illinois, Chicago, IL 60607, United States
| | - Jason D Huse
- University of Illinois, Chicago, IL 60607, United States
| | | | - Noah P Kauff
- University of Texas, Austin, TX 78712, United States
| | - Paul G Meyers
- University of Texas, Austin, TX 78712, United States
| | | | | | - Sam S Wiseman
- Ohio State University, Columbus, OH 43210, United States
| | | | - Sylvia W Asa
- Ohio State University, Columbus, OH 43210, United States
| | | | | | | | - Oliver A Press
- University of Illinois, Chicago, IL 60607, United States.
| |
Collapse
|
14
|
The role of donor-derived veto cells in nonmyeloablative haploidentical HSCT. Bone Marrow Transplant 2015; 50 Suppl 2:S14-20. [DOI: 10.1038/bmt.2015.89] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Beyersdorf N, Werner S, Wolf N, Hünig T, Kerkau T. In vitro polyclonal activation of conventional T cells with a CD28 superagonist protects mice from acute graft versus host disease. Eur J Immunol 2015; 45:1997-2007. [DOI: 10.1002/eji.201445317] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 02/27/2015] [Accepted: 04/21/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Niklas Beyersdorf
- Institute for Virology and Immunobiology; University of Würzburg; Würzburg Germany
| | - Sandra Werner
- Institute for Virology and Immunobiology; University of Würzburg; Würzburg Germany
| | - Nelli Wolf
- Institute for Virology and Immunobiology; University of Würzburg; Würzburg Germany
| | - Thomas Hünig
- Institute for Virology and Immunobiology; University of Würzburg; Würzburg Germany
| | - Thomas Kerkau
- Institute for Virology and Immunobiology; University of Würzburg; Würzburg Germany
| |
Collapse
|
16
|
Abstract
Current therapy for sarcomas, though effective in treating local disease, is often ineffective for patients with recurrent or metastatic disease. To improve outcomes, novel approaches are needed and cell therapy has the potential to meet this need since it does not rely on the cytotoxic mechanisms of conventional therapies. The recent successes of T-cell therapies for hematological malignancies have led to renewed interest in exploring cell therapies for solid tumors such as sarcomas. In this review, we will discuss current cell therapies for sarcoma with special emphasis on genetic approaches to improve the effector function of adoptively transferred cells.
Collapse
Affiliation(s)
- Melinda Mata
- Center for Cell & Gene Therapy, Texa Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| | - Stephen Gottschalk
- Center for Cell & Gene Therapy, Texa Children's Hospital, Houston Methodist Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Texas Children's Cancer Center, Texas Children's Hospital, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pediatrics, Baylor College of Medicine, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, 1102 Bates Street, Suite 1770, Houston, TX 77030, USA
| |
Collapse
|
17
|
Abstract
The use of cytokines from the IL-2 family (also called the common γ chain cytokine family) such as interleukin (IL)-2, IL-7, IL-15, and IL-21 to activate the immune system of cancer patients is one of the most important areas of current cancer immunotherapy research. The infusion of IL-2 at low or high doses for multiple cycles in patients with metastatic melanoma and renal cell carcinoma was the first successful immunotherapy for cancer proving that the immune system could completely eradicate tumor cells under certain conditions. The initial clinical success observed in some IL-2-treated patients encouraged further efforts focused on developing and improving the application of other IL-2 family cytokines (IL-4, IL-7, IL-9, IL-15, and IL-21) that have unique biological effects playing important roles in the development, proliferation, and function of specific subsets of lymphocytes at different stages of differentiation with some overlapping effects with IL-2. IL-7, IL-15, and IL-21, as well as mutant forms or variants of IL-2, are now also being actively pursued in the clinic with some measured early successes. In this review, we summarize the current knowledge on the biology of the IL-2 cytokine family focusing on IL-2, IL-15 and IL-21. We discuss the similarities and differences between the signaling pathways mediated by these cytokines and their immunomodulatory effects on different subsets of immune cells. Current clinical application of IL-2, IL-15 and IL-21 either as single agents or in combination with other biological agents and the limitation and potential drawbacks of these cytokines for cancer immunotherapy are also described. Lastly, we discuss the future direction of research on these cytokines, such as the development of new cytokine mutants and variants for improving cytokine-based immunotherapy through differential binding to specific receptor subunits.
Collapse
Affiliation(s)
- Geok Choo Sim
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laszlo Radvanyi
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Lion Biotechnologies, Woodland Hills, CA 91367, USA.
| |
Collapse
|
18
|
|
19
|
Dotti G, Gottschalk S, Savoldo B, Brenner MK. Design and development of therapies using chimeric antigen receptor-expressing T cells. Immunol Rev 2014; 257:107-26. [PMID: 24329793 DOI: 10.1111/imr.12131] [Citation(s) in RCA: 379] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Investigators developed chimeric antigen receptors (CARs) for expression on T cells more than 25 years ago. When the CAR is derived from an antibody, the resultant cell should combine the desirable targeting features of an antibody (e.g. lack of requirement for major histocompatibility complex recognition, ability to recognize non-protein antigens) with the persistence, trafficking, and effector functions of a T cell. This article describes how the past two decades have seen a crescendo of research which has now begun to translate these potential benefits into effective treatments for patients with cancer. We describe the basic design of CARs, describe how antigenic targets are selected, and the initial clinical experience with CAR-T cells. Our review then describes our own and other investigators' work aimed at improving the function of CARs and reviews the clinical studies in hematological and solid malignancies that are beginning to exploit these approaches. Finally, we show the value of adding additional engineering features to CAR-T cells, irrespective of their target, to render them better suited to function in the tumor environment, and discuss how the safety of these heavily modified cells may be maintained.
Collapse
Affiliation(s)
- Gianpietro Dotti
- Center for Cell and Gene Therapy, Baylor College of Medicine, The Methodist Hospital and Texas Children's Hospital, Houston, TX, USA
| | | | | | | |
Collapse
|
20
|
Gillgrass A, Ashkar A. Stimulating natural killer cells to protect against cancer: recent developments. Expert Rev Clin Immunol 2014; 7:367-82. [DOI: 10.1586/eci.10.102] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
21
|
Stärck L, Popp K, Pircher H, Uckert W. Immunotherapy with TCR-Redirected T Cells: Comparison of TCR-Transduced and TCR-Engineered Hematopoietic Stem Cell–Derived T Cells. THE JOURNAL OF IMMUNOLOGY 2013; 192:206-13. [DOI: 10.4049/jimmunol.1202591] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Dowlatshahi M, Huang V, Gehad A, Jiang Y, Calarese A, Teague JE, Dorosario A, Cheng J, Nghiem P, Schanbacher C, Thakuria M, Schmults C, Wang LC, Clark RA. Tumor-specific T cells in human Merkel cell carcinomas: a possible role for Tregs and T-cell exhaustion in reducing T-cell responses. J Invest Dermatol 2013; 133:1879-89. [PMID: 23419694 PMCID: PMC3691077 DOI: 10.1038/jid.2013.75] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Merkel cell carcinomas (MCCs) are rare but highly malignant skin cancers associated with a recently described polyomavirus. MCC tumors were infiltrated by T cells, including effector, central memory, and regulatory T cells. Infiltrating T cells showed markedly reduced activation as evidenced by reduced expression of CD69 and CD25. Treatment of MCC tumors in vitro with IL-2 and IL-15 led to T-cell activation, proliferation, enhanced cytokine production, and loss of viable tumor cells from cultures. Expanded tumor-infiltrating lymphocytes showed TCR repertoire skewing and upregulation of CD137. MCC tumors implanted into immunodeficient mice failed to grow unless human T cells in the tumor grafts were depleted with denileukin diftitox, suggesting that tumor-specific T cells capable of controlling tumor growth were present in MCC. Both CD4(+) and CD8(+) FOXP3(+) regulatory T cells were frequent in MCC. Fifty percent of nonactivated T cells in MCC-expressed PD-1, a marker of T-cell exhaustion, and PD-L1 and PD-L2 were expressed by a subset of tumor dendritic cells and macrophages. In summary, we observed tumor-specific T cells with suppressed activity in MCC tumors. Agents that stimulate T-cell activity, block regulatory T cell function, or inhibit PD-1 signaling may be effective in the treatment of this highly malignant skin cancer.
Collapse
MESH Headings
- Animals
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD8 Antigens/metabolism
- Carcinoma, Merkel Cell/metabolism
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Proliferation/drug effects
- Cells, Cultured
- Cytokines/metabolism
- Forkhead Transcription Factors/metabolism
- Humans
- In Vitro Techniques
- Interleukin-15/pharmacology
- Interleukin-2/pharmacology
- Interleukin-2 Receptor alpha Subunit/metabolism
- Lectins, C-Type/metabolism
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Programmed Cell Death 1 Receptor/metabolism
- Signal Transduction/physiology
- Skin/metabolism
- Skin/pathology
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- T-Lymphocytes/drug effects
- T-Lymphocytes/metabolism
- T-Lymphocytes/pathology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/pathology
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Mitra Dowlatshahi
- Harvard Skin Disease Research Center and the Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Victor Huang
- Harvard Skin Disease Research Center and the Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Ahmed Gehad
- Harvard Skin Disease Research Center and the Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Ying Jiang
- Temple University School of Medicine, Philadelphia, PA 19140
| | - Adam Calarese
- Drexel University College of Medicine, Philadelphia, PA 19129
| | - Jessica E. Teague
- Harvard Skin Disease Research Center and the Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115
| | | | - Jingwei Cheng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Paul Nghiem
- Dermatology Division, Department of Medicine, University of Washington Medical School, Fred Hutchinson Cancer Research Center, Seattle, WA 98109
| | - Carl Schanbacher
- Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115
| | - Manisha Thakuria
- Harvard Skin Disease Research Center and the Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Chrysalyne Schmults
- Harvard Skin Disease Research Center and the Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115
| | - Linda C. Wang
- Merkel Cell Carcinoma Program, Mercy Medical Center, Baltimore, MD, 21202
| | - Rachael A. Clark
- Harvard Skin Disease Research Center and the Department of Dermatology, Brigham and Women’s Hospital, Boston, MA 02115
| |
Collapse
|
23
|
IL-15 in tumor microenvironment causes rejection of large established tumors by T cells in a noncognate T cell receptor-dependent manner. Proc Natl Acad Sci U S A 2013; 110:8158-63. [PMID: 23637340 DOI: 10.1073/pnas.1301022110] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
A major challenge of cancer immunotherapy is the persistence and outgrowth of subpopulations that lose expression of the target antigen. IL-15 is a potent cytokine that can promote organ-specific autoimmunity when up-regulated on tissue cells. Here we report that T cells eradicated 2-wk-old solid tumors that expressed IL-15, eliminating antigen-negative cells. In contrast, control tumors that lacked IL-15 expression consistently relapsed. Interestingly, even tumors lacking expression of cognate antigen were rejected when expressing IL-15, indicating that rejection after adoptive T-cell transfer was independent of cognate antigen expression. Nevertheless, the T-cell receptor of the transferred T cells influenced the outcome, consistent with the notion that T-cell receptor activation and effector status determine whether IL-15 can confer lymphokine killer activity-like properties to T cells. The effect was limited to the microenvironment of tumors expressing IL-15; there were no noticeable effects on contralateral tumors lacking IL-15. Taken together, these results indicate that expression of IL-15 in the tumor microenvironment may prevent the escape of antigen loss variants and subsequent tumor recurrence by enabling T cells to eliminate cancer cells lacking cognate antigen expression in a locally restricted manner.
Collapse
|
24
|
Jackson SR, Berrien-Elliott MM, Meyer JM, Wherry EJ, Teague RM. CD8+ T cell exhaustion during persistent viral infection is regulated independently of the virus-specific T cell receptor. Immunol Invest 2013; 42:204-20. [PMID: 23461613 DOI: 10.3109/08820139.2012.751397] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
During chronic viral infections, responses by virus-specific CD8(+) T cells become marginalized by the acquisition of functional defects and reduced cell numbers in a process defined as T cell exhaustion. Similarly, T cell tolerance to self-antigen is also characterized by impaired effector function and eventual deletion of self-reactive T cells. Induction of both tolerance and exhaustion involve many shared inhibitory mechanisms, thus similar therapeutic approaches have proven effective in these distinct environments. We previously demonstrated that tolerant self-reactive CD8(+) T cells expressing dual-T cell receptors (i.e., dual-TCR) could be rescued by immunization through a second TCR specific for a foreign antigen. These data revealed that T cell tolerance was regulated at the level of the self-reactive TCR. Here, dual-TCR CD8(+) T cells were used to examine if exhaustion during persistent viral infection could be rescued by an analogous strategy of immunization through a second TCR not involved in recognition of virus. In direct contrast to the rescue achievable in tolerant CD8(+) T cells, exhausted T cells were equally impaired through both TCR. These findings suggest that exhaustion is maintained by defects downstream of the virus-specific TCR, and establish that exhaustion and tolerance are distinctly regulated states of T cell dysfunction.
Collapse
Affiliation(s)
- Stephanie R Jackson
- Saint Louis University School of Medicine, Department of Molecular Microbiologyand Immunology, St Louis, Missouri 63104, USA
| | | | | | | | | |
Collapse
|
25
|
Adoptive T-cell therapy using autologous tumor-infiltrating lymphocytes for metastatic melanoma: current status and future outlook. Cancer J 2012; 18:160-75. [PMID: 22453018 DOI: 10.1097/ppo.0b013e31824d4465] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Immunotherapy using autologous T cells has emerged to be a powerful treatment option for patients with metastatic melanoma. These include the adoptive transfer of autologous tumor-infiltrating lymphocytes (TILs), T cells transduced with high-affinity T cell receptors against major tumor antigens, and T cells transduced with chimeric antigen receptors composed of hybrid immunoglobulin light chains with endodomains of T-cell signaling molecules. Among these and other options for T-cell therapy, TILs together with high-dose interleukin 2 have had the longest clinical history with multiple clinical trials in centers across the world consistently demonstrating durable clinical response rates near 50% or more. A distinct advantage of TIL therapy making it still the T-cell therapy of choice is the broad nature of the T-cell recognition against both defined and undefined tumors antigens against all possible major histocompatibility complex, rather than the single specificity and limited major histocompatibility complex coverage of the newer T cell receptors and chimeric antigen receptor transduction technologies. In the past decade, significant inroads have been made in defining the phenotypes of T cells in TIL-mediating tumor regression. CD8+ T cells are emerging to be critical, although the exact subset of CD8+ T cells exhibiting the highest clinical activity in terms of memory and effector markers is still controversial. We present a model in which both effector-memory and more differentiated effector T cells ultimately may need to cooperate to mediate long-term tumor control in responding patients. Although TIL therapy has shown great potential to treat metastatic melanoma, a number of issues have emerged that need to be addressed to bring it more into the mainstream of melanoma care. First, we have a reached the point where a pivotal phase II or phase III trial is needed in an attempt to gain regulatory approval of TILs as standard of care. Second, improvements in how we expand TILs for therapy are needed that minimize the time the T cells are in culture and improve the memory and effector characteristics of the T cells for longer persistence and enhanced anti-tumor activity in vivo. Third, there is a critical need to identify surrogate and predictive biomarkers to better select suitable patients for TIL therapy to improve response rate and duration. Overall, the outlook for TIL therapy for melanoma is very bright. We predict that TILs will indeed emerge to become an approved treatment in the upcoming years through pivotal clinical trials. Moreover, new approaches combining TILs with targeted signaling pathway drugs, such as mutant B-RAF inhibitors, and synergistic immunomodulatory interventions enhancing T-cell costimulation and preventing negative regulation should further increase therapeutic efficacy and durable complete response rates.
Collapse
|
26
|
Verbist KC, Klonowski KD. Functions of IL-15 in anti-viral immunity: multiplicity and variety. Cytokine 2012; 59:467-78. [PMID: 22704694 DOI: 10.1016/j.cyto.2012.05.020] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/14/2012] [Accepted: 05/17/2012] [Indexed: 12/15/2022]
Abstract
An effective immune response to an invading viral pathogen requires the combined actions of both innate and adaptive immune cells. For example, NK cells and cytotoxic CD8 T cells are capable of the direct engagement of infected cells and the mediation of antiviral responses. Both NK and CD8 T cells depend on common gamma chain (γc) cytokine signals for their development and homeostasis. The γc cytokine IL-15 is very well characterized for its role in promoting the development and homeostasis of NK cells and CD8 T cells, but emerging literature suggests that IL-15 mediates the anti-viral responses of these cell populations during an active immune response. Both NK cells and CD8 T cells must become activated, migrate to sites of infection, survive at those sites, and expand in order to maximally exert effector functions, and IL-15 can modulate each of these processes. This review focuses on the functions of IL-15 in the regulation of multiple aspects of NK and CD8 T cell biology, investigates the mechanisms by which IL-15 may exert such diverse functions, and discusses how these different facets of IL-15 biology may be therapeutically exploited to combat viral diseases.
Collapse
Affiliation(s)
- Katherine C Verbist
- Department of Cellular Biology, University of Georgia, Athens, GA 30602-2607, USA
| | | |
Collapse
|
27
|
Induction of transplantation tolerance in haploidenical transplantation under reduced intensity conditioning: The role of ex-vivo generated donor CD8+ T cells with central memory phenotype. Best Pract Res Clin Haematol 2011; 24:393-401. [DOI: 10.1016/j.beha.2011.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Davies DM, Maher J. Adoptive T-cell immunotherapy of cancer using chimeric antigen receptor-grafted T cells. Arch Immunol Ther Exp (Warsz) 2010; 58:165-78. [PMID: 20373147 DOI: 10.1007/s00005-010-0074-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Accepted: 10/27/2009] [Indexed: 12/25/2022]
Abstract
Harnessing the power of the immune system to target cancer has long been a goal of tumor immunologists. One avenue under investigation is the modification of T cells to express a chimeric antigen receptor (CAR). Expression of such a receptor enables T-cell specificity to be redirected against a chosen tumor antigen. Substantial research in this field has been carried out, incorporating a wide variety of malignancies and tumor-associated antigens. Ongoing investigations will ensure this area continues to expand at a rapid pace. This review will explain the evolution of CAR technology over the last two decades in addition to detailing the associated benefits and disadvantages. The outcome of recent phase I clinical trials and the impact that these have had upon the direction of future research in this field will also be addressed.
Collapse
Affiliation(s)
- David Marc Davies
- King's College London School of Medicine, Research Oncology Section, Division of Cancer Studies, Third Floor Bermondsey Wing, Guy's Hospital Campus, St Thomas Street, London SE1 9RT, UK
| | | |
Collapse
|
29
|
Kim PS, Ahmed R. Features of responding T cells in cancer and chronic infection. Curr Opin Immunol 2010; 22:223-30. [PMID: 20207527 DOI: 10.1016/j.coi.2010.02.005] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 02/10/2010] [Indexed: 01/06/2023]
Abstract
Ever since T cell exhaustion was initially characterized and thoroughly analyzed in the murine LCMV model, such a functional impairment has been validated in other chronic viral infections such as HIV, HCV, and HBV. In tumor immunology, it has always been postulated that tumor-reactive T cells could also become functionally exhausted owing to the high tumor-antigen load and accompanying inhibitory mechanisms. However, the empirical evidences for this hypothesis have not been as extensive as in chronic infection perhaps because much of the focus on T cell dysfunction in tumor immunology has been, and appropriately so, on breaking or bypassing immune tolerance and anergy to tumor/self antigens. On the basis of recent reports, it is becoming clear that T cell exhaustion also plays a crucial role in the impairment of antitumor immunity. In this review, we will comparatively evaluate the T cell responses in cancer and chronic infection, and the therapeutic strategies and interventions for both diseases.
