1
|
Martin J, Cheng Q, Laurent SA, Thaler FS, Beenken AE, Meinl E, Krönke G, Hiepe F, Alexander T. B-Cell Maturation Antigen (BCMA) as a Biomarker and Potential Treatment Target in Systemic Lupus Erythematosus. Int J Mol Sci 2024; 25:10845. [PMID: 39409173 PMCID: PMC11476889 DOI: 10.3390/ijms251910845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/20/2024] Open
Abstract
The BAFF-APRIL system is crucial for the pathogenesis of systemic lupus erythematosus (SLE) by promoting B cell survival, differentiation and the maintenance of humoral autoimmunity. Here, we investigated the relationship of BCMA expression on B cell subsets with its ligands BAFF and APRIL, together with soluble BCMA, and with clinical and serologic variables in a cohort of 100 SLE patients (86 under conventional and 14 under belimumab therapy) and 30 healthy controls (HCs) using multicolor flow cytometry and ELISA. We found that BCMA expression in SLE patients was significantly increased on all B cell subsets compared to HCs, with all examined components of the BAFF-APRIL system being upregulated. BCMA expression was significantly increased on switched and unswitched memory B cells compared to naïve B cells, both in HCs and SLE. BCMA expression on B cells correlated with plasmablast frequencies, serum anti-dsDNA antibodies and complement consumption, while soluble BCMA correlated with plasmablast frequency, highlighting its potential as a clinical biomarker. Belimumab treatment significantly reduced BCMA expression on most B cell subsets and soluble TACI and contributed to the inhibition of almost the entire BAFF-APRIL system and restoration of B cell homeostasis. These results provide insights into the complex dysregulation of the BAFF-APRIL system in SLE and highlight the therapeutic potential of targeting its components, particularly BCMA, in addition to its use as a biomarker for disease activity.
Collapse
MESH Headings
- Humans
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/blood
- B-Cell Maturation Antigen/metabolism
- B-Cell Maturation Antigen/immunology
- Biomarkers/blood
- Female
- Adult
- Male
- B-Cell Activating Factor/blood
- B-Cell Activating Factor/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 13/metabolism
- Tumor Necrosis Factor Ligand Superfamily Member 13/blood
- Middle Aged
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Antinuclear/blood
- Antibodies, Antinuclear/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- B-Lymphocytