1
|
Guo X, Niu Z, Zhuang Y, Zhao Y, Ding Z, Shi J, Hou S, Fan H, Lv Q. Bone marrow mesenchymal stromal cells attenuate smoke inhalation injury by regulating the M1/M2-Th17/Treg immune homeostasis axis. Int Immunopharmacol 2024; 141:112986. [PMID: 39182266 DOI: 10.1016/j.intimp.2024.112986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Smoke inhalation injury (SII) is the leading cause of death in fire burn patients. The inflammatory response induced by smoke inhalation is a significant factor in the development of acute lung injury or acute respiratory distress syndrome (ALI/ARDS). Mesenchymal stem cells (MSCs) can alleviate various inflammatory diseases by regulating the polarization of macrophages from the M1 to the M2 phenotype. Moreover, MSCs can facilitate the inflammatory response by regulating Th17/Treg homeostasis. However, little is known about the associations among MSCs, M1/M2 macrophages and Th17/Treg homeostasis. Therefore, the purpose of this study was to evaluate whether MSCs affect subsequent Th17/Treg differentiation and immune homeostasis by regulating M1/M2 polarization in SII. Our results showed that bone marrow mesenchymal stem cells (BMSCs) ameliorated lung inflammatory injury and fibrosis after SII by affecting the polarization of alveolar macrophages (AMs) from the M1 to the M2 phenotype. Moreover, BMSCs maintain Th17/Treg immune homeostasis by increasing the proportion of Treg cells and decreasing the proportion of Th17 cells. In vitro, we further demonstrated that BMSCs promoted the polarization of AMs from the M1 to the M2 phenotype and decreased IL-23 levels. Reduced IL-23 decreased Th17 differentiation and promoted Th17/Treg balance. Therefore, BMSCs ameliorate the inflammatory response and lung damage after SII through regulating M1/M2 polarization and subsequent Th17/Treg immune homeostasis, which are linked to alveolar macrophage-derived IL-23. These findings provide novel insight into how BMSCs regulate the M1/M2-Th17/Treg immune homeostasis axis and provide new therapeutic targets for more effective control of the inflammatory response after SII.
Collapse
Affiliation(s)
- Xiaoqin Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Zhifang Niu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Yong Zhuang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Yunlong Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Ziling Ding
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Jie Shi
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China
| | - Shike Hou
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China.
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China.
| | - Qi Lv
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; Key Laboratory for Disaster Medicine Technology, Tianjin 300072, China; Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou 325026, China.
| |
Collapse
|
2
|
White C, Irving PM. An evaluation of mirikizumab for the treatment of ulcerative colitis. Expert Opin Biol Ther 2024:1-8. [PMID: 39360778 DOI: 10.1080/14712598.2024.2412650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/28/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
INTRODUCTION Treatment of ulcerative colitis (UC) aims to reduce symptoms and complications by decreasing intestinal inflammation. A proportion of patients do not respond to, do not tolerate, or are inappropriate candidates for current therapies. Interleukin (IL)-23 is a therapeutic target and mirikizumabis the first p19-targeted IL-23 antibody approved for the treatment of moderately to severely active UC. AREAS COVERED This review summarizes the pro-inflammatory effects of IL-23 and outlines the pharmacokinetics of mirikizumab. It provides a synopsis of the available phase II and phase III evidence for the efficacy and safety of mirikizumab in UC. EXPERT OPINION The mirikizumab clinical development program demonstrated its superiority over placebo and its favorable safety profile in the treatment of UC. Its positioning in therapeutic algorithms remains to be fully understood but mirikizumab has proven efficacy in both advanced therapy (AT)-naïve and AT-experienced patients. The inclusion in the license of extended induction for non-responders as well as rescue intravenous dosing allows for flexibility in patient with limited primary response and secondary loss of response.
Collapse
Affiliation(s)
| | - Peter M Irving
- Department of Gastroenterology, St Thomas' Hospital, London, UK
- School of Immunology and Microbial Sciences, King's College London, London, UK
| |
Collapse
|
3
|
Hizal M, Tufan A, Mercan R, Pasaoglu OT, Pasaoglu H, Haznedaroglu S, Goker B, Ozturk MA. Interleukin-21 and Interleukin-23 levels in familial Mediterranean Fever before and after treatment: the role of cytokines in disease pathogenesis. Sci Rep 2024; 14:21351. [PMID: 39266694 PMCID: PMC11393097 DOI: 10.1038/s41598-024-72736-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/10/2024] [Indexed: 09/14/2024] Open
Abstract
In a previous study, it has been shown that the population of Th17 lymphocytes was increased in patients with FMF. IL-21 and IL-23 play significant roles in the production and differentiation of Th17 cells. In this study, we aimed to evaluate serum levels of IL-21 and IL-23 in FMF patients both at diagnosis and after treatment, and to compare these levels with those of healthy controls. Twenty-seven newly diagnosed patients with FMF in attack-free periods and twenty-seven healthy volunteers enrolled in the study. The groups were comparable with respect to age and gender. IL-21 and IL-23 levels in serum samples from patients at the time of diagnosis, in remission after treatment, and from the control groups were analysed using the ELISA method. There was no significant difference between the cytokine levels of the patient group at the time of diagnosis and the cytokine levels of the control group (for IL-21, p: 0.28 and for IL-23, p: 0.56). Similarly, there was no significant difference between the patients' cytokine levels at the time of diagnosis and after treatment (for IL-21, p: 0.99 and for IL-23, p: 0.08). Interleukin levels at the time of diagnosis did not differ among patient groups based on the presence of clinical findings or the M694V genotype. Our results suggest that IL-21 and IL-23 do not play a role in the pathogenesis of the disease. However, while interpreting these findings, it should be considered that patients with active episodes were excluded and cytokine levels were not measured in tissue samples.
Collapse
Affiliation(s)
- Mutlu Hizal
- Faculty of Medicine, Department of Internal Medicine, Gazi University, Ankara, Turkey.
| | - Abdurrahman Tufan
- Faculty of Medicine, Department of Rheumatology, Gazi University, Ankara, Turkey
| | - Ridvan Mercan
- Faculty of Medicine, Department of Rheumatology, Gazi University, Ankara, Turkey
| | - Ozge Tugce Pasaoglu
- Faculty of Medicine, Department of Medical Biochemistry, Gazi University, Ankara, Türkiye, Turkey
| | - Hatice Pasaoglu
- Faculty of Medicine, Department of Medical Biochemistry, Gazi University, Ankara, Türkiye, Turkey
| | - Seminur Haznedaroglu
- Faculty of Medicine, Department of Rheumatology, Gazi University, Ankara, Turkey
| | - Berna Goker
- Faculty of Medicine, Department of Rheumatology, Gazi University, Ankara, Turkey
| | - Mehmet Akif Ozturk
- Faculty of Medicine, Department of Rheumatology, Gazi University, Ankara, Turkey
| |
Collapse
|
4
|
Zhu Z, Peng Q, Duan X, Li J. Interleukin-12: Structure, Function, and Its Impact in Colorectal Cancer. J Interferon Cytokine Res 2024; 44:158-169. [PMID: 38498032 DOI: 10.1089/jir.2023.0190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Interleukin 12 (IL-12) is a heterodimer consisting of 2 subunits, p35 and p40, with unique associations and interacting functions with its family members. IL-12 is one of the most important cytokines regulating the immune system response and is integral to adaptive immunity. IL-12 has shown marked therapeutic potential in a variety of tumor types. This review therefore summarizes the characteristics of IL-12 and its application in tumor treatment, focusing on its antitumor effects in colorectal cancer (CRC) and potential radiosensitization mechanisms. We aim to provide a current reference for IL-12 and other potential CRC treatment strategies.
Collapse
Affiliation(s)
- Ziwei Zhu
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, People's Republic of China
| | - Qian Peng
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xingmei Duan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine University of Electronic Science and Technology of China, Chengdu, People's Republic of. China
| | - Jie Li
- School of Medicine, Southwest Medical University of China, Luzhou, People's Republic of China
- Department of Radiotherapy, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Wertheimer T, Zwicky P, Rindlisbacher L, Sparano C, Vermeer M, de Melo BMS, Haftmann C, Rückert T, Sethi A, Schärli S, Huber A, Ingelfinger F, Xu C, Kim D, Häne P, Fonseca da Silva A, Muschaweckh A, Nunez N, Krishnarajah S, Köhler N, Zeiser R, Oukka M, Korn T, Tugues S, Becher B. IL-23 stabilizes an effector T reg cell program in the tumor microenvironment. Nat Immunol 2024; 25:512-524. [PMID: 38356059 PMCID: PMC10907296 DOI: 10.1038/s41590-024-01755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Interleukin-23 (IL-23) is a proinflammatory cytokine mainly produced by myeloid cells that promotes tumor growth in various preclinical cancer models and correlates with adverse outcomes. However, as to how IL-23 fuels tumor growth is unclear. Here, we found tumor-associated macrophages to be the main source of IL-23 in mouse and human tumor microenvironments. Among IL-23-sensing cells, we identified a subset of tumor-infiltrating regulatory T (Treg) cells that display a highly suppressive phenotype across mouse and human tumors. The use of three preclinical models of solid cancer in combination with genetic ablation of Il23r in Treg cells revealed that they are responsible for the tumor-promoting effect of IL-23. Mechanistically, we found that IL-23 sensing represents a crucial signal driving the maintenance and stabilization of effector Treg cells involving the transcription factor Foxp3. Our data support that targeting the IL-23/IL-23R axis in cancer may represent a means of eliciting antitumor immunity.
Collapse
Affiliation(s)
- Tobias Wertheimer
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Pascale Zwicky
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Lukas Rindlisbacher
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Colin Sparano
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Marijne Vermeer
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Bruno Marcel Silva de Melo
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Department of Pharmacology, Center for Research in Inflammatory Diseases, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Claudia Haftmann
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Tamina Rückert
- Department of Internal Medicine I, Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
| | - Aakriti Sethi
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Stefanie Schärli
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Anna Huber
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Florian Ingelfinger
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Caroline Xu
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Daehong Kim
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Philipp Häne
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - André Fonseca da Silva
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Andreas Muschaweckh
- Institute for Experimental Neuroimmunology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Nicolas Nunez
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Sinduya Krishnarajah
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Natalie Köhler
- Department of Internal Medicine I, Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Internal Medicine I, Hematology, Oncology, and Stem Cell Transplantation, Faculty of Medicine, Medical Centre, University of Freiburg, Freiburg, Germany
- Centre for Integrative Biological Signalling Studies (CIBSS), University of Freiburg, Freiburg, Germany
| | - Mohamed Oukka
- Department of Immunology, University of Washington, Seattle, WA, USA
| | - Thomas Korn
- Institute for Experimental Neuroimmunology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sonia Tugues
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| | - Burkhard Becher
- Department of Inflammation Research, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Heutz JW, Rogier C, Niemantsverdriet E, van den Eeden SJF, de Jong PHP, Lubberts E, Geluk A, van der Helm-van Mil AHM. The course of cytokine and chemokine gene expression in clinically suspect arthralgia patients during progression to inflammatory arthritis. Rheumatology (Oxford) 2024; 63:563-570. [PMID: 37280058 PMCID: PMC10836970 DOI: 10.1093/rheumatology/kead238] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/14/2023] [Accepted: 05/13/2023] [Indexed: 06/08/2023] Open
Abstract
OBJECTIVES Autoantibody responses increase years before the onset of inflammatory arthritis (IA) and are stable during transitioning from clinically suspect arthralgia (CSA) to IA. Cytokine and chemokine levels also increase years before IA onset. However, the course in the at-risk stage of CSA during progression to disease or non-progression is unknown. To increase the understanding of processes mediating disease development, we studied the course of cytokine, chemokine and related receptors gene expression in CSA patients during progression to IA and in CSA patients who ultimately did not develop IA. METHODS Whole-blood RNA expression of 37 inflammatory cytokines, chemokines and related receptors was determined by dual-colour reverse transcription multiplex ligation-dependent probe amplification in paired samples of CSA patients at CSA onset and either at IA development or after 24 months without IA development. ACPA-positive and ACPA-negative CSA patients developing IA were compared at CSA onset and during progression to IA. Generalised estimating equations tested changes over time. A false discovery rate approach was applied. RESULTS None of the cytokine/chemokine genes significantly changed in expression between CSA onset and IA development. In CSA patients without IA development, G-CSF expression decreased (P = 0.001), whereas CCR6 and TNIP1 expression increased (P < 0.001 and P = 0.002, respectively) over a 2 year period. Expression levels in ACPA-positive and ACPA-negative CSA patients who developed IA were similar. CONCLUSION Whole-blood gene expression of assessed cytokines, chemokines and related receptors did not change significantly from CSA to IA development. This suggests that changes in expression of these molecules may not be related to the final process of developing chronicity and may have occurred preceding CSA onset. Changes in gene expression in CSA patients without IA development may provide clues for processes related to resolution.
Collapse
Affiliation(s)
- Judith W Heutz
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Cleo Rogier
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Susan J F van den Eeden
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Pascal H P de Jong
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annette H M van der Helm-van Mil
- Department of Rheumatology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Rheumatology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
7
|
Steere B, Beidler C, Martin A, Bright S, Kikly K, Benschop RJ. Generation and Characterization of Mirikizumab, a Humanized Monoclonal Antibody Targeting the p19 Subunit of IL-23. J Pharmacol Exp Ther 2023; 387:180-187. [PMID: 37714687 DOI: 10.1124/jpet.122.001512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/17/2023] Open
Abstract
Interleukin (IL)-23 exists as a heterodimer consisting of p19 and p40 and is a key cytokine for promoting inflammatory responses in a variety of target organs. IL-23 plays a key role in the differentiation and maintenance of T helper 17 cells, and deregulation of IL-23 can result in autoimmune pathologies of the skin, lungs, and gut. This study describes the generation and characterization of mirikizumab (miri), a humanized IgG4 monoclonal antibody directed against the p19 subunit of IL-23. Miri binds human and cynomolgus monkey IL-23 with high affinity and binds rabbit IL-23 weakly but does not bind to rodent IL-23 or the other IL-23 family members IL-12, IL-27, or IL-35. Miri effectively inhibits the interaction of IL-23 with its receptor, and potently blocks IL-23-induced IL-17 production in cell-based assays while preserving the function of IL-12. In both local and systemic in vivo mouse models, miri blocked IL-23-induced keratin mRNA or IL-17 production, respectively. These data provide a comprehensive preclinical characterization of miri, for which efficacy and safety have been demonstrated in human clinical trials for psoriasis, ulcerative colitis, and Crohn's disease. SIGNIFICANCE STATEMENT: This article describes the generation and characterization of mirikizumab, a high affinity, neutralizing IgG4 variant monoclonal antibody that is under development for the treatment of ulcerative colitis and Crohn's disease. Neutralization of interleukin (IL)-23 is achieved by preventing the binding of IL-23 p19 subunit to the IL-23 receptor and does not affect the IL-12 pathway.
Collapse
Affiliation(s)
- Boyd Steere
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Catherine Beidler
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Andrea Martin
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Stu Bright
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Kristy Kikly
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Robert J Benschop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| |
Collapse
|
8
|
Ettich J, Wittich C, Moll JM, Behnke K, Floss DM, Reiners J, Christmann A, Lang PA, Smits SHJ, Kolmar H, Scheller J. Respiratory syncytial virus-approved mAb Palivizumab as ligand for anti-idiotype nanobody-based synthetic cytokine receptors. J Biol Chem 2023; 299:105270. [PMID: 37734558 PMCID: PMC10630626 DOI: 10.1016/j.jbc.2023.105270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/04/2023] [Accepted: 09/07/2023] [Indexed: 09/23/2023] Open
Abstract
Synthetic cytokine receptors can modulate cellular functions based on an artificial ligand to avoid off-target and/or unspecific effects. However, ligands that can modulate receptor activity so far have not been used clinically because of unknown toxicity and immunity against the ligands. Here, we developed a fully synthetic cytokine/cytokine receptor pair based on the antigen-binding domain of the respiratory syncytial virus-approved mAb Palivizumab as a synthetic cytokine and a set of anti-idiotype nanobodies (AIPVHH) as synthetic receptors. Importantly, Palivizumab is neither cross-reactive with human proteins nor immunogenic. For the synthetic receptors, AIPVHH were fused to the activating interleukin-6 cytokine receptor gp130 and the apoptosis-inducing receptor Fas. We found that the synthetic cytokine receptor AIPVHHgp130 was efficiently activated by dimeric Palivizumab single-chain variable fragments. In summary, we created an in vitro nonimmunogenic full-synthetic cytokine/cytokine receptor pair as a proof of concept for future in vivo therapeutic strategies utilizing nonphysiological targets during immunotherapy.
Collapse
Affiliation(s)
- Julia Ettich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Christoph Wittich
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens M Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; PROvendis GmbH, Muelheim an der Ruhr, Germany
| | - Kristina Behnke
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jens Reiners
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Andreas Christmann
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany
| | - Philipp A Lang
- Institute of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Center for Structural Studies, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Darmstadt, Germany; Centre of Synthetic Biology, Technical University of Darmstadt, Darmstadt, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
9
|
Sisto M, Lisi S. Interleukin-23 Involved in Fibrotic Autoimmune Diseases: New Discoveries. J Clin Med 2023; 12:5699. [PMID: 37685766 PMCID: PMC10489062 DOI: 10.3390/jcm12175699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Interleukin (IL)-23 is a central pro-inflammatory cytokine with a broad range of effects on immune responses. IL-23 is pathologically linked to the induction of the production of the pro-inflammatory cytokines IL-17 and IL-22, which stimulate the differentiation and proliferation of T helper type 17 (Th17) cells. Recent discoveries suggest a potential pro-fibrotic role for IL-23 in the development of chronic inflammatory autoimmune diseases characterized by intense fibrosis. In this review, we summarized the biological features of IL-23 and gathered recent research on the role of IL-23 in fibrotic autoimmune conditions, which could provide a theoretical basis for clinical targeting and drug development.
Collapse
Affiliation(s)
- Margherita Sisto
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Section of Human Anatomy and Histology, University of Bari “Aldo Moro”, 70123 Bari, Italy;
| | | |
Collapse
|
10
|
D'Haens G, Dubinsky M, Kobayashi T, Irving PM, Howaldt S, Pokrotnieks J, Krueger K, Laskowski J, Li X, Lissoos T, Milata J, Morris N, Arora V, Milch C, Sandborn W, Sands BE. Mirikizumab as Induction and Maintenance Therapy for Ulcerative Colitis. N Engl J Med 2023; 388:2444-2455. [PMID: 37379135 DOI: 10.1056/nejmoa2207940] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND Mirikizumab, a p19-directed antibody against interleukin-23, showed efficacy in the treatment of ulcerative colitis in a phase 2 trial. METHODS We conducted two phase 3, randomized, double-blind, placebo-controlled trials of mirikizumab in adults with moderately to severely active ulcerative colitis. In the induction trial, patients were randomly assigned in a 3:1 ratio to receive mirikizumab (300 mg) or placebo, administered intravenously, every 4 weeks for 12 weeks. In the maintenance trial, patients with a response to mirikizumab induction therapy were randomly assigned in a 2:1 ratio to receive mirikizumab (200 mg) or placebo, administered subcutaneously, every 4 weeks for 40 weeks. The primary end points were clinical remission at week 12 in the induction trial and at week 40 (at 52 weeks overall) in the maintenance trial. Major secondary end points included clinical response, endoscopic remission, and improvement in bowel-movement urgency. Patients who did not have a response in the induction trial were allowed to receive open-label mirikizumab during the first 12 weeks of the maintenance trial as extended induction. Safety was also assessed. RESULTS A total of 1281 patients underwent randomization in the induction trial, and 544 patients with a response to mirikizumab underwent randomization again in the maintenance trial. Significantly higher percentages of patients in the mirikizumab group than in the placebo group had clinical remission at week 12 of the induction trial (24.2% vs. 13.3%, P<0.001) and at week 40 of the maintenance trial (49.9% vs. 25.1%, P<0.001). The criteria for all the major secondary end points were met in both trials. Adverse events of nasopharyngitis and arthralgia were reported more frequently with mirikizumab than with placebo. Among the 1217 patients treated with mirikizumab during the controlled and uncontrolled periods (including the open-label extension and maintenance periods) in the two trials, 15 had an opportunistic infection (including 6 with herpes zoster infection) and 8 had cancer (including 3 with colorectal cancer). Among the patients who received placebo in the induction trial, 1 had herpes zoster infection and none had cancer. CONCLUSIONS Mirikizumab was more effective than placebo in inducing and maintaining clinical remission in patients with moderately to severely active ulcerative colitis. Opportunistic infection or cancer occurred in a small number of patients treated with mirikizumab. (Funded by Eli Lilly; LUCENT-1 and LUCENT-2 ClinicalTrials.gov numbers, NCT03518086 and NCT03524092, respectively.).
Collapse
Affiliation(s)
- Geert D'Haens
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Marla Dubinsky
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Taku Kobayashi
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Peter M Irving
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Stefanie Howaldt
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Juris Pokrotnieks
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Kathryn Krueger
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Janelle Laskowski
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Xingyuan Li
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Trevor Lissoos
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Joe Milata
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Nathan Morris
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Vipin Arora
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Catherine Milch
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - William Sandborn
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| | - Bruce E Sands
- From the Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, Amsterdam (G.D.); Dr. Henry D. Janowitz Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York (M.D., B.E.S.); the Center for Advanced IBD Research and Treatment, Kitasato University, Kitasato Institute Hospital, Tokyo (T.K.); Guy's Hospital, St. Thomas' Hospital, and the School of Immunology and Microbial Sciences, King's College London - all in London (P.M.I.); Research Institute for IBD-HaFCED, Hamburg, Germany (S.H.); Riga Stradins University, Riga, Latvia (J.P.); Eli Lilly, Indianapolis (K.K., J.L., X.L., T.L., J.M., N.M., V.A., C.M.); and the University of California San Diego, La Jolla (W.S.)
| |
Collapse
|
11
|
Korta A, Kula J, Gomułka K. The Role of IL-23 in the Pathogenesis and Therapy of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:10172. [PMID: 37373318 DOI: 10.3390/ijms241210172] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Interleukin-23 (IL-23) is a proinflammatory cytokine produced mainly by macrophages and antigen-presenting cells (APCs) after antigenic stimulation. IL-23 plays a significant role as a mediator of tissue damage. Indeed, the irregularities in IL-23 and its receptor signaling have been implicated in inflammatory bowel disease. IL-23 interacts with both the innate and adaptive immune systems, and IL-23/Th17 appears to be involved in the development of chronic intestinal inflammation. The IL-23/Th17 axis may be a critical driver of this chronic inflammation. This review summarizes the main aspects of IL-23's biological function, cytokines that control cytokine production, effectors of the IL-23 response, and the molecular mechanisms associated with IBD pathogenesis. Although IL-23 modulates and impacts the development, course, and recurrence of the inflammatory response, the etiology and pathophysiology of IBD are not completely understood, but mechanism research shows huge potential for clinical applications as therapeutic targets in IBD treatment.
Collapse
Affiliation(s)
- Aleksandra Korta
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Julia Kula
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wroclaw, Poland
| |
Collapse
|
12
|
Kherlopian A, Fischer G. Comparing quality of life in women with vulvovaginal lichen planus treated with topical and systemic treatments using the vulvar quality of life index. Australas J Dermatol 2023; 64:e125-e134. [PMID: 37036241 DOI: 10.1111/ajd.14032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 03/26/2023] [Accepted: 03/29/2023] [Indexed: 04/11/2023]
Abstract
BACKGROUND/OBJECTIVES For patients with vulvovaginal lichen planus (VLP), there exists limited data on the comparison between patient quality of life treated with topical and/or systemic treatments. We characterised the treatment outcomes of VLP using the vulvar quality of life index (VQLI) comparing women treated with systemic immunosuppression, including humanised interleukin-23 monoclonal antibody tildrakizumab, to those treated with topical corticosteroids alone. METHODS A retrospective cohort study is reported from a dermatology practice in Sydney, Australia. Electronic medical records for adult women with a diagnosis of VLP were reviewed identifying 112 subjects. VQLI scores in four domains (symptoms, activities of daily living, anxiety and sexual function) were compared between women able to maintain remission of disease with topical monotherapy to those with recalcitrant disease requiring treatment with conventional systemic immunosuppressants and for those not responding to this treatment, tildrakizumab. RESULTS At baseline women requiring tildrakizumab treatment had the highest total VQLI score (24.6), whilst women whose disease was maintained on topical treatment had the lowest (19.2). Women treated whilst on tildrakizumab had significant reduced total mean VQLI scores (13.32, 95% CI 8.61-18.01) than when treated with other Systemic (22.00, 95% CI 16.52-27.53; p < 0.001) or topical (21.71, 95% CI 16.13-26.32; p < 0.01). Women treated with tildrakizumab demonstrated statistically significant decreases in mean VQLI scores in all four domains of the VQLI compared to previous scores when on other systemic treatments. CONCLUSION We report the largest cohort study to date of adult women with VLP evaluating treatment responses to topical and systemic agents using the VQLI. In women whose VLP did not improve with conventional systemic immunosuppressants, tildrakizumab resulted in statistically significant decrease in mean VQLI scores in all 4 domains, highlighting tildrakizumab as an alternative treatment for VLP.
Collapse
Affiliation(s)
- Ashod Kherlopian
- Department of Dermatology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Gayle Fischer
- Department of Dermatology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| |
Collapse
|
13
|
Ansari MA, Singh PK, Dar SA, Rai G, Akhter N, Pandhi D, Gaurav V, Bhattacharya SN, Banerjee BD, Ahmad A, Das S. Deregulated phenotype of autoreactive Th17 and Treg clone cells in pemphigus vulgaris after in-vitro treatment with desmoglein antigen (Dsg-3). Immunobiology 2023; 228:152340. [PMID: 36689824 DOI: 10.1016/j.imbio.2023.152340] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/26/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The loss of balance between regulatory T (Treg) and T helper 17 (Th17) causes loss of tolerance against desmoglein (Dsg)-3 leading to pemphigus vulgaris (PV), an autoimmune bullous skin disorder associated with autoantibodies against Dsg-3. We aimed to elucidate the complex relationship of Th17 and Treg cells, their molecules, and the underlying mechanism in the development of PV disease. Using cytokine secretion assays, Th17 and Treg cells were sorted by FACS Aria-III within Dsg-3-responsive PBMC population and homogeneous T cell clones were generated in-vitro. Different cell surface molecules like CD25, GITR, CD122, CD152, CD45RO, IL-23R, STAT3, STAT5, CD127, HLA-DR, CCR4, CCR5, CCR6 and CCR7 were studied. The functional response of Th17 and Treg cells were elucidated by measuring the levels of various cytokines released by IL-10 and IL-17 T cells. The mRNA expression of transcription factors (FoxP3 and RORγt) was also analyzed. IL-17 secreting (Th17) cells with phenotype CD4+IL-17+ were greatly increased and IL-10 secreting (Treg) cells with phenotype CD4+IL-10+ were reduced in PV cases than healthy controls. The qPCR analysis showing high expression of retinoic acid receptor-related orphan receptor gamma (RORγt) mRNA in comparison to forkhead box P3 (FoxP3) mRNA confirmed the development of pro-inflammatory Th17 response in PV. Further, the cytokine profile of pro-inflammatory and anti-inflammatory cytokines suggested defective suppressive functions in Treg cells with high inflammatory response. Our findings indicate that autoantigen Dsg-3 specifically allows the proliferation of IL-17 secreting T cells though has a negative effect on IL-10 secreting T cells leading to dysregulation of immunity in PV patients. This antagonistic relationship between Dsg-3-specific Th17 and Treg cells may be critical for the onset and persistence of inflammation in PV cases.
Collapse
Affiliation(s)
- Mohammad Ahmad Ansari
- Multidisciplinary Research Unit (Department of Health Research), University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Praveen Kumar Singh
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Sajad Ahmad Dar
- Research and Scientific Studies Unit, College of Nursing, Jazan University, Jazan 45142, Saudi Arabia
| | - Gargi Rai
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Naseem Akhter
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Albaha University, Albaha 65731, Saudi Arabia
| | - Deepika Pandhi
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Vishal Gaurav
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Sambit Nath Bhattacharya
- Department of Dermatology & STD, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Basu Dev Banerjee
- Department of Biochemistry, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India
| | - Abrar Ahmad
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Shukla Das
- Department of Microbiology, University College of Medical Sciences (University of Delhi) & GTB Hospital, Delhi 110095, India.
| |
Collapse
|
14
|
Jacobse J, Brown RE, Li J, Pilat JM, Pham L, Short SP, Peek CT, Rolong A, Washington MK, Martinez-Barricarte R, Byndloss MX, Shelton C, Markle JG, Latour YL, Allaman MM, Cassat JE, Wilson KT, Choksi YA, Williams CS, Lau KS, Flynn CR, Casanova JL, Rings EHHM, Samsom JN, Goettel JA. Interleukin-23 receptor signaling impairs the stability and function of colonic regulatory T cells. Cell Rep 2023; 42:112128. [PMID: 36807140 PMCID: PMC10432575 DOI: 10.1016/j.celrep.2023.112128] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 12/29/2022] [Accepted: 01/31/2023] [Indexed: 02/19/2023] Open
Abstract
The cytokine interleukin-23 (IL-23) is involved in the pathogenesis of inflammatory and autoimmune conditions including inflammatory bowel disease (IBD). IL23R is enriched in intestinal Tregs, yet whether IL-23 modulates intestinal Tregs remains unknown. Here, investigating IL-23R signaling in Tregs specifically, we show that colonic Tregs highly express Il23r compared with Tregs from other compartments and their frequency is reduced upon IL-23 administration and impairs Treg suppressive function. Similarly, colonic Treg frequency is increased in mice lacking Il23r specifically in Tregs and exhibits a competitive advantage over IL-23R-sufficient Tregs during inflammation. Finally, IL-23 antagonizes liver X receptor pathway, cellular cholesterol transporter Abca1, and increases Treg apoptosis. Our results show that IL-23R signaling regulates intestinal Tregs by increasing cell turnover, antagonizing suppression, and decreasing cholesterol efflux. These results suggest that IL-23 negatively regulates Tregs in the intestine with potential implications for promoting chronic inflammation in patients with IBD.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - Rachel E Brown
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer M Pilat
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah P Short
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher T Peek
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Andrea Rolong
- Department of Cell and Developmental Biology and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - M Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ruben Martinez-Barricarte
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mariana X Byndloss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Catherine Shelton
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Janet G Markle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yvonne L Latour
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Margaret M Allaman
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA
| | - James E Cassat
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Keith T Wilson
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yash A Choksi
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher S Williams
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ken S Lau
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Cell and Developmental Biology and Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Charles R Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA; Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale (INSERM) U1163, Necker Hospital for Sick Children, Paris, France; The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, 1275 York Avenue, New York, NY, USA; Howard Hughes Medical Institute, New York, NY, USA
| | - Edmond H H M Rings
- Willem-Alexander Children's Hospital, Department of Pediatrics, Leiden University Medical Center, Leiden, the Netherlands; Sophia Children's Hospital, Department of Pediatrics, Erasmus University, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Jeremy A Goettel
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, 2215 Garland Avenue, 1075J MRB IV, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA; Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
15
|
Zoellner N, Coesfeld N, De Vos FH, Denter J, Xu HC, Zimmer E, Knebel B, Al-Hasani H, Mossner S, Lang PA, Floss DM, Scheller J. Synthetic mimetics assigned a major role to IFNAR2 in type I interferon signaling. Front Microbiol 2022; 13:947169. [PMID: 36118237 PMCID: PMC9480868 DOI: 10.3389/fmicb.2022.947169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/04/2022] [Indexed: 11/30/2022] Open
Abstract
Type I interferons (IFNs) are potent inhibitors of viral replication. Here, we reformatted the natural murine and human type I interferon-α/β receptors IFNAR1 and IFNAR2 into fully synthetic biological switches. The transmembrane and intracellular domains of natural IFNAR1 and IFNAR2 were conserved, whereas the extracellular domains were exchanged by nanobodies directed against the fluorescent proteins Green fluorescent protein (GFP) and mCherry. Using this approach, multimeric single-binding GFP-mCherry ligands induced synthetic IFNAR1/IFNAR2 receptor complexes and initiated STAT1/2 mediated signal transduction via Jak1 and Tyk2. Homodimeric GFP and mCherry ligands showed that IFNAR2 but not IFNAR1 homodimers were sufficient to induce STAT1/2 signaling. Transcriptome analysis revealed that synthetic murine type I IFN signaling was highly comparable to IFNα4 signaling. Moreover, replication of vesicular stomatitis virus (VSV) in a cell culture-based viral infection model using MC57 cells was significantly inhibited after stimulation with synthetic ligands. Using intracellular deletion variants and point mutations, Y510 and Y335 in murine IFNAR2 were verified as unique phosphorylation sites for STAT1/2 activation, whereas the other tyrosine residues in IFNAR1 and IFNAR2 were not involved in STAT1/2 phosphorylation. Comparative analysis of synthetic human IFNARs supports this finding. In summary, our data showed that synthetic type I IFN signal transduction is originating from IFNAR2 rather than IFNAR1.
Collapse
Affiliation(s)
- Nele Zoellner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Noémi Coesfeld
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Frederik Henry De Vos
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jennifer Denter
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Haifeng C. Xu
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Elena Zimmer
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Medical Faculty, Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Heinrich-Heine-University, Düsseldorf, Germany
| | - Sofie Mossner
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Philipp A. Lang
- Medical Faculty, Institute of Molecular Medicine II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M. Floss
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Medical Faculty, Institute of Biochemistry and Molecular Biology II, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
16
|
Luo P, Wang P, Xu J, Hou W, Xu P, Xu K, Liu L. Immunomodulatory role of T helper cells in rheumatoid arthritis : a comprehensive research review. Bone Joint Res 2022; 11:426-438. [PMID: 35775145 PMCID: PMC9350707 DOI: 10.1302/2046-3758.117.bjr-2021-0594.r1] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease that involves T and B cells and their reciprocal immune interactions with proinflammatory cytokines. T cells, an essential part of the immune system, play an important role in RA. T helper 1 (Th1) cells induce interferon-γ (IFN-γ), tumour necrosis factor-α (TNF-α), and interleukin (IL)-2, which are proinflammatory cytokines, leading to cartilage destruction and bone erosion. Th2 cells primarily secrete IL-4, IL-5, and IL-13, which exert anti-inflammatory and anti-osteoclastogenic effects in inflammatory arthritis models. IL-22 secreted by Th17 cells promotes the proliferation of synovial fibroblasts through induction of the chemokine C-C chemokine ligand 2 (CCL2). T follicular helper (Tfh) cells produce IL-21, which is key for B cell stimulation by the C-X-C chemokine receptor 5 (CXCR5) and coexpression with programmed cell death-1 (PD-1) and/or inducible T cell costimulator (ICOS). PD-1 inhibits T cell proliferation and cytokine production. In addition, there are many immunomodulatory agents that promote or inhibit the immunomodulatory role of T helper cells in RA to alleviate disease progression. These findings help to elucidate the aetiology and treatment of RA and point us toward the next steps. Cite this article: Bone Joint Res 2022;11(7):426–438.
Collapse
Affiliation(s)
- Pan Luo
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peixu Wang
- Department of Orthopedics, China-Japan Friendship Hospital, China-Japan Friendship Institute of Clinical Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Graduate School of Peking Union Medical College, Beijing, China
| | - Jiawen Xu
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Weikun Hou
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Peng Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Ke Xu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Lin Liu
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
van Beers JJBC, Damoiseaux JGMC. Treatment of Autoimmune Diseases with Therapeutic Antibodies: Lessons Learned from PID Patients Allow for Stratification of the Infection Risk. Methods Mol Biol 2022; 2313:27-44. [PMID: 34478130 DOI: 10.1007/978-1-0716-1450-1_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Over the years, a wide variety of therapeutic antibodies has been successfully introduced in the autoimmunology clinic and many more are on the edge to follow. Many of these treatments address either a pathogenic circulating molecule or a cell-bound molecule. Whereas the former target results in neutralization of the soluble factor, the latter target either inhibits cellular function or induces selective cell death. If this targeted molecule or cell is part of the immune system, this therapy evokes a state of immunodeficiency. Knowing the exact function of the respective components enables the risk stratification for possible infectious complications in patients treated with biologics. Much of the understanding of the function of immune cells and their associated molecules, in relation to redundancy in the immune system, is derived from studies in knockout mice. However, as mice are not men in terms of their life-expectancy, their infection exposure, or the composition of their immune system, the most useful knowledge for estimating the consequence of therapeutic intervention on immune competence comes from monitoring patients. In the current chapter, we focus on patients with a primary immunodeficiency (PID) because they provide us with a unique perspective to estimate the redundancy of a certain genetic defect for overall immune competence. These patients have inborn errors of the immune system that, in general, are due to single gene defects. Depending on the immunological pathway that is defective, patients can present with different types of (opportunistic) infectious diseases, as well as other clinical manifestations. Based on selected examples, we focus in this chapter on finding parallels in the infectious risk of autoimmune patients treated with biologics and PID patients with a defect in the immunological pathway that is affected by the respective biologic. The goal is to learn from the (dis)similarities between both patient populations in terms of safety profiles of biologic treatments.
Collapse
Affiliation(s)
- Joyce J B C van Beers
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jan G M C Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht, The Netherlands.
| |
Collapse
|
18
|
Geyer CE, Newling M, Sritharan L, Griffith GR, Chen HJ, Baeten DLP, den Dunnen J. C-Reactive Protein Controls IL-23 Production by Human Monocytes. Int J Mol Sci 2021; 22:ijms222111638. [PMID: 34769069 PMCID: PMC8583945 DOI: 10.3390/ijms222111638] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
C-reactive protein (CRP) is an acute-phase protein in humans that is produced in high quantities by the liver upon infection and under inflammatory conditions. Although CRP is commonly used as a marker of inflammation, CRP can also directly contribute to inflammation by eliciting pro-inflammatory cytokine production by immune cells. Since CRP is highly elevated in serum under inflammatory conditions, we have studied the CRP-induced cytokine profile of human monocytes, one of the main innate immune cell populations in blood. We identified that CRP is relatively unique in its capacity to induce production of the pro-inflammatory cytokine IL-23, which was in stark contrast to a wide panel of pattern recognition receptor (PRR) ligands. We show that CRP-induced IL-23 production was mediated at the level of gene transcription, since CRP particularly promoted gene transcription of IL23A (encoding IL-23p19) instead of IL12A (encoding IL-12p35), while PRR ligands induce the opposite response. Interestingly, when CRP stimulation was combined with PRR ligand stimulation, as for example, occurs in the context of sepsis, IL-23 production by monocytes was strongly reduced. Combined, these data identify CRP as a unique individual ligand to induce IL-23 production by monocytes, which may contribute to shaping systemic immune responses under inflammatory conditions.
Collapse
Affiliation(s)
- Chiara E. Geyer
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Melissa Newling
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Lathees Sritharan
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
- Department of Experimental Immunology, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Guillermo R. Griffith
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Hung-Jen Chen
- Department of Medical Biochemistry, Experimental Vascular Biology, Amsterdam Cardiovascular Sciences, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (G.R.G.); (H.-J.C.)
| | - Dominique L. P. Baeten
- Department of Rheumatology & Clinical Immunology, Amsterdam Rheumatology & Immunology Center (ARC), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.N.); (L.S.); (D.L.P.B.)
| | - Jeroen den Dunnen
- Center for Experimental and Molecular Medicine, Amsterdam Infection & Immunity Institute, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Correspondence: ; Tel.: +31-205668043
| |
Collapse
|
19
|
Reuveni D, Brezis MR, Brazowski E, Vinestock P, Leung PSC, Thakker P, Gershwin ME, Zigmond E. Interleukin 23 Produced by Hepatic Monocyte-Derived Macrophages Is Essential for the Development of Murine Primary Biliary Cholangitis. Front Immunol 2021; 12:718841. [PMID: 34484224 PMCID: PMC8414574 DOI: 10.3389/fimmu.2021.718841] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background and Aims Primary Biliary Cholangitis (PBC) is an organ-specific autoimmune liver disease. Mononuclear phagocytes (MNPs), comprise of monocyte, dendritic cells and monocyte-derived macrophages, constitute major arm of the innate immune system known to be involved in the pathogenesis of autoimmune disorders. MNPs were shown to accumulate around intra-hepatic bile ducts in livers of PBC patients. Interleukin 23 (IL-23) is a pro-inflammatory cytokine. IL-23-positive cells were detected in livers of patients with advanced stage PBC and IL-23 serum levels found to be in correlation with PBC disease severity. Our overall goal was to assess the importance of IL-23 derived from MNPs in PBC pathogenesis. Methods We utilized an inducible murine model of PBC and took advantage of transgenic mice targeting expression of IL-23 by specific MNP populations. Analysis included liver histology assessment, flow cytometry of hepatic immune cells and hepatic cytokine profile evaluation. Specific MNPs sub-populations were sorted and assessed for IL-23 expression levels. Results Flow cytometry analysis of non-parenchymal liver cells in autoimmune cholangitis revealed massive infiltration of the liver by MNPs and neutrophils and a decrease in Kupffer cells numbers. In addition, a 4-fold increase in the incidence of hepatic IL-17A producing CD4+ T cells was found to be associated with an increase in hepatic IL23-p19 and IL17A expression levels. Disease severity was significantly ameliorated in both CD11ccreP19flox/flox and CX3CR1creP19 flox/flox mice as assessed by reduced portal inflammation and decreased hepatic expression of various inflammatory cytokines. Amelioration of disease severity was associated with reduction in IL-17A producing CD4+ T cells percentages and decreased hepatic IL23-p19 and IL17A expression levels. qRT-PCR analysis of sorted hepatic MNPs demonstrated high expression levels of IL-23 mRNA specifically by CX3CR1hiCD11c+ monocyte-derived macrophages. Conclusion Our results indicate a major role for IL-23 produced by hepatic monocyte-derived macrophages in the pathogenesis of PBC. These results may pave the road for the development of new immune-based and cell specific therapeutic modalities for PBC patients not responding to current therapies.
Collapse
Affiliation(s)
- Debby Reuveni
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Miriam R Brezis
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eli Brazowski
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pathology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Philip Vinestock
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Patrick S C Leung
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Paresh Thakker
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, United States
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California, Davis, Davis, CA, United States
| | - Ehud Zigmond
- The Research Center for Digestive Tract and Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Center for Autoimmune Liver Diseases, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| |
Collapse
|
20
|
Schreiber T, Falk-Paulsen M, Kuiper J, Aden K, Noth R, Gisch N, Schreiber S, Rosenstiel P, Bewig B. IL23R on myeloid cells is involved in murine pulmonary granuloma formation. Exp Lung Res 2021; 47:344-353. [PMID: 34405744 DOI: 10.1080/01902148.2021.1962433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE OF THE STUDY The involvement of the IL-23/IL23R pathway is well known in the disease pathogenesis of sarcoidosis and other inflammatory diseases. To date, the pathogenic mechanism of IL-23 is most notably described on CD4+ Th17 lymphocytes. However, the function of the IL23R on myeloid cells in sarcoidosis is poorly understood. Thus, the aim of the study is to investigate the role of the IL23R on myeloid cell in pulmonary granuloma formation. Methods: We generated IL23RLysMCre mice lacking the IL23R gene in myeloid cells. The importance of IL23R in myeloid cells for the development of sarcoidosis was studied in a mouse model of inflammatory lung granuloma formation through embolization of PPD from Mycobacterium bovis-coated Sepharose beads into previously PPD-immunized mice. In addition the function of IL23R on myeloid cells was studied in LPS or IFNγ stimulated BMDMs and BMDCs. The mRNA and protein expression levels of relevant cytokines were analyzed by RT-PCR (TaqMan) and ELISA. The composition of immune cells in BALF was quantified by flow cytometry and alteration in granuloma sizes were observed by H&E stained lung sections. Results: Mycobacterium Ag-elicted pulmonary granulomas tend to be smaller in IL23RLysMCre mice and NF-κB dependent Th1 cytokines in the murine lungs are reduced compared to wildtype mice. In line, we observed that IL23R-deficient bone marrow-derived macrophages show a reduced production of Th1 cytokines after LPS stimulation. Conclusion: We here for the first time demonstrate a role for IL23R on myeloid cells in pulmonary inflammation and granuloma formation. Our findings provide essential insights in the pathogenesis of inflammatory lung diseases like sarcoidosis, which might be useful for the development of novel therapeutics targeting distinct immunological pathways like IL-23/IL23R.
Collapse
Affiliation(s)
- Tina Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany.,First Medical Department, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany.,Hospital Bethanien Solingen, Clinic of Pneumology and Allergology, Center for Sleep Medicine and Respiratory Care, Solingen, Germany
| | - Maren Falk-Paulsen
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Jan Kuiper
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Konrad Aden
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany.,First Medical Department, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Rainer Noth
- First Medical Department, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Nicolas Gisch
- Division of Bioanalytical Chemistry, Priority Area Infections, Leibniz Lung Center, Borstel, Germany
| | - Stefan Schreiber
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany.,First Medical Department, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Burkhard Bewig
- First Medical Department, Christian-Albrechts-University and University Hospital Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
21
|
Elevated Serum Interleukin-23 Levels in Patients with Oral and Cutaneous Lichen Planus. Mediators Inflamm 2021; 2021:5578568. [PMID: 34335090 PMCID: PMC8289569 DOI: 10.1155/2021/5578568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022] Open
Abstract
Lichen planus is considered a chronic inflammatory disease which affects different sites, such as the skin, mucous membranes, hair, and nails. Based on the evidence, a complex cytokine network plays a crucial role in lichen planus pathogenesis. The study was aimed at assessing the serum IL-23 levels in the patients with cutaneous and oral lichen planus compared to healthy controls. Method. The study included 30 cutaneous lichen planus patients, 20 oral lichen planus patients, and 33 control subjects. Five milliliters of peripheral blood was obtained from each patient, and the serum was separated. IL-23 levels were determined using the ELISA kit, and the data were analyzed using the Mann–Whitney test. Results. IL-23 levels in the patient serum with oral lichen planus (P value ≤ 0.001) were significantly higher than in controls. Furthermore, there were significant differences in IL-23 serum levels in the patients with cutaneous lichen planus compared to the healthy controls (P value ≤ 0.001). Moreover, IL-23 serum levels were statistically different between patients with cutaneous lichen planus and patients with oral lichen planus (P value ≤ 0.001). Based on the mean concentration of interleukin-23, IL-23 levels were higher in the patients with oral lichen planus than in the patients with cutaneous lichen planus. Conclusions. Elevated serum IL-23 levels in the patients with oral lichen planus may indicate that IL-23 plays a crucial role in the pathogenesis of oral lichen planus. However, more research is needed with a larger sample size.
Collapse
|
22
|
Ding X, Chang Y, Wang S, Yan D, Yao J, Zhu G. Transcriptomic Analysis of the Effect of GAT-2 Deficiency on Differentiation of Mice Naïve T Cells Into Th1 Cells In Vitro. Front Immunol 2021; 12:667136. [PMID: 34149704 PMCID: PMC8208808 DOI: 10.3389/fimmu.2021.667136] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022] Open
Abstract
The neurotransmitter γ-aminobutyric acid (GABA) is known to affect the activation and function of immune cells. This study investigated the role of GABA transporter (GAT)-2 in the differentiation of type 1 helper T (Th1) cells. Naïve CD4+ T cells isolated from splenocytes of GAT-2 knockout (KO) and wild-type (WT) mice were cultured; Th1 cell differentiation was induced and transcriptome and bioinformatics analyses were carried out. We found that GAT-2 deficiency promoted the differentiation of naïve T cells into Th1 cells. RNA sequencing revealed 2984 differentially expressed genes including 1616 that were up-regulated and 1368 that were down-regulated in GAT-2 KO cells compared to WT cells, which were associated with 950 enriched Gene Ontology terms and 33 enriched Kyoto Encyclopedia of Genes and Genomes pathways. Notably, 4 signal transduction pathways (hypoxia-inducible factor [HIF]-1, Hippo, phospholipase D, and Janus kinase [JAK]/signal transducer and activator of transcription [STAT]) and one metabolic pathway (glycolysis/gluconeogenesis) were significantly enriched by GAT-2 deficiency, suggesting that these pathways mediate the effect of GABA on T cell differentiation. Our results provide evidence for the immunomodulatory function of GABA signaling in T cell-mediated immunity and can guide future studies on the etiology and management of autoimmune diseases.
Collapse
Affiliation(s)
- Xueyan Ding
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Yajie Chang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Siquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Dong Yan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| | - Jiakui Yao
- Clinical Medical College, Yangzhou University, Yangzhou, China
| | - Guoqiang Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, China
| |
Collapse
|
23
|
Ochayon DE, Waggoner SN. The Effect of Unconventional Cytokine Combinations on NK-Cell Responses to Viral Infection. Front Immunol 2021; 12:645850. [PMID: 33815404 PMCID: PMC8017335 DOI: 10.3389/fimmu.2021.645850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Cytokines are soluble and membrane-bound factors that dictate immune responses. Dogmatically, cytokines are divided into families that promote type 1 cell-mediated immune responses (e.g., IL-12) or type 2 humoral responses (e.g., IL-4), each capable of antagonizing the opposing family of cytokines. The discovery of additional families of cytokines (e.g., IL-17) has added complexity to this model, but it was the realization that immune responses frequently comprise mixtures of different types of cytokines that dismantled this black-and-white paradigm. In some cases, one type of response may dominate these mixed milieus in disease pathogenesis and thereby present a clear therapeutic target. Alternatively, synergistic or blended cytokine responses may obfuscate the origins of disease and perplex clinical decision making. Most immune cells express receptors for many types of cytokines and can mediate a myriad of functions important for tolerance, immunity, tissue damage, and repair. In this review, we will describe the unconventional effects of a variety of cytokines on the activity of a prototypical type 1 effector, the natural killer (NK) cell, and discuss how this may impact the contributions of these cells to health and disease.
Collapse
Affiliation(s)
- David E. Ochayon
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Stephen N. Waggoner
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
24
|
Subhadarshani S, Yusuf N, Elmets CA. IL-23 and the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1290:89-98. [PMID: 33559857 DOI: 10.1007/978-3-030-55617-4_6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The tumor microenvironment (TME), which assists in the development, progression, and metastasis of malignant cells, is instrumental in virtually every step of tumor development. While a healthy TME can protect against malignancy, in an unhealthy state, it can result in aberrant cellular behavior and augment tumor progression. Cytokines are one component of the TME, therefore, understanding the composition of the cytokine milieu in the tumor microenvironment is critical to understand the biology of malignant transformation. One cytokine, interleukin (IL)-23, has received particular scrutiny in cancer research because of its ability to manipulate host immune responses, its role in modulating the cells in TME, and its capacity to directly affect a variety of premalignant and malignant tumors. IL-23 belongs to the IL-12 cytokine family, which is produced by activated dendritic cells (DC) and macrophages. IL-23 acts by binding to its receptor consisting of two distinct subunits, IL-12Rβ1 and IL-23R. This, in turn, leads to janus kinase (JAK) activation and signal transducer and activator of transcription (STAT) 3/4 phosphorylation. There have been contradictory reports of pro- and antitumor effects of IL-23, which likely depend on the genetic background, the type of tumor, the causative agent, and the critical balance of STAT3 signaling in both the tumor itself and the TME. Clinical trials of IL-12/23 inhibitors that are used to treat patients with psoriasis, have been scrutinized for reports of malignancy, the most common being nonmelanoma skin cancers (NMSCs). Continued investigation into the relationship of IL-23 and its downstream pathways holds promise in identifying novel targets for the management of cancer and other diseases.
Collapse
Affiliation(s)
| | | | - Craig A Elmets
- Department of Dermatology, O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, University Boulevard, Birmingham, AL, USA.
| |
Collapse
|
25
|
Jefremow A, Neurath MF. All are Equal, Some are More Equal: Targeting IL 12 and 23 in IBD - A Clinical Perspective. Immunotargets Ther 2020; 9:289-297. [PMID: 33274187 PMCID: PMC7705252 DOI: 10.2147/itt.s282466] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/10/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammatory diseases like inflammatory bowel diseases (IBD) or psoriasis represents a worldwide health burden. Researchers provided great achievements in understanding the origin of these diseases leading to improved therapeutic options. The discovery of cytokines like tumor necrosis factor-α or transforming growth factor-β are examples for these efforts. Interleukin 12 (IL 12) and interleukin 23 (IL 23) represent different important cytokines in this regard. They both belong to the interleukin 12 family and are related by sharing the subunit p40. Ustekinumab is an antibody that blocks p40 and thereby interleukins 12 and 23. Trials showed promising results in treating IBD patients with this drug. Consequently, new questions arose about the distinct features of IL 12 and 23. This review focuses on these interleukins regarding their functions in the healthy and inflamed gut and provides an overview about the results from in vitro and in vivo studies as well as clinical trials.
Collapse
Affiliation(s)
- André Jefremow
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Markus F Neurath
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
26
|
Faust HJ, Zhang H, Han J, Wolf MT, Jeon OH, Sadtler K, Peña AN, Chung L, Maestas DR, Tam AJ, Pardoll DM, Campisi J, Housseau F, Zhou D, Bingham CO, Elisseeff JH. IL-17 and immunologically induced senescence regulate response to injury in osteoarthritis. J Clin Invest 2020; 130:5493-5507. [PMID: 32955487 PMCID: PMC7524483 DOI: 10.1172/jci134091] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Senescent cells (SnCs) are implicated in the pathogenesis of age-related diseases including osteoarthritis (OA), in part via expression of a senescence-associated secretory phenotype (SASP) that includes immunologically relevant factors and cytokines. In a model of posttraumatic OA (PTOA), anterior cruciate ligament transection (ACLT) induced a type 17 immune response in the articular compartment and draining inguinal lymph nodes (LNs) that paralleled expression of the senescence marker p16INK4a (Cdkn2a) and p21 (Cdkn1a). Innate lymphoid cells, γδ+ T cells, and CD4+ T cells contributed to IL-17 expression. Intra-articular injection of IL-17-neutralizing antibody reduced joint degeneration and decreased expression of the senescence marker Cdkn1a. Local and systemic senolysis was required to attenuate tissue damage in aged animals and was associated with decreased IL-17 and increased IL-4 expression in the articular joint and draining LNs. In vitro, we found that Th17 cells induced senescence in fibroblasts and that SnCs skewed naive T cells toward Th17 or Th1, depending on the presence of TGF-β. The SASP profile of the inflammation-induced SnCs included altered Wnt signaling, tissue remodeling, and cell-cycle pathways not previously implicated in senescence. These findings provide molecular targets and mechanisms for senescence induction and therapeutic strategies to support tissue healing in an aged environment.
Collapse
Affiliation(s)
- Heather J. Faust
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hong Zhang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jin Han
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew T. Wolf
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ok Hee Jeon
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, South Korea
| | - Kaitlyn Sadtler
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexis N. Peña
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Liam Chung
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David R. Maestas
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ada J. Tam
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and
| | - Drew M. Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Judith Campisi
- Buck Institute for Research on Aging, Novato, California, USA
| | | | - Daohong Zhou
- Department of Pharmacodynamics, College of Pharmacy, University of Florida, Gainesville, Florida, USA
| | - Clifton O. Bingham
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Bloomberg-Kimmel Institute for Cancer Immunotherapy and
| |
Collapse
|
27
|
Bohnacker S, Hildenbrand K, Aschenbrenner I, Müller SI, Bieren JEV, Feige MJ. Influence of glycosylation on IL-12 family cytokine biogenesis and function. Mol Immunol 2020; 126:120-128. [DOI: 10.1016/j.molimm.2020.07.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 07/20/2020] [Indexed: 02/07/2023]
|
28
|
Synergy between 15-lipoxygenase and secreted PLA 2 promotes inflammation by formation of TLR4 agonists from extracellular vesicles. Proc Natl Acad Sci U S A 2020; 117:25679-25689. [PMID: 32973091 DOI: 10.1073/pnas.2005111117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Damage-associated endogenous molecules induce innate immune response, thus making sterile inflammation medically relevant. Stress-derived extracellular vesicles (stressEVs) released during oxidative stress conditions were previously found to activate Toll-like receptor 4 (TLR4), resulting in expression of a different pattern of immune response proteins in comparison to lipopolysaccharide (LPS), underlying the differences between pathogen-induced and sterile inflammation. Here we report that synergistic activities of 15-lipoxygenase (15-LO) and secreted phospholipase A2 (sPLA2) are needed for the formation of TLR4 agonists, which were identified as lysophospholipids (lysoPLs) with oxidized unsaturated acyl chain. Hydroxy, hydroperoxy, and keto products of 2-arachidonoyl-lysoPI oxidation by 15-LO were identified by mass spectrometry (MS), and they activated the same gene pattern as stressEVs. Extracellular PLA2 activity was detected in the synovial fluid from rheumatoid arthritis and gout patients. Furthermore, injection of sPLA2 promoted K/BxN serum-induced arthritis in mice, whereby ankle swelling was partially TLR4 dependent. Results confirm the role of oxidized lysoPL of stressEVs in sterile inflammation that promotes chronic diseases. Both 15-LO and sPLA2 enzymes are induced during inflammation, which opens the opportunity for therapy without compromising innate immunity against pathogens.
Collapse
|
29
|
Mossner S, Kuchner M, Fazel Modares N, Knebel B, Al-Hasani H, Floss DM, Scheller J. Synthetic interleukin 22 (IL-22) signaling reveals biological activity of homodimeric IL-10 receptor 2 and functional cross-talk with the IL-6 receptor gp130. J Biol Chem 2020; 295:12378-12397. [PMID: 32611765 PMCID: PMC7458808 DOI: 10.1074/jbc.ra120.013927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/22/2020] [Indexed: 12/22/2022] Open
Abstract
Cytokine signaling is transmitted by cell-surface receptors that function as biological switches controlling mainly immune-related processes. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of GFP and mCherry nanobodies fused to transmembrane and intracellular domains of cytokine receptors that phenocopy cytokine signaling induced by nonphysiological homo- and heterodimeric GFP-mCherry ligands. Interleukin 22 (IL-22) signals via both IL-22 receptor α1 (IL-22Rα1) and the common IL-10R2, belongs to the IL-10 cytokine family, and is critically involved in tissue regeneration. Here, IL-22 SyCyRs phenocopied native IL-22 signal transduction, indicated by induction of cytokine-dependent cellular proliferation, signal transduction, and transcriptome analysis. Whereas homodimeric IL-22Rα1 SyCyRs failed to activate signaling, homodimerization of the second IL-22 signaling chain, SyCyR(IL-10R2), which previously was considered not to induce signal transduction, led to induction of signal transduction. Interestingly, the SyCyR(IL-10R2) and SyCyR(IL-22Rα1) constructs could form functional heterodimeric receptor signaling complexes with the synthetic IL-6 receptor chain SyCyR(gp130). In summary, we have demonstrated that IL-22 signaling can be phenocopied by synthetic cytokine receptors, identified a functional IL-10R2 homodimeric receptor complex, and uncovered broad receptor cross-talk of IL-22Rα1 and IL-20R2 with gp130.
Collapse
Affiliation(s)
- Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marcus Kuchner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Nastaran Fazel Modares
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Birgit Knebel
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hadi Al-Hasani
- Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Doreen M Floss
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
30
|
Abstract
The current coronavirus pandemic is an ongoing global health crisis due to COVID-19, caused by severe acute respiratory syndrome coronavirus 2. Although COVID-19 leads to little or mild flu-like symptoms in the majority of affected patients, the disease may cause severe, frequently lethal complications such as progressive pneumonia, acute respiratory distress syndrome and organ failure driven by hyperinflammation and a cytokine storm syndrome. This situation causes various major challenges for gastroenterology. In the context of IBD, several key questions arise. For instance, it is an important question to understand whether patients with IBD (eg, due to intestinal ACE2 expression) might be particularly susceptible to COVID-19 and the cytokine release syndrome associated with lung injury and fatal outcomes. Another highly relevant question is how to deal with immunosuppression and immunomodulation during the current pandemic in patients with IBD and whether immunosuppression affects the progress of COVID-19. Here, the current understanding of the pathophysiology of COVID-19 is reviewed with special reference to immune cell activation. Moreover, the potential implications of these new insights for immunomodulation and biological therapy in IBD are discussed.
Collapse
Affiliation(s)
- Markus F Neurath
- First Department of Medicine and Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91052, Germany
- Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
31
|
Pandya P, Sayers RO, Ting JP, Morshedian S, Torres C, Cudal JS, Zhang K, Fitchett JR, Zhang Q, Zhang FF, Wang J, Durbin JD, Carrillo JJ, Espada A, Broughton H, Qian Y, Afshar S. Integration of phage and yeast display platforms: A reliable and cost effective approach for binning of peptides as displayed on-phage. PLoS One 2020; 15:e0233961. [PMID: 32479512 PMCID: PMC7263589 DOI: 10.1371/journal.pone.0233961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 05/16/2020] [Indexed: 12/11/2022] Open
Abstract
Hundreds of target specific peptides are routinely discovered by peptide display platforms. However, due to the high cost of peptide synthesis only a limited number of peptides are chemically made for further analysis. Here we describe an accurate and cost effective method to bin peptides on-phage based on binding region(s), without any requirement for peptide or protein synthesis. This approach, which integrates phage and yeast display platforms, requires display of target and its alanine variants on yeast. Flow cytometry was used to detect binding of peptides on-phage to the target on yeast. Once hits were identified, they were synthesized to confirm their binding region(s) by HDX (Hydrogen deuterium exchange) and crystallography. Moreover, we have successfully shown that this approach can be implemented as part of a panning process to deplete non-functional peptides. This technique can be applied to any target that can be successfully displayed on yeast; it narrows down the number of peptides requiring synthesis; and its utilization during selection results in enrichment of peptide population against defined binding regions on the target.
Collapse
Affiliation(s)
- Priyanka Pandya
- Department of Protein Engineering, Eli Lilly Biotechnology Center, San Diego, California, United States of America
| | - Robert O. Sayers
- Department of Protein Engineering, Eli Lilly Biotechnology Center, San Diego, California, United States of America
| | - Joey P. Ting
- Department of Protein Engineering, Eli Lilly Biotechnology Center, San Diego, California, United States of America
| | - Shaghayegh Morshedian
- Department of Protein Engineering, Eli Lilly Biotechnology Center, San Diego, California, United States of America
| | - Carina Torres
- Department of Protein Engineering, Eli Lilly Biotechnology Center, San Diego, California, United States of America
| | - Justine S. Cudal
- Department of Protein Engineering, Eli Lilly Biotechnology Center, San Diego, California, United States of America
| | - Kai Zhang
- Department of Protein Engineering, Eli Lilly Biotechnology Center, San Diego, California, United States of America
| | - Jonathan R. Fitchett
- Department of Protein Engineering, Eli Lilly Biotechnology Center, San Diego, California, United States of America
| | - Qing Zhang
- Department of Protein Engineering, Eli Lilly Biotechnology Center, San Diego, California, United States of America
| | - Feiyu F. Zhang
- Lilly Research Laboratories, Discovery Chemistry Research and Technologies, San Diego, California, United States of America
| | - Jing Wang
- Lilly Research Laboratories, Discovery Chemistry Research and Technologies, San Diego, California, United States of America
| | - Jim D. Durbin
- Department of Structural Biology, Discovery Chemistry Research and Technologies, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - Juan J. Carrillo
- Department of Quantitative Biology, Discovery Chemistry Research and Technologies, Lilly Biotechnology Center, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | | | | | - Yuewei Qian
- Lilly Research Laboratories, Recombinant Protein Generation, Indianapolis, Indiana, United States of America
| | - Sepideh Afshar
- Department of Protein Engineering, Eli Lilly Biotechnology Center, San Diego, California, United States of America
| |
Collapse
|
32
|
Nistor GI, Dillman RO. Cytokine network analysis of immune responses before and after autologous dendritic cell and tumor cell vaccine immunotherapies in a randomized trial. J Transl Med 2020; 18:176. [PMID: 32316978 PMCID: PMC7171762 DOI: 10.1186/s12967-020-02328-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background In a randomized phase II trial conducted in patients with metastatic melanoma, patient-specific autologous dendritic cell vaccines (DCV) were associated with longer survival than autologous tumor cell vaccines (TCV). Both vaccines presented antigens from cell-renewing autologous tumor cells. The current analysis was performed to better understand the immune responses induced by these vaccines, and their association with survival. Methods 110 proteomic markers were measured at a week-0 baseline, 1 week before the first of 3 weekly vaccine injections, and at week-4, 1 week after the third injection. Data was presented as a deviation from normal controls. A two-component principal component (PC) statistical analysis and discriminant analysis were performed on this data set for all patients and for each treatment cohort. Results At baseline PC-1 contained 64.4% of the variance and included the majority of cytokines associated with Th1 and Th2 responses, which positively correlated with beta-2-microglobulin (B2M), programmed death protein-1 (PD-1) and transforming growth factor beta (TGFβ1). Results were similar at baseline for both treatment cohorts. After three injections, DCV-treated patients showed correlative grouping among Th1/Th17 cytokines on PC-1, with an inverse correlation with B2M, FAS, and IL-18, and correlations among immunoglobulins in PC-2. TCV-treated patients showed a positive correlation on PC-1 among most of the cytokines and tumor markers B2M and FAS receptor. There were also correlative changes of IL12p40 with both Th1 and Th2 cytokines and TGFβ1. Discriminant analysis provided additional evidence that DCV was associated with innate, Th1/Th17, and Th2 responses while TCV was only associated with innate and Th2 responses. Conclusions These analyses confirm that DCV induced a different immune response than that induced by TCV, and these immune responses were associated with improved survival. Trial registration Clinical trials.gov NCT004936930 retrospectively registered 28 July 2009
Collapse
Affiliation(s)
- Gabriel I Nistor
- AIVITA Biomedical, Inc., 18301 Von Karman, Suite 130, Irvine, CA, 92612, USA
| | - Robert O Dillman
- AIVITA Biomedical, Inc., 18301 Von Karman, Suite 130, Irvine, CA, 92612, USA.
| |
Collapse
|
33
|
Mossner S, Phan HT, Triller S, Moll JM, Conrad U, Scheller J. Multimerization strategies for efficient production and purification of highly active synthetic cytokine receptor ligands. PLoS One 2020; 15:e0230804. [PMID: 32236103 PMCID: PMC7112226 DOI: 10.1371/journal.pone.0230804] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/09/2020] [Indexed: 01/28/2023] Open
Abstract
Cytokine signaling is transmitted by cell surface receptors which act as natural biological switches to control cellular functions such as immune reactions. Recently, we have designed synthetic cytokine receptors (SyCyRs) consisting of green fluorescent protein (GFP)- and mCherry-nanobodies fused to the transmembrane and intracellular domains of cytokine receptors. Following stimulation with homo- and heterodimeric GFP-mCherry fusion proteins, the resulting receptors phenocopied signaling induced by physiologically occurring cytokines. GFP and mCherry fusion proteins were produced in E. coli or CHO-K1 cells, but the overall yield and stability was low. Therefore, we applied two alternative multimerization strategies and achieved immunoglobulin Fc-mediated dimeric and coiled-coil GCN4pII-mediated trimeric assemblies. GFP- and/or mCherry-Fc homodimers activated synthetic gp130 cytokine receptors, which naturally respond to Interleukin 6 family cytokines. Activation of these synthetic gp130 receptors resulted in STAT3 and ERK phosphorylation and subsequent proliferation of Ba/F3-gp130 cells. Half-maximal effective concentrations (EC50) of 8.1 ng/ml and 0.64 ng/ml were determined for dimeric GFP-Fc and mCherry-Fc, respectively. This is well within the expected EC50 range of the native cytokines. Moreover, we generated tetrameric and hexameric GFP-mCherry-Fc fusion proteins, which were also biologically active. This highlighted the importance of close juxtaposition of two cytokine receptors for efficient receptor activation. Finally, we used a trimeric GCN4pII motif to generate homo-trimeric GFP and mCherry complexes. These synthetic cytokines showed improved EC50 values (GFP3: 0.58 ng/ml; mCherrry3: 0.37 ng/ml), over dimeric Fc fused variants. In conclusion, we successfully generated highly effective and stable multimeric synthetic cytokine receptor ligands for activation of synthetic cytokine receptors.
Collapse
Affiliation(s)
- Sofie Mossner
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Hoang T. Phan
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Saskia Triller
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Jens M. Moll
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Udo Conrad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Stadt Seeland, Gatersleben, Germany
| | - Jürgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail:
| |
Collapse
|
34
|
Abdo AIK, Tye GJ. Interleukin 23 and autoimmune diseases: current and possible future therapies. Inflamm Res 2020; 69:463-480. [PMID: 32215665 DOI: 10.1007/s00011-020-01339-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/21/2020] [Accepted: 03/16/2020] [Indexed: 12/17/2022] Open
Abstract
PURPOSE IL-23 is a central proinflammatory cytokine with a wide range of influence over immune response. It is implicated in several autoimmune diseases due to the infinite inflammatory loops it can create through the positive feedbacks of both IL-17 and IL-22 arms. This made IL-23 a key target of autoimmune disorders therapy, which indeed was proven to inhibit inflammation and ameliorate diseases. Current autoimmune treatments targeting IL-23 are either by preventing IL-23 ligation to its receptor (IL-23R) via antibodies or inhibiting IL-23 signaling by signaling downstream mediators' inhibitors, with each approach having its own pros and cons. METHODS Literature review was done to further understand the biology of IL-23 and current therapies. RESULTS In this review, we discuss the biological features of IL-23 and its role in the pathogenesis of autoimmune diseases including psoriasis, rheumatoid arthritis and inflammatory bowel diseases. Advantages, limitations and side effects of each concept will be reviewed, suggesting several advanced IL-23-based bio-techniques to generate new and possible future therapies to overcome current treatments problems.
Collapse
Affiliation(s)
- Ahmad Ismail Khaled Abdo
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia
| | - Gee Jun Tye
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| |
Collapse
|
35
|
Lee HS, Park DE, Lee JW, Sohn KH, Cho SH, Park HW. Role of interleukin-23 in the development of nonallergic eosinophilic inflammation in a murine model of asthma. Exp Mol Med 2020; 52:92-104. [PMID: 31956268 PMCID: PMC7000690 DOI: 10.1038/s12276-019-0361-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/08/2019] [Accepted: 11/18/2019] [Indexed: 12/30/2022] Open
Abstract
Nonallergic eosinophilic asthma (NAEA) is a clinically distinct subtype of asthma. Thus far, the pathophysiologic mechanisms underlying NAEA have not been fully elucidated. This study aimed to determine the role of IL-23 in the pathogenesis of NAEA. We developed a murine model of NAEA using recombinant IL-23 (rIL-23) plus a nonspecific airway irritant [polyinosinic-polycytidylic acid (polyI:C) or diesel exhaust particles (DEPs)] and investigated whether IL-23 plays an important role in the development of NAEA. Intranasal administration of rIL-23 (0.1 μg/mouse) plus polyI:C (0.01 μg/mouse) or DEPs (10 μg/mouse) without allergen resulted in methacholine bronchial hyperresponsiveness and eosinophilic airway inflammation in mice, which are characteristic features of NAEA. rIL-23 plus a low dose nonspecific airway irritants induced the release of innate cytokines from airway epithelium, including IL-33, thymic stromal lymphopoietin and IL-1β; these factors activated types 2 and 3 innate lymphoid cells (ILC2s and ILC3s). ILC2s and ILC3s, but not CD4+ T cells (i.e., adaptive immune cells), were important in the development of NAEA. In addition, we observed that IL-23 receptor expressions increased in airway epithelial cells, which suggests the existence of a positive autocrine loop in our murine model of NAEA. To our knowledge, this is the first report in which administration of rIL-23 plus a nonspecific airway irritant (polyI:C or DEPs) without allergen resulted in features of NAEA in mice similar to those found in humans. IL-23 may constitute a therapeutic target for NAEA in humans. Targeting levels of a pro-inflammatory protein may help quell responses to airway irritants in patients with non-allergic asthma. Asthma often occurs when allergen exposure triggers an increase in white blood cells called eosinophils and the subsequent release of pro-inflammatory proteins such as interleukin-23 (IL-23) in the airways. However, research suggests up to one-third of sufferers have non-allergic eosinophilic asthma (NAEA), wherein airway inflammation is triggered by no specific allergen. Heung-Woo Park at the Seoul National University Medical Research Center, South Korea, and co-workers created a mouse model with excess IL-23 to examine the protein’s role in NAEA inflammation. They monitored airway responses to low doses of an acid irritant or diesel exhaust particles. The combination of high IL-23 plus an irritant triggered the release of other pro-inflammatory proteins in the airways, aggravating asthma symptoms.
Collapse
Affiliation(s)
- Hyun Seung Lee
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Da-Eun Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Ji-Won Lee
- Division of Allergy and Clinical Immunology, Department of Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kyung Hee Sohn
- Department of Internal Medicine, Kyung Hee University Medical Center, Seoul, Republic of Korea
| | - Sang-Heon Cho
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea.,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heung-Woo Park
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea. .,Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
36
|
TYK2 in Tumor Immunosurveillance. Cancers (Basel) 2020; 12:cancers12010150. [PMID: 31936322 PMCID: PMC7017180 DOI: 10.3390/cancers12010150] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022] Open
Abstract
We review the history of the tyrosine kinase 2 (TYK2) as the founding member of the Janus kinase (JAK) family and outline its structure-function relation. Gene-targeted mice and hereditary defects of TYK2 in men have established the biological and pathological functions of TYK2 in innate and adaptive immune responses to infection and cancer and in (auto-)inflammation. We describe the architecture of the main cytokine receptor families associated with TYK2, which activate signal transducers and activators of transcription (STATs). We summarize the cytokine receptor activities with well characterized dependency on TYK2, the types of cells that respond to cytokines and TYK2 signaling-induced cytokine production. TYK2 may drive beneficial or detrimental activities, which we explain based on the concepts of tumor immunoediting and the cancer-immunity cycle in the tumor microenvironment. Finally, we summarize current knowledge of TYK2 functions in mouse models of tumor surveillance. The biology and biochemistry of JAKs, TYK2-dependent cytokines and cytokine signaling in tumor surveillance are well covered in recent reviews and the oncogenic properties of TYK2 are reviewed in the recent Special Issue ‘Targeting STAT3 and STAT5 in Cancer’ of Cancers.
Collapse
|
37
|
Gong HB, Wu XJ, Pu XM, Kang XJ. Association of Interleukin-23R Gene Polymorphisms with Behcet’s Disease Susceptibility: A Meta-Analysis of Case-control Studies. Immunol Invest 2019; 49:648-661. [PMID: 31814470 DOI: 10.1080/08820139.2019.1698600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Hai-Bo Gong
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiu-Juan Wu
- Department of Dermatology, Shanghai Xuhui Central Hospital, Shanghai, China
| | - Xiong-Ming Pu
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| | - Xiao-Jing Kang
- Department of Dermatology, People’s Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
| |
Collapse
|
38
|
Dillman RO, Nistor GI, Poole AJ. Genomic, proteomic, and immunologic associations with a durable complete remission of measurable metastatic melanoma induced by a patient-specific dendritic cell vaccine. Hum Vaccin Immunother 2019; 16:742-755. [PMID: 31625825 PMCID: PMC7227648 DOI: 10.1080/21645515.2019.1680239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
This report describes efforts to understand the immune mechanism of action that led to a complete response in a patient with progressive, refractory, metastatic melanoma after treatment with a therapeutic vaccine consisting of autologous dendritic cells (DC) loaded with autologous tumor antigens (ATA) derived from cells that were self-renewing in cell culture. Her histocompatibility type proved to be HLA B27 with extensive mutations in the HLA-A locus. Exomic analysis of proliferating tumor cells revealed more than 2800 non-synonymous mutations compared to her leukocytes. Histology of resected tumor lesions showed no evidence of an existing or suppressed immune response. In in vitro mixed cell cultures, DC loaded with ATA induced increased IL-22 expression, and a four-fold increase in CD8 + T lymphocytes. Cryopreserved blood samples obtained at week-0, 1 week before the first of three-weekly vaccine injections, and at week-4, 1 week after the third dose, were analyzed by protein array and compared for 110 different serum markers. At baseline, she had marked elevations of amyloid A, IL-12p40, IL21, IL-22, IL-10, IL-16, GROa, TNF-alpha, IL-3, and IL-2, and a lesser elevation of IL-15. One week after 3 weekly vaccinations she had a further 80% increase in amyloid A, a further 66% increase in IL-22, a 92% decrease in IL12p40, a 45% decrease in TGF-β and 26% decrease in IL-10. The data suggested that by 3 weeks after the first DCV injection, vaccine-induced changes in this particular patient were most consistent with enhanced innate and Th1 immune responses rather than Th2 or Th17.
Collapse
Affiliation(s)
- Robert O Dillman
- AIVITA Biomedical, Inc, Irvine, CA, USA.,Hoag Cancer Institute, Newport Beach, CA, USA
| | | | | |
Collapse
|
39
|
Gutiérrez-González M, Farías C, Tello S, Pérez-Etcheverry D, Romero A, Zúñiga R, Ribeiro CH, Lorenzo-Ferreiro C, Molina MC. Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep 2019; 9:16850. [PMID: 31727948 PMCID: PMC6856375 DOI: 10.1038/s41598-019-53200-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023] Open
Abstract
Recombinant protein expression for structural and therapeutic applications requires the use of systems with high expression yields. Escherichia coli is considered the workhorse for this purpose, given its fast growth rate and feasible manipulation. However, bacterial inclusion body formation remains a challenge for further protein purification. We analyzed and optimized the expression conditions for three different proteins: an anti-MICA scFv, MICA, and p19 subunit of IL-23. We used a response surface methodology based on a three-level Box-Behnken design, which included three factors: post-induction temperature, post-induction time and IPTG concentration. Comparing this information with soluble protein data in a principal component analysis revealed that insoluble and soluble proteins have different optimal conditions for post-induction temperature, post-induction time, IPTG concentration and in amino acid sequence features. Finally, we optimized the refolding conditions of the least expressed protein, anti-MICA scFv, using a fast dilution protocol with different additives, obtaining soluble and active scFv for binding assays. These results allowed us to obtain higher yields of proteins expressed in inclusion bodies. Further studies using the system proposed in this study may lead to the identification of optimal environmental factors for a given protein sequence, favoring the acceleration of bioprocess development and structural studies.
Collapse
Affiliation(s)
- Matías Gutiérrez-González
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.,Programa de Doctorado en Farmacología, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Farías
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Samantha Tello
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Diana Pérez-Etcheverry
- Área de Biotecnología, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - Alfonso Romero
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto Zúñiga
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carolina H Ribeiro
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Carmen Lorenzo-Ferreiro
- Área de Biotecnología, Instituto Polo Tecnológico de Pando, Facultad de Química, Universidad de la República Oriental del Uruguay, Montevideo, Uruguay
| | - María Carmen Molina
- Centro de Inmunobiotecnología, Programa Disciplinario de Inmunología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
40
|
Cunha P, Vern YL, Gitton C, Germon P, Foucras G, Rainard P. Expansion, isolation and first characterization of bovine Th17 lymphocytes. Sci Rep 2019; 9:16115. [PMID: 31695097 PMCID: PMC6834651 DOI: 10.1038/s41598-019-52562-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/21/2019] [Indexed: 12/12/2022] Open
Abstract
Interleukin 17A-producing T helper cells (Th17) are CD4+ T cells that are crucial to immunity to extracellular bacteria. The roles of these cells in the bovine species are poorly defined, because the characterization of bovine Th17 cells lags behind for want of straightforward cultivation and isolation procedures. We have developed procedures to differentiate, expand, and isolate bovine Th17 cells from circulating CD4+ T cells of adult cows. Using polyclonal stimulation with antibodies to CD3 and CD28, we expanded IL-17A-positive CD4+ T cells in a serum-free cell culture medium supplemented with TGF-β1, IL-6 and IL-2. Populations of CD4+ T cells producing IL-17A or IFN-γ or both cytokines were obtained. Isolation of IL-17A-secreting CD4+ T cells was performed by labelling surface IL-17A, followed by flow cytometry cell sorting. The sorted Th17 cells were restimulated and could be expanded for several weeks. These cells were further characterized by cytokine profiling at transcriptomic and protein levels. They produced high amounts of IL-17A and IL-17F, and moderate amounts of IL-22 and IFN-γ. The techniques developed will be useful to characterize the phenotypic and functional properties of bovine Th17 cells.
Collapse
Affiliation(s)
- Patricia Cunha
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France
| | - Yves Le Vern
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France
| | | | - Pierre Germon
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France
| | - Gilles Foucras
- IHAP, INRA, ENVT, Université de Toulouse, Toulouse, France
| | - Pascal Rainard
- ISP, INRA, Université de Tours, UMR1282, Nouzilly, France.
| |
Collapse
|
41
|
Chen J, Liu H, Li L, Wang H, Li Y, Wang Y, Ding K, Hao S, Shao Y, Li L, Song J, Wang G, Shao Z, Fu R. Abnormal numbers of CD4+ T lymphocytes and abnormal expression of CD4+ T lymphocyte‑secreted cytokines in patients with immune‑related haemocytopenia. Mol Med Rep 2019; 20:3979-3990. [PMID: 31545490 PMCID: PMC6797981 DOI: 10.3892/mmr.2019.10663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 06/12/2019] [Indexed: 12/24/2022] Open
Abstract
In the past decade, a group of cases with persisting haemocytopenia were separated from those with idiopathic cytopenia of undetermined significance due to the optimal response of these patients to immunosuppression therapy and due to the detection of autoantibodies in the bone marrow of haemopoietic cells. This condition was termed immune-related haemocytopenia (IRH). However, the quantity of T lymphocytes remained unknown. In the present study, the percentage of CD4+ T-cell subsets and related cytokines was measured using flow cytometry and an enzyme-linked immunosorbent assay. An abnormal number of CD4+ T cell subsets was found, including increased percentages of T helper (Th)2, Th9 and Th17 cells and a decreased number of regulatory T (Treg) cells. In addition, the results showed downregulation in the levels of interleukin (IL)-2, transforming growth factor-β and IL-35, and upregulation in the levels of IL-4, IL-6, IL-17, IL-23 and interferon-γ in patients who did not receive therapy (untreated patients). These levels were significantly associated with the number of peripheral blood cells and were recovered following treatment. In conclusion, an abnormal number of CD4+ T cell subsets and corresponding abnormal levels of regulatory cytokines resulted in the stimulation of B1 lymphocytes to produce autoantibodies in IRH, which may be considered as markers to evaluate disease prognosis and treatment strategies.
Collapse
Affiliation(s)
- Jin Chen
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hui Liu
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Liyan Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Honglei Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yi Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yihao Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Kai Ding
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shanfeng Hao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yuanyuan Shao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Lijuan Li
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jia Song
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Guojin Wang
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zonghong Shao
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Haematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
42
|
Basler M, Claus M, Klawitter M, Goebel H, Groettrup M. Immunoproteasome Inhibition Selectively Kills Human CD14 + Monocytes and as a Result Dampens IL-23 Secretion. THE JOURNAL OF IMMUNOLOGY 2019; 203:1776-1785. [PMID: 31484727 DOI: 10.4049/jimmunol.1900182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023]
Abstract
MECL-1 (β2i), LMP2 (β1i), and LMP7 (β5i) are the proteolytically active subunits of the immunoproteasome (IP), a special type of proteasome mainly expressed in hematopoietic cells. Targeting the IP in autoimmune diseases proved to be therapeutically effective in preclinical mouse models. In endotoxin-stimulated human PBMCs, IP inhibition reduces the secretion of several proinflammatory cytokines, with the suppression of IL-23 being the most prominent. In this study, we investigated why the production of IL-23, a key mediator of inflammation in autoimmunity, is blocked when the IP is inhibited in LPS-stimulated human PBMCs. CD14+ monocytes could be identified as the main producers of IL-23 in LPS-stimulated PBMCs. We found that IP inhibition with the irreversible LMP7/LMP2 inhibitor ONX 0914 induced apoptosis in CD14+ monocytes, whereas CD4+, CD3+, CD19+, and CD56+ cells remained unaffected. A high expression of IPs renders monocytes susceptible to IP inhibition, leading to an accumulation of polyubiquitylated proteins and the induction of the unfolded protein response. Similar to IP inhibition, inducers of the unfolded protein response selectively kill CD14+ monocytes in human PBMCs. The blockage of the translation in CD14+ monocytes protects these cells from ONX 0914-induced cell death, indicating that the IP is required to maintain protein turnover in monocytes. Taken together, our data reveal why IP inhibition is particularly effective in the suppression of IL-23-driven autoimmunity.
Collapse
Affiliation(s)
- Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and .,Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| | - Meike Claus
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and
| | - Moritz Klawitter
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and
| | - Heike Goebel
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and
| | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, 78457 Konstanz, Germany; and.,Biotechnology Institute Thurgau at the University of Konstanz, 8280 Kreuzlingen, Switzerland
| |
Collapse
|
43
|
Yin L, Ren J, Wang D, Feng S, Qiu X, Lv M, Wang X, Zhou H. Functional characterization of three fish-specific interleukin-23 isoforms as regulators of Th17 signature cytokine expression in grass carp head kidney leukocytes. FISH & SHELLFISH IMMUNOLOGY 2019; 92:315-321. [PMID: 31202965 DOI: 10.1016/j.fsi.2019.06.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 06/09/2023]
Abstract
Mammalian Interleukin (IL)-23 is a heterodimeric cytokine with an IL-23-specific P19 subunit and a P40 subunit shared with IL-12, and plays a key role in the regulation of cell differentiation as well as inflammation. We previously demonstrated the existence of three soluble fish Interleukin (Il)-23 isoforms consist of a single P19 and one of three P40 isoforms (P40a/b/c) in grass carp. In the present study, three recombinant grass carp Il-23 (rgcIl-23) isoforms were prepared by linking gcP19 and gcP40a/b/c in a prokaryotic expression system, and then their functional properties were verified in grass carp head kidney leukocytes (HKLs). All three rgcIl-23 isoforms showed the bioactivities to divergently upregulate the mRNA expression of Th17 signature cytokines (il17a/f1, il21, il22 and il26) as well as Il-23 receptor (il23r) in HKLs. Moreover, they also promoted gcIl-17a/f1 secretion in a dose-dependent manner, strengthening their roles in Th17-like response. Furthermore, induction of il17a/f1 and il23r transcription by rgcIl-23 was blocked by a STAT3 inhibitor in grass carp HKLs, suggesting the involvement of STAT3 signaling in these inductions. Taken together, we for the first time identified the bioactivities of fish Il-23 isoforms and particularly revealed the existence of Il-23/Il-17a/f1 axis in fish, thereby advancing our understanding of Th17-like responses in fish immunity.