Collapse
Affiliation(s)
- Peter S Kim
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
30
|
Induction of tolerance to bone marrow allografts by donor-derived host nonreactive ex vivo-induced central memory CD8 T cells. Blood 2009; 115:2095-104. [PMID: 20042725 DOI: 10.1182/blood-2009-10-248716] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Enabling engraftment of allogeneic T cell-depleted bone marrow (TDBM) under reduced-intensity conditioning represents a major challenge in bone marrow transplantation (BMT). Anti-third-party cytotoxic T lymphocytes (CTLs) were previously shown to be endowed with marked ability to delete host antidonor T cells in vitro, but were found to be less effective in vivo. This could result from diminished lymph node (LN) homing caused by the prolonged activation, which induces a CD44(+)CD62L(-) effector phenotype, and thereby prevents effective colocalization with, and neutralization of, alloreactive host T cells (HTCs). In the present study, LN homing, determined by imaging, was enhanced upon culture conditions that favor the acquisition of CD44(+)CD62L(+) central memory cell (Tcm) phenotype by anti-third-party CD8(+) cells. These Tcm-like cells displayed strong proliferation and prolonged persistence in BM transplant recipients. Importantly, adoptively transferred HTCs bearing a transgenic T-cell receptor (TCR) with antidonor specificity were efficiently deleted only by donor-type Tcms. All these attributes were found to be associated with improved efficacy in overcoming T cell-mediated rejection of TDBM, thereby enabling high survival rate and long-term donor chimerism, without causing graft-versus-host disease. In conclusion, anti-third-party Tcms, which home to recipient LNs and effectively delete antidonor T cells, could provide an effective and novel tool for overcoming rejection of BM allografts.
Collapse
|
31
|
Jandus C, Speiser D, Romero P. Recent advances and hurdles in melanoma immunotherapy. Pigment Cell Melanoma Res 2009; 22:711-23. [DOI: 10.1111/j.1755-148x.2009.00634.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
32
|
Li Y, Liu S, Hernandez J, Vence L, Hwu P, Radvanyi L. MART-1-specific melanoma tumor-infiltrating lymphocytes maintaining CD28 expression have improved survival and expansion capability following antigenic restimulation in vitro. THE JOURNAL OF IMMUNOLOGY 2009; 184:452-65. [PMID: 19949105 DOI: 10.4049/jimmunol.0901101] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
We determined how CD8(+) melanoma tumor-infiltrating lymphocytes (TILs) isolated from two distinct phases of expansion in preparation for adoptive T cell therapy respond to melanoma Ag restimulation. We found that TILs isolated after the rapid expansion protocol (REP) phase, used to generate the final patient TIL infusion product, were hyporesponsive to restimulation with MART-1 peptide-pulsed dendritic cells, with many CD8(+) T cells undergoing apoptosis. Telomere length was shorter post-REP, but of sufficient length to support further cell division. Phenotypic analysis revealed that cell-surface CD28 expression was significantly reduced in post-REP TILs, whereas CD27 levels remained unchanged. Tracking post-REP TIL proliferation by CFSE dilution, as well as sorting for CD8(+)CD28(+) and CD8(+)CD28(-) post-REP subsets, revealed that the few CD28(+) TILs remaining post-REP had superior survival capacity and proliferated after restimulation with MART-1 peptide. An analysis of different supportive cytokine mixtures during the REP found that a combination of IL-15 and IL-21 facilitated comparable expansion of CD8(+) TILs as IL-2, but prevented the loss of CD28 expression with improved responsiveness to antigenic restimulation post-REP. These results suggest that current expansion protocols using IL-2 for melanoma adoptive T cell therapy yields largely CD8(+) T cells unable to persist and divide in vivo following Ag contact. The few CD8(+)CD28(+) T cells that remain may be the only CD8(+) TILs that ultimately survive to repopulate the host and mediate long-term tumor control. A REP protocol using IL-15 and IL-21 may greatly increase the number of CD28(+) TILs capable of long-term persistence.
Collapse
Affiliation(s)
- Yufeng Li
- Department of Melanoma Medical Oncology, Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
33
|
Programming tumor-reactive effector memory CD8+ T cells in vitro obviates the requirement for in vivo vaccination. Blood 2009; 114:1776-83. [PMID: 19561320 DOI: 10.1182/blood-2008-12-192419] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Naive and memory CD8(+) T cells can undergo programmed activation and expansion in response to a short T-cell receptor stimulus, but the extent to which in vitro programming can qualitatively substitute for an in vivo antigen stimulation remains unknown. We show that self-/tumor-reactive effector memory CD8(+) T cells (T(EM)) programmed in vitro either with peptide-pulsed antigen-presenting cells or plate-bound anti-CD3/anti-CD28 embark on a highly stereotyped response of in vivo clonal expansion and tumor destruction nearly identical to that of vaccine-stimulated T(EM) cells. This programmed response was associated with an interval of antigen-independent interferon-gamma (IFN-gamma) release that facilitated the dynamic expression of the major histocompatibility complex class I restriction element H-2D(b) on responding tumor cells, leading to recognition and subsequent tumor lysis. Delaying cell transfer for more than 24 hours after stimulation or infusion of cells deficient in IFN-gamma entirely abrogated the benefit of the programmed response, whereas transfer of cells unable to respond to IFN-gamma had no detriment to antitumor immunity. These findings extend the phenomenon of a programmable effector response to memory CD8(+) T cells and have major implications for the design of current adoptive-cell transfer trials.
Collapse
|
34
|
Huarte E, Fisher J, Turk MJ, Mellinger D, Foster C, Wolf B, Meehan KR, Fadul CE, Ernstoff MS. Ex vivo expansion of tumor specific lymphocytes with IL-15 and IL-21 for adoptive immunotherapy in melanoma. Cancer Lett 2009; 285:80-8. [PMID: 19501956 DOI: 10.1016/j.canlet.2009.05.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 04/23/2009] [Accepted: 05/04/2009] [Indexed: 12/17/2022]
Abstract
Although T central memory cells have been described as the most effective T-cell subtype against tumor growth, little is known about the requirements needed for their optimal ex vivo generation. Hence, our goal is to establish a protocol that will lead to consistent ex vivo generation of lymphocytes skewed toward a central memory phenotype. Antigen-specific T-cell lines were generated by ex vivo stimulation with Class-I and Class-II melanoma peptide pulsed dendritic cells in the presence of either IL-2 or IL-15 plus IL-21. Tumor specific lymphocytes of both central memory and effector characteristics were consistently generated from healthy donors and melanoma patients. IL15/IL21 cultures result in a cell population with a lower proportion of CD4(+)CD25(high)FoxP3(+) regulatory cells and higher number of CD8(+) and CD56(+) cells, and consequently render a higher yield of cells with a greater cytolytic activity and IFN-gamma production against melanoma cell lines.
Collapse
|
35
|
Myxoma virus expressing interleukin-15 fails to cause lethal myxomatosis in European rabbits. J Virol 2009; 83:5933-8. [PMID: 19279088 DOI: 10.1128/jvi.00204-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxoma virus (MYXV) is a poxvirus pathogenic only for European rabbits, but its permissiveness in human cancer cells gives it potential as an oncolytic virus. A recombinant MYXV expressing both the tdTomato red fluorescent protein and interleukin-15 (IL-15) (vMyx-IL-15-tdTr) was constructed. Cells infected with vMyx-IL-15-tdTr secreted bioactive IL-15 and had in vitro replication kinetics similar to that of wild-type MYXV. To determine the safety of this virus for future oncolytic studies, we tested its pathogenesis in European rabbits. In vivo, vMyx-IL-15-tdTr no longer causes lethal myxomatosis. Thus, ectopic IL-15 functions as an antiviral cytokine in vivo, and vMyx-IL-15-tdTr is a safe candidate for animal studies of oncolytic virotherapy.
Collapse
|