1
|
Heredia M, Charrout M, Klomberg RCW, Aardoom MA, Jongsma MME, Kemos P, Hulleman-van Haaften DH, Tuk B, van Berkel LA, Bley Folly B, Calado B, Nugteren S, Simons-Oosterhuis Y, Doukas M, Sanders MA, van Beek G, Ruemmele FM, Croft NM, Mahfouz A, Reinders MJT, Escher JC, de Ridder L, Samsom JN. Combined plasma protein and memory T cell profiling discern IBD-patient-immunotypes related to intestinal disease and treatment outcomes. Mucosal Immunol 2024:S1933-0219(24)00097-7. [PMID: 39332767 DOI: 10.1016/j.mucimm.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Inflammatory bowel disease (IBD) chronicity results from memory T helper cell (Tmem) reactivation. Identifying patient-specific immunotypes is crucial for tailored treatment. We conducted a comprehensive study integrating circulating immune proteins and circulating Tmem, with intestinal tissue histology and mRNA analysis, in therapy-naïve pediatric IBD (Crohn's disease, CD: n = 62; ulcerative colitis, UC: n = 20; age-matched controls n = 43), and after 10-12 weeks' induction therapy. At diagnosis, plasma protein profiles unveiled two UC and three CD clusters with distinct disease courses. UC patients displayed unchanged circulating Tmem, while CD exhibited increased frequencies of gut-homing ex-Th17, known for high IFN-γ production. UC#2 had elevated Th17/neutrophil-pathway-related proteins and severe disease, with higher endoscopic and histological damage and Th17/neutrophil infiltration. Although both UC#1 and UC#2 responded to therapy, UC#2 required earlier immunomodulation. CD#3 had lower plasma protein concentrations, especially IFN-γ pathway proteins, fewer gut-homing ex-Th17 and clinically milder disease, confirmed by intestinal gene expression. CD#1 and CD#2 had comparably high Th1-related immune profiles, but CD#1 exhibited higher concentrations of proteins previously associated with poorer prognosis. Both CD clusters responded to induction therapy, with similar one-year outcomes. This study highlights feasibility of discriminating patient-specific immunotypes in IBD, advancing our understanding of immune pathogenesis, needed for tailored treatment strategies.
Collapse
Affiliation(s)
- Maud Heredia
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mohammed Charrout
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Renz C W Klomberg
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Martine A Aardoom
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Maria M E Jongsma
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Polychronis Kemos
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Danielle H Hulleman-van Haaften
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Bastiaan Tuk
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Lisette A van Berkel
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Brenda Bley Folly
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Beatriz Calado
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Sandrine Nugteren
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Ytje Simons-Oosterhuis
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michail Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Mathijs A Sanders
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Gregory van Beek
- Department of Hematology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Frank M Ruemmele
- Department of Pediatric Gastroenterology, Necker-Enfants Malades University Hospital, Institut Imagine, AP-HP, Université Paris Cité, Paris, France
| | - Nicholas M Croft
- Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London, UK
| | - Ahmed Mahfouz
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands; Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Johanna C Escher
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Lissy de Ridder
- Department of Pediatric Gastroenterology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Janneke N Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Butzke S, Nasiri-Blomgren S, Corao-Uribe D, He Z, Molle-Rios Z. Major basic protein is a useful marker to distinguish eosinophilic esophagitis from IBD-associated eosinophilia in children. J Pediatr Gastroenterol Nutr 2024; 78:555-564. [PMID: 38314865 DOI: 10.1002/jpn3.12143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 12/06/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024]
Abstract
OBJECTIVES The incidence of eosinophilic esophagitis (EoE) is 3-5 times greater in patients with inflammatory bowel disease (IBD) compared with the general population. This study aimed to differentiate true EoE from esophageal eosinophilia in IBD patients by evaluating expression of major basic protein (MBP) and interleukin-13 (IL-13) in esophageal biopsies. METHODS This retrospective study included subjects who had an esophagogastroduodenoscopy with esophageal biopsies for IBD work up or suspicion for EoE. Patients were classified into 5 groups: EoE with ≥15 eosinophils per high power field (eos/hpf), EoE-IBD with ≥15 eos/hpf, IBD eosinophilia with 1-14 eos/hpf, IBD and control groups. Biopsies were stained with MBP and IL-13 antibodies and the results (% staining/total tissue area), demographic, and clinical findings were compared among the groups. RESULTS The median for MBP staining levels in EoE-IBD was 3.8 (interquartile range 1.3-23), significantly lower than in EoE at 52.8 (8.3-113.2), but higher than in IBD eosinophilia at 0.2 (0-0.9; p < 0.001) and negligible in the IBD and control groups. IL-13 expression in EoE was significantly higher only compared with IBD and controls not with EoE-IBD or IBD eosinophilia. MBP predicted EoE with 100% sensitivity and 99% specificity while IL-13 had 83% sensitivity and 90% specificity using cutoff point from the cohort without EoE-IBD patients. Based on MBP cutoff point that distinguished EoE from non EoE, 56% in EoE-IBD were MBP-positive whereas 100% in EoE group (p < 0.05). CONCLUSIONS MBP may be an excellent marker in distinguishing true EoE from eosinophilia caused by IBD. Our data implied that MBP together with endoscopic and histologic changes can assist EoE diagnosis in IBD patients.
Collapse
Affiliation(s)
- Samantha Butzke
- Division of Pediatric Gastroenterology, Nemours Children's Health, Wilmington, Delaware, USA
| | - Shaida Nasiri-Blomgren
- Division of Pediatric Gastroenterology, Nemours Children's Health, Wilmington, Delaware, USA
| | - Diana Corao-Uribe
- Division of Pathology, Nemours Children's Health, Wilmington, Delaware, USA
| | - Zhaoping He
- Nemours Biomedical Research, Nemours Children's Health, Wilmington, Delaware, USA
| | - Zarela Molle-Rios
- Division of Pediatric Gastroenterology, Nemours Children's Health, Wilmington, Delaware, USA
| |
Collapse
|
3
|
Biel C, Faber KN, Bank RA, Olinga P. Matrix metalloproteinases in intestinal fibrosis. J Crohns Colitis 2024; 18:462-478. [PMID: 37878770 PMCID: PMC10906956 DOI: 10.1093/ecco-jcc/jjad178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 10/27/2023]
Abstract
Intestinal fibrosis is a common complication in patients with inflammatory bowel disease [IBD], in particular Crohn's disease [CD]. Unfortunately, at present intestinal fibrosis is not yet preventable, and cannot be treated by interventions other than surgical removal. Intestinal fibrosis is characterized by excessive accumulation of extracellular matrix [ECM], which is caused by activated fibroblasts and smooth muscle cells. Accumulation of ECM results from an imbalanced production and degradation of ECM. ECM degradation is mainly performed by matrix metalloproteinases [MMPs], enzymes that are counteracted by tissue inhibitors of MMPs [TIMPs]. In IBD patients, MMP activity [together with other protease activities] is increased. At the same time, CD patients have a generally lower MMP activity compared to ulcerative colitis patients, who usually do not develop intestinal strictures or fibrosis. The exact regulation and role[s] of these MMPs in fibrosis are far from understood. Here, we review the current literature about ECM remodelling by MMPs in intestinal fibrosis and their potential role as biomarkers for disease progression or druggable targets.
Collapse
Affiliation(s)
- Carin Biel
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| | - Klaas Nico Faber
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, Groningen, The Netherlands
| | - Ruud A Bank
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, the Netherlands
| |
Collapse
|
4
|
Paroni M, Leccese G, Ranzani V, Moschetti G, Chiara M, Perillo F, Ferri S, Clemente F, Noviello D, Conforti FS, Ferrero S, Karnani B, Bosotti R, Vasco C, Curti S, Crosti MC, Gruarin P, Rossetti G, Conte MP, Vecchi M, Pagani M, Landini P, Facciotti F, Abrignani S, Caprioli F, Geginat J. An Intestinal Th17 Subset is Associated with Inflammation in Crohn's Disease and Activated by Adherent-invasive Escherichia coli. J Crohns Colitis 2023; 17:1988-2001. [PMID: 37462681 PMCID: PMC10798865 DOI: 10.1093/ecco-jcc/jjad119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
IFNγ-producing ex-Th17 cells ['Th1/17'] were shown to play a key pathogenic role in experimental colitis and are abundant in the intestine. Here, we identified and characterised a novel, potentially colitogenic subset of Th17 cells in the intestine of patients with Crohn's disease [CD]. Human Th17 cells expressing CCR5 ['pTh17'] co-expressed T-bet and RORC/γt and produced very high levels of IL-17, together with IFN-γ. They had a gene signature of Th17 effector cells and were distinct from established Th1/17 cells. pTh17 cells, but not Th1/17 cells, were associated with intestinal inflammation in CD, and decreased upon successful anti-TNF therapy with infliximab. Conventional CCR5[-]Th17 cells differentiated to pTh17 cells with IL-23 in vitro. Moreover, anti-IL-23 therapy with risankizumab strongly reduced pTh17 cells in the intestine. Importantly, intestinal pTh17 cells were selectively activated by adherent-invasive Escherichia coli [AIEC], but not by a commensal/probiotic E. coli strain. AIEC induced high levels of IL-23 and RANTES from dendritic cells [DC]. Intestinal CCR5+Th1/17 cells responded instead to cytomegalovirus and were reduced in ulcerative colitis [UC], suggesting an unexpected protective role. In conclusion, we identified an IL-23-inducible subset of human intestinal Th17 cells. pTh17 cells produced high levels of pro-inflammatory cytokines, were selectively associated with intestinal inflammation in CD, and responded to CD-associated AIEC, suggesting a key colitogenic role.
Collapse
Affiliation(s)
- Moira Paroni
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Gabriella Leccese
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Valeria Ranzani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Giorgia Moschetti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Matteo Chiara
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Perillo
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
| | - Sara Ferri
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Francesca Clemente
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Daniele Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Francesco Simone Conforti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Stefano Ferrero
- Pathology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Biomedical, Surgical, and Dental Sciences, Università degli Studi di Milano, Milan, Italy
| | - Bhavna Karnani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Roberto Bosotti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Chiara Vasco
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Serena Curti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Maria Cristina Crosti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Paola Gruarin
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
| | - Grazisa Rossetti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Molecular Oncology and Immunology, FIRC Institute of Molecular Oncology [IFOM], Milan, Italy
| | - Maria Pia Conte
- Department of Public Health and Infectious Diseases, ‘Sapienza’ University of Rome, Rome, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimiliano Pagani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Molecular Oncology and Immunology, FIRC Institute of Molecular Oncology [IFOM], Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paolo Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Department of Experimental Oncology, European Institute of Oncology, Milan, Italy
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - Sergio Abrignani
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Jens Geginat
- INGM-National Institute of Molecular Genetics ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- DISCCO, Department of Clinical Science and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Podolski M, Požgaj L, Faraho I, Petrinić Grba A, Belamarić D, Paravić Radičević A, Bosnar M, Crnčević Urek M, Čubranić A, Mustapić S, Mijandrušić-Sinčić B, Banić M, Eraković Haber V. Correlation of ex vivo cytokine secretion profiles with scoring indices in ulcerative colitis. Eur J Clin Invest 2023; 53:e14070. [PMID: 37547943 DOI: 10.1111/eci.14070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND In ulcerative colitis, the complexity of mucosal cytokine secretion profiles and how they correlate with endoscopic and clinical scores is still unclear. METHODS In this study, we collected fresh biopsies from UC patients to investigate which cytokines are produced in ex vivo culture conditions, a platform increasingly used for testing of novel drugs. Then, we correlated cytokine production with several scoring indices commonly used to assess the severity of the disease. RESULTS Increased levels of IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-13, TNFα and IFNɣ were produced by biopsies of UC patients compared to non-IBD controls. Our results show a better correlation of cytokine levels with Mayo Endoscopic Subscore (MES) and Mayo score, than the more complex Ulcerative Colitis Endoscopic Index of Severity (UCEIS). Out of 10 measured cytokines, eight correlated with MES, six with Mayo score and only three with UCEIS, due to the partial increase in cytokine secretion observed in donors with UCEIS = 7-8. When we analysed individual subscores within the UCEIS, Vascular Network subscore showed a correlation similar to MES (7/10 cytokines), while Bleeding as well as Erosions and Ulcers subscores correlated with only 3/10 cytokines, similarly to the total UCEIS. CONCLUSIONS Our findings suggest that choosing biopsies from donors with MES = 2-3 and UCEIS = 2-6 from areas with no bleeding and no superficial and/or deep ulcers could enable a deeper insight into the cytokine profile of the inflamed tissue and represent a better tool for studying potential therapeutic targets and evaluation of novel therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Marija Crnčević Urek
- University of Zagreb School of Medicine, Zagreb, Croatia
- Clinical University Hospital Dubrava, Zagreb, Croatia
| | - Aleksandar Čubranić
- University of Rijeka School of Medicine, Rijeka, Croatia
- Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | | | - Marko Banić
- University of Zagreb School of Medicine, Zagreb, Croatia
- Clinical University Hospital Dubrava, Zagreb, Croatia
- University of Rijeka School of Medicine, Rijeka, Croatia
| | - Vesna Eraković Haber
- Selvita Ltd, Zagreb, Croatia
- University of Rijeka School of Medicine, Rijeka, Croatia
| |
Collapse
|
6
|
Yarur AJ, Bruss A, Moosreiner A, Beniwal-Patel P, Nunez L, Berens B, Colombel JF, Targan SR, Fox C, Melmed GY, Abreu MT, Deepak P. Higher Intra-Abdominal Visceral Adipose Tissue Mass Is Associated With Lower Rates of Clinical and Endoscopic Remission in Patients With Inflammatory Bowel Diseases Initiating Biologic Therapy: Results of the Constellation Study. Gastroenterology 2023; 165:963-975.e5. [PMID: 37499955 PMCID: PMC10589067 DOI: 10.1053/j.gastro.2023.06.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND & AIMS We sought to assess the association between intra-abdominal visceral adipose tissue (IA-VAT) and response to 3 different biologic drugs in patients with inflammatory bowel disease (IBD) and to investigate its effects on inflammatory cytokine expression, pharmacokinetics, and intestinal microbiota. METHODS We prospectively enrolled subjects with active IBD initiating infliximab, vedolizumab, or ustekinumab and a healthy control group. Baseline body composition (including IA-VAT as percent of total body mass [IA-VAT%]) was measured using GE iDXA scan. Primary outcome was corticosteroid- free deep remission at weeks 14-16, defined as Harvey Bradshaw Index <5 for Crohn's disease and partial Mayo score <2 for ulcerative colitis, with a normal C-reactive protein and fecal calprotectin. Secondary outcomes were corticosteroid-free deep remission and endoscopic remission (Endoscopic Mayo Score ≤1 in ulcerative colitis or Simple Endoscopic Score for Crohn's disease ≤2) at weeks 30-46. RESULTS A total of 141 patients with IBD and 51 healthy controls were included. No differences in body composition parameters were seen between the IBD and healthy control cohorts. Patients with higher IA-VAT% were less likely to achieve corticosteroid-free deep remission (P < .001) or endoscopic remission (P = .02) vs those with lower IA-VAT%. Furthermore, nonresponders with high IA-VAT% had significantly higher serum interleukin-6 and tumor necrosis factor at baseline compared with responders and patients with low IA-VAT%. Drug pharmacokinetic properties and microbiota diversity were similar when comparing high and low IA-VAT% groups. CONCLUSIONS Higher IA-VAT% was independently associated with worse outcomes. This association could be driven at least partially by discrete differences in inflammatory cytokine expression.
Collapse
Affiliation(s)
- Andres J Yarur
- Division of Gastroenterology and Hepatology, Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California; Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin.
| | - Alexandra Bruss
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrea Moosreiner
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Poonam Beniwal-Patel
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lizbeth Nunez
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Brandon Berens
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Stephan R Targan
- Division of Gastroenterology and Hepatology, Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Caroline Fox
- Division of Gastroenterology and Hepatology, Medical College of Wisconsin, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Gil Y Melmed
- Division of Gastroenterology and Hepatology, Inflammatory Bowel Disease Institute, Cedars Sinai Medical Center, Los Angeles, California
| | - Maria T Abreu
- Center for Inflammatory Bowel Diseases, Division of Gastroenterology and Hepatology, University of Miami, Miller School of Medicine, Miami, Florida
| | - Parakkal Deepak
- Division of Gastroenterology and Hepatology, Washington University in St Louis School of Medicine, St Louis, Missouri
| |
Collapse
|
7
|
Guo N, Lv L. Mechanistic insights into the role of probiotics in modulating immune cells in ulcerative colitis. Immun Inflamm Dis 2023; 11:e1045. [PMID: 37904683 PMCID: PMC10571014 DOI: 10.1002/iid3.1045] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a persistent inflammatory disorder that affects the gastrointestinal tract, mainly the colon, which is defined by inflammatory responses and the formation of ulcers. Probiotics have been shown to directly impact various immune cells, including dendritic cells (DCs), macrophages, natural killer (NK) cells, and T and B cells. By interacting with cell surface receptors, they regulate immune cell activity, produce metabolites that influence immune responses, and control the release of cytokines and chemokines. METHODS This article is a comprehensive review wherein we conducted an exhaustive search across published literature, utilizing reputable databases like PubMed and Web of Science. Our focus centered on pertinent keywords, such as "UC," 'DSS," "TNBS," "immune cells," and "inflammatory cytokines," to compile the most current insights regarding the therapeutic potential of probiotics in managing UC. RESULTS This overview aims to provide readers with a comprehensive understanding of the effects of probiotics on immune cells in relation to UC. Probiotics have a crucial role in promoting the proliferation of regulatory T cells (Tregs), which are necessary for preserving immunological homeostasis and regulating inflammatory responses. They also decrease the activation of pro-inflammatory cells like T helper 1 (Th1) and Th17 cells, contributing to UC development. Thus, probiotics significantly impact both direct and indirect pathways of immune cell regulation in UC, promoting Treg differentiation, inhibiting pro-inflammatory cell activation, and regulating cytokine and chemokine release. CONCLUSION Probiotics demonstrate significant potential in modulating the immune reactions in UC. Their capacity to modulate different immune cells and inflammation-related processes makes them a promising therapeutic approach for managing UC. However, further studies are warranted to optimize their use and fully elucidate the molecular mechanisms underlying their beneficial effects in UC treatment.
Collapse
Affiliation(s)
- Ni Guo
- Department of GastroenterologyShengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch)ShengzhouZhejiang ProvinceChina
| | - Lu‐lu Lv
- Department of GastroenterologyShengzhou People's Hospital (The First Affiliated Hospital of Zhejiang University Shengzhou Branch)ShengzhouZhejiang ProvinceChina
| |
Collapse
|
8
|
Barker KH, Higham JP, Pattison LA, Chessell IP, Welsh F, Smith ESJ, Bulmer DC. Sensitization of colonic nociceptors by IL-13 is dependent on JAK and p38 MAPK activity. Am J Physiol Gastrointest Liver Physiol 2023; 324:G250-G261. [PMID: 36749569 PMCID: PMC10010921 DOI: 10.1152/ajpgi.00280.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis. Furthermore, receptors for IL-13 are expressed by neurons innervating the colon, though it is not known whether IL-13 plays any role in visceral nociception per se. To resolve this, we used Ca2+ imaging of cultured sensory neurons and ex vivo electrophysiological recording from the lumbar splanchnic nerve innervating the distal colon. Ca2+ imaging revealed the stimulation of small-diameter, capsaicin-sensitive sensory neurons by IL-13, indicating that IL-13 likely stimulates nociceptors. IL-13-evoked Ca2+ signals were attenuated by inhibition of Janus (JAK) and p38 kinases. In the lumbar splanchnic nerve, IL-13 did not elevate baseline firing, nor sensitize the response to capsaicin application, but did enhance the response to distention of the colon. In line with Ca2+ imaging experiments, IL-13-mediated sensitization of the afferent response to colon distention was blocked by inhibition of either JAK or p38 kinase signaling. Together, these data highlight a potential role for IL-13 in visceral nociception and implicate JAK and p38 kinases in pronociceptive signaling downstream of IL-13.
Collapse
Affiliation(s)
- Katie H Barker
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Iain P Chessell
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Fraser Welsh
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
9
|
Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:2696. [PMID: 36769019 PMCID: PMC9916759 DOI: 10.3390/ijms24032696] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.
Collapse
Affiliation(s)
- Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Cristina Rius
- Department of History of Science and Information Science, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- UISYS Research Unit, University of Valencia, 46010 Valencia, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Hector Sanchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
10
|
Lin MK, Yang YT, Lin LJ, Yu WH, Chen HY. Pulsatilla decoction suppresses matrix metalloproteinase-7-mediated leukocyte recruitment in dextran sulfate sodium-induced colitis mouse model. BMC Complement Med Ther 2022; 22:211. [PMID: 35933374 PMCID: PMC9356479 DOI: 10.1186/s12906-022-03696-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 07/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Intestinal inflammation is considered to be an important characteristic of ulcerative colitis (UC) and the current medical treatments for UC are usually proposed to suppress abnormal intestinal immune responses. Pulsatilla decoction (PD), a traditional Chinese medicine, is frequently used in UC treatments in Asian countries; however, the mechanism of the action of PD remains unclear. In the present study, the mechanism of the action of PD was elucidated in the dextran sulfate sodium (DSS)-induced colitis mouse model, a model to mimic UC. Methods Murine colitis was evaluated by comparing the disease activity index score. The intestinal inflammation was examined by histology analyses. The leukocyte infiltration in the colonic tissues was examined by immunohistochemistry analyses. The cytokines level in colonic tissues was examined by Multi-Plex immunoassay. The epithelial proliferation was evaluated by histological analyses. Immunofluorescence double staining was used to examine the expression of MMP-7 in the immune cells. Results In the DSS-induced colitis mouse model, administration of PD attenuated the intestinal inflammation, with a marked decrease in colonic infiltration of innate immune cells. Immunohistochemical analyses further showed that matrix metalloproteinase-7 (MMP-7) expressed by the infiltrating leukocytes, including neutrophils and macrophages was inhibited by PD treatment. PD increases the cytokine level of IL-6 in colonic tissues. Conclusion PD suppresses intestinal inflammation, with a marked decrease in colonic infiltration of innate immune cells, through decreasing MMP-7 expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-022-03696-w.
Collapse
|
11
|
Uchiyama K, Takagi T, Mizushima K, Asaeda K, Kajiwara M, Kashiwagi S, Toyokawa Y, Hotta Y, Tanaka M, Inoue K, Dohi O, Okayama T, Yoshida N, Katada K, Kamada K, Ishikawa T, Yasuda H, Konishi H, Kishimoto M, Naito Y, Itoh Y. Mucosal interleukin-8 expression as a predictor of subsequent relapse in ulcerative colitis patients with Mayo endoscopic subscore 0. J Gastroenterol Hepatol 2022; 37:1034-1042. [PMID: 35233808 DOI: 10.1111/jgh.15813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/01/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIM Complete endoscopic mucosal healing is defined as a Mayo endoscopic subscore of 0. Some patients diagnosed with a Mayo endoscopic subscore 0 may present with subsequent clinical relapse. Here, we aimed to demonstrate mucosal cytokine profile as a predictor of clinical relapse in ulcerative colitis patients with a Mayo endoscopic subscore of 0 as a marker of mucosal healing. METHODS We conducted prospective observational pilot study to examine the relationship between mucosal cytokine expression and subsequent relapse of UC patients diagnosed with a Mayo endoscopic subscore of 0. We enrolled 55 patients, and expression of cytokines tumor necrosis factor-α, interferon γ, interleukin-1β, interleukin-2, interleukin-4, interleukin-5, interleukin-6, interleukin-7, interleukin-8, interleukin-9, interleukin-10, interleukin-12, interleukin-13, interleukin-15, interleukin-17A, interleukin-17F, interleukin-18, interleukin-21, interleukin-22, interleukin-23, interleukin-27, and interleukin-33 was measured by quantitative real-time PCR using rectal mucosa biopsy materials. Cytokine expression levels were compared between patients who relapsed between March 1, 2016, and March 30, 2020, of the study period and those who remained in remission. RESULTS Ten cytokines, including interleukin-2, interleukin-4, interleukin-8, interleukin-10, interleukin-12, interleukin-15, interleukin-17A, interleukin-21, interleukin-23, and interleukin-33, were significantly elevated in patients with subsequent relapse compared with those who remained in remission. Interleukin-8 expression was the most useful predictor. CONCLUSIONS In the rectal mucosa of ulcerative colitis patients with Mayo endoscopic subscore 0, levels of several cytokines were elevated in cases of subsequent relapse. Among these, interleukin-8 expression was the most useful for predicting relapse.
Collapse
Affiliation(s)
- Kazuhiko Uchiyama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tomohisa Takagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Katsura Mizushima
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kohei Asaeda
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mariko Kajiwara
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Saori Kashiwagi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuki Toyokawa
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuma Hotta
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Makoto Tanaka
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Ken Inoue
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Osamu Dohi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuya Okayama
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Naohisa Yoshida
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Katada
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kazuhiro Kamada
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takeshi Ishikawa
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroaki Yasuda
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hideyuki Konishi
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mitsuo Kishimoto
- Department of Surgical Pathology, Kyoto City Hospital, Kyoto, Japan
| | - Yuji Naito
- Department of Human Immunology and Nutrition Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshito Itoh
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
12
|
Burrello C, Strati F, Lattanzi G, Diaz-Basabe A, Mileti E, Giuffrè MR, Lopez G, Cribiù FM, Trombetta E, Kallikourdis M, Cremonesi M, Conforti F, Botti F, Porretti L, Rescigno M, Vecchi M, Fantini MC, Caprioli F, Facciotti F. IL10 Secretion Endows Intestinal Human iNKT Cells with Regulatory Functions Towards Pathogenic T Lymphocytes. J Crohns Colitis 2022; 16:1461-1474. [PMID: 35358301 PMCID: PMC9455792 DOI: 10.1093/ecco-jcc/jjac049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Invariant natural killer T [iNKT] cells perform pleiotropic functions in different tissues by secreting a vast array of pro-inflammatory and cytotoxic molecules. However, the presence and function of human intestinal iNKT cells capable of secreting immunomodulatory molecules such as IL-10 has never been reported so far. Here we describe for the first time the presence of IL10-producing iNKT cells [NKT10 cells] in the intestinal lamina propria of healthy individuals and of Crohn's disease [CD] patients. METHODS Frequency and phenotype of NKT10 cells were analysed ex vivo from intestinal specimens of Crohn's disease [n = 17] and controls [n = 7]. Stable CD-derived intestinal NKT10 cell lines were used to perform in vitro suppression assays and co-cultures with patient-derived mucosa-associated microbiota. Experimental colitis models were performed by adoptive cell transfer of splenic naïve CD4+ T cells in the presence or absence of IL10-sufficient or -deficient iNKT cells. In vivo induction of NKT10 cells was performed by administration of short chain fatty acids [SCFA] by oral gavage. RESULTS Patient-derived intestinal NKT10 cells demonstrated suppressive capabilities towards pathogenic CD4+ T cells. The presence of increased proportions of mucosal NKT10 cells associated with better clinical outcomes in CD patients. Moreover, an intestinal microbial community enriched in SCFA-producing bacteria sustained the production of IL10 by iNKT cells. Finally, IL10-deficient iNKT cells failed to control the pathogenic activity of adoptively transferred CD4+ T cells in an experimental colitis model. CONCLUSIONS These results describe an unprecedentd IL10-mediated immunoregulatory role of intestinal iNKT cells in controlling the pathogenic functions of mucosal T helper subsets and in maintaining the intestinal immune homeostasis.