Collapse
Affiliation(s)
- Licheng Yin
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jingqi Ren
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Dan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Shiyu Feng
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyang Qiu
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Mengyuan Lv
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Xinyan Wang
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, People's Republic of China.
| |
Collapse
|
44
|
Wang J, Zhao P, Gao Y, Zhang F, Yuan X, Jiao Y, Gong K. The Effects of Anti-IL-23p19 Therapy on Atherosclerosis Development in ApoE -/- Mice. J Interferon Cytokine Res 2019; 39:564-571. [PMID: 31264927 DOI: 10.1089/jir.2019.0050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The aim of this study is to detect the dynamic expression of interleukin-23 (IL-23) in ApoE-/- mice at different ages and to further examine the effects of anti-IL-23 therapy on atherosclerosis development. The levels of IL-23 in the sera, aortas, and lymph nodes of ApoE-/- mice were significantly increased compared with those of age-matched controls at 8, 12, 16, 20, and 24 weeks of age. Then, 12-week-old ApoE-/- mice were intraperitoneally injected with anti-IL-23p19 neutralizing antibodies, isotype controls, and phosphate-buffered saline for 8 weeks. The proinflammatory and anti-inflammatory mediators in atherosclerotic aortas, plaque areas, plaque necrotic cores, and the contents of major inflammatory cells in plaques were subsequently determined. The results showed that anti-IL-23p19 treatment significantly decreased the expression of IL-17A, IL-6, and TNF-α in the aortas of ApoE-/- mice, but had no obvious effect on the plaque area, plaque necrotic core, or content of major inflammatory cells in atherosclerotic plaques. Although anti-IL-23p19 therapy reduces the expression of several proinflammatory cytokines, it does not significantly suppress the progression of atherosclerosis in ApoE-/- mice.
Collapse
Affiliation(s)
- Jun Wang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Pei Zhao
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yang Gao
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Fengyu Zhang
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Xiaochen Yuan
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yungen Jiao
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Kaizheng Gong
- Department of Cardiology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| |
Collapse
|
45
|
Vyas SP, Hansda AK, Goswami R. Rheumatoid arthritis: ‘melting pot’ of T helper subsets. Int Rev Immunol 2019; 38:212-231. [PMID: 31155981 DOI: 10.1080/08830185.2019.1621865] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
46
|
Zake T, Skuja S, Kalere I, Konrade I, Groma V. Upregulated tissue expression of T helper (Th) 17 pathogenic interleukin (IL)-23 and IL-1β in Hashimoto's thyroiditis but not in Graves' disease. Endocr J 2019; 66:423-430. [PMID: 30814438 DOI: 10.1507/endocrj.ej18-0396] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
T helper (Th) 17 cells and interleukin (IL)-17 play a significant role in the pathogenesis of autoimmune thyroid disease (AITD). However, it has recently become clear that Th17 cells are more heterogeneous and exhibit two different phenotypes, whereas IL-23 and IL-1β are crucial for the generation of pathogenic Th17 lymphocytes. We aimed to investigate the association between IL-17 and Th17-promoting cytokines in AITD by studying the immunoexpression patterns of IL-17, IL-23, and IL-1β in thyroid tissue. Following thyroidectomy, 29 patients with AITD (21 cases of Hashimoto's thyroiditis (HT) and 8 cases of Graves' disease (GD)) and 18 patients with colloid goiter, as controls, were enrolled in this study, and immunohistochemistry was performed. The expression level of IL-17 in thyrocytes was significantly higher in HT and GD patients than in colloid goiter patients. Immunopositivity for both IL-23 and IL-1β was significantly increased in HT patients compared to GD and colloid goiter patients. However, no difference was found between IL-23 or IL-1β expression in patients with GD and colloid goiter. A positive correlation between IL-17 and IL-23 as well as IL-17 and IL-1β expression was observed in HT patients (r = 0.574, p = 0.007 and r = 0.461, p = 0.036, respectively). In the GD group, IL-17 was positively correlated with IL-1β (r = 0.817, p = 0.013) but not with IL-23 expression. We found increased IL-23 and IL-1β expression in the HT group but not in the GD group. Furthermore, both interleukins were correlated with IL-17 immunopositivity in thyroid tissue, suggesting that pathogenic Th17-promoting cytokines may play a role in HT pathogenesis.
Collapse
Affiliation(s)
- Tatjana Zake
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, LV-1010, Latvia
- Department of Internal Medicine, Riga Stradins University, Riga, LV-1007 Latvia
| | - Sandra Skuja
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, LV-1010, Latvia
| | - Ieva Kalere
- Department of Internal Medicine, Riga Stradins University, Riga, LV-1007 Latvia
| | - Ilze Konrade
- Department of Internal Medicine, Riga Stradins University, Riga, LV-1007 Latvia
| | - Valerija Groma
- Institute of Anatomy and Anthropology, Riga Stradins University, Riga, LV-1010, Latvia
| |
Collapse
|
47
|
Abstract
Multiple sclerosis (MS) is a chronic and debilitating autoimmune disorder of the central nervous system in which the autoimmune T cells destroy myelin, thus causing lesion, damage, and neuronal dysfunction. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is particularly useful for testing new therapeutic approaches against MS. Aspirin (acetyl salicylic acid) is one of the oldest and widely used medicines in the world, and recently it has been shown that low-dose aspirin is capable of suppressing the disease process of EAE in mice. One of the root causes of this autoimmune disease process is the decrease and/or suppression of Foxp3-expressing anti-autoimmune regulatory T cells (Tregs) and associated increase in autoimmune T-helper 1 (Th1) and Th17 cells. Aspirin upregulates Tregs and decreases Th1 and Th17 responses. Accordingly, the suppression of Tregs abrogates the protective effect of aspirin on EAE, indicating that aspirin protects EAE via Tregs. While there are several mechanisms for the maintenance of Tregs under immune insults, aspirin increases the level of interleukin-11 (IL-11), an immunomodulatory cytokine, and IL-11 alone is sufficient to protect Tregs. Being a multifunctional molecule, aspirin stimulates the activation of cAMP-response element-binding (CREB) to promote the recruitment of CREB to the IL-11 gene promoter and stimulate the transcription of IL-11 in splenocytes. Therefore, it appears that low-dose aspirin protects EAE via CREB-mediated stimulation of IL-11-Treg pathway and that aspirin may have therapeutic importance in MS.
Collapse
Affiliation(s)
- Swarupa Pahan
- 1 Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Kalipada Pahan
- 1 Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
- 2 Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
48
|
Komuczki J, Tuzlak S, Friebel E, Hartwig T, Spath S, Rosenstiel P, Waisman A, Opitz L, Oukka M, Schreiner B, Pelczar P, Becher B. Fate-Mapping of GM-CSF Expression Identifies a Discrete Subset of Inflammation-Driving T Helper Cells Regulated by Cytokines IL-23 and IL-1β. Immunity 2019; 50:1289-1304.e6. [DOI: 10.1016/j.immuni.2019.04.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 02/06/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|
49
|
Domanski L, Kłoda K, Patrzyk M, Wisniewska M, Safranow K, Sienko J, Sulikowski T, Staniszewska M, Pawlik A. IL17A and IL17F genes polymorphisms are associated with histopathological changes in transplanted kidney. BMC Nephrol 2019; 20:124. [PMID: 30961540 PMCID: PMC6454731 DOI: 10.1186/s12882-019-1308-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/21/2019] [Indexed: 11/10/2022] Open
Abstract
Background Interleukin 17 is a proinflammatory cytokine involved in immune response after allograft transplantation. IL-17 family of proinflammatory cytokines includes IL-17A and IL-17F. Previous studies have demonstrated that the rs2275913 IL17A and the rs11465553 IL17F gene polymorphism are associated with kidney allograft function. Because of the association between these polymorphisms and post-transplant immune response, we assume that these single nucleotide polymorphisms may affect morphological structure of transplanted kidney. The aim of this study was to examine the association of rs2275913 IL17A and rs2397084, rs11465553 and rs763780 IL17F gene polymorphisms with histopathological changes in transplanted kidney biopsies such as: glomerulitis, tubulitis, arteritis, cell infilitration and fibrosis. Methods The study enrolled 82 patients after renal graft transplantation in whom a kidney biopsy was performed because of impaired graft function. The rs2397084 T > C (Glu126Gly), rs11465553 G > A (Val155Ile) and rs763780 T > C (His167Arg) polymorphisms within the IL17F gene and the rs2275913 A > G (− 197 A > G) polymorphism within the IL17A gene promoter were genotyped using TaqMan genotyping assays on a 7500 FAST Real-Time PCR System (Applied Biosystems, USA). Results There was a significant association between the rs2275913 IL17A gene polymorphism and the grade of tubulitis, which was more severe among patients with the A allele, compared to recipients with the GG genotype (GG vs. AG + AA, P = 0.02), and with the grade of arteriolar hyaline thickening and mesangial matrix increase, which were more severe among patients with the G allele compared to recipients with the AA genotype (AA vs. AG + GG, P = 0.01 and P = 0.04, respectively). Tubular atrophy and interstitial fibrosis were more severe among individuals with the C allele at the rs763780 IL17F gene polymorphism (TT vs. TC, P = 0.09 and P = 0.017, respectively). However, it should be taken into account that the statistical significance was achieved without correction for multiple testing, and no significant association would remain significant after such correction. Conclusions The results of this study may suggest a possible association between the rs2275913 IL17A and rs2275913 IL17A gene polymorphisms and some histopathological changes in transplanted kidney biopsies. Electronic supplementary material The online version of this article (10.1186/s12882-019-1308-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Leszek Domanski
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Karolina Kłoda
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Maciej Patrzyk
- Department of Surgery, University Medical Center Greifswald, Greifswald, Germany
| | - Magda Wisniewska
- Department of Nephrology, Transplantology and Internal Medicine, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Krzysztof Safranow
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Jerzy Sienko
- Department of Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tadeusz Sulikowski
- Department of Surgery, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Marzena Staniszewska
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72, 70-111, Szczecin, Poland.
| |
Collapse
|
50
|
Beneficial effect of atorvastatin-modified dendritic cells pulsed with myelin oligodendrocyte glycoprotein autoantigen on experimental autoimmune encephalomyelitis. Neuroreport 2019; 29:317-327. [PMID: 29394220 DOI: 10.1097/wnr.0000000000000962] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
It is well known that dendritic cells play a key role in producing antigen-specific responses. Inversely, tolerogenic dendritic cells (TolDCs), a specialized subset, induce immune tolerance and negatively regulate autoimmune responses. Statins, the inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A reductase in the mevalonate pathway for cholesterol biosynthesis, might be a promising inductive agent for inducing TolDCs. This study aimed to investigate the effectiveness of TolDCs induced by atorvastatin pulsed with myelin oligodendrocyte glycoprotein 35-55 peptide (MOG35-55) in experimental autoimmune encephalomyelitis mice established by MOG35-55 immunization and to investigate the potential effects on Th17/Treg balance in the murine model of multiple sclerosis. Our results showed that atorvastatin-treated dendritic cells maintained a steady semimature phenotype with a low level of costimulatory molecules and proinflammatory cytokines. Upon an intraperitoneal injection into experimental autoimmune encephalomyelitis mice, TolDCs pulsed with MOG (TolDCs-MOG) significantly alleviated disease activity and regulated Th17/Treg balance with a marked decrease in Th17 cells and an obvious increase in regulatory T cells. Taken together, TolDCs-MOG modified by atorvastatin showed a characteristic tolerogenic phenotype and the antigen-specific TolDCs might represent a new promising strategy for the future treatments for multiple sclerosis.
Collapse
|