1
|
Zhang J, Zhang L, Liu D, Shi H, Zhang X, Chen J, Yang X, Zeng M, Zhang J, Feng T, Zhu X, Jing Z, Ji Z, Shi D, Feng L. Helicase protein DDX11 as a novel antiviral factor promoting RIG-I-MAVS-mediated signaling pathway. mBio 2024:e0202824. [PMID: 39470258 DOI: 10.1128/mbio.02028-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/30/2024] [Indexed: 10/30/2024] Open
Abstract
Type Ι interferon (IFN) production mediated by retinoic acid-inducible gene 1 (RIG-I) and mitochondrial antiviral signaling protein (MAVS) is essential for antiviral innate immune responses. Here, we report the identification of a novel co-sensor for cytosolic nucleic acids: DEAD/H-box helicase 11 (DDX11), a member of the DExD/H (Asp-Glu-x-Asp/His)-box helicase family. Knockdown or knockout of DDX11 attenuated the ability of cells to increase IFN-β, IFN-stimulated gene 56, and C-X-C motif chemokine ligand 10 in response to SeV and poly (I:C) by blocking the activation of TANK-binding kinase 1 and IFN regulatory factor 3. Nucleic acid sensing by DDX11 was independent of the stimulator of IFN genes but was dependent on RIG-I and MAVS. DDX11 regulated RIG-I-MAVS-mediated IFN signaling by specifically interacting with nucleic acid, RIG-I, and MAVS to enhance RIG-I-double-strand RNA and RIG-I-MAVS binding affinity. Overall, our results identified a critical role for DDX11 in the innate immune response and provided molecular insights into the mechanisms by which DDX11 recognized cytosolic nucleic acid and interacted with RIG-Ι and MAVS for potent IFN signaling and antiviral immunity. IMPORTANCE Innate immunity is the first and most rapid host defense against virus infection. Recognition of viral RNA by the retinoic acid-inducible gene 1 (RIG-I)-like receptors (RLRs) initiates innate antiviral immune responses. How the binding of viral RNA to and activation of the RLRs are regulated remains enigmatic. In this study, we identified DEAD/H-box helicase 11 (DDX11) as a positive regulator of the RIG-I-mitochondrial antiviral signaling protein (MAVS)-mediated signaling pathways. Mechanistically, we demonstrated that DDX11 bound to viral RNA, interacted with RIG-I, and promoted their binding to viral RNA. DDX11 also promoted the interaction between RIG-I and MAVS and activation of RIG-I-MAVS signaling. Overall, our results elucidate the role of DDX11 in RIG-I-MAVS-dependent signaling pathways and may shed light on innate immune gene regulation.
Collapse
Affiliation(s)
- Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Dakai Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoman Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Miaomiao Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jialin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoyuan Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoyang Jing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Zhaoyang Ji
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
2
|
Tapescu I, Cherry S. DDX RNA helicases: key players in cellular homeostasis and innate antiviral immunity. J Virol 2024; 98:e0004024. [PMID: 39212449 PMCID: PMC11494928 DOI: 10.1128/jvi.00040-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
RNA helicases are integral in RNA metabolism, performing important roles in cellular homeostasis and stress responses. In particular, the DExD/H-box (DDX) helicase family possesses a conserved catalytic core that binds structural features rather than specific sequences in RNA targets. DDXs have critical roles in all aspects of RNA metabolism including ribosome biogenesis, translation, RNA export, and RNA stability. Importantly, functional specialization within this family arises from divergent N and C termini and is driven at least in part by gene duplications with 18 of the 42 human helicases having paralogs. In addition to their key roles in the homeostatic control of cellular RNA, these factors have critical roles in RNA virus infection. The canonical RIG-I-like receptors (RLRs) play pivotal roles in cytoplasmic sensing of viral RNA structures, inducing antiviral gene expression. Additional RNA helicases function as viral sensors or regulators, further diversifying the innate immune defense arsenal. Moreover, some of these helicases have been coopted by viruses to facilitate their replication. Altogether, DDX helicases exhibit functional specificity, playing intricate roles in RNA metabolism and host defense. This review will discuss the mechanisms by which these RNA helicases recognize diverse RNA structures in cellular and viral RNAs, and how this impacts RNA processing and innate immune responses.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
3
|
Li F, Ma C, Lei S, Pan Y, Lin L, Pan C, Li Q, Geng F, Min D, Tang X. Gingipains may be one of the key virulence factors of Porphyromonas gingivalis to impair cognition and enhance blood-brain barrier permeability: An animal study. J Clin Periodontol 2024; 51:818-839. [PMID: 38414291 DOI: 10.1111/jcpe.13966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 01/24/2024] [Accepted: 02/08/2024] [Indexed: 02/29/2024]
Abstract
AIM Blood-brain barrier (BBB) disorder is one of the early findings in cognitive impairments. We have recently found that Porphyromonas gingivalis bacteraemia can cause cognitive impairment and increased BBB permeability. This study aimed to find out the possible key virulence factors of P. gingivalis contributing to the pathological process. MATERIALS AND METHODS C57/BL6 mice were infected with P. gingivalis or gingipains or P. gingivalis lipopolysaccharide (P. gingivalis LPS group) by tail vein injection for 8 weeks. The cognitive behaviour changes in mice, the histopathological changes in the hippocampus and cerebral cortex, the alternations of BBB permeability, and the changes in Mfsd2a and Cav-1 levels were measured. The mechanisms of Ddx3x-induced regulation on Mfsd2a by arginine-specific gingipain A (RgpA) in BMECs were explored. RESULTS P. gingivalis and gingipains significantly promoted mice cognitive impairment, pathological changes in the hippocampus and cerebral cortex, increased BBB permeability, inhibited Mfsd2a expression and up-regulated Cav-1 expression. After RgpA stimulation, the permeability of the BBB model in vitro increased, and the Ddx3x/Mfsd2a/Cav-1 regulatory axis was activated. CONCLUSIONS Gingipains may be one of the key virulence factors of P. gingivalis to impair cognition and enhance BBB permeability by the Ddx3x/Mfsd2a/Cav-1 axis.
Collapse
Affiliation(s)
- Fulong Li
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
- Center of Implantology, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Chunliang Ma
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Shuang Lei
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Li Lin
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Chunling Pan
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Qian Li
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Fengxue Geng
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| | - Dongyu Min
- Traditional Chinese Medicine Experimental Center, Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Key Laboratory of Ministry of Education for TCM Viscera State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiaolin Tang
- Department of Periodontics, School and Hospital of Stomatology, Liaoning Provincial Key Laboratory of Oral Disease, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Zhao S, Li F, Li W, Wang M, Wang Y, Zhang Y, Xia P, Chen J. Mass Spectrometry-Based Proteomic Analysis of Potential Host Proteins Interacting with N in PRRSV-Infected PAMs. Int J Mol Sci 2024; 25:7219. [PMID: 39000325 PMCID: PMC11241482 DOI: 10.3390/ijms25137219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
One of the most significant diseases in the swine business, porcine reproductive and respiratory syndrome virus (PRRSV) causes respiratory problems in piglets and reproductive failure in sows. The PRRSV nucleocapsid (N) protein is essential for the virus' assembly, replication, and immune evasion. Stages in the viral replication cycle can be impacted by interactions between the PRRSV nucleocapsid protein and the host protein components. Therefore, it is of great significance to explore the interaction between the PRRSV nucleocapsid protein and the host. Nevertheless, no information has been published on the network of interactions between the nucleocapsid protein and the host proteins in primary porcine alveolar macrophages (PAMs). In this study, 349 host proteins interacting with nucleocapsid protein were screened in the PRRSV-infected PAMs through a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based proteomics approach. Bioinformatics analysis, which included gene ontology annotation, Kyoto Encyclopedia of Genes and Genomes database enrichment, and a protein-protein interaction (PPI) network, revealed that the host proteins interacting with PRRSV-N may be involved in protein binding, DNA transcription, metabolism, and innate immune responses. This study confirmed the interaction between the nucleocapsid protein and the natural immune-related proteins. Ultimately, our findings suggest that the nucleocapsid protein plays a pivotal role in facilitating immune evasion during a PRRSV infection. This study contributes to enhancing our understanding of the role played by the nucleocapsid protein in viral pathogenesis and virus-host interaction, thereby offering novel insights for the prevention and control of PRRS as well as the development of vaccines.
Collapse
Affiliation(s)
- Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Fahao Li
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Mengxiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Yueshuai Wang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China; (S.Z.); (F.L.); (W.L.); (M.W.); (Y.W.); (Y.Z.)
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
5
|
Chen Z, Zhang J, Feng T, Wang X, Zhou S, Pan W, Chen Z, Yan Y, Dai J. DDX20 positively regulates the interferon pathway to inhibit viral infection. Antiviral Res 2024; 225:105875. [PMID: 38552910 DOI: 10.1016/j.antiviral.2024.105875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/23/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
The DEAD-box (DDX) family comprises RNA helicases characterized by the conserved sequence D(Asp)-E(Glu)-A(Ala)-D(Asp), participating in various RNA metabolism processes. Some DDX family members have been identified for their crucial roles in viral infections. In this study, RNAi library screening of the DDX family unveiled the antiviral activity of DDX20. Knockdown of DDX20 enhanced the replication of viruses such as vesicular stomatitis virus (VSV) and herpes simplex virus type I (HSV-1), while overexpression of DDX20 significantly diminished the replication level of these viruses. Mechanistically, DDX20 elevated the phosphorylation level of IRF3 induced by external stimuli by facilitating the interaction between TBK1 and IRF3, thereby promoting the expression of IFN-β. The increased IFN-β production, in turn, upregulated the expression of interferon-stimulated genes (ISGs), including Cig5 and IFIT1, thereby exerting the antiviral effect. Finally, in an in vivo infection study, Ddx20 gene-deficient mice exhibited increased susceptibility to viral infection. This study provides new evidence that DDX20 positively modulates the interferon pathway and restricts viral infection.
Collapse
Affiliation(s)
- Zhiqiang Chen
- Department of Nuclear Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China; Institute of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.
| | - Jinyu Zhang
- Institute of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.
| | - Tingting Feng
- Institute of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China; Central Laboratory, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiujuan Wang
- Institute of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.
| | - Shimeng Zhou
- Institute of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.
| | - Wen Pan
- Institute of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.
| | - Zhengrong Chen
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China.
| | - Yongdong Yan
- Department of Respiratory Medicine, Children's Hospital of Soochow University, Suzhou, China.
| | - Jianfeng Dai
- Institute of Biology and Medical Sciences, MOE Key Laboratory of Geriatric Diseases and Immunology, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China.
| |
Collapse
|
6
|
Zhu J, Li J, Yang K, Chen Y, Wang J, He Y, Shen K, Wang K, Shi T, Chen W. NR4A1 depletion inhibits colorectal cancer progression by promoting necroptosis via the RIG-I-like receptor pathway. Cancer Lett 2024; 585:216693. [PMID: 38301909 DOI: 10.1016/j.canlet.2024.216693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.
Collapse
Affiliation(s)
- Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
7
|
Randolph ME, Afifi M, Gorthi A, Weil R, Wilky BA, Weinreb J, Ciero P, Hoeve NT, van Diest PJ, Raman V, Bishop AJ, Loeb DM. RNA helicase DDX3 regulates RAD51 localization and DNA damage repair in Ewing sarcoma. iScience 2024; 27:108925. [PMID: 38323009 PMCID: PMC10844834 DOI: 10.1016/j.isci.2024.108925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks, thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.
Collapse
Affiliation(s)
- Matthew E. Randolph
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Breelyn A. Wilky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Joshua Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Paul Ciero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Natalie ter Hoeve
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Centre Utrecht, Utrecht, the Netherlands
| | - Venu Raman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
- Department of Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| | - Alexander J.R. Bishop
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX, USA
| | - David M. Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
8
|
Rosa E Silva I, Smetana JHC, de Oliveira JF. A comprehensive review on DDX3X liquid phase condensation in health and neurodevelopmental disorders. Int J Biol Macromol 2024; 259:129330. [PMID: 38218270 DOI: 10.1016/j.ijbiomac.2024.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/15/2024]
Abstract
DEAD-box helicases are global regulators of liquid-liquid phase separation (LLPS), a process that assembles membraneless organelles inside cells. An outstanding member of the DEAD-box family is DDX3X, a multi-functional protein that plays critical roles in RNA metabolism, including RNA transcription, splicing, nucleocytoplasmic export, and translation. The diverse functions of DDX3X result from its ability to bind and remodel RNA in an ATP-dependent manner. This capacity enables the protein to act as an RNA chaperone and an RNA helicase, regulating ribonucleoprotein complex assembly. DDX3X and its orthologs from mouse, yeast (Ded1), and C. elegans (LAF-1) can undergo LLPS, driving the formation of neuronal granules, stress granules, processing bodies or P-granules. DDX3X has been related to several human conditions, including neurodevelopmental disorders, such as intellectual disability and autism spectrum disorder. Although the research into the pathogenesis of aberrant biomolecular condensation in neurodegenerative diseases is increasing rapidly, the role of LLPS in neurodevelopmental disorders is underexplored. This review summarizes current findings relevant for DDX3X phase separation in neurodevelopment and examines how disturbances in the LLPS process can be related to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Ivan Rosa E Silva
- Brazilian Biosciences National Laboratory, Center for Research in Energy and Materials, Campinas, SP, Brazil
| | | | | |
Collapse
|
9
|
Sharma N, Kessler P, Sen GC. Cell-type-specific need of Ddx3 and PACT for interferon induction by RNA viruses. J Virol 2023; 97:e0130423. [PMID: 37982645 PMCID: PMC10734550 DOI: 10.1128/jvi.01304-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/23/2023] [Indexed: 11/21/2023] Open
Abstract
IMPORTANCE Interferon-stimulated genes (ISGs) are induced in response to interferon expression due to viral infections. Role of these ISGs can be variable in different cells or organs. Our study highlights such cell-specific role of an ISG, Ddx3, which regulates the translation of mRNAs essential for interferon induction (PACT) and interferon signaling (STAT1) in a cell-specific manner. Our study also highlights the role of PACT in RNA virus-induced RLR signaling. Our study depicts how Ddx3 regulates innate immune signaling pathways in an indirect manner. Such cell-specific behavior of ISGs helps us to better understand viral pathogenesis and highlights the complexities of viral tropism and innate immune responses.
Collapse
Affiliation(s)
- Nikhil Sharma
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Patricia Kessler
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ganes C. Sen
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Ji L, Li T, Chen H, Yang Y, Lu E, Liu J, Qiao W, Chen H. The crucial regulatory role of type I interferon in inflammatory diseases. Cell Biosci 2023; 13:230. [PMID: 38124132 PMCID: PMC10734085 DOI: 10.1186/s13578-023-01188-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Type I interferon (IFN-I) plays crucial roles in the regulation of inflammation and it is associated with various inflammatory diseases including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and periodontitis, impacting people's health and quality of life. It is well-established that IFN-Is affect immune responses and inflammatory factors by regulating some signaling. However, currently, there is no comprehensive overview of the crucial regulatory role of IFN-I in distinctive pathways as well as associated inflammatory diseases. This review aims to provide a narrative of the involvement of IFN-I in different signaling pathways, mainly mediating the related key factors with specific targets in the pathways and signaling cascades to influence the progression of inflammatory diseases. As such, we suggested that IFN-Is induce inflammatory regulation through the stimulation of certain factors in signaling pathways, which displays possible efficient treatment methods and provides a reference for the precise control of inflammatory diseases.
Collapse
Affiliation(s)
- Ling Ji
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Tianle Li
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Huimin Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Yanqi Yang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
- Division of Pediatric Dentistry and Orthodontics, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China
| | - Eryi Lu
- Department of Stomatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, China
| | - Jieying Liu
- Department of Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Qiao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Applied Oral Sciences & Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| | - Hui Chen
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong, SAR, People's Republic of China.
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Level 3, 34 Hospital Road, Sai Ying Pun, Hong Kong, SAR, People's Republic of China.
| |
Collapse
|
11
|
Tapescu I, Taschuk F, Pokharel SM, Zginnyk O, Ferretti M, Bailer PF, Whig K, Madden EA, Heise MT, Schultz DC, Cherry S. The RNA helicase DDX39A binds a conserved structure in chikungunya virus RNA to control infection. Mol Cell 2023; 83:4174-4189.e7. [PMID: 37949067 PMCID: PMC10722560 DOI: 10.1016/j.molcel.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/25/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Alphaviruses are a large group of re-emerging arthropod-borne RNA viruses. The compact viral RNA genomes harbor diverse structures that facilitate replication. These structures can be recognized by antiviral cellular RNA-binding proteins, including DExD-box (DDX) helicases, that bind viral RNAs to control infection. The full spectrum of antiviral DDXs and the structures that are recognized remain unclear. Genetic screening identified DDX39A as antiviral against the alphavirus chikungunya virus (CHIKV) and other medically relevant alphaviruses. Upon infection, the predominantly nuclear DDX39A accumulates in the cytoplasm inhibiting alphavirus replication, independent of the canonical interferon pathway. Biochemically, DDX39A binds to CHIKV genomic RNA, interacting with the 5' conserved sequence element (5'CSE), which is essential for the antiviral activity of DDX39A. Altogether, DDX39A relocalization and binding to a conserved structural element in the alphavirus genomic RNA attenuates infection, revealing a previously unknown layer to the cellular control of infection.
Collapse
Affiliation(s)
- Iulia Tapescu
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Frances Taschuk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA; Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Swechha M Pokharel
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oleksandr Zginnyk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Max Ferretti
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Peter F Bailer
- Biochemistry and Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Kanupryia Whig
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Emily A Madden
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, UNC-Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, USA
| | - David C Schultz
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, PA, USA
| | - Sara Cherry
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
13
|
Venus S, Tandjigora K, Jankowsky E. The Viral Protein K7 Inhibits Biochemical Activities and Condensate Formation by the DEAD-box Helicase DDX3X. J Mol Biol 2023; 435:168217. [PMID: 37517790 PMCID: PMC10528715 DOI: 10.1016/j.jmb.2023.168217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/17/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
The DEAD-box RNA helicase DDX3X promotes translation initiation and associates with stress granules. A range of diverse viruses produce proteins that target DDX3X, including hepatitis C, dengue, vaccinia, and influenza A. The interaction of some of these viral proteins with DDX3X has been shown to affect antiviral intracellular signaling, but it is unknown whether and how viral proteins impact the biochemical activities of DDX3X and its physical roles in cells. Here we show that the protein K7 from vaccinia virus, which binds to an intrinsically disordered region in the N-terminus of DDX3X, inhibits RNA helicase and RNA-stimulated ATPase activities, as well as liquid-liquid phase separation of DDX3X in vitro. We demonstrate in HCT 116 cells that K7 inhibits association of DDX3X with stress granules, as well as the formation of aberrant granules induced by expression of DDX3X with a point mutation linked to medulloblastoma and DDX3X syndrome. The results show that targeting of the intrinsically disordered N-terminus is an effective viral strategy to modulate the biochemical functions and subcellular localization of DDX3X. Our findings also have potential therapeutic implications for diseases linked to aberrant DDX3X granule formation.
Collapse
Affiliation(s)
- Sarah Venus
- Center for RNA Science and Therapeutics, Department of Biochemistry, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44016, United States
| | - Kaba Tandjigora
- Center for RNA Science and Therapeutics, Department of Biochemistry, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44016, United States
| | - Eckhard Jankowsky
- Center for RNA Science and Therapeutics, Department of Biochemistry, Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44016, United States.
| |
Collapse
|
14
|
Randolph ME, Afifi M, Gorthi A, Weil R, Wilky BA, Weinreb J, Ciero P, ter Hoeve N, van Diest PJ, Raman V, Bishop AJR, Loeb DM. RNA Helicase DDX3 Regulates RAD51 Localization and DNA Damage Repair in Ewing Sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.10.544474. [PMID: 37333164 PMCID: PMC10274875 DOI: 10.1101/2023.06.10.544474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We previously demonstrated that RNA helicase DDX3X (DDX3) can be a therapeutic target in Ewing sarcoma (EWS), but its role in EWS biology remains unclear. The present work demonstrates that DDX3 plays a unique role in DNA damage repair (DDR). We show that DDX3 interacts with several proteins involved in homologous recombination, including RAD51, RECQL1, RPA32, and XRCC2. In particular, DDX3 colocalizes with RAD51 and RNA:DNA hybrid structures in the cytoplasm of EWS cells. Inhibition of DDX3 RNA helicase activity increases cytoplasmic RNA:DNA hybrids, sequestering RAD51 in the cytoplasm, which impairs nuclear translocation of RAD51 to sites of double-stranded DNA breaks thus increasing sensitivity of EWS to radiation treatment, both in vitro and in vivo. This discovery lays the foundation for exploring new therapeutic approaches directed at manipulating DDR protein localization in solid tumors.
Collapse
Affiliation(s)
- Matthew E. Randolph
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Marwa Afifi
- Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Aparna Gorthi
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX
| | - Rachel Weil
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Breelyn A. Wilky
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| | - Joshua Weinreb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
| | - Paul Ciero
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Natalie ter Hoeve
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | - Paul J. van Diest
- Department of Pathology, University Medical Centre Utrecht, The Netherlands
| | - Venu Raman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
- Department of Radiology, Johns Hopkins University, Baltimore, MD
- Department of Pharmacology, Johns Hopkins University, Baltimore, MD
| | - Alexander J. R. Bishop
- Greehey Children’s Cancer Research Institute and Department of Cell Systems & Anatomy, UT Health San Antonio, San Antonio, TX
| | - David M. Loeb
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD
| |
Collapse
|
15
|
Qin W, Liu Y, Xiao J, Chen N, Tu J, Wu H, Zhang Y, Feng H. DDX23 of black carp negatively regulates MAVS-mediated antiviral signaling in innate immune activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 146:104727. [PMID: 37164277 DOI: 10.1016/j.dci.2023.104727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/12/2023]
Abstract
Mammalian DDX23 is involved in multiple biological processes, such as RNA processing and antiviral responses. However, the function of teleost DDX23 still remains unclear. In this paper, we have cloned the DDX23 homologue of black carp (Mylopharyngodon piceus) (bcDDX23) and elucidated its role in the antiviral innate immunity. The coding region of bcDDX23 comprises 2427 nucleotides and encodes 809 amino acids. The transcription of bcDDX23 was promoted by the stimulation of LPS, poly(I:C), and SVCV; and immunoblotting (IB) assay showed that bcDDX23 migrated aground 94.5 kDa. Immunofluorescence (IF) assay revealed that bcDDX23 was mainly distributed in the nucleus, and the amount of cytosolic bcDDX23 was significantly increased after SVCV infection. The reporter assay showed that bcDDX23 inhibited bcMAVS-mediated transcription of the IFN promoter. And the co-immunoprecipitation (co-IP) assays identified the interaction between bcDDX23 and bcMAVS. Furthermore, co-expressed bcDDX23 significantly inhibited bcMAVS-mediated antiviral ability against SVCV in EPC cells, and knockdown of bcDDX23 enhanced the resistance of host cells against SVCV. Overall, our results conclude that bcDDX23 targets bcMAVS and suppresses MAVS-mediated IFN signaling, which sheds light on the regulation of IFN signaling in teleost fish.
Collapse
Affiliation(s)
- Wei Qin
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yankai Liu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| | - Nianfeng Chen
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jiagang Tu
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yongan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
16
|
Spens AE, Sutliff NA, Bennett SR, Campbell AE, Tapscott SJ. Human DUX4 and mouse Dux interact with STAT1 and broadly inhibit interferon-stimulated gene induction. eLife 2023; 12:e82057. [PMID: 37092726 PMCID: PMC10195082 DOI: 10.7554/elife.82057] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 04/21/2023] [Indexed: 04/25/2023] Open
Abstract
DUX4 activates the first wave of zygotic gene expression in the early embryo. Mis-expression of DUX4 in skeletal muscle causes facioscapulohumeral dystrophy (FSHD), whereas expression in cancers suppresses IFNγ induction of major histocompatibility complex class I (MHC class I) and contributes to immune evasion. We show that the DUX4 protein interacts with STAT1 and broadly suppresses expression of IFNγ-stimulated genes by decreasing bound STAT1 and Pol-II recruitment. Transcriptional suppression of interferon-stimulated genes (ISGs) requires conserved (L)LxxL(L) motifs in the carboxyterminal region of DUX4 and phosphorylation of STAT1 Y701 enhances interaction with DUX4. Consistent with these findings, expression of endogenous DUX4 in FSHD muscle cells and the CIC-DUX4 fusion containing the DUX4 CTD in a sarcoma cell line inhibit IFNγ induction of ISGs. Mouse Dux similarly interacted with STAT1 and suppressed IFNγ induction of ISGs. These findings identify an evolved role of the DUXC family in modulating immune signaling pathways with implications for development, cancers, and FSHD.
Collapse
Affiliation(s)
- Amy E Spens
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Nicholas A Sutliff
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Sean R Bennett
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Amy E Campbell
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical CampusDenverUnited States
| | - Stephen J Tapscott
- Human Biology Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Clinical Research Division, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Department of Neurology, University of WashingtonSeattleUnited States
| |
Collapse
|
17
|
Zhang D, Ding Z, Xu X. Pathologic Mechanisms of the Newcastle Disease Virus. Viruses 2023; 15:v15040864. [PMID: 37112843 PMCID: PMC10143668 DOI: 10.3390/v15040864] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/18/2023] [Accepted: 03/26/2023] [Indexed: 03/30/2023] Open
Abstract
Newcastle disease (ND) has been a consistent risk factor to the poultry industry worldwide. Its pathogen, Newcastle disease virus (NDV), is also a promising antitumor treatment candidate. The pathogenic mechanism has intrigued the great curiosity of researchers, and advances in the last two decades have been summarized in this paper. The NDV’s pathogenic ability is highly related to the basic protein structure of the virus, which is described in the Introduction of this review. The overall clinical signs and recent findings pertaining to NDV-related lymph tissue damage are then described. Given the involvement of cytokines in the overall virulence of NDV, cytokines, particularly IL6 and IFN expressed during infection, are reviewed. On the other hand, the host also has its way of antagonizing the virus, which starts with the detection of the pathogen. Thus, advances in NDV’s physiological cell mechanism and the subsequent IFN response, autophagy, and apoptosis are summarized to provide a whole picture of the NDV infection process.
Collapse
|
18
|
Lodola C, Secchi M, Sinigiani V, De Palma A, Rossi R, Perico D, Mauri PL, Maga G. Interaction of SARS-CoV-2 Nucleocapsid Protein and Human RNA Helicases DDX1 and DDX3X Modulates Their Activities on Double-Stranded RNA. Int J Mol Sci 2023; 24:ijms24065784. [PMID: 36982856 PMCID: PMC10058294 DOI: 10.3390/ijms24065784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/07/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The nucleocapsid protein Np of SARS-CoV-2 is involved in the replication, transcription, and packaging of the viral genome, but it also plays a role in the modulation of the host cell innate immunity and inflammation response. Ectopic expression of Np alone was able to induce significant changes in the proteome of human cells. The cellular RNA helicase DDX1 was among the proteins whose levels were increased by Np expression. DDX1 and its related helicase DDX3X were found to physically interact with Np and to increase 2- to 4-fold its affinity for double-stranded RNA in a helicase-independent manner. Conversely, Np inhibited the RNA helicase activity of both proteins. These functional interactions among Np and DDX1 and DDX3X highlight novel possible roles played by these host RNA helicases in the viral life cycle.
Collapse
Affiliation(s)
- Camilla Lodola
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Massimiliano Secchi
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Virginia Sinigiani
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| | - Antonella De Palma
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Rossana Rossi
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Davide Perico
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Pier Luigi Mauri
- Institute of Biomedical Technologies ITB-CNR, Via Fratelli Cervi 93, 20054 Segrate, MI, Italy
| | - Giovanni Maga
- Institute of Molecular Genetics IGM CNR "Luigi Luca Cavalli-Sforza", Via Abbiategrasso 207, 27100 Pavia, PV, Italy
| |
Collapse
|
19
|
Ren X, Wang D, Zhang G, Zhou T, Wei Z, Yang Y, Zheng Y, Lei X, Tao W, Wang A, Li M, Flavell RA, Zhu S. Nucleic DHX9 cooperates with STAT1 to transcribe interferon-stimulated genes. SCIENCE ADVANCES 2023; 9:eadd5005. [PMID: 36735791 PMCID: PMC9897671 DOI: 10.1126/sciadv.add5005] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 01/05/2023] [Indexed: 06/13/2023]
Abstract
RNA helicase DHX9 has been extensively characterized as a transcriptional regulator, which is consistent with its mostly nucleic localization. It is also involved in recognizing RNA viruses in the cytoplasm. However, there is no in vivo data to support the antiviral role of DHX9; meanwhile, as a nuclear protein, if and how nucleic DHX9 promotes antiviral immunity remains largely unknown. Here, we generated myeloid-specific and hepatocyte-specific DHX9 knockout mice and confirmed that DHX9 is crucial for host resistance to RNA virus infections in vivo. By additional knockout MAVS or STAT1 in DHX9-deficient mice, we demonstrated that nucleic DHX9 plays a positive role in regulating interferon-stimulated gene (ISG) expression downstream of type I interferon. Mechanistically, upon interferon stimulation, DHX9 is directly bound to STAT1 and recruits Pol II to the ISG promoter region to participate in STAT1-mediated transcription of ISGs. Collectively, these findings uncover an important role for nucleic DHX9 in antiviral immunity.
Collapse
Affiliation(s)
- Xingxing Ren
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, 230001 Hefei, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145 Guangzhou, China
| | - Decai Wang
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, 230001 Hefei, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Guorong Zhang
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, 230001 Hefei, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tingyue Zhou
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, 230001 Hefei, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Zheng Wei
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06510, USA
| | - Yi Yang
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06510, USA
| | - Yunjiang Zheng
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06510, USA
| | - Xuqiu Lei
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06510, USA
| | - Wanyin Tao
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, 230001 Hefei, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Anmin Wang
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, 230001 Hefei, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Mingsong Li
- Department of Gastroenterology, Third Affiliated Hospital of Guangzhou Medical University, 510145 Guangzhou, China
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06510, USA
- Howard Hughes Medical Institute, Yale University School of Medicine, 300 Cedar Street, New Haven, CT 06510, USA
| | - Shu Zhu
- Department of Digestive Disease, Division of Life Sciences and Medicine, The First Affiliated Hospital of University of Science and Technology of China, University of Science and Technology of China, 230001 Hefei, China
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- School of Data Science, University of Science and Technology of China, Hefei 230026, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| |
Collapse
|
20
|
Ahmed D, Al-Daraawi M, Cassol E. Innate sensing and cellular metabolism: role in fine tuning antiviral immune responses. J Leukoc Biol 2023; 113:164-190. [PMID: 36822175 DOI: 10.1093/jleuko/qiac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Indexed: 01/19/2023] Open
Abstract
Several studies over the last decade have identified intimate links between cellular metabolism and macrophage function. Metabolism has been shown to both drive and regulate macrophage function by producing bioenergetic and biosynthetic precursors as well as metabolites (and other bioactive molecules) that regulate gene expression and signal transduction. Many studies have focused on lipopolysaccharide-induced reprogramming, assuming that it is representative of most inflammatory responses. However, emerging evidence suggests that diverse pathogen-associated molecular patterns (PAMPs) are associated with unique metabolic profiles, which may drive pathogen specific immune responses. Further, these metabolic pathways and processes may act as a rheostat to regulate the magnitude of an inflammatory response based on the biochemical features of the local microenvironment. In this review, we will discuss recent work examining the relationship between cellular metabolism and macrophage responses to viral PAMPs and describe how these processes differ from lipopolysaccharide-associated responses. We will also discuss how an improved understanding of the specificity of these processes may offer new insights to fine-tune macrophage function during viral infections or when using viral PAMPs as therapeutics.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Malak Al-Daraawi
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.,Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
21
|
Liaisons dangereuses: Intrinsic Disorder in Cellular Proteins Recruited to Viral Infection-Related Biocondensates. Int J Mol Sci 2023; 24:ijms24032151. [PMID: 36768473 PMCID: PMC9917183 DOI: 10.3390/ijms24032151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/11/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is responsible for the formation of so-called membrane-less organelles (MLOs) that are essential for the spatio-temporal organization of the cell. Intrinsically disordered proteins (IDPs) or regions (IDRs), either alone or in conjunction with nucleic acids, are involved in the formation of these intracellular condensates. Notably, viruses exploit LLPS at their own benefit to form viral replication compartments. Beyond giving rise to biomolecular condensates, viral proteins are also known to partition into cellular MLOs, thus raising the question as to whether these cellular phase-separating proteins are drivers of LLPS or behave as clients/regulators. Here, we focus on a set of eukaryotic proteins that are either sequestered in viral factories or colocalize with viral proteins within cellular MLOs, with the primary goal of gathering organized, predicted, and experimental information on these proteins, which constitute promising targets for innovative antiviral strategies. Using various computational approaches, we thoroughly investigated their disorder content and inherent propensity to undergo LLPS, along with their biological functions and interactivity networks. Results show that these proteins are on average, though to varying degrees, enriched in disorder, with their propensity for phase separation being correlated, as expected, with their disorder content. A trend, which awaits further validation, tends to emerge whereby the most disordered proteins serve as drivers, while more ordered cellular proteins tend instead to be clients of viral factories. In light of their high disorder content and their annotated LLPS behavior, most proteins in our data set are drivers or co-drivers of molecular condensation, foreshadowing a key role of these cellular proteins in the scaffolding of viral infection-related MLOs.
Collapse
|
22
|
Kang SM, Park JY, Han HJ, Song BM, Tark D, Choi BS, Hwang SB. Hepatitis C Virus Nonstructural Protein 5A Interacts with Immunomodulatory Kinase IKKε to Negatively Regulate Innate Antiviral Immunity. Mol Cells 2022; 45:702-717. [PMID: 35993162 PMCID: PMC9589372 DOI: 10.14348/molcells.2022.0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/23/2022] [Accepted: 05/23/2022] [Indexed: 11/27/2022] Open
Abstract
Hepatitis C virus (HCV) infection can lead to chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. HCV employs diverse strategies to evade host antiviral innate immune responses to mediate a persistent infection. In the present study, we show that nonstructural protein 5A (NS5A) interacts with an NF-κB inhibitor immunomodulatory kinase, IKKε, and subsequently downregulats beta interferon (IFN-β) promoter activity. We further demonstrate that NS5A inhibits DDX3-mediated IKKε and interferon regulatory factor 3 (IRF3) phosphorylation. We also note that hyperphosphorylation of NS5A mediats protein interplay between NS5A and IKKε, thereby contributing to NS5A-mediated modulation of IFN-β signaling. Lastly, NS5A inhibits IKKε-dependent p65 phosphorylation and NF-κB activation. Based on these findings, we propose NS5A as a novel regulator of IFN signaling events, specifically by inhibiting IKKε downstream signaling cascades through its interaction with IKKε. Taken together, these data suggest an additional mechanistic means by which HCV modulates host antiviral innate immune responses to promote persistent viral infection.
Collapse
Affiliation(s)
- Sang-Min Kang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
- Division of Chronic Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Ji-Young Park
- Division of Chronic Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
- Department of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Korea
| | - Hee-Jeong Han
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Byeong-Min Song
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
| | - Byeong-Sun Choi
- Division of Chronic Viral Disease, Center for Emerging Virus Research, National Institute of Infectious Diseases, National Institute of Health, Korea Disease Control and Prevention Agency, Cheongju 28159, Korea
| | - Soon B. Hwang
- Laboratory of RNA Viral Diseases, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Korea
- Ilsong Institute of Life Science, Hallym University, Seoul 07247, Korea
| |
Collapse
|
23
|
Coales I, Tsartsalis S, Fancy N, Weinert M, Clode D, Owen D, Matthews PM. Alzheimer's disease-related transcriptional sex differences in myeloid cells. J Neuroinflammation 2022; 19:247. [PMID: 36199077 PMCID: PMC9535846 DOI: 10.1186/s12974-022-02604-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/21/2022] [Indexed: 11/30/2022] Open
Abstract
Sex differences have been identified in many diseases associated with dysregulated immune responses, including Alzheimer's disease (AD), for which approximately two-thirds of patients are women. An accumulating body of research indicates that microglia may play a causal role in the pathogenesis of this disease. We hypothesised that sex differences in the transcriptome of human myeloid cells may contribute to the sex difference observed in AD prevalence. To explore this, we assessed bulk and single-nuclear RNA sequencing data sets generated from four human derived myeloid cell populations: post-mortem microglial nuclei, peripheral monocytes, monocyte-derived macrophages (MDMs) and induced pluripotent stem cell derived microglial-like cells (MGLs). We found that expression of AD risk genes, gene signatures associated with the inflammatory response in AD, and genes related to proinflammatory immune responses were enriched in microglial nuclei isolated from aged female donors without ante-mortem neurological disease, relative to those from males. In addition, these inflammation-associated gene sets were found to be enriched in peripheral monocytes isolated from postmenopausal women and in MDMs obtained from premenopausal individuals relative to age-matched males. Expression of these gene sets did not differ in MDMs derived from women whose blood was sampled across the menstrual cycle or in MGLs cultured with 17β-oestradiol. This suggests that the observed gene set enrichments in myeloid cells from women were not being driven by acute hormonal influences. Together, these data support the hypothesis that the increased prevalence of AD in women may be partly explained by a myeloid cell phenotype biased towards expression of biological processes relevant to AD.
Collapse
Affiliation(s)
- Isabelle Coales
- Department of Brain Sciences, Imperial College London, London, UK
- Centre for Host Microbiome Interactions, King's College London, London, SE1 9RT, UK
| | - Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Nurun Fancy
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Centre at Imperial College London, London, UK
| | - Maria Weinert
- Department of Brain Sciences, Imperial College London, London, UK
| | - Daniel Clode
- UK Dementia Research Centre at Imperial College London, London, UK
| | - David Owen
- Department of Brain Sciences, Imperial College London, London, UK.
- Clinical Research Facility, Hammersmith Hospital, ICTM Building, DuCane Road, London, W12 0NN, UK.
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Centre at Imperial College London, London, UK.
- Hammersmith Hospital, E502, Burlington Danes Building, DuCane Road, London, W12 0NN, UK.
| |
Collapse
|
24
|
Harris J, Borg NA. The multifaceted roles of NLRP3-modulating proteins in virus infection. Front Immunol 2022; 13:987453. [PMID: 36110852 PMCID: PMC9468583 DOI: 10.3389/fimmu.2022.987453] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/11/2022] [Indexed: 12/14/2022] Open
Abstract
The innate immune response to viruses is critical for the correct establishment of protective adaptive immunity. Amongst the many pathways involved, the NLRP3 [nucleotide-binding oligomerisation domain (NOD)-like receptor protein 3 (NLRP3)] inflammasome has received considerable attention, particularly in the context of immunity and pathogenesis during infection with influenza A (IAV) and SARS-CoV-2, the causative agent of COVID-19. Activation of the NLRP3 inflammasome results in the secretion of the proinflammatory cytokines IL-1β and IL-18, commonly coupled with pyroptotic cell death. While this mechanism is protective and key to host defense, aberrant NLRP3 inflammasome activation causes a hyperinflammatory response and excessive release of cytokines, both locally and systemically. Here, we discuss key molecules in the NLRP3 pathway that have also been shown to have significant roles in innate and adaptive immunity to viruses, including DEAD box helicase X-linked (DDX3X), vimentin and macrophage migration inhibitory factor (MIF). We also discuss the clinical opportunities to suppress NLRP3-mediated inflammation and reduce disease severity.
Collapse
Affiliation(s)
- James Harris
- Cell Biology Assays Team, Biomedical Manufacturing, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, VIC, Australia
- Centre for Inflammatory diseases, Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Natalie A. Borg
- Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
25
|
Xie J, Li X, Yang S, Yan Z, Chen L, Yang Y, Li D, Zhang X, Feng R. DDX56 inhibits PRV replication through regulation of IFN-β signaling pathway by targeting cGAS. Front Microbiol 2022; 13:932842. [PMID: 36090064 PMCID: PMC9450509 DOI: 10.3389/fmicb.2022.932842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudorabies virus (PRV) is an agent of Aujeszky's disease, and causes great economic losses to pig farming. Re-outburst of pseudorabies implies that new control measures are urgently needed. We show here that DDX56 possesses the ability to inhibit PRV replication in vitro, which may be an important factor for PRV infection. Overexpression of DDX56 inhibited PRV genomic DNA transcription and lower titers of PRV infection in PK15 cells, whereas down-regulation of the DDX56 expression had a promotion role on virus replication. Further study demonstrated that DDX56 exerted its proliferation-inhibitory effects of PRV through up-regulating cGAS-STING-induced IFN-β expression. Moreover, we found that DDX56 could promote cGAS expression and direct interaction also existed between DDX56 and cGAS. Based on this, DDX56-regulated IFN-β pathway may be targeted at cGAS. To verify this, down-regulated cGAS expression in DDX56 over-expression cells was performed. Results indicated that knockdown of cGAS expression could abrogate the inhibition role of DDX56 on PRV proliferation and weaken the effect of DDX56 on IFN-β expression. In addition, DDX56 played a promotion role in IRF3 phosphorylation and nucleus translocation. Altogether, our results highlight DDX56's antiviral role in PRV infection, and our findings contribute to a better understanding of host factors controlling PRV replication.