Collapse
Affiliation(s)
- Claudia Burrello
- Current address: Division of Tumor Biology and Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | | | | | - Erika Mileti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Maria Rita Giuffrè
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy
| | - Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marinos Kallikourdis
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Adaptive Immunity, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Marco Cremonesi
- Laboratory of Adaptive Immunity, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Francesco Conforti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fiorenzo Botti
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- General and Emergency Surgery Unit, Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Massimo C Fantini
- Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Corresponding author: Dr Federica Facciotti, Department of Experimental Oncology, European Institute of Oncology IRCCS, Via Adamello 16, 20135, Milan, Italy.
| |
Collapse
|
13
|
Russo E, Giudici F, Ricci F, Scaringi S, Nannini G, Ficari F, Luceri C, Niccolai E, Baldi S, D'Ambrosio M, Ramazzotti M, Amedei A. Diving into Inflammation: A Pilot Study Exploring the Dynamics of the Immune-Microbiota Axis in Ileal Tissue Layers of Patients with Crohn's Disease. J Crohns Colitis 2021; 15:1500-1516. [PMID: 33611347 DOI: 10.1093/ecco-jcc/jjab034] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS The pathogenesis of Crohn's disease [CD] is still unclear. Disorders in the mucosal immunoregulation and its crosstalk with the microbiota may represent an important component in tissue injury. We aimed to characterize the molecular immune response distribution within the ileal layers and to evaluate the correlated microbiota in pathological/healthy settings comparing first surgery/relapse clinical conditions. METHODS We enrolled 12 CD patients. A comprehensive analysis of an ileal mucosa, submucosa and serosa broad-spectrum cytokine panel was performed through a multiplex approach. In addition, ileal microbiota composition was assessed through next generation sequencing. RESULTS We observed a distinct profile [of IL1-α, IL-1β, IL-4, IL-8, ICAM-1, E-Selectin, P-Selectin, IP-10, IL 6 and IL 18] across the CD vs healthy ileal layers; and a different distribution of IFN- γ, P-Selectin, IL-27 and IL-21 in first surgery vs relapse patients. In addition, the phylum Tenericutes, the family Ruminococcaceae, and the genera Mesoplasma and Mycoplasma were significantly enriched in the pathological setting. Significant microbiota differences were observed between relapse and first surgery patients regarding the class Bacteroidia, and the genera Prevotella, Flavobacterium, Tepidimonas and Escherichia/Shigella. Finally, the abundance of the genus Mycoplasma was positively correlated with IL-18. CONCLUSIONS We describe a dissimilarity of cytokine distribution and microbiota composition within CD and adjacent healthy ileal tissue layers and between first operation and surgical relapse. Our results give potential insight into the dynamics of the gut microbiota-immune axis in CD patients, leading to detection of new biomarkers.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Federica Ricci
- Tumor Cell Biology Unit - Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Stefano Scaringi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Giulia Nannini
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Ferdinando Ficari
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Cristina Luceri
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Mario D'Ambrosio
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), Florence, Italy
| | - Matteo Ramazzotti
- Department of Biomedical, Experimental and Clinical "Mario Serio", Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| |
Collapse
|
14
|
Gonzalez Acera M, Patankar JV, Diemand L, Siegmund B, Neurath MF, Wirtz S, Becker C. Comparative Transcriptomics of IBD Patients Indicates Induction of Type 2 Immunity Irrespective of the Disease Ideotype. Front Med (Lausanne) 2021; 8:664045. [PMID: 34136502 PMCID: PMC8200538 DOI: 10.3389/fmed.2021.664045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory cytokines initiate and sustain the perpetuation of processes leading to chronic inflammatory conditions such as inflammatory bowel diseases (IBD). The nature of the trigger causing an inflammatory reaction decides whether type 1, type 17, or type 2 immune responses, typically characterized by the respective T- helper cell subsets, come into effect. In the intestine, Type 2 responses have been linked with mucosal healing and resolution upon an immune challenge involving parasitic infections. However, type 2 cytokines are frequently elevated in certain types of IBD in particular ulcerative colitis (UC) leading to the assumption that Th2 cells might critically support the pathogenesis of UC raising the question of whether such elevated type 2 responses in IBD are beneficial or detrimental. In line with this, previous studies showed that suppression of IL-13 and other type 2 related molecules in murine models could improve the outcomes of intestinal inflammation. However, therapeutic attempts of neutralizing IL-13 in ulcerative colitis patients have yielded no benefits. Thus, a better understanding of the role of type 2 cytokines in regulating intestinal inflammation is required. Here, we took a comparative transcriptomic approach to address how Th2 responses evolve in different mouse models of colitis and human IBD datasets. Our data show that type 2 immune-related transcripts are induced in the inflamed gut of IBD patients in both Crohn's disease and UC and across widely used mouse models of IBD. Collectively our data implicate that the presence of a type 2 signature rather defines a distinct state of intestinal inflammation than a disease-specific pathomechanism.
Collapse
Affiliation(s)
- Miguel Gonzalez Acera
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Jay V Patankar
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Leonard Diemand
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Britta Siegmund
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Medizinische Klinik für Gastroenterologie, Infektiologie und Rheumatologie, Berlin, Germany
| | - Markus F Neurath
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Stefan Wirtz
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine 1, University of Erlangen-Nuremberg, Erlangen, Germany.,Deutsches Zentrum Immuntherapie (DZI), Erlangen, Germany
| |
Collapse
|
15
|
Brand RM, Moore BA, Zyhowski A, Siegel A, Uttam S, Metter EJ, Engstrom J, Brand RE, Biswas N, Whitcomb DC, Binion DG, Schwartz M, McGowan I. Tofacitinib inhibits inflammatory cytokines from ulcerative colitis and healthy mucosal explants and is associated with pSTAT1/3 reduction in T-cells. Am J Physiol Gastrointest Liver Physiol 2021; 320:G396-G410. [PMID: 33355506 PMCID: PMC8202239 DOI: 10.1152/ajpgi.00383.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 02/07/2023]
Abstract
Poor translatability of animal disease models has hampered the development of new inflammatory bowel disorder (IBD) therapeutics. We describe a preclinical, ex vivo system using freshly obtained and well-characterized human colorectal tissue from patients with ulcerative colitis (UC) and healthy control (HC) participants to test potential therapeutics for efficacy and target engagement, using the JAK/STAT inhibitor tofacitinib (TOFA) as a model therapeutic. Colorectal biopsies from HC participants and patients with UC were cultured and stimulated with multiple mitogens ± TOFA. Soluble biomarkers were detected using a 29-analyte multiplex ELISA. Target engagement in CD3+CD4+ and CD3+CD8+ T-cells was determined by flow cytometry in peripheral blood mononuclear cells (PBMCs) and isolated mucosal mononuclear cells (MMCs) following the activation of STAT1/3 phosphorylation. Data were analyzed using linear mixed-effects modeling, t test, and analysis of variance. Biomarker selection was performed using penalized and Bayesian logistic regression modeling, with results visualized using uniform manifold approximation and projection. Under baseline conditions, 27 of 29 biomarkers from patients with UC were increased versus HC participants. Explant stimulation increased biomarker release magnitude, expanding the dynamic range for efficacy and target engagement studies. Logistic regression analyses identified the most representative UC baseline and stimulated biomarkers. TOFA inhibited biomarkers dependent on JAK/STAT signaling. STAT1/3 phosphorylation in T-cells revealed compartmental differences between PBMCs and MMCs. Immunogen stimulation increases biomarker release in similar patterns for HC participants and patients with UC, while enhancing the dynamic range for pharmacological effects. This work demonstrates the power of ex vivo human colorectal tissue as preclinical tools for evaluating target engagement and downstream effects of new IBD therapeutic agents.NEW & NOTEWORTHY Using colorectal biopsy material from healthy volunteers and patients with clinically defined IBD supports translational research by informing the evaluation of therapeutic efficacy and target engagement for the development of new therapeutic entities. Combining experimental readouts from intact and dissociated tissue enhances our understanding of the tissue-resident immune system that contribute to disease pathology. Bayesian logistic regression modeling is an effective tool for predicting ex vivo explant biomarker release patterns.
Collapse
Affiliation(s)
- Rhonda M Brand
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Beverley A Moore
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- B.A. Moore Pharmaceutical Consulting, LLC, Collegeville, Pennsylvania
| | - Ashley Zyhowski
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Aaron Siegel
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Shikhar Uttam
- University of Tennessee Health Science Center, Memphis, Tennessee
| | - E Jeffrey Metter
- University of Tennessee Health Science Center, Memphis, Tennessee
| | - Jarret Engstrom
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| | - Randall E Brand
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nabanita Biswas
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David C Whitcomb
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David G Binion
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Marc Schwartz
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ian McGowan
- University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Magee-Womens Research Institute and Foundation, Pittsburgh, Pennsylvania
| |
Collapse
|
16
|
Hou Q, Huang J, Ayansola H, Masatoshi H, Zhang B. Intestinal Stem Cells and Immune Cell Relationships: Potential Therapeutic Targets for Inflammatory Bowel Diseases. Front Immunol 2021; 11:623691. [PMID: 33584726 PMCID: PMC7874163 DOI: 10.3389/fimmu.2020.623691] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022] Open
Abstract
The mammalian intestine is the largest immune organ that contains the intestinal stem cells (ISC), differentiated epithelial cells (enterocytes, Paneth cells, goblet cells, tuft cells, etc.), and gut resident-immune cells (T cells, B cells, dendritic cells, innate lymphoid cell, etc.). Inflammatory bowel disease (IBD), a chronic inflammatory disease characterized by mucosa damage and inflammation, threatens the integrity of the intestine. The continuous renewal and repair of intestinal mucosal epithelium after injury depend on ISCs. Inflamed mucosa healing could be a new target for the improvement of clinical symptoms, disease recurrence, and resection-free survival in IBD treated patients. The knowledge about the connections between ISC and immune cells is expanding with the development of in vitro intestinal organoid culture and single-cell RNA sequencing technology. Recent findings implicate that immune cells such as T cells, ILCs, dendritic cells, and macrophages and cytokines secreted by these cells are critical in the regeneration of ISCs and intestinal epithelium. Transplantation of ISC to the inflamed mucosa may be a new therapeutic approach to reconstruct the epithelial barrier in IBD. Considering the links between ISC and immune cells, we predict that the integration of biological agents and ISC transplantation will revolutionize the future therapy of IBD patients.
Collapse
Affiliation(s)
- Qihang Hou
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| | - Jingxi Huang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| | - Hammed Ayansola
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| | - Hori Masatoshi
- Department of Veterinary Pharmacology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Bingkun Zhang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition & Feed Science, College of Animal Science & Technology, China Agricultural University, Haidian District, Beijing, China
| |
Collapse
|
17
|
Gamez-Belmonte R, Erkert L, Wirtz S, Becker C. The Regulation of Intestinal Inflammation and Cancer Development by Type 2 Immune Responses. Int J Mol Sci 2020; 21:ijms21249772. [PMID: 33371444 PMCID: PMC7767427 DOI: 10.3390/ijms21249772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/11/2022] Open
Abstract
The gut is among the most complex organs of the human body. It has to exert several functions including food and water absorption while setting up an efficient barrier to the outside world. Dysfunction of the gut can be life-threatening. Diseases of the gastrointestinal tract such as inflammatory bowel disease, infections, or colorectal cancer, therefore, pose substantial challenges to clinical care. The intestinal epithelium plays an important role in intestinal disease development. It not only establishes an important barrier against the gut lumen but also constantly signals information about the gut lumen and its composition to immune cells in the bowel wall. Such signaling across the epithelial barrier also occurs in the other direction. Intestinal epithelial cells respond to cytokines and other mediators of immune cells in the lamina propria and shape the microbial community within the gut by producing various antimicrobial peptides. Thus, the epithelium can be considered as an interpreter between the microbiota and the mucosal immune system, safeguarding and moderating communication to the benefit of the host. Type 2 immune responses play important roles in immune-epithelial communication. They contribute to gut tissue homeostasis and protect the host against infections with helminths. However, they are also involved in pathogenic pathways in inflammatory bowel disease and colorectal cancer. The current review provides an overview of current concepts regarding type 2 immune responses in intestinal physiology and pathophysiology.
Collapse
|
18
|
Alfredsson J, Wick MJ. Mechanism of fibrosis and stricture formation in Crohn's disease. Scand J Immunol 2020; 92:e12990. [PMID: 33119150 PMCID: PMC7757243 DOI: 10.1111/sji.12990] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 10/06/2020] [Accepted: 10/25/2020] [Indexed: 12/11/2022]
Abstract
Crohn's disease (CD) is a chronic inflammatory disease of the gastrointestinal tract that leads to substantial suffering for millions of patients. In some patients, the chronic inflammation leads to remodelling of the extracellular matrix and fibrosis. Fibrosis, in combination with expansion of smooth muscle layers, leaves the bowel segment narrowed and stiff resulting in strictures, which often require urgent medical intervention. Although stricture development is associated with inflammation in the affected segment, anti‐inflammatory therapies fall far short of treating strictures. At best, current therapies might allow some patients to avoid surgery in a shorter perspective and no anti‐fibrotic therapy is yet available. This likely relates to our poor understanding of the mechanism underlying stricture development. Chronic inflammation is a prerequisite, but progression to strictures involves changes in fibroblasts, myofibroblasts and smooth muscle cells in a poorly understood interplay with immune cells and environmental cues. Much of the experimental evidence available is from animal models, cell lines or non‐strictured patient tissue. Accordingly, these limitations create the basis for many previously published reviews covering the topic. Although this information has contributed to the understanding of fibrotic mechanisms in general, in the end, data must be validated in strictured tissue from patients. As stricture formation is a serious complication of CD, we endeavoured to summarize findings exclusively performed using strictured tissue from patients. Here, we give an update of the mechanism driving this serious complication in patients, and how the strictured tissue differs from adjacent unaffected tissue and controls.
Collapse
Affiliation(s)
- Johannes Alfredsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
19
|
Qu Z, Jin X, Wang Y, Yang Y, Yang Li, Bai X, Yang Y, Xu N, Wang X, Liu M. Effect of recombinant serine protease from newborn larval stage of Trichinella spiralis on 2,4,6-trinitrobenzene sulfonic acid-induced experimental colitis in mice. Acta Trop 2020; 211:105553. [PMID: 32562622 DOI: 10.1016/j.actatropica.2020.105553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/25/2022]
Abstract
Inflammatory bowel disease (IBD) is a complex immune-mediated disease of gastrointestinal tract that is mainly driven by Th1/Th17 immune response. "Helminth therapy" has emerged, and helminth-derived immunoregulatory molecules are being used as safe and new therapeutic antigens for IBD. Recombinant serine protease (SP) from newborn Trichinella spiralis (T. spiralis) larvae (NBL) was expressed and purified. BALB/c mice were immunized with NBL-SP at 100 µg three times at an interval of 5 days. Experimental colitis was induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) administration. The disease activity index (DAI) and macroscopic and microscopic scores of the colon were assessed to identify the effect of NBL-SP on experimental colitis. Cytokine production in the serum was analysed by meso scale discovery (MSD). Cytokine production in the colon was detected by ELISA. CD4+T cell differentiation was measured by flow cytometry. NBL-SP alleviated TNBS-induced colitis in mice. The DAI, macroscopic and microscopic scores and colon length all showed a positive intervention effect of NBL-SP on experimental colitis. NBL-SP can weaken the increase in IFN-γ, TNF-α and IL-17 production as well as CD4+ IFN-γ+T cell and CD4+IL-17+T cell populations induced by colitis. Furthermore, the levels of Th2-related cytokines (IL-4, IL-5) and regulatory cytokines (IL-10, TGF-β) were elevated meanwhile the ratio of regulatory T cells (Tregs) and CD4+ IL-4 + T cells were increased by NBL-SP. NBL-SP of T. spiralis had a potential protective effect against IBD. NBL-SP skewed the Th1 and Th17-mediated response towards the Th2 and Treg response.
Collapse
|
20
|
Pingkui Enema Alleviates TNBS-Induced Ulcerative Colitis by Regulation of Inflammatory Factors, Gut Bifidobacterium, and Intestinal Mucosal Barrier in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3896948. [PMID: 32831864 PMCID: PMC7428901 DOI: 10.1155/2020/3896948] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 02/08/2023]
Abstract
Background Ulcerative colitis (UC) is a chronic recurrent inflammation of the colon, and clinical outcome of UC is still unsatisfied. Pingkui enema, a traditional Chinese medicine prescription, has been safely applied for the treatment of diarrhea and dysentery in clinic for many years. However, its mechanism is still elusive. The present study is designed to investigate the effect of Pingkui enema on trinitrobenzene sulfonic acid- (TNBS-) induced ulcerative colitis (UC) and possible mechanism in rats. Methods UC was induced by intracolonic instillation of TNBS in male Sprague-Dawley rats, which were treated with different dosages of Pingkui enema (low, medium, and high) or sulfasalazine for ten days. Survival rate was calculated. A clinical disease activity score was evaluated. Histological colitis severity was analyzed by hematoxylin-eosin (HE) staining. Content of Bifidobacterium in intestinal tissue was analyzed by RT-PCR. Concentration of IL-8, IL-13, TNF-α, D-lactic acid (D-LA), and diamine oxidase (DAO) in serum and contents of adhesin and receptor of Bifidobacterium adhesion in rat intestinal mucus were measured by ELISA. Results The results showed that Pingkui enema treatment with high dosage markedly improved the survival rate compared with untreated and sulfasalazine treated groups. All dosages of Pingkui enema reduced pathological score. High dosage of Pingkui enema and sulfasalazine treatments significantly reduced the serum concentration of IL-8, TNF-α, D-LA, and DAO and markedly increased the serum concentration of IL-13. In addition, high-dose Pingkui enema and sulfasalazine treatments increased gut content of Bifidobacterium, gut mucus expressions of adhesin, and adhesin receptor of Bifidobacterium. Conclusions Pingkui enema has therapeutic effect on TNBS-induced UC, and possible mechanism may be via regulation of gut probiotics (Bifidobacterium) and inflammatory factors and protection of intestinal mucosal barrier.
Collapse
|
21
|
Nascimento RDPD, Machado APDF, Galvez J, Cazarin CBB, Maróstica Junior MR. Ulcerative colitis: Gut microbiota, immunopathogenesis and application of natural products in animal models. Life Sci 2020; 258:118129. [PMID: 32717271 DOI: 10.1016/j.lfs.2020.118129] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/02/2020] [Accepted: 07/19/2020] [Indexed: 12/13/2022]
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease with increasing incidence in the world, especially in developing countries. Although knowledge of its pathogenesis has progressed over the last years, some details require clarification. Studies have highlighted the role of microbial dysbiosis and immune dysfunction as essential factors that may initiate the typical high-grade inflammatory outcome. In order to better understand the immunopathophysiological aspects of UC, experimental murine models are valuable tools. Some of the most commonly used chemicals to induce colitis are trinitrobenzene sulfonic acid, oxazolone and dextran sodium sulfate. These may also be used to investigate new ways of preventing or treating UC and therefore improving targeting in human studies. The use of functional foods or bioactive compounds from plants may constitute an innovative direction towards the future of alternative medicine. Considering the above, this review focused on updated information regarding the 1. gut microbiota and immunopathogenesis of UC; 2. the most utilized animal models of the disease and their relevance; and 3. experimental application of natural products, not yet tested in clinical trials.
Collapse
Affiliation(s)
- Roberto de Paula do Nascimento
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Ana Paula da Fonseca Machado
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil
| | - Julio Galvez
- Universidad de Granada (UGR), Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Centro de Investigación Biomédica, Departamento de Farmacología, 18071 Andaluzia, Granada, Spain.
| | - Cinthia Baú Betim Cazarin
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| | - Mario Roberto Maróstica Junior
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Engenharia de Alimentos (FEA), Monteiro Lobato street, 80, 13083-862, Campinas, São Paulo, Brazil.
| |
Collapse
|
22
|
Giuffrida P, Di Sabatino A. Targeting T cells in inflammatory bowel disease. Pharmacol Res 2020; 159:105040. [PMID: 32585338 DOI: 10.1016/j.phrs.2020.105040] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022]
Abstract
T cells play a pivotal role in the immune response underlying inflammatory bowel disease (IBD) pathogenesis. On this basis, over the past 25 years several drugs have assessed to target T cells in IBD patients. Amongst anti-CD3 antibodies, visilizumab and foralumab did not show clinical efficacy in ulcerative colitis (UC) and Crohn's disease (CD) patients, respectively, whereas otelixizumab has been tested in vitro only. The anti-CD4 BF-5 and cM-T412, and the anti-CD25 basiliximab and daclizumab were not effective in CD and UC patients, respectively. The anti-NKG2D antibody NNC0142-0002 showed clinical benefit in CD patients, in particular in biologic naïve ones, in a randomized, double-blind, parallel-group, placebo-controlled trial. The anti-CD40L M90 and the GSK1349571A blocking calcium release-activated calcium (CRAC) channels, which are involved in the T cell activation and proliferation, were tested only in ex vivo/in vitro experiments. Apart from ustekinumab, all the other drugs targeting T cell-derived cytokines failed. The reinduction of lamina propria T cell apoptosis is a mechanism to modulate T cell survival exploited by cyclosporin A, azathioprine and anti-tumor necrosis factor-α agents, such as infliximab, adalimumab and golimumab. In this article, we review the drugs targeting T cells via surface receptors, via T cell-derived cytokines, via CRAC channels or by inducing apoptosis.
Collapse
Affiliation(s)
- Paolo Giuffrida
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy.
| |
Collapse
|
23
|
Creyns B, Cremer J, De Hertogh G, Boon L, Ferrante M, Vermeire S, Van Assche G, Ceuppens JL, Breynaert C. Fibrogenesis in chronic murine colitis is independent of innate lymphoid cells. IMMUNITY INFLAMMATION AND DISEASE 2020; 8:393-407. [PMID: 32567222 PMCID: PMC7416052 DOI: 10.1002/iid3.321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 12/11/2022]
Abstract
Introduction Insight in the pathogenesis of intestinal fibrosis is an unmet medical need in inflammatory bowel diseases. Studies in murine models and human organ fibrosis point to a potential role of innate lymphoid cells (ILC) in chronic intestinal inflammation and fibrosis. Materials and Methods Dextran sodium sulfate (DSS) in drinking water was used to induce chronic colitis and remodeling in C57Bl/6 wild type (WT), RAG‐deficient, RAG−/− common γ chain deficient and anti‐CD90.2 monoclonal antibody treated RAG−/− mice. Inflammation was scored by macroscopic and histological examination and fibrosis was evaluated by hydroxyproline quantification and histology. Results In RAG−/− mice (which have a normal ILC population but no adaptive immunity), chronic intestinal inflammation and fibrosis developed similarly as in WT mice, with a relative increase in ILC2 during repeated DSS exposure. Chronic colitis could also be induced in the absence of ILC (RAG−/−γc−/− or anti‐CD90.2 treated RAG−/− mice) with no attenuation of fibrosis. Importantly, clinical recovery based on weight gain after stopping DSS exposure was impaired in ILC‐deficient or ILC‐depleted mice. Conclusion These data argue against a profibrotic effect of ILC in chronic colitis, but rather suggest that ILC have a protective and recovery‐enhancing effect after repeated intestinal injury.
Collapse
Affiliation(s)
- Brecht Creyns
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Jonathan Cremer
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium
| | - Gert De Hertogh
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven, Leuven, Belgium
| | | | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Séverine Vermeire
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Gert Van Assche
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), KU Leuven, Leuven, Belgium.,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Jan L Ceuppens
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium
| | - Christine Breynaert
- Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, KU Leuven, Leuven, Belgium.,Department of General Internal Medicine, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
24
|
He JS, Tan JY, Li XZ, Feng R, Xiong SS, Lin SN, Qiu Y, Mao R. Serum biomarkers of fibrostenotic Crohn's disease: Where are we now? J Dig Dis 2020; 21:336-341. [PMID: 32496631 DOI: 10.1111/1751-2980.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/11/2022]
Abstract
Intestinal fibrosis and subsequent stricture formation are major clinical challenges in inflammatory bowel disease, resulting in an increased rate of operation and poor prognosis compared with those without. With the changing perception that intestinal fibrosis is irreversible to the point of view that it is reversible in recent years, various candidate serum biomarkers have been studied over the past decades, which may stratify patients based on their risks of developing stenosis and enable the detection of early stages of fibrosis. However, reliable and accurate biomarkers are still unavailable due to conflicting results and the lack of high-quality evidence. In this review we summarized the serum biomarkers that have been proposed for intestinal fibrosis in recent years, which includes gene polymorphisms or variants, epigenetic markers, extracellular matrix components, growth factors, and antibodies, aiming to provide clues for future research.
Collapse
Affiliation(s)
- Jin Shen He
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Jin Yu Tan
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao Zhi Li
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Rui Feng
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shan Shan Xiong
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Si Nan Lin
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yun Qiu
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Ren Mao
- Department of Gastroenterology, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, China
| |
Collapse
|
25
|
Butera A, Di Paola M, Vitali F, De Nitto D, Covotta F, Borrini F, Pica R, De Filippo C, Cavalieri D, Giuliani A, Pronio A, Boirivant M. IL-13 mRNA Tissue Content Identifies Two Subsets of Adult Ulcerative Colitis Patients With Different Clinical and Mucosa-Associated Microbiota Profiles. J Crohns Colitis 2020; 14:369-380. [PMID: 31501882 DOI: 10.1093/ecco-jcc/jjz154] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS A personalized approach to therapy hold great promise to improve disease outcomes. To this end, the identification of different subsets of patients according to the prevalent pathogenic process might guide the choice of therapeutic strategy. We hypothesize that ulcerative colitis [UC] patients might be stratified according to distinctive cytokine profiles and/or to a specific mucosa-associated microbiota. METHODS In a cohort of clinically and endoscopic active UC patients and controls, we used quantitative PCR to analyse the mucosal cytokine mRNA content and 16S rRNA gene sequencing to assess the mucosa-associated microbiota composition. RESULTS We demonstrate, by means of data-driven approach, the existence of a specific UC patient subgroup characterized by elevated IL-13 mRNA tissue content separate from patients with low IL-13 mRNA tissue content. The two subsets differ in clinical-pathological characteristics. High IL-13 mRNA patients are younger at diagnosis and have a higher prevalence of extensive colitis than low IL-13 mRNA patients. They also show more frequent use of steroid/immunosuppressant/anti-tumour necrosis factor α therapy during 1 year of follow-up. The two subgroups show differential enrichment of mucosa-associated microbiota genera with a prevalence of Prevotella in patients with high IL-13 mRNA tissue content and Sutterella and Acidaminococcus in patients with low IL-13 mRNA tissue content. CONCLUSION Assessment of mucosal IL-13 mRNA might help in the identification of a patient subgroup that might benefit from a therapeutic approach modulating IL-13. PODCAST This article has an associated podcast which can be accessed at https://academic.oup.com/ecco-jcc/pages/podcast.
Collapse
Affiliation(s)
- Alessia Butera
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| | - Monica Di Paola
- Department of Biology, University of Florence, Firenze, Italy
| | - Francesco Vitali
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | | | - Francesco Covotta
- University "Sapienza", Dept General Surgery, "P. Stefanini", Rome, Italy
| | | | - Roberta Pica
- Sandro Pertini Hospital, IBD, GE Unit, Rome, Italy
| | - Carlotta De Filippo
- Institute of Agricultural Biology and Biotechnology, National Research Council, Pisa, Italy
| | | | | | - Annamaria Pronio
- University "Sapienza", Dept General Surgery, "P. Stefanini", Rome, Italy
| | - Monica Boirivant
- Istituto Superiore di Sanità, National Center for Drug Research and Evaluation, Rome, Italy
| |
Collapse
|
26
|
Tindemans I, Joosse ME, Samsom JN. Dissecting the Heterogeneity in T-Cell Mediated Inflammation in IBD. Cells 2020; 9:E110. [PMID: 31906479 PMCID: PMC7016883 DOI: 10.3390/cells9010110] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022] Open
Abstract
Infiltration of the lamina propria by inflammatory CD4+ T-cell populations is a key characteristic of chronic intestinal inflammation. Memory-phenotype CD4+ T-cell frequencies are increased in inflamed intestinal tissue of IBD patients compared to tissue of healthy controls and are associated with disease flares and a more complicated disease course. Therefore, a tightly controlled balance between regulatory and inflammatory CD4+ T-cell populations is crucial to prevent uncontrolled CD4+ T-cell responses and subsequent intestinal tissue damage. While at steady state, T-cells display mainly a regulatory phenotype, increased in Th1, Th2, Th9, Th17, and Th17.1 responses, and reduced Treg and Tr1 responses have all been suggested to play a role in IBD pathophysiology. However, it is highly unlikely that all these responses are altered in each individual patient. With the rapidly expanding plethora of therapeutic options to inhibit inflammatory T-cell responses and stimulate regulatory T-cell responses, a crucial need is emerging for a robust set of immunological assays to predict and monitor therapeutic success at an individual level. Consequently, it is crucial to differentiate dominant inflammatory and regulatory CD4+ T helper responses in patients and relate these to disease course and therapy response. In this review, we provide an overview of how intestinal CD4+ T-cell responses arise, discuss the main phenotypes of CD4+ T helper responses, and review how they are implicated in IBD.
Collapse
Affiliation(s)
| | | | - Janneke N. Samsom
- Laboratory of Pediatrics, Division Gastroenterology and Nutrition, Erasmus MC-Sophia Children’s Hospital, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
27
|
Digby-Bell JL, Atreya R, Monteleone G, Powell N. Interrogating host immunity to predict treatment response in inflammatory bowel disease. Nat Rev Gastroenterol Hepatol 2020; 17:9-20. [PMID: 31767987 DOI: 10.1038/s41575-019-0228-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2019] [Indexed: 02/07/2023]
Abstract
IBD treatment is undergoing a transformation with an expanding repertoire of drugs targeting different aspects of the immune response. Three novel classes of drugs have emerged in the past decade that target leukocyte trafficking to the gut (vedolizumab), neutralize key cytokines with antibodies (ustekinumab) and inhibit cytokine signalling pathways (tofacitinib). In advanced development are other drugs for IBD, including therapies targeting other cytokines such as IL-23 and IL-6. However, all agents tested so far are hampered by primary and secondary loss of response, so it is desirable to develop personalized strategies to identify which patients should be treated with which drugs. Stratification of patients with IBD by clinical parameters alone lacks sensitivity, and alternative modalities are now needed to deliver precision medicine in IBD. High-resolution profiling of immune response networks in individual patients is a promising approach and different technical platforms, including in vivo real-time molecular endoscopy, tissue transcriptomics and germline genetics, are promising tools to help predict responses to specific therapies. However, important challenges remain regarding the clinical utility of these technologies, including their scalability and accessibility. This Review focuses on unravelling some of the complexity of mucosal immune responses in IBD pathogenesis and how current and emerging analytical platforms might be harnessed to effectively stratify and individualise IBD therapy.
Collapse
Affiliation(s)
| | - Raja Atreya
- Department of Medicine 1, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Nick Powell
- School of Immunology and Microbial Sciences, King's College London, London, UK. .,Department of Medicine, Imperial College London, London, UK.
| |
Collapse
|
28
|
Chapuy L, Bsat M, Rubio M, Sarkizova S, Therrien A, Bouin M, Orlicka K, Weber A, Soucy G, Villani AC, Sarfati M. IL-12 and Mucosal CD14+ Monocyte-Like Cells Induce IL-8 in Colonic Memory CD4+ T Cells of Patients With Ulcerative Colitis but not Crohn's Disease. J Crohns Colitis 2020; 14:79-95. [PMID: 31206576 PMCID: PMC6930004 DOI: 10.1093/ecco-jcc/jjz115] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS CD14+ mononuclear phagocytes [MNPs] and T cells infiltrate colon in ulcerative colitis [UC]. Here we investigated how CD14+ MNPs and the cytokines they produce shape the colonic effector T cell profile. METHODS Colonic or mesenteric lymph node [mLNs] CD4+ T cells isolated from UC or Crohn's disease [CD] patients were stimulated with cytokines or autologous CD14+ MNPs. Cytokine expression was assessed by intracytoplasmic staining and multiplex ELISA. Unsupervised phenotypic multicolour analysis of colonic CD14+ MNPs was performed using the FlowSOM algorithm. RESULTS Among CD14+CD64+HLA-DR+SIRPα + MNPs, only the pro-inflammatory cytokine-producing CD163- subpopulation accumulated in inflamed UC colon and promoted mucosal IL-1β-dependent Th17, Th17/Th1, Th17/Th22 but not Th1 responses. Unsupervised phenotypic analysis of CD14+CD64+ MNPs segregated CD163- monocyte-like cells and CD163+ macrophages. Unexpectedly, IL-12, IL-1β and CD163-, but not CD163+, cells induced IL-8 expression in colonic CD4+ T cells, which co-expressed IFN-γ and/or IL-17 in UC and not CD. The CD163- monocyte-like cells increased the frequency of IL-8+IL-17+/-IFN-γ +/- T cells through IL-1β and IL-12. Finally, colonic IL-8+ T cells co-expressing GM-CSF, TNF-α and IL-6 were detected ex vivo and, promoted by IL-12 in the mucosa and mLNs in UC only. CONCLUSIONS Our findings established a link between monocyte-like CD163- MNPs, IL-12, IL-1β and the detection of colonic memory IL-8-producing CD4+ T cells, which might all contribute to the pathogenesis of UC.
Collapse
Affiliation(s)
- Laurence Chapuy
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Marwa Bsat
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Manuel Rubio
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada
| | - Sisi Sarkizova
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amélie Therrien
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada,Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Mickael Bouin
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Katarzina Orlicka
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Audrey Weber
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Geneviève Soucy
- Centre Hospitalier de l’Université de Montréal (CHUM), Université de Montréal, Montréal, QC, Canada
| | - Alexandra-Chloé Villani
- Broad Institute of MIT and Harvard, Cambridge, MA, USA,Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Marika Sarfati
- Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada,Corresponding author: Marika Sarfati, Immunoregulation Laboratory, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
29
|
Maruszewska-Cheruiyot M, Donskow-Łysoniewska K, Doligalska M. Helminth therapy – local and systemic activity, on example of inflammatory bowel diseases and multiple sclerosis. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.6092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Autoimmunological diseases are an increasing problem nowadays in societies. Due to complex etiology, effective therapy against immune disorders is still needed. A promising alternative for the current methods of treatment can be helminthic therapy. Series of tests on animal models as well as clinical studies indicates that parasitic infection can inhibit inflammation in inflammatory bowel diseases and multiple sclerosis. Effectiveness of therapy with helminths, mainly gut nematodes depends on the activity of many compounds released during infection. Despite hopeful results, mechanisms activated by nematodes aren’t explained yet, besides, therapeutically use of live parasites is controversial. Most of studies are focused on searching parasitic factors. The use of this compound in autoimmunological diseases could be an alternative for current medicaments. The aim of current study is summarizing and discussing helminth therapy
of autoimmunological disorder on multiple sclerosis and inflammatory bowel diseases examples
as well as using parasitic compounds as a potential pharmaceutical component.
Collapse
Affiliation(s)
| | | | - Maria Doligalska
- Zakład Parazytologii, Instytut Zoologii, Wydział Biologii, Uniwersytet Warszawski, Warszawa
| |
Collapse
|
30
|
Anti-IL-13Rα2 therapy promotes recovery in a murine model of inflammatory bowel disease. Mucosal Immunol 2019; 12:1174-1186. [PMID: 31308480 PMCID: PMC6717533 DOI: 10.1038/s41385-019-0189-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/21/2019] [Accepted: 06/23/2019] [Indexed: 02/08/2023]
Abstract
There continues to be a major need for more effective inflammatory bowel disease (IBD) therapies. IL-13Rα2 is a decoy receptor that binds the cytokine IL-13 with high affinity and diminishes its STAT6-mediated effector functions. Previously, we found that IL-13Rα2 was necessary for IBD in mice deficient in the anti-inflammatory cytokine IL-10. Here, we tested for the first time a therapeutic antibody specifically targeting IL-13Rα2. We also used the antibody and Il13ra2-/- mice to dissect the role of IL-13Rα2 in IBD pathogenesis and recovery. Il13ra2-/- mice were modestly protected from induction of dextran sodium sulfate (DSS)-induced colitis. Following a 7-day recovery period, Il13ra2-/- mice or wild-type mice administered the IL-13Rα2-neutralizing antibody had significantly improved colon health compared to control mice. Neutralizing IL-13Rα2 to increase IL-13 bioavailability promoted resolution of IBD even if neutralization occurred only during recovery. To link our observations in mice to a large human cohort, we conducted a phenome-wide association study of a more active variant of IL-13 (R130Q) that has reduced affinity for IL-13Rα2. Human subjects carrying R130Q reported a lower risk for Crohn's disease. Our findings endorse moving anti-IL-13Rα2 into preclinical drug development with the goal of accelerating recovery and maintaining remission in Crohn's disease patients.
Collapse
|
31
|
Marafini I, Sedda S, Dinallo V, Monteleone G. Inflammatory cytokines: from discoveries to therapies in IBD. Expert Opin Biol Ther 2019; 19:1207-1217. [PMID: 31373244 DOI: 10.1080/14712598.2019.1652267] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Introduction: Although the etiology of inflammatory bowel diseases (IBD) remains unknown, accumulating evidence suggests that the intestinal tissue damage in these disorders is due to a dynamic interplay between immune cells and non-immune cells, which is mediated by cytokines produced within the inflammatory microenvironment. Areas covered: We review the available data about the role of inflammatory cytokines in IBD pathophysiology and provide an overview of the therapeutic options to block the function of such molecules. Expert opinion: Genome studies, in vitro experiments with patients' samples and animal models of colitis, have largely advanced our understanding of how cytokines modulate the ongoing mucosal inflammation in IBD. However, not all the cytokines produced within the damaged gut seem to play a major role in the amplification and perpetuation of the IBD-associated inflammatory cascade. Indeed, while some of the anti-cytokine compounds are effective in some subgroups of IBD patients, others have no benefit. In this complex scenario, a major unmet need is the identification of biomarkers that can predict response to therapy and facilitate a personalized therapeutic approach, which maximizes the benefits and limits the adverse events.
Collapse
Affiliation(s)
- Irene Marafini
- Department of Systems Medicine, Gastroenterology, University of Rome "Tor Vergata" , Rome , Italy
| | - Silvia Sedda
- Department of Systems Medicine, Gastroenterology, University of Rome "Tor Vergata" , Rome , Italy
| | - Vincenzo Dinallo
- Department of Systems Medicine, Gastroenterology, University of Rome "Tor Vergata" , Rome , Italy
| | - Giovanni Monteleone
- Department of Systems Medicine, Gastroenterology, University of Rome "Tor Vergata" , Rome , Italy
| |
Collapse
|
32
|
Creyns B, Cremer J, Hoshino T, Geboes K, de Hertogh G, Ferrante M, Vermeire S, Ceuppens JL, Van Assche G, Breynaert C. Fibrogenesis in Chronic DSS Colitis is Not Influenced by Neutralisation of Regulatory T Cells, of Major T Helper Cytokines or Absence of IL-13. Sci Rep 2019; 9:10064. [PMID: 31296924 PMCID: PMC6624199 DOI: 10.1038/s41598-019-46472-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/28/2019] [Indexed: 02/06/2023] Open
Abstract
Mechanisms underlying fibrogenesis in chronic colitis are largely unknown. There is an urgent need for clinical markers and identification of targets to prevent, treat and limit intestinal fibrosis. This study investigated the contribution of major T cell cytokines and T regulatory cells (Tregs) to inflammation and fibrosis induced in a model of experimental colitis by oral intake of dextran sodium sulphate (DSS) in wild type and IL-13 knock-out C57Bl/6 mice. Inflammation and fibrosis were scored by macroscopic and histological examination and fibrosis was quantified by hydroxyproline. Numbers of Tregs and IFN-γ+, IL-13+ and IL-17A+ CD4+ T helper (Th) cells in mesenteric lymph nodes increased during chronic DSS administration and mRNA for IFN-γ and IL-17 in the inflamed colon tissue was upregulated. However, antibody-mediated neutralisation of IFN-γ or IL-17A/F in a therapeutic setting had no effect on chronic intestinal inflammation and fibrosis. Antibody-mediated depletion of Tregs did not enhance fibrosis, nor did IL-13 deficiency have an effect on the fibrotic disease. These data argue against an important contribution of Tregs and of the cytokines IFN-γ, IL-13, IL-17A, IL-17F in the induction and/or control of fibrosis in this Crohn's disease like murine model.
Collapse
Affiliation(s)
- Brecht Creyns
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium.,KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Jonathan Cremer
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium.,KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium
| | - Tomoaki Hoshino
- Division of Respirology, Neurology and Rheumatology, Department of Internal Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Karel Geboes
- KU Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Gert de Hertogh
- KU Leuven, Department of Imaging and Pathology, Translational Cell & Tissue Research, Leuven, Belgium
| | - Marc Ferrante
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Séverine Vermeire
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Jan L Ceuppens
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium
| | - Gert Van Assche
- KU Leuven, Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), Leuven, Belgium.,University Hospitals Leuven, Department of Gastroenterology and Hepatology, Leuven, Belgium
| | - Christine Breynaert
- KU Leuven, Department of Microbiology, Immunology and Transplantation, Allergy and Clinical Immunology Research Group, Leuven, Belgium. .,University Hospitals Leuven, Department of General Internal Medicine, Leuven, Belgium.
| |
Collapse
|
33
|
Giuffrida P, Caprioli F, Facciotti F, Di Sabatino A. The role of interleukin-13 in chronic inflammatory intestinal disorders. Autoimmun Rev 2019; 18:549-555. [DOI: 10.1016/j.autrev.2019.03.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
|
34
|
Intestinal Organoids as a Novel Complementary Model to Dissect Inflammatory Bowel Disease. Stem Cells Int 2019; 2019:8010645. [PMID: 31015842 PMCID: PMC6444246 DOI: 10.1155/2019/8010645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/04/2019] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) include colitis ulcerosa and Crohn's disease, besides the rare microscopic colitis. Both diseases show a long-lasting, relapsing-remitting, or even chronic active course with tremendous impact on quality of life. IBDs frequently cause disability, surgical interventions, and high costs; as in other autoimmune diseases, their prevalent occurrence at an early phase of life raises the burden on health care systems. Unfortunately, our understanding of the pathogenesis is still incomplete and treatment therefore largely focuses on suppressing the resulting excessive inflammation. One obstacle for deciphering the causative processes is the scarcity of models that parallel the development of the disease, since intestinal inflammation is mostly induced artificially; moreover, the intestinal epithelium, which strongly contributes to IBD pathogenesis, is difficult to assess. Recently, the development of intestinal epithelial organoids has overcome many of those problems. Here, we give an overview on the current understanding of the pathogenesis of IBDs with reference to the limitations of previous well-established experimental models. We highlight the advantages and detriments of recent organoid-based experimental setups within the IBD field and suggest possible future applications.
Collapse
|
35
|
Burrello C, Pellegrino G, Giuffrè MR, Lovati G, Magagna I, Bertocchi A, Cribiù FM, Boggio F, Botti F, Trombetta E, Porretti L, Di Sabatino A, Vecchi M, Rescigno M, Caprioli F, Facciotti F. Mucosa-associated microbiota drives pathogenic functions in IBD-derived intestinal iNKT cells. Life Sci Alliance 2019; 2:2/1/e201800229. [PMID: 30760554 PMCID: PMC6374994 DOI: 10.26508/lsa.201800229] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 12/11/2022] Open
Abstract
Inflammatory bowel disease (IBD) pathogenesis has been linked to the aberrant activation of the Gut-associated lymphoid tissues against components of the intestinal microbiota. Although the contribution of CD4+ T helper cells to inflammatory processes is being increasingly acknowledged, the functional engagement of human invariant natural killer T (iNKT) cells is still poorly defined. Here, we evaluated the functional characteristics of intestinal iNKT cells during IBD pathogenesis and to exploit the role of mucosa-associated microbiota recognition in triggering iNKT cells' pro-inflammatory responses in vivo. Lamina propria iNKT cells, isolated from surgical specimens of active ulcerative colitis and Crohn's disease patients and non-IBD donors, were phenotypically and functionally analyzed ex vivo, and stable cell lines and clones were generated for in vitro functional assays. iNKT cells expressing a pro-inflammatory cytokine profile were enriched in the lamina propria of IBD patients, and their exposure to the mucosa-associated microbiota drives pro-inflammatory activation, inducing direct pathogenic activities against the epithelial barrier integrity. These observations suggest that iNKT cell pro-inflammatory functions may contribute to the fuelling of intestinal inflammation in IBD patients.
Collapse
Affiliation(s)
- Claudia Burrello
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Gabriella Pellegrino
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rita Giuffrè
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Giulia Lovati
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Ilaria Magagna
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Alice Bertocchi
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Boggio
- Pathology Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Fiorenzo Botti
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,General and Emergency Surgery Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elena Trombetta
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Porretti
- Flow Cytometry Service, Clinical Chemistry and Microbiology Laboratory Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maurizio Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Maria Rescigno
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, IEO, European Istitute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
36
|
Mao YM, Zhao CN, Leng J, Leng RX, Ye DQ, Zheng SG, Pan HF. Interleukin-13: A promising therapeutic target for autoimmune disease. Cytokine Growth Factor Rev 2018; 45:9-23. [PMID: 30581068 DOI: 10.1016/j.cytogfr.2018.12.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 12/11/2018] [Indexed: 12/16/2022]
Abstract
Interleukin-13 (IL-13) was previously thought to be a redundant presence of IL-4, but in recent years its role in immunity, inflammation, fibrosis, and allergic diseases has become increasingly prominent. IL-13 can regulate several subtypes of T helper (Th) cells and affect their transformation, including Th1, Th2, T17, etc., thus it may play an important role in immune system. Previous studies have revealed that IL-13 is implicated in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), systemic sclerosis (SSc), ulcerative colitis (UC), type 1 diabetes (T1D), sjogren's syndrome (SS), etc. In this review, we will briefly discuss the biological features of IL-13 and summarize recent advances in the role of IL-13 in the development and pathogenesis of autoimmune diseases. This information may provide new perspectives and suggestions for the selection of therapeutic targets for autoimmune diseases.
Collapse
Affiliation(s)
- Yan-Mei Mao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Chan-Na Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Jing Leng
- Anhui Academy of Medical Sciences, 15 Yonghong Road, Hefei, Anhui, China
| | - Rui-Xue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China
| | - Song Guo Zheng
- Division of Rheumatology, Penn State College of Medicine, Hershey, PA 17033, USA.
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Anhui Province Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui, 230032, China.
| |
Collapse
|
37
|
Burrello C, Garavaglia F, Cribiù FM, Ercoli G, Lopez G, Troisi J, Colucci A, Guglietta S, Carloni S, Guglielmetti S, Taverniti V, Nizzoli G, Bosari S, Caprioli F, Rescigno M, Facciotti F. Therapeutic faecal microbiota transplantation controls intestinal inflammation through IL10 secretion by immune cells. Nat Commun 2018; 9:5184. [PMID: 30518790 PMCID: PMC6281577 DOI: 10.1038/s41467-018-07359-8] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 10/25/2018] [Indexed: 12/12/2022] Open
Abstract
Alteration of the gut microbiota has been associated with different gastrointestinal disorders. Normobiosis restoration by faecal microbiota transplantation (FMT) is considered a promising therapeutic approach, even if the mechanisms underlying its efficacy are at present largely unknown. Here we sought to elucidate the functional effects of therapeutic FMT administration during experimental colitis on innate and adaptive immune responses in the intestinal mucosa. We show that therapeutic FMT reduces colonic inflammation and initiates the restoration of intestinal homeostasis through the simultaneous activation of different immune-mediated pathways, ultimately leading to IL-10 production by innate and adaptive immune cells, including CD4+ T cells, iNKT cells and Antigen Presenting Cells (APC), and reduces the ability of dendritic cells, monocytes and macrophages to present MHCII-dependent bacterial antigens to colonic T cells. These results demonstrate the capability of FMT to therapeutically control intestinal experimental colitis and poses FMT as a valuable therapeutic option in immune-related pathologies.
Collapse
Affiliation(s)
- Claudia Burrello
- Department of Experimental Oncology, European Institute of Oncology IRCCS, via Adamello 16, Milan, 20139, Italy.,Department of Oncology and Hemato-oncology, Università degli Studi di Milano, via F. Sforza 28, Milan, 20122, Italy
| | - Federica Garavaglia
- Department of Experimental Oncology, European Institute of Oncology IRCCS, via Adamello 16, Milan, 20139, Italy
| | - Fulvia Milena Cribiù
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, Milan, 20135, Italy
| | - Giulia Ercoli
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, Milan, 20135, Italy
| | - Gianluca Lopez
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, Milan, 20135, Italy
| | - Jacopo Troisi
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, SA, Italy.,Theoreo srl, Spin-off company of the University of Salerno, Via degli Ulivi 3, 84090, Montecorvino Pugliano, SA, Italy.,European Biomedical Research Institute of Salerno (EBRIS), Via S. de Renzi, 3, 84125, Salerno, SA, Italy
| | - Angelo Colucci
- Department of Medicine, Surgery and Dentistry, "Scuola Medica Salernitana", University of Salerno, Baronissi, 84081, SA, Italy.,Theoreo srl, Spin-off company of the University of Salerno, Via degli Ulivi 3, 84090, Montecorvino Pugliano, SA, Italy
| | - Silvia Guglietta
- Department of Experimental Oncology, European Institute of Oncology IRCCS, via Adamello 16, Milan, 20139, Italy
| | - Sara Carloni
- Laboratory of Mucosal Immunology and Microbiota, Humanitas Clinical and Research Center, Via Manzoni 56, Milan, 20089, Italy
| | - Simone Guglielmetti
- Department of Food Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, 20133, via Celoria 2, Italy
| | - Valentina Taverniti
- Department of Food Environmental and Nutritional Sciences (DeFENS), Università degli Studi di Milano, Milan, 20133, via Celoria 2, Italy
| | - Giulia Nizzoli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, Milan, 20135, Italy
| | - Silvano Bosari
- Pathology Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, Milan, 20135, Italy
| | - Flavio Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, via F. Sforza 35, Milan, 20135, Italy.,Department of Pathophysiology and Transplantation, Università degli Studi di Milano, via F. Sforza 28, Milan, 20135, Italy
| | - Maria Rescigno
- Laboratory of Mucosal Immunology and Microbiota, Humanitas Clinical and Research Center, Via Manzoni 56, Milan, 20089, Italy
| | - Federica Facciotti
- Department of Experimental Oncology, European Institute of Oncology IRCCS, via Adamello 16, Milan, 20139, Italy.
| |
Collapse
|
38
|
Lenti MV, Di Sabatino A. Intestinal fibrosis. Mol Aspects Med 2018; 65:100-109. [PMID: 30385174 DOI: 10.1016/j.mam.2018.10.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/19/2018] [Accepted: 10/28/2018] [Indexed: 02/07/2023]
Abstract
Extensive tissue fibrosis is the end-stage process of a number of chronic conditions affecting the gastrointestinal tract, including inflammatory bowel disease (Crohn's disease, ulcerative colitis), ulcerative jejunoileitis, and radiation enteritis. Fibrogenesis is a physiological, reparative process that may become harmful as a consequence of the persistence of a noxious agent, after an excessive duration of the healing process. In this case, after replacement of dead or injured cells, fibrogenesis continues to substitute normal parenchymal tissue with fibrous connective tissue, leading to uncontrolled scar formation and, ultimately, permanent organ damage, loss of function, and/or strictures. Several mechanisms have been implicated in sustaining the fibrogenic process. Despite their obvious etiological and clinical distinctions, most of the above-mentioned fibrotic disorders have in common a persistent inflammatory stimulus which sustains the production of growth factors, proteolytic enzymes, and pro-fibrogenic cytokines that activate both non-immune (i.e., myofibroblasts, fibroblasts) and immune (i.e., monocytes, macrophages, T-cells) cells, the interactions of which are crucial in the progressive tissue remodeling and destroy. Here we summarize the current status of knowledge regarding the mechanisms implicated in gut fibrosis with a clinical approach, also focusing on possible targets of antifibrogenic therapies.