Collapse
Affiliation(s)
- Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Shunyu Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Zhenfang Yan
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Lei Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yanmei Yang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Dianyu Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
- *Correspondence: Ruofei Feng
| |
Collapse
|
26
|
Bonaventure B, Goujon C. DExH/D-box helicases at the frontline of intrinsic and innate immunity against viral infections. J Gen Virol 2022; 103. [PMID: 36006669 DOI: 10.1099/jgv.0.001766] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
Abstract
DExH/D-box helicases are essential nucleic acid and ribonucleoprotein remodelers involved in all aspects of nucleic acid metabolism including replication, gene expression and post-transcriptional modifications. In parallel to their importance in basic cellular functions, DExH/D-box helicases play multiple roles in viral life cycles, with some of them highjacked by viruses or negatively regulating innate immune activation. However, other DExH/D-box helicases have recurrently been highlighted as direct antiviral effectors or as positive regulators of innate immune activation. Innate immunity relies on the ability of Pathogen Recognition Receptors to recognize viral signatures and trigger the production of interferons (IFNs) and pro-inflammatory cytokines. Secreted IFNs interact with their receptors to establish antiviral cellular reprogramming via expression regulation of the interferon-stimulated genes (ISGs). Several DExH/D-box helicases have been reported to act as viral sensors (DDX3, DDX41, DHX9, DDX1/DDX21/DHX36 complex), and others to play roles in innate immune activation (DDX60, DDX60L, DDX23). In contrast, the DDX39A, DDX46, DDX5 and DDX24 helicases act as negative regulators and impede IFN production upon viral infection. Beyond their role in viral sensing, the ISGs DDX60 and DDX60L act as viral inhibitors. Interestingly, the constitutively expressed DEAD-box helicases DDX56, DDX17, DDX42 intrinsically restrict viral replication. Hence, DExH/D-box helicases appear to form a multilayer network of primary and secondary factors involved in both intrinsic and innate antiviral immunity. In this review, we highlight recent findings on the extent of antiviral defences played by helicases and emphasize the need to better understand their immune functions as well as their complex interplay.
Collapse
Affiliation(s)
- Boris Bonaventure
- IRIM, CNRS, Montpellier University, France.,Present address: Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | |
Collapse
|
27
|
Brai A, Trivisani CI, Poggialini F, Pasqualini C, Vagaggini C, Dreassi E. DEAD-Box Helicase DDX3X as a Host Target against Emerging Viruses: New Insights for Medicinal Chemical Approaches. J Med Chem 2022; 65:10195-10216. [PMID: 35899912 DOI: 10.1021/acs.jmedchem.2c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In recent years, globalization, global warming, and population aging have contributed to the spread of emerging viruses, such as coronaviruses (COVs), West Nile (WNV), Dengue (DENV), and Zika (ZIKV). The number of reported infections is increasing, and considering the high viral mutation rate, it is conceivable that it will increase significantly in the coming years. The risk caused by viruses is now more evident due to the COVID-19 pandemic, which highlighted the need to find new broad-spectrum antiviral agents able to tackle the present pandemic and future epidemics. DDX3X helicase is a host factor required for viral replication. Selective inhibitors have been identified and developed into broad-spectrum antivirals active against emerging pathogens, including SARS-CoV-2 and most importantly against drug-resistant strains. This perspective describes the inhibitors identified in the last years, highlighting their therapeutic potential as innovative broad-spectrum antivirals.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | | | - Federica Poggialini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Claudia Pasqualini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Chiara Vagaggini
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| | - Elena Dreassi
- Department of Biotechnology, Chemistry & Pharmacy, University of Siena, I-53100 Siena Italy
| |
Collapse
|
28
|
Kwon J, Choi H, Han C. A Dual Role of DDX3X in dsRNA-Derived Innate Immune Signaling. Front Mol Biosci 2022; 9:912727. [PMID: 35874614 PMCID: PMC9299366 DOI: 10.3389/fmolb.2022.912727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022] Open
Abstract
DEAD-Box Helicase 3 X-Linked (DDX3X) is essential for RNA metabolism and participates in various cellular processes involving RNA. DDX3X has been implicated in cancer growth and metastasis. DDX3X is involved in antiviral responses for viral RNAs and contributes to pro- or anti-microbial responses. A better understanding of how human cells regulate innate immune response against the viral “non-self” double-stranded RNAs (dsRNAs) and endogenous viral-like “self” dsRNAs is critical to understanding innate immune sensing, anti-microbial immunity, inflammation, immune cell homeostasis, and developing novel therapeutics for infectious, immune-mediated diseases, and cancer. DDX3X has known for activating the viral dsRNA-sensing pathway and innate immunity. However, accumulating research reveals a more complex role of DDX3X in regulating dsRNA-mediated signaling in cells. Here, we discuss the role of DDX3X in viral dsRNA- or endogenous dsRNA-mediated immune signaling pathways.
Collapse
Affiliation(s)
- Juntae Kwon
- Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States
| | - Hyeongjwa Choi
- Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea
| | - Cecil Han
- Department of Oncology, Georgetown University School of Medicine, Washington, DC, United States.,Lombardi Comprehensive Cancer Center, Washington, DC, United States
| |
Collapse
|
29
|
Loh D, Reiter RJ. Melatonin: Regulation of Viral Phase Separation and Epitranscriptomics in Post-Acute Sequelae of COVID-19. Int J Mol Sci 2022; 23:8122. [PMID: 35897696 PMCID: PMC9368024 DOI: 10.3390/ijms23158122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/09/2022] [Accepted: 07/20/2022] [Indexed: 01/27/2023] Open
Abstract
The relentless, protracted evolution of the SARS-CoV-2 virus imposes tremendous pressure on herd immunity and demands versatile adaptations by the human host genome to counter transcriptomic and epitranscriptomic alterations associated with a wide range of short- and long-term manifestations during acute infection and post-acute recovery, respectively. To promote viral replication during active infection and viral persistence, the SARS-CoV-2 envelope protein regulates host cell microenvironment including pH and ion concentrations to maintain a high oxidative environment that supports template switching, causing extensive mitochondrial damage and activation of pro-inflammatory cytokine signaling cascades. Oxidative stress and mitochondrial distress induce dynamic changes to both the host and viral RNA m6A methylome, and can trigger the derepression of long interspersed nuclear element 1 (LINE1), resulting in global hypomethylation, epigenetic changes, and genomic instability. The timely application of melatonin during early infection enhances host innate antiviral immune responses by preventing the formation of "viral factories" by nucleocapsid liquid-liquid phase separation that effectively blockades viral genome transcription and packaging, the disassembly of stress granules, and the sequestration of DEAD-box RNA helicases, including DDX3X, vital to immune signaling. Melatonin prevents membrane depolarization and protects cristae morphology to suppress glycolysis via antioxidant-dependent and -independent mechanisms. By restraining the derepression of LINE1 via multifaceted strategies, and maintaining the balance in m6A RNA modifications, melatonin could be the quintessential ancient molecule that significantly influences the outcome of the constant struggle between virus and host to gain transcriptomic and epitranscriptomic dominance over the host genome during acute infection and PASC.
Collapse
Affiliation(s)
- Doris Loh
- Independent Researcher, Marble Falls, TX 78654, USA;
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
30
|
Hu M, Zheng H, Wu J, Sun Y, Wang T, Chen S. DDX5: an expectable treater for viral infection- a literature review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:712. [PMID: 35845539 PMCID: PMC9279824 DOI: 10.21037/atm-22-2375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 06/21/2022] [Indexed: 11/06/2022]
Abstract
Background and Objective DEAD-box protein (DDX)5 plays important roles in multiple aspects of cellular processes that require modulating RNA structure. Alongside the canonical role of DDX5 in RNA metabolism, many reports have shown that DDX5 influences viral infection by directly interacting with viral proteins. However, the functional role of DDX5 in virus-associated cancers, as well as the identity of DDX5 in virus infection-associated signaling pathways, has remained largely unexplained. Here, we further explore the precise functions of DDX5 and its potential targets for antiviral treatment. Methods We searched the PubMed and PMC databases to identify studies on role of DDXs, especially DDX5, during various viral infection published up to May 2022. Key Content and Findings DDX5 functions as both a viral infection helper and inhibitor, which depends on virus type. DDXs proteins have been identified to play roles on multiple aspects covering RNA metabolism and function. Conclusions DDX5 influences viral pathogenesis by participating in viral replication and multiple viral infection-related signaling pathways, it also plays a double-edge sword role under different viral infection conditions. Deep investigation into the mechanism of DDX5 modulating immune response in host cells revealed that it holds highly potential usage for future antiviral therapy. We reviewed current studies to provide a comprehensive update of the role of DDX5 in viral infection.
Collapse
Affiliation(s)
- Minghui Hu
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao China
| | - Hongying Zheng
- Clinical Lab, The Affiliated Hospital of Qingdao University, Qingdao China
| | - Jingqi Wu
- Microbiology Department, Harbin Medical University, Harbin, China
| | - Yue Sun
- School of Public Health, Harbin Medical University, Harbin, China
| | - Tianying Wang
- Clinical Research Center, Qingdao Municipal Hospital, Qingdao, China
| | - Shuang Chen
- Clinical Lab, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
31
|
Airo AM, Felix-Lopez A, Mancinelli V, Evseev D, Lopez-Orozco J, Shire K, Paszkowski P, Frappier L, Magor KE, Hobman TC. Flavivirus Capsid Proteins Inhibit the Interferon Response. Viruses 2022; 14:v14050968. [PMID: 35632712 PMCID: PMC9146811 DOI: 10.3390/v14050968] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/15/2022] [Accepted: 04/27/2022] [Indexed: 02/05/2023] Open
Abstract
Zika virus (ZIKV) establishes persistent infections in multiple human tissues, a phenomenon that likely plays a role in its ability to cause congenital birth defects and neurological disease. Multiple nonstructural proteins encoded by ZIKV, in particular NS5, are known to suppress the interferon (IFN) response by attacking different steps in this critical antiviral pathway. Less well known are the potential roles of structural proteins in affecting the host immune response during ZIKV infection. Capsid proteins of flaviviruses are of particular interest because a pool of these viral proteins is targeted to the nuclei during infection and, as such, they have the potential to affect host cell gene expression. In this study, RNA-seq analyses revealed that capsid proteins from six different flaviviruses suppress expression of type I IFN and IFN-stimulated genes. Subsequent interactome and in vitro ubiquitination assays showed that ZIKV capsid protein binds to and prevents activating ubiquitination of RIG-I CARD domains by TRIM25, a host factor that is important for the induction arm of the IFN response. The other flavivirus capsid proteins also interacted with TRIM25, suggesting that these viral proteins may attenuate antiviral signaling pathways at very early stages of infection, potentially even before nonstructural proteins are produced.
Collapse
Affiliation(s)
- Adriana M. Airo
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.M.A.); (A.F.-L.); (P.P.)
| | - Alberto Felix-Lopez
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.M.A.); (A.F.-L.); (P.P.)
| | - Valeria Mancinelli
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada;
| | - Danyel Evseev
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (D.E.); (K.E.M.)
| | - Joaquin Lopez-Orozco
- High Content Analysis Core, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | - Kathy Shire
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada; (K.S.); (L.F.)
| | - Patrick Paszkowski
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.M.A.); (A.F.-L.); (P.P.)
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1M1, Canada; (K.S.); (L.F.)
| | - Katharine E. Magor
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; (D.E.); (K.E.M.)
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Tom C. Hobman
- Department of Medical Microbiology & Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (A.M.A.); (A.F.-L.); (P.P.)
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7, Canada;
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Correspondence: ; Tel.: +1-780-492-6485
| |
Collapse
|
32
|
Köferle A, Schlattl A, Hörmann A, Thatikonda V, Popa A, Spreitzer F, Ravichandran MC, Supper V, Oberndorfer S, Puchner T, Wieshofer C, Corcokovic M, Reiser C, Wöhrle S, Popow J, Pearson M, Martinez J, Weitzer S, Mair B, Neumüller RA. Interrogation of cancer gene dependencies reveals paralog interactions of autosome and sex chromosome-encoded genes. Cell Rep 2022; 39:110636. [PMID: 35417719 DOI: 10.1016/j.celrep.2022.110636] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 12/22/2021] [Accepted: 03/16/2022] [Indexed: 02/07/2023] Open
Abstract
Genetic networks are characterized by extensive buffering. During tumor evolution, disruption of functional redundancies can create de novo vulnerabilities that are specific to cancer cells. Here, we systematically search for cancer-relevant paralog interactions using CRISPR screens and publicly available loss-of-function datasets. Our analysis reveals >2,000 candidate dependencies, several of which we validate experimentally, including CSTF2-CSTF2T, DNAJC15-DNAJC19, FAM50A-FAM50B, and RPP25-RPP25L. We provide evidence that RPP25L can physically and functionally compensate for the absence of RPP25 as a member of the RNase P/MRP complexes in tRNA processing. Our analysis also reveals unexpected redundancies between sex chromosome genes. We show that chrX- and chrY-encoded paralogs, such as ZFX-ZFY, DDX3X-DDX3Y, and EIF1AX-EIF1AY, are functionally linked. Tumor cell lines from male patients with loss of chromosome Y become dependent on the chrX-encoded gene. We propose targeting of chrX-encoded paralogs as a general therapeutic strategy for human tumors that have lost the Y chromosome.
Collapse
Affiliation(s)
- Anna Köferle
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Andreas Schlattl
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Alexandra Hörmann
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Venu Thatikonda
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Alexandra Popa
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Fiona Spreitzer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | | | - Verena Supper
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Sarah Oberndorfer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Teresa Puchner
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Corinna Wieshofer
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Maja Corcokovic
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Christoph Reiser
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Simon Wöhrle
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Johannes Popow
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Mark Pearson
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria
| | - Javier Martinez
- Max Perutz Labs, Medical University of Vienna, Vienna BioCenter (VBC), Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Stefan Weitzer
- Max Perutz Labs, Medical University of Vienna, Vienna BioCenter (VBC), Dr. Bohr-Gasse 9/2, 1030 Vienna, Austria
| | - Barbara Mair
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria.
| | - Ralph A Neumüller
- Boehringer Ingelheim RCV GmbH & Co KG, Doktor-Boehringer-Gasse 5-11, 1120 Vienna, Austria.
| |
Collapse
|
33
|
Chan CP, Jin DY. Cytoplasmic RNA sensors and their interplay with RNA-binding partners in innate antiviral response: theme and variations. RNA (NEW YORK, N.Y.) 2022; 28:449-477. [PMID: 35031583 PMCID: PMC8925969 DOI: 10.1261/rna.079016.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sensing of pathogen-associated molecular patterns including viral RNA by innate immunity represents the first line of defense against viral infection. In addition to RIG-I-like receptors and NOD-like receptors, several other RNA sensors are known to mediate innate antiviral response in the cytoplasm. Double-stranded RNA-binding protein PACT interacts with prototypic RNA sensor RIG-I to facilitate its recognition of viral RNA and induction of host interferon response, but variations of this theme are seen when the functions of RNA sensors are modulated by other RNA-binding proteins to impinge on antiviral defense, proinflammatory cytokine production and cell death programs. Their discrete and coordinated actions are crucial to protect the host from infection. In this review, we will focus on cytoplasmic RNA sensors with an emphasis on their interplay with RNA-binding partners. Classical sensors such as RIG-I will be briefly reviewed. More attention will be brought to new insights on how RNA-binding partners of RNA sensors modulate innate RNA sensing and how viruses perturb the functions of RNA-binding partners.
Collapse
Affiliation(s)
- Chi-Ping Chan
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| | - Dong-Yan Jin
- School of Biomedical Sciences and State Key Laboratory of Liver Research, Faculty of Medicine Building, Pokfulam, Hong Kong
| |
Collapse
|
34
|
The RNA helicase DDX3 promotes IFNB transcription via enhancing IRF-3/p300 holocomplex binding to the IFNB promoter. Sci Rep 2022; 12:3967. [PMID: 35273248 PMCID: PMC8913847 DOI: 10.1038/s41598-022-07876-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 02/25/2022] [Indexed: 12/14/2022] Open
Abstract
The human DEAD-box protein 3 (DDX3) has been reported as a positive regulator and functions in the induction of type I interferon signaling. We elucidated the function of DDX3 in the positive regulation of IFNB production in non-pDC cells. We found that DDX3 regulates virus-induced activation of IFNB at the level of IRF-3. However, it does not affect conventional innate signaling, including IRF-3 phosphorylation, dimerization, or nuclear translocation of IRF-3, but has some downstream events after IRF-3 phosphorylation. Co-immunoprecipitation analyses revealed that DDX3 interacts with IRF-3 through its DNA-binding domain and promotes IRF-3-mediated IFNB promoter activation. DDX3 does not affect the formation of the IRF-3/p300/CBP complex. Instead, ChIP and EMSA assay revealed that DDX3 promotes the recruitment of IRF-3 and transcriptional co-activator p300/CBP to the IFNB promoter. The ATP binding pocket of DDX3 is involved in this association and is essential for the transcriptional activation. Taken together, our study demonstrates that DDX3 plays an important role in guiding a transcription factor complex formed by antiviral signaling to the target gene promoter.
Collapse
|
35
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
36
|
De Colibus L, Stunnenberg M, Geijtenbeek TB. DDX3X structural analysis: Implications in the pharmacology and innate immunity. CURRENT RESEARCH IN IMMUNOLOGY 2022; 3:100-109. [PMID: 35647523 PMCID: PMC9133689 DOI: 10.1016/j.crimmu.2022.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The human DEAD-Box Helicase 3 X-Linked (DDX3X) is an ATP-dependent RNA helicase involved in virtually every step of RNA metabolism, ranging from transcription regulation in the nucleus to translation initiation and stress granule (SG) formation, and plays crucial roles in innate immunity, as well as tumorigenesis and viral infections. This review discusses latest advances in DDX3X biology and structure-function relationship, including the implications of the recent DDX3X crystal structure in complex with double stranded RNA for RNA metabolism, DDX3X involvement in the cross-talk between innate immune responses and cell stress adaptation, and the roles of DDX3X in controlling cell fate. The human DDX3X, an ATP-dependent RNA helicase, plays a central role in a variety of cellular processes involving RNA. DDX3X is implicated in antiviral signalling pathways. DDX3X interacts with full-length NLRP3 and its NACHT domain. The recent crystal structure of DDX3X in complex with dsRNA offers a model for understanding its binding to the HIV-1 TAR hairpin sequence.
Collapse
|
37
|
Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2. Cell Res 2022; 32:9-23. [PMID: 34737357 PMCID: PMC8566969 DOI: 10.1038/s41422-021-00581-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
In contrast to the extensive research about viral protein-host protein interactions that has revealed major insights about how RNA viruses engage with host cells during infection, few studies have examined interactions between host factors and viral RNAs (vRNAs). Here, we profiled vRNA-host protein interactomes for three RNA virus pathogens (SARS-CoV-2, Zika, and Ebola viruses) using ChIRP-MS. Comparative interactome analyses discovered both common and virus-specific host responses and vRNA-associated proteins that variously promote or restrict viral infection. In particular, SARS-CoV-2 binds and hijacks the host factor IGF2BP1 to stabilize vRNA and augment viral translation. Our interactome-informed drug repurposing efforts identified several FDA-approved drugs (e.g., Cepharanthine) as broad-spectrum antivirals in cells and hACE2 transgenic mice. A co-treatment comprising Cepharanthine and Trifluoperazine was highly potent against the newly emerged SARS-CoV-2 B.1.351 variant. Thus, our study illustrates the scientific and medical discovery utility of adopting a comparative vRNA-host protein interactome perspective.
Collapse
|
38
|
Xu S, Xie J, Zhang X, Chen L, Bi Y, Li X, Idris A, Feng R. DDX56 antagonizes IFN-β production to enhance EMCV replication by inhibiting IRF3 nuclear translocation. Vet Microbiol 2021; 264:109304. [PMID: 34922148 DOI: 10.1016/j.vetmic.2021.109304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 12/23/2022]
Abstract
DEAD (Asp-Glu-Ala-Asp)-box RNA helicases (DDX) play important roles in viral infection, either as cytosolic viral nucleic acids sensors or as essential host factors for viral replication. In this study, we identified DDX56 as a positive regulator for encephalomyocarditis virus (EMCV) replication. EMCV infection promotes DDX56 expression via its viral proteins, VP3 and 3C. We showed that DDX56 overexpression promotes EMCV replication whereas its loss dampened EMCV replication. Consequently, knockdown of DDX56 increases type I interferon (IFN) expression during EMCV infection. We also showed that DDX56 interrupts IFN regulatory factor 3 (IRF3) phosphorylation and its nucleus translocation by directly targeting KPNA3 and KPNA4 in an EMCV-triggered MDA5 signaling activation cascade leading to the blockade of IFN-β production. Overall, we showed that DDX56 is a novel negative regulator of EMCV-mediated IFN-β responses and that DDX56 plays a critical role in EMCV replication. These findings reveal a novel strategy for EMCV to utilize a host factor to evade the host innate immune response and provide us new insight into the function of DDX56.
Collapse
Affiliation(s)
- Shujuan Xu
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Jingying Xie
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiangbo Zhang
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Lei Chen
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Yingjie Bi
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Xiangrong Li
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China
| | - Adi Idris
- Menzies Health Institute Queensland, School of Pharmacy and Medical Science, Griffith University, Southport, Queensland, Australia
| | - Ruofei Feng
- Key Laboratory of Biotechnology and Bioengineering of State Ethnic Affairs Commission, Biomedical Research Center, Northwest Minzu University, Lanzhou, China; Gansu Tech Innovation Center of Animal Cell, Biomedical Research Center, Northwest Minzu University, Lanzhou, China.
| |
Collapse
|
39
|
DEAD/H-box helicases:Anti-viral and pro-viral roles during infections. Virus Res 2021; 309:198658. [PMID: 34929216 DOI: 10.1016/j.virusres.2021.198658] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/26/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
DEAD/H-box RNA helicases make the prominent family of helicases super family-2 which take part in almost all RNA-related processes, from initiation of transcription to RNA decay pathways. In addition to these RNA-related activities, in recent years a certain number of these helicases are reported to play important roles in anti-viral immunity through various ways. Along with RLHs, endosomal TLRs, and cytosolic DNA receptors, many RNA helicases including DDX3, DHX9, DDX6, DDX41, DHX33, DDX60, DHX36 and DDX1-DDX21-DHX36 complex act as viral nucleic acid sensors or co-sensors. These helicases mostly follow RLHs-MAVS and STING mediated signaling cascades to trigger induction of type-I interferons and pro-inflammatory cytokines. Many of them also function as downstream adaptor molecules (DDX3), segments of stress and processing bodies (DDX3 and DDX6) or negative regulators (DDX19, DDX24, DDX25, DDX39A and DDX46). On the contrary, many studies indicated that several DEAD/H-box helicases such as DDX1, DDX3, DDX6, DDX24, and DHX9 could be exploited by viruses to evade innate immune responses, suggesting that these helicases seem to have a dual function as anti-viral innate immune mediators and viral replication cofactors. In this review, we summarized the current knowledge on several representative DEAD/H-box helicases, with an emphasis on their functions in innate immunity responses, involved in their anti-viral and pro-viral roles.
Collapse
|
40
|
Su C, Tang YD, Zheng C. DExD/H-box helicases: multifunctional regulators in antiviral innate immunity. Cell Mol Life Sci 2021; 79:2. [PMID: 34910251 PMCID: PMC8671602 DOI: 10.1007/s00018-021-04072-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/29/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
DExD/H-box helicases play critical roles in multiple cellular processes, including transcription, cellular RNA metabolism, translation, and infections. Several seminal studies over the past decades have delineated the distinct functions of DExD/H-box helicases in regulating antiviral innate immune signaling pathways, including Toll-like receptors, retinoic acid-inducible gene I-like receptors, cyclic GMP-AMP synthase-the stimulator of interferon gene, and NOD-like receptors signaling pathways. Besides the prominent regulatory roles, there is increasing attention on their functions as nucleic acid sensors involved in antiviral innate immunity. Here we summarize the complex regulatory roles of DExD/H-box helicases in antiviral innate immunity. A better understanding of the underlying molecular mechanisms of DExD/H-box helicases' regulatory roles is vital for developing new therapeutics targeting DExD/H-box helicases and their mediated signaling transduction in viral infectious diseases.
Collapse
Affiliation(s)
- Chenhe Su
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- The Wistar Institute, Philadelphia, PA, USA
| | - Yan-Dong Tang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of Chinese Academy of Agricultural Sciences, Harbin, China
| | - Chunfu Zheng
- Department of Immunology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China.
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
41
|
Liu HM. Intracellular innate immunity and mechanism of action of cytosolic nucleic acid receptor-mediated type I IFN against viruses. IUBMB Life 2021; 74:180-189. [PMID: 34500496 DOI: 10.1002/iub.2551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/19/2021] [Accepted: 08/23/2021] [Indexed: 11/05/2022]
Abstract
The induction of type I interferons (IFN) is critical for antiviral innate immune response. The rapid activation of antiviral innate immune responses is the key to successful clearance of evading pathogens. To achieve this, a series of proteins, including the pathogen recognition receptors (PRRs), the adaptor proteins, the accessory proteins, kinases, and the transcription factors, are all involved and finely orchestrated. The magnitude and latitude of type I IFN induction however are distinctly regulated in different tissues. A set of interferon simulated genes (ISGs) are then expressed in response to type I IFN signaling to set the cells in the antiviral state. In this review, how type I IFN is induced by viral infections by intracellular PRRs and how type I IFN triggers the expression of downstream effectors will be discussed.
Collapse
Affiliation(s)
- Helene Minyi Liu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei City, Taiwan
| |
Collapse
|
42
|
Atkinson SC, Heaton SM, Audsley MD, Kleifeld O, Borg NA. TRIM25 and DEAD-Box RNA Helicase DDX3X Cooperate to Regulate RIG-I-Mediated Antiviral Immunity. Int J Mol Sci 2021; 22:9094. [PMID: 34445801 PMCID: PMC8396550 DOI: 10.3390/ijms22169094] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022] Open
Abstract
The cytoplasmic retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs) initiate interferon (IFN) production and antiviral gene expression in response to RNA virus infection. Consequently, RLR signalling is tightly regulated by both host and viral factors. Tripartite motif protein 25 (TRIM25) is an E3 ligase that ubiquitinates multiple substrates within the RLR signalling cascade, playing both ubiquitination-dependent and -independent roles in RIG-I-mediated IFN induction. However, additional regulatory roles are emerging. Here, we show a novel interaction between TRIM25 and another protein in the RLR pathway that is essential for type I IFN induction, DEAD-box helicase 3X (DDX3X). In vitro assays and knockdown studies reveal that TRIM25 ubiquitinates DDX3X at lysine 55 (K55) and that TRIM25 and DDX3X cooperatively enhance IFNB1 induction following RIG-I activation, but the latter is independent of TRIM25's catalytic activity. Furthermore, we found that the influenza A virus non-structural protein 1 (NS1) disrupts the TRIM25:DDX3X interaction, abrogating both TRIM25-mediated ubiquitination of DDX3X and cooperative activation of the IFNB1 promoter. Thus, our results reveal a new interplay between two RLR-host proteins that cooperatively enhance IFN-β production. We also uncover a new and further mechanism by which influenza A virus NS1 suppresses host antiviral defence.
Collapse
Affiliation(s)
- Sarah C. Atkinson
- Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (S.C.A.); (M.D.A.)
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| | - Steven M. Heaton
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| | - Michelle D. Audsley
- Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (S.C.A.); (M.D.A.)
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| | - Oded Kleifeld
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel;
| | - Natalie A. Borg
- Immunity and Immune Evasion Laboratory, Chronic Infectious and Inflammatory Diseases Research, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (S.C.A.); (M.D.A.)
- Infection & Immunity Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia;
| |
Collapse
|
43
|
Xing J, Zhou X, Fang M, Zhang E, Minze LJ, Zhang Z. DHX15 is required to control RNA virus-induced intestinal inflammation. Cell Rep 2021; 35:109205. [PMID: 34161762 PMCID: PMC8276442 DOI: 10.1016/j.celrep.2021.109205] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/10/2021] [Accepted: 05/11/2021] [Indexed: 02/07/2023] Open
Abstract
RNA helicases play critical roles in various biological processes, including serving as viral RNA sensors in innate immunity. Here, we find that RNA helicase DEAH-box helicase 15 (DHX15) is essential for type I interferon (IFN-I, IFN-β), type III IFN (IFN-λ3), and inflammasome-derived cytokine IL-18 production by intestinal epithelial cells (IECs) in response to poly I:C and RNA viruses with preference of enteric RNA viruses, but not DNA virus. Importantly, we generate IEC-specific Dhx15-knockout mice and demonstrate that DHX15 is required for controlling intestinal inflammation induced by enteric RNA virus rotavirus in suckling mice and reovirus in adult mice in vivo, which owes to impaired IFN-β, IFN-λ3, and IL-18 production in IECs from Dhx15-deficient mice. Mechanistically, DHX15 interacts with NLRP6 to trigger NLRP6 inflammasome assembly and activation for inducing IL-18 secretion in IECs. Collectively, our report reveals critical roles for DHX15 in sensing enteric RNA viruses in IECs and controlling intestinal inflammation.
Collapse
Affiliation(s)
- Junji Xing
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Xiaojing Zhou
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Biochemistry, Clinical Medical College, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Mingli Fang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China
| | - Evan Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Laurie J Minze
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Zhiqiang Zhang
- Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Surgery, Weill Cornell Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
44
|
RNA Helicase DDX3: A Double-Edged Sword for Viral Replication and Immune Signaling. Microorganisms 2021; 9:microorganisms9061206. [PMID: 34204859 PMCID: PMC8227550 DOI: 10.3390/microorganisms9061206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/21/2021] [Indexed: 12/19/2022] Open
Abstract
DDX3 is a cellular ATP-dependent RNA helicase involved in different aspects of RNA metabolism ranging from transcription to translation and therefore, DDX3 participates in the regulation of key cellular processes including cell cycle progression, apoptosis, cancer and the antiviral immune response leading to type-I interferon production. DDX3 has also been described as an essential cellular factor for the replication of different viruses, including important human threats such HIV-1 or HCV, and different small molecules targeting DDX3 activity have been developed. Indeed, increasing evidence suggests that DDX3 can be considered not only a promising but also a viable target for anticancer and antiviral treatments. In this review, we summarize distinct functional aspects of DDX3 focusing on its participation as a double-edged sword in the host immune response and in the replication cycle of different viruses.
Collapse
|
45
|
Ciccosanti F, Di Rienzo M, Romagnoli A, Colavita F, Refolo G, Castilletti C, Agrati C, Brai A, Manetti F, Botta L, Capobianchi MR, Ippolito G, Piacentini M, Fimia GM. Proteomic analysis identifies the RNA helicase DDX3X as a host target against SARS-CoV-2 infection. Antiviral Res 2021; 190:105064. [PMID: 33781803 PMCID: PMC7997689 DOI: 10.1016/j.antiviral.2021.105064] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/09/2021] [Accepted: 03/13/2021] [Indexed: 12/31/2022]
Abstract
COVID-19 is currently a highly pressing health threat and therapeutic strategies to mitigate the infection impact are urgently needed. Characterization of the SARS-CoV-2 interactome in infected cells may represent a powerful tool to identify cellular proteins hijacked by viruses for their life cycle and develop host-oriented antiviral therapeutics. Here we report the proteomic characterization of host proteins interacting with SARS-CoV-2 Nucleoprotein in infected Vero E6 cells. We identified 24 high-confidence proteins mainly playing a role in RNA metabolism and translation, including RNA helicases and scaffold proteins involved in the formation of stress granules, cytoplasmic aggregates of messenger ribonucleoproteins that accumulate as a result of stress-induced translation arrest. Analysis of stress granules upon SARS-CoV-2 infection showed that these structures are not induced in infected cells, neither eIF2α phosphorylation, an upstream event leading to stress-induced translation inhibition. Notably, we found that G3BP1, a stress granule component that associates with the Nucleoprotein, is required for efficient SARS-CoV-2 replication. Moreover, we showed that the Nucleoprotein-interacting RNA helicase DDX3X colocalizes with viral RNA foci and its inhibition by small molecules or small interfering RNAs significantly reduces viral replication. Altogether, these results indicate that SARS-CoV-2 subverts the stress granule machinery and exploits G3BP1 and DDX3X for its replication cycle, offering groundwork for future development of host-directed therapies.
Collapse
Affiliation(s)
- Fabiola Ciccosanti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Martina Di Rienzo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Alessandra Romagnoli
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Francesca Colavita
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Giulia Refolo
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Concetta Castilletti
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Chiara Agrati
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Annalaura Brai
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | - Lorenzo Botta
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Maria Rosaria Capobianchi
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Giuseppe Ippolito
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy
| | - Mauro Piacentini
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy; Department of Biology, University of Rome 'Tor Vergata', Rome, Italy.
| | - Gian Maria Fimia
- Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases 'L. Spallanzani' IRCCS, Rome, Italy; Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
46
|
Haupt S, Caramia F, Klein SL, Rubin JB, Haupt Y. Sex disparities matter in cancer development and therapy. Nat Rev Cancer 2021; 21:393-407. [PMID: 33879867 PMCID: PMC8284191 DOI: 10.1038/s41568-021-00348-y] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/08/2021] [Indexed: 12/12/2022]
Abstract
Curing cancer through precision medicine is the paramount aim of the new wave of molecular and genomic therapies. Currently, whether patients with non-reproductive cancers are male or female according to their sex chromosomes is not adequately considered in patient standard of care. This is a matter of consequence because there is growing evidence that these cancer types generally initiate earlier and are associated with higher overall incidence and rates of death in males compared with females. Gender, in contrast to sex, refers to a chosen sexual identity. Hazardous lifestyle choices (notably tobacco smoking) differ in prevalence between genders, aligned with disproportionate cancer risk. These add to underlying genetic predisposition and influences of sex steroid hormones. Together, these factors affect metabolism, immunity and inflammation, and ultimately the fidelity of the genetic code. To accurately understand how human defences against cancer erode, it is crucial to establish the influence of sex. Our Perspective highlights evidence from basic and translational research indicating that including genetic sex considerations in treatments for patients with cancer will improve outcomes. It is now time to adopt the challenge of overhauling cancer medicine based on optimized treatment strategies for females and males.
Collapse
Affiliation(s)
- Sue Haupt
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
| | - Franco Caramia
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joshua B Rubin
- Department of Pediatrics and Neuroscience, Washington University School of Medicine, St Louis, MO, USA
| | - Ygal Haupt
- Tumor Suppression and Cancer Sex Disparity Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, Victoria, Australia.
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
47
|
He X, Li T, Qin K, Luo S, Li Z, Ji Q, Song H, He H, Tang H, Han C, Li H, Luo Y. Demalonylation of DDX3 by Sirtuin 5 promotes antiviral innate immune responses. Am J Cancer Res 2021; 11:7235-7246. [PMID: 34158847 PMCID: PMC8210596 DOI: 10.7150/thno.52934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 05/08/2021] [Indexed: 12/25/2022] Open
Abstract
Rationale: Hosts defend against viral infection by sensing viral pathogen-associated molecular patterns and activating antiviral innate immunity through TBK1-IRF3 signaling. However, the underlying molecular mechanism remains unclear. Methods: SiRNAs targeting Sirt1-7 were transfected into macrophages to screen the antiviral function. Sirt5 deficient mice or macrophages were subjected to viral infection to assess in vivo and in vitro function of Sirt5 by detecting cytokines, viral replicates and survival rate. Immunoprecipitation, WesternBlot and luciferase reporter assay were used to reveal molecular mechanism. Results: In this study, we functionally screened seven Sirtuin family members, and found that Sirtuin5 (Sirt5) promotes antiviral signaling and responses. Sirt5 deficiency leads to attenuated antiviral innate immunity in vivo and in vitro upon viral infection by decreasing TBK1-IRF3 activation and type I IFN production. Sirt5 overexpression increased antiviral innate immunity. Mechanism investigation revealed that Sirt5 interacts with DDX3 and demalonylates DDX3, which is critical for TBK1-IRF3 activation. Mutation of the demalonylation lysine sites (K66, K130, and K162) of DDX3 increased ifnβ transcription. Furthermore, the acetylation on lysine 118 of DDX3 positively regulated ifnβ transcription, whereas Sirt5 could not deacetylate this site. Conclusion: Sirt5 promotes anti- RNA and DNA virus innate immune responses by increasing TBK1 signaling through demalonylating DDX3, which identifies a novel regulatory pathway of antiviral innate immune response.
Collapse
|
48
|
Kienes I, Bauer S, Gottschild C, Mirza N, Pfannstiel J, Schröder M, Kufer TA. DDX3X Links NLRP11 to the Regulation of Type I Interferon Responses and NLRP3 Inflammasome Activation. Front Immunol 2021; 12:653883. [PMID: 34054816 PMCID: PMC8158815 DOI: 10.3389/fimmu.2021.653883] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/19/2021] [Indexed: 12/12/2022] Open
Abstract
Tight regulation of inflammatory cytokine and interferon (IFN) production in innate immunity is pivotal for optimal control of pathogens and avoidance of immunopathology. The human Nod-like receptor (NLR) NLRP11 has been shown to regulate type I IFN and pro-inflammatory cytokine responses. Here, we identified the ATP-dependent RNA helicase DDX3X as a novel binding partner of NLRP11, using co-immunoprecipitation and LC-MS/MS. DDX3X is known to enhance type I IFN responses and NLRP3 inflammasome activation. We demonstrate that NLRP11 can abolish IKKϵ-mediated phosphorylation of DDX3X, resulting in lower type I IFN induction upon viral infection. These effects were dependent on the LRR domain of NLRP11 that we mapped as the interaction domain for DDX3X. In addition, NLRP11 also suppressed NLRP3-mediated caspase-1 activation in an LRR domain-dependent manner, suggesting that NLRP11 might sequester DDX3X and prevent it from promoting NLRP3-induced inflammasome activation. Taken together, our data revealed DDX3X as a central target of NLRP11, which can mediate the effects of NLRP11 on type I IFN induction as well as NLRP3 inflammasome activation. This expands our knowledge of the molecular mechanisms underlying NLRP11 function in innate immunity and suggests that both NLRP11 and DDX3X might be promising targets for modulation of innate immune responses.
Collapse
Affiliation(s)
- Ioannis Kienes
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Sarah Bauer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Clarissa Gottschild
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Nora Mirza
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jens Pfannstiel
- Core Facility University of Hohenheim, Mass Spectrometry Module, University of Hohenheim, Stuttgart, Germany
| | - Martina Schröder
- Kathleen Lonsdale Institute for Human Health Research, Department of Biology, Maynooth University, Maynooth, Ireland
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
49
|
Xing J, Zhang A, Du Y, Fang M, Minze LJ, Liu YJ, Li XC, Zhang Z. Identification of poly(ADP-ribose) polymerase 9 (PARP9) as a noncanonical sensor for RNA virus in dendritic cells. Nat Commun 2021; 12:2681. [PMID: 33976210 PMCID: PMC8113569 DOI: 10.1038/s41467-021-23003-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 04/09/2021] [Indexed: 01/17/2023] Open
Abstract
Innate immune cells are critical in protective immunity against viral infections, involved in sensing foreign viral nucleic acids. Here we report that the poly(ADP-ribose) polymerase 9 (PARP9), a member of PARP family, serves as a non-canonical sensor for RNA virus to initiate and amplify type I interferon (IFN) production. We find knockdown or deletion of PARP9 in human or mouse dendritic cells and macrophages inhibits type I IFN production in response to double strand RNA stimulation or RNA virus infection. Furthermore, mice deficient for PARP9 show enhanced susceptibility to infections with RNA viruses because of the impaired type I IFN production. Mechanistically, we show that PARP9 recognizes and binds viral RNA, with resultant recruitment and activation of the phosphoinositide 3-kinase (PI3K) and AKT3 pathway, independent of mitochondrial antiviral-signaling (MAVS). PI3K/AKT3 then activates the IRF3 and IRF7 by phosphorylating IRF3 at Ser385 and IRF7 at Ser437/438 mediating type I IFN production. Together, we reveal a critical role for PARP9 as a non-canonical RNA sensor that depends on the PI3K/AKT3 pathway to produce type I IFN. These findings may have important clinical implications in controlling viral infections and viral-induced diseases by targeting PARP9.
Collapse
Affiliation(s)
- Junji Xing
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX, USA
| | - Ao Zhang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX, USA
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yong Du
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX, USA
| | - Mingli Fang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX, USA
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Laurie J Minze
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX, USA
| | | | - Xian Chang Li
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Zhiqiang Zhang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist, Houston, TX, USA.
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| |
Collapse
|
50
|
Jami R, Mérour E, Lamoureux A, Bernard J, Millet JK, Biacchesi S. Deciphering the Fine-Tuning of the Retinoic Acid-Inducible Gene-I Pathway in Teleost Fish and Beyond. Front Immunol 2021; 12:679242. [PMID: 33995423 PMCID: PMC8113963 DOI: 10.3389/fimmu.2021.679242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Interferons are the first lines of defense against viral pathogen invasion during the early stages of infection. Their synthesis is tightly regulated to prevent excessive immune responses and possible deleterious effects on the host organism itself. The RIG-I-like receptor signaling cascade is one of the major pathways leading to the production of interferons. This pathway amplifies danger signals and mounts an appropriate innate response but also needs to be finely regulated to allow a rapid return to immune homeostasis. Recent advances have characterized different cellular factors involved in the control of the RIG-I pathway. This has been most extensively studied in mammalian species; however, some inconsistencies remain to be resolved. The IFN system is remarkably well conserved in vertebrates and teleost fish possess all functional orthologs of mammalian RIG-I-like receptors as well as most downstream signaling molecules. Orthologs of almost all mammalian regulatory components described to date exist in teleost fish, such as the widely used zebrafish, making fish attractive and powerful models to study in detail the regulation and evolution of the RIG-I pathway.
Collapse
Affiliation(s)
- Raphaël Jami
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Emilie Mérour
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Annie Lamoureux
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Julie Bernard
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jean K Millet
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | |
Collapse
|