Collapse
Affiliation(s)
- Marco Vincenzo Lenti
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Antonio Di Sabatino
- First Department of Internal Medicine, San Matteo Hospital Foundation, University of Pavia, Pavia, Italy.
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW The medical management of inflammatory bowel disease (IBD) remains problematic with a pressing need for innovation in drug development as well as delivery of personalized therapies. Both the disease's inherent pathophysiologic complexity and heterogeneity in its etiology conspire in making it difficult to accurately model for either the purposes of basic research or drug development. Multiple attempts at creating meaningful experimental models have fallen short of adequately recapitulating the disease and most do not capture any aspect of the cause or the effects of patient heterogeneity that underlays most of the difficulties faced by physicians and their patients. In vivo animal models, tissue culture systems, and more recent synthetic biology approaches are all too simplistically reductionist for the task. However, ex vivo culture platforms utilizing patient biopsies offer a system that more closely mimics end-stage disease processes that can be studied in detail and subjected to experimental manipulations. RECENT FINDINGS Recent studies describe further optimization of mucosal explant cultures in order to increase tissue viability and maintain a polarized epithelial layer. Current applications of the platform include studies of the interplay between the epithelial, immune and stromal compartment of the intestinal tissue, investigation of host-microbial interactions, preclinical evaluation of candidate drugs and uncovering mechanisms of action of established or emerging treatments for IBD. SUMMARY Patient explant-based assays offer an advanced biological system in IBD that recapitulates disease complexity and reflects the heterogeneity of the patient population. In its current stage of development, the system can be utilized for drug testing prior to the costlier and time-consuming evaluation by clinical trials. Further refinement of the technology and establishment of assay readouts that correlate with therapeutic outcomes will yield a powerful tool for personalized medicine approaches in which individual patient responses to available treatments are assessed a priori, thus reducing the need for trial and error within the clinical setting.
Collapse
|
40
|
Whiteoak SR, Claridge A, Balendran CA, Harris RJ, Gwiggner M, Bondanese VP, Erlandsson F, Hansen MB, Cummings JRF, Sanchez-Elsner T. MicroRNA-31 Targets Thymic Stromal Lymphopoietin in Mucosal Infiltrated CD4+ T Cells: A Role in Achieving Mucosal Healing in Ulcerative Colitis? Inflamm Bowel Dis 2018; 24:2377-2385. [PMID: 29889228 DOI: 10.1093/ibd/izy213] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is characterized by disruption of the mucosal intestinal barrier. MicroRNAs, single-stranded noncoding RNAs of approximately 22nt, are dysregulated in UC. MicroRNAs targeting thymic stromal lymphopoietin (TSLP), a cytokine involved in T-cell maturation and polarization, may be involved in regulating UC inflammation and mucosal healing. METHODS Biopsy samples from non-UC (n = 38), inactive UC (n = 18), and active UC (n = 23) patients were analyzed for mRNA (real-time quantitative polymerase chain reaction) or TSLP protein expression (enzyme-linked immunosorbent assay). Flow cytometry was used to isolate CD4+ T cells from biopsies. The functional mechanism was shown using luciferase assays and antago-miR transfections. The TSLP/miR-31 association was analyzed on 196 subjects from a previous clinical trial that tested the anti-IL-13 drug tralokinumab, whereas mucosal healing effects were studied on a subset of patients (n = 13) from this trial. RESULTS We found that TSLP is reduced at both mRNA and protein levels in inflamed UC patients when compared with healthy subjects, in both whole biopsies and biopsy-isolated CD4+ CD25+ T cells. The expression of miR-31, predicted to target TSLP, inversely co-related to the levels of TSLP mRNA in T cells. Blocking miR-31 in vitro in T cells increased both TSLP mRNA expression and protein secretion. Luciferase assays showed that miR-31 directly targeted TSLP mRNA, suggesting a direct mechanistic link. We also found that TSLP is increased in patients who achieve mucosal healing, comparing biopsies before and after treatment from the tralokinumab trial. CONCLUSIONS Our data suggest a role for TSLP in promoting mucosal healing and regulating inflammation in UC, whereas miR-31 can directly block this effect.
Collapse
Affiliation(s)
- Simon R Whiteoak
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom.,University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Andrew Claridge
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom.,University Hospital Southampton NHS FT, Southampton, United Kingdom
| | | | - Richard J Harris
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom.,University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Markus Gwiggner
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom.,University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Victor P Bondanese
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom
| | | | - Mark Berner Hansen
- AstraZeneca R&D, Mölndal, Sweden.,Digestive Disease Center, Bispebjerg Hospital, University of Copenhagen, Denmark
| | - J R Fraser Cummings
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom.,University Hospital Southampton NHS FT, Southampton, United Kingdom
| | - Tilman Sanchez-Elsner
- Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, University of Southampton School of Medicine, Southampton, United Kingdom
| |
Collapse
|
41
|
Brand RM, Biswas N, Siegel A, Myerski A, Engstrom J, Jeffrey Metter E, Brand RE, Cranston RD, McGowan I. Immunological responsiveness of intestinal tissue explants and mucosal mononuclear cells to ex vivo stimulation. J Immunol Methods 2018; 463:39-46. [PMID: 30218652 DOI: 10.1016/j.jim.2018.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND There are limited data on the immunological responsiveness of healthy intestinal tissue when it is cultured and stimulated ex vivo. Such an ex vivo model has the potential to be a valuable tool in understanding disease pathogenesis and as a preclinical tool for the assessment of candidate therapeutic agents used to treat inflammatory bowel disease (IBD). AIM We undertook a comprehensive study to evaluate ex vivo immunological responses of intestinal tissue and isolated mucosal mononuclear cells (MMC) to a broad range of stimuli. METHODS Colorectal biopsies (explants) were obtained from healthy participants by flexible sigmoidoscopy and were placed either directly into culture or digested to isolate MMC prior to placement in culture. Explants or MMC were treated with polyinosinic:polycytidylic acid (Poly IC), phytohemagglutinin (PHA), lipopolysacccharides from E Coli (LPS), anti-CD3/CD28 antibodies, or IL-1β/TNF-α for 24 h. Supernatants were assayed for 40 inflammatory biomarkers using multiplexed enzyme-linked immunosorbent assay (ELISA). The isolated MMCs were further characterized using twelve color flow cytometry. RESULTS Explants have greater weight adjusted constitutive expression of inflammatory biomarkers than MMCs. Biomarker responses varied as a function of immunogen and use of intact tissue or isolated cells. PHA applied to intact explants was the most effective agent in inducing biomarker changes. Stimulation induced activated and memory cellular phenotypes in both explants and MMCs. CONCLUSIONS The breadth and magnitude of responses from intact and enzymatically digested intestinal tissue explants stimulated with exogenous immunogens are complex and vary by tissue form and treatment. Overall, PHA stimulation of intact explants produced the most robust responses in normal human colorectal tissue. This system could potentially serve as a preliminary model of the disease state, suitable for small scale screening of new therapeutic agents prior to using IBD patient derived tissue.
Collapse
Affiliation(s)
- Rhonda M Brand
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA.
| | - Nabanita Biswas
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Siegel
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| | - Ashley Myerski
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| | - Jarret Engstrom
- Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| | | | - Randall E Brand
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ross D Cranston
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ian McGowan
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Magee-Womens Research Institute and Foundation, Pittsburgh, PA, USA
| |
Collapse
|
42
|
Bevivino G, Monteleone G. Advances in understanding the role of cytokines in inflammatory bowel disease. Expert Rev Gastroenterol Hepatol 2018; 12:907-915. [PMID: 30024302 DOI: 10.1080/17474124.2018.1503053] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cytokines represent the key pathophysiologic elements that govern the initiation, progression, and, in some circumstances, the resolution of the inflammation occurring in inflammatory bowel disease (IBD). Areas covered: In this review, we will focus on the main effector and anti-inflammatory cytokines produced in IBD and discuss the results of recent trials in which cytokine-based therapy has been used for treating IBD patients. Expert commentary: The possibility to sample mucosal biopsies from IBD patients and analyze which molecular pathways are prominent during the active phases of the disease and the easy access to various models of experimental colitis has largely advanced our understanding about the role of cytokines in IBD. These progresses have facilitated the development of several therapeutic compounds, which either target inflammatory cytokines or enhance the regulatory function of immunosuppressive cytokines. While some of such drugs are effective in the induction and maintenance of remission of the disease, other compounds are not useful for attenuating the ongoing mucosal inflammation, thus establishing a hierarchical scale of the relevance of cytokines in IBD. Further work is needed to identify biomarkers, which could help personalize cytokine-targeted therapy and minimize potential side effects.
Collapse
Affiliation(s)
- Gerolamo Bevivino
- a Department of Systems Medicine , University of Rome Tor Vergata , Italy
| | | |
Collapse
|
43
|
Salvador P, Macías-Ceja DC, Gisbert-Ferrándiz L, Hernández C, Bernardo D, Alós R, Navarro-Vicente F, Esplugues JV, Ortiz-Masiá D, Barrachina MD, Calatayud S. CD16+ Macrophages Mediate Fibrosis in Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:589-599. [PMID: 29304229 DOI: 10.1093/ecco-jcc/jjx185] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/29/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND AND AIMS Fibrosis is a common complication of Crohn's disease [CD], and is related to dysregulated tissular repair following inflammation, in which macrophages play a central role. We have previously observed that STAT6-/- mice present delayed mucosal recovery after 2,4,6-trinitrobenzenesulfonic acid [TNBS]-induced colitis due to a deficiency in reparatory interleukin-4 [IL4]/STAT6-dependent M2 macrophages, which can be reverted by the exogenous transfer of this cell type. In the present study, we analyse the role of STAT6-dependent macrophages in intestinal fibrosis. METHODS Colitis was induced by weekly intra-rectal administration of TNBS [6 weeks] to STAT6-/- mice and wild-type [WT] animals. Colonic surgical resections were obtained from CD patients and from colon cancer patients. RESULTS Chronic colitis provoked a fibrogenic response in STAT6-/- mice, but not in WT animals. An accumulation of M2 macrophages, defined as CD206+ cells, was observed in WT mice, but not in STAT6-/- animals. Instead, the latter group showed an increase in CD16+ macrophages that correlated with the expression of fibrogenic markers. CD16+ macrophages were also increased in the damaged mucosa of Crohn's disease patients with stenotic or penetrating complications. Finally, administration of IL4-treated WT macrophages to STAT6-/- mice reduced TNBS-induced fibrosis. CONCLUSIONS Our study demonstrates that STAT6 deficiency dysregulates the macrophage response to inflammatory outbursts by increasing the presence of a population of CD16+ macrophages that seems to contribute to intestinal fibrosis.
Collapse
Affiliation(s)
- Pedro Salvador
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - Laura Gisbert-Ferrándiz
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | | | - David Bernardo
- Unidad de Gastroenterología, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Rafael Alós
- Servicio de Cirugía, Hospital de Sagunto, Sagunto, Valencia, Spain
| | | | - Juan Vicente Esplugues
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Dolores Ortiz-Masiá
- Departamento de Medicina and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Maria Dolores Barrachina
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| | - Sara Calatayud
- Departamento de Farmacología and Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Facultad de Medicina, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
44
|
Abstract
Inflammatory bowel disease (IBD), encompassing Crohn's disease and ulcerative colitis, is a chronic intestinal inflammatory disorder characterized by diffuse accumulation of lymphocytes in the gut mucosa as a consequence of over-expression of endothelial adhesion molecules. The infiltrating lymphocytes have been identified as subsets of T cells, including T helper (Th)1 cells, Th17 cells, and regulatory T cells. The function of these lymphocyte subpopulations in the development of IBD is well-known, since they produce a number of pro-inflammatory cytokines, such as interferon-γ and interleukin-17A, which in turn activate mucosal proteases, thus leading to the development of intestinal lesions, i.e., ulcers, fistulas, abscesses, and strictures. However, the immune mechanisms underlying IBD are not yet fully understood, and knowledge about the function of newly discovered lymphocytes, including Th9 cells, innate lymphoid cells, mucosal-associated invariant T cells, and natural killer T cells, might add new pieces to the complex puzzle of IBD pathogenesis. This review summarizes the recent advances in the understanding of the role of mucosal lymphocytes in chronic intestinal inflammation and deals with the therapeutic potential of lymphocyte-targeting drugs in IBD patients.
Collapse
|
45
|
Abstract
BACKGROUND Human intestinal innate myeloid cells can be divided into 3 subsets: HLA-DRCD14 cells, HLA-DRCD103 dendritic cells (DCs), and HLA-DRCD14CD103 cells. CD103 DCs generate Treg cells and Th17 cells in the ileum, but their function in the colon remains largely unknown. This study characterized CD103 DCs in the colon and investigated whether these cells are implicated in the pathogenesis of ulcerative colitis (UC). METHODS Normal intestinal mucosa was obtained from intact sites of patients with colorectal cancer (n = 24). Noninflamed and inflamed colonic tissues were obtained from surgically resected specimens of patients with UC (n = 13). Among LinCD45HLA-DR intestinal lamina propria cells, CD14 cells and CD103 DCs were sorted and analyzed for microRNA expression of cytokines and toll-like receptors by quantitative real-time polymerase chain reaction. In addition, IL-4/IL-5/IL-13/IL-17/IFN-γ production and Foxp3 expression by naive T cells cultured with CD14 cells and CD103 DCs were analyzed. RESULTS CD103 DCs in the normal colon showed lower expression of toll-like receptors and proinflammatory cytokines than CD14 cells. Coculture with naive T cells revealed that CD103 DCs generated Treg cells. CD103 DCs from patients with UC did not generate Treg cells, but they induced IFN-γ-, IL-13-, and IL-17-producing CD4 T cells and showed higher expression of IL6 (P < 0.0001), IL23A (P < 0.05), IL12p35 (P < 0.05), and TNF (P < 0.05). CONCLUSIONS In patients with UC, CD103 DCs show the impaired ability to generate Treg cells, but exhibit a colitogenic function inducing Th1/Th2/Th17 responses. These findings show how human CD103 DCs could contribute to the pathogenesis of UC.
Collapse
|
46
|
Vitale S, Strisciuglio C, Pisapia L, Miele E, Barba P, Vitale A, Cenni S, Bassi V, Maglio M, Del Pozzo G, Troncone R, Staiano A, Gianfrani C. Cytokine production profile in intestinal mucosa of paediatric inflammatory bowel disease. PLoS One 2017; 12:e0182313. [PMID: 28797042 PMCID: PMC5552230 DOI: 10.1371/journal.pone.0182313] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 07/17/2017] [Indexed: 02/07/2023] Open
Abstract
In the recent years, the incidence of inflammatory bowel disease (IBD) has dramatically increased in young subjects, however, the pathogenesis of paediatric IBD is poorly investigated. In this study we aimed to evaluate the cytokine pattern and the phenotype of cytokine producing cells in the intestinal mucosa of paediatric patients affected by Crohn’s disease (CD) or ulcerative colitis (UC) and of non-IBD healthy controls (HC). Cytokine (IL-15, TNF-α, INF-γ) production was analyzed at basal condition and after mitogen stimulation either intracellularly by flow cytometry or in intestinal cell culture supernatants by enzyme-linked immunosorbent assay (ELISA). A higher frequency of enterocytes (EpCam+ cells) was observed in UC patients compared to CD or HC. An expansion of enterocytes producing IL-15 and TNF-α were found in IBD patients compared to HC. A marked expression of IL-15 in the intestinal epithelium of IBD patients was further confirmed by immunohistochemistry. Myeloid dendritic (CD11c+) cells producing TNF-α and INF-γ were increased in IBD biopsies. Unexpectedly, only after a strong mitogen stimulus, as phytohaemagglutinin, the frequency of CD3+ cells producing IFN-γ was increased in IBD compared to control intestinal mucosa. Interestingly, functional studies performed on organ cultures of intestinal biopsies with neutralizing anti-IL-15 monoclonal antibody showed a marked reduction of mononuclear cell activation, proliferation of crypt enterocytes, as well as a reduction of TNF-α release in organ culture supernatants. In conclusion, we found that in the gut mucosa of IBD children both enterocytes and dendritic cells produce proinflammatory cytokines. The over-expression of IL-15 by enterocytes in IBD intestine and the reduced IBD inflammation by IL-15 blockage suggests that this cytokine could be a therapeutic target in IBD.
Collapse
Affiliation(s)
- Serena Vitale
- Institute of Protein Biochemistry, CNR, Naples, Italy
| | - Caterina Strisciuglio
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Laura Pisapia
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Naples, Italy
| | - Erasmo Miele
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Pasquale Barba
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Naples, Italy
| | - Alessandra Vitale
- Department of Woman, Child and General and Specialized Surgery, Second University of Naples, Naples, Italy
| | - Sabrina Cenni
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Virginia Bassi
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Mariantonia Maglio
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Giovanna Del Pozzo
- Institute of Genetics and Biophysics Adriano Buzzati Traverso, CNR, Naples, Italy
| | - Riccardo Troncone
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Annamaria Staiano
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
| | - Carmen Gianfrani
- Institute of Protein Biochemistry, CNR, Naples, Italy
- Department of Translational Medical Science (Section of Paediatrics), and European Laboratory for the Investigation of Food-Induced Diseases, University Federico II, Naples, Italy
- * E-mail:
| |
Collapse
|
47
|
Curciarello R, Docena GH, MacDonald TT. The Role of Cytokines in the Fibrotic Responses in Crohn's Disease. Front Med (Lausanne) 2017; 4:126. [PMID: 28824915 PMCID: PMC5545939 DOI: 10.3389/fmed.2017.00126] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 07/18/2017] [Indexed: 12/11/2022] Open
Abstract
Crohn’s disease is an idiopathic disorder of the gut thought to be caused by a combination of environmental and genetic factors in susceptible individuals. It is characterized by chronic transmural inflammation of the terminal ileum and colon, with typical transmural lesions. Complications, including fibrosis, mean that between 40 and 70% of patients require surgery in the first 10 years after diagnosis. Presently, there is no evidence that the current therapies which dampen inflammation modulate or reverse intestinal fibrosis. In this review, we focus on cytokines that may lead to fibrosis and stenosis and the contribution of experimental models for understanding and treatment of gut fibrosis.
Collapse
Affiliation(s)
- Renata Curciarello
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Instituto de Estudios Inmunológicos y Fisiopatológicos -IIFP-CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo H Docena
- Instituto de Estudios Inmunológicos y Fisiopatológicos -IIFP-CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Thomas T MacDonald
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
48
|
Zundler S, Neurath MF. Pathogenic T cell subsets in allergic and chronic inflammatory bowel disorders. Immunol Rev 2017; 278:263-276. [DOI: 10.1111/imr.12544] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Sebastian Zundler
- Department of Medicine 1; University of Erlangen-Nuremberg; Kussmaul Campus for Medical Research & Translational Research Center; Erlangen Germany
| | - Markus F. Neurath
- Department of Medicine 1; University of Erlangen-Nuremberg; Kussmaul Campus for Medical Research & Translational Research Center; Erlangen Germany
| |
Collapse
|
49
|
Li S, Yang D, Peng T, Wu Y, Tian Z, Ni B. Innate lymphoid cell-derived cytokines in autoimmune diseases. J Autoimmun 2017; 83:62-72. [PMID: 28479212 DOI: 10.1016/j.jaut.2017.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 03/31/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023]
Abstract
The most recently recognized types of immune cells, the innate lymphoid cells (ILCs), have been sub-divided according to respective distinct expression profiles of regulatory factors or/and cytokines. ILCs have also been shown to participate in a variety of beneficial immune responses, including participation in attack against pathogens and mediation of the pre-inflammatory and inflammatory responses through their production of pro-inflammatory cytokines. As such, while the ILCs exert protective effects they may also become detrimental upon dysregulation. Indeed, recent studies of the ILCs have revealed a strong association with the advent and pathogenesis of several common autoimmune diseases, including psoriasis, inflammatory bowel disease (IBD) and multiple sclerosis (MS). Though the ILCs belong to lineage negative cells that are distinctive from the Th cells, the profiles of secreted cytokines from the ILCs overlap with those of the corresponding Th subsets. Nevertheless, considering that the ILCs belong to the innate immune system and the Th cells belong to the adaptive immune system, it is expected that the ILCs should function at the early stage of diseases and the Th cells should exert predominant effects at the late stage of diseases. Therefore, it is intriguing to consider targeting of ILCs for therapy by targeting the corresponding cytokines at the early stage of diseases, with the late stage cytokine targeting mainly influencing the Th cells' function. Here, we review the knowledge to date on the roles of ILCs in various autoimmune diseases and discuss their potential as new therapeutic targets.
Collapse
Affiliation(s)
- Sirui Li
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China; Battalion 3 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Di Yang
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China
| | - Tingwei Peng
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China; Battalion 3 of Cadet Brigade, Third Military Medical University, Chongqing 400038, PR China
| | - Yuzhang Wu
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| | - Zhiqiang Tian
- Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| | - Bing Ni
- Department of Pathophysiology and High Altitude Pathology, Third Military Medical University, Chongqing 400038, PR China; Institute of Immunology, PLA, Third Military Medical University, Chongqing 400038, PR China.
| |
Collapse
|
50
|
Rosen MJ, Karns R, Vallance JE, Bezold R, Waddell A, Collins MH, Haberman Y, Minar P, Baldassano RN, Hyams JS, Baker SS, Kellermayer R, Noe JD, Griffiths AM, Rosh JR, Crandall WV, Heyman MB, Mack DR, Kappelman MD, Markowitz J, Moulton DE, Leleiko NS, Walters TD, Kugathasan S, Wilson KT, Hogan SP, Denson LA. Mucosal Expression of Type 2 and Type 17 Immune Response Genes Distinguishes Ulcerative Colitis From Colon-Only Crohn's Disease in Treatment-Naive Pediatric Patients. Gastroenterology 2017; 152:1345-1357.e7. [PMID: 28132889 PMCID: PMC5406257 DOI: 10.1053/j.gastro.2017.01.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 01/13/2017] [Accepted: 01/23/2017] [Indexed: 01/31/2023]
Abstract
BACKGROUND & AIMS There is controversy regarding the role of the type 2 immune response in the pathogenesis of ulcerative colitis (UC)-few data are available from treatment-naive patients. We investigated whether genes associated with a type 2 immune response in the intestinal mucosa are up-regulated in treatment-naive pediatric patients with UC compared with patients with Crohn's disease (CD)-associated colitis or without inflammatory bowel disease (IBD), and whether expression levels are associated with clinical outcomes. METHODS We used a real-time reverse-transcription quantitative polymerase chain reaction array to analyze messenger RNA (mRNA) expression patterns in rectal mucosal samples from 138 treatment-naive pediatric patients with IBD and macroscopic rectal disease, as well as those from 49 children without IBD (controls), enrolled in a multicenter prospective observational study from 2008 to 2012. Results were validated in real-time reverse-transcription quantitative polymerase chain reaction analyses of rectal RNA from an independent cohort of 34 pediatric patients with IBD and macroscopic rectal disease and 17 controls from Cincinnati Children's Hospital Medical Center. RESULTS We measured significant increases in mRNAs associated with a type 2 immune response (interleukin [IL]5 gene, IL13, and IL13RA2) and a type 17 immune response (IL17A and IL23) in mucosal samples from patients with UC compared with patients with colon-only CD. In a regression model, increased expression of IL5 and IL17A mRNAs distinguished patients with UC from patients with colon-only CD (P = .001; area under the receiver operating characteristic curve, 0.72). We identified a gene expression pattern in rectal tissues of patients with UC, characterized by detection of IL13 mRNA, that predicted clinical response to therapy after 6 months (odds ratio [OR], 6.469; 95% confidence interval [CI], 1.553-26.94), clinical response after 12 months (OR, 6.125; 95% CI, 1.330-28.22), and remission after 12 months (OR, 5.333; 95% CI, 1.132-25.12). CONCLUSIONS In an analysis of rectal tissues from treatment-naive pediatric patients with IBD, we observed activation of a type 2 immune response during the early course of UC. We were able to distinguish patients with UC from those with colon-only CD based on increased mucosal expression of genes that mediate type 2 and type 17 immune responses. Increased expression at diagnosis of genes that mediate a type 2 immune response is associated with response to therapy and remission in pediatric patients with UC.
Collapse
Affiliation(s)
- Michael J. Rosen
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Rebekah Karns
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Jefferson E. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Ramona Bezold
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Amanda Waddell
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Margaret H. Collins
- Division of Pathology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
,Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Yael Haberman
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
,Pediatric Gastroenterology Unit, The Edmond and Lily Safra Children’s Hospital, Sheba Medical Center, Tel Hashomer, Israel
| | - Phillip Minar
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Robert N. Baldassano
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Jeffrey S. Hyams
- Division of Digestive Diseases, Hepatology, and Nutrition, Connecticut Children’s Medical Center, Hartford, Connecticut
| | - Susan S. Baker
- Digestive Diseases and Nutrition Center, Women and Children’s Hospital of Buffalo, Buffalo, New York
| | - Richard Kellermayer
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Houston, TX
| | - Joshua D. Noe
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne M. Griffiths
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Canada
| | - Joel R. Rosh
- Goryeb Children’s Hospital/Atlantic Health, Icahn School of Medicine at Mount Sinai, USA
| | - Wallace V. Crandall
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Nationwide Children’s Hospital, Columbus, Ohio
| | - Melvin B. Heyman
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, University of California, San Francisco
| | - David R. Mack
- Department of Pediatrics and CHEO IBD Centre, Children’s Hospital of Eastern Ontario, Ottawa, ON, Canada
| | - Michael D. Kappelman
- Division of Pediatric Gastroenterology, Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - James Markowitz
- Division of Pediatric Gastroenterology and Nutrition, Cohen Children’s Medical Center of New York, New Hyde Park, New York
| | - Dedrick E. Moulton
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN
| | - Neal S. Leleiko
- Division of Pediatric Gastroenterology, Nutrition and Liver Diseases, Hasbro Children’s Hospital, Providence, Rhode Island
| | - Thomas D. Walters
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Canada
| | - Subra Kugathasan
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Emory University, Atlanta, Georgia
| | - Keith T. Wilson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
,Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Simon P. Hogan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
,Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| | - Lee A. Denson
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio
| |
Collapse
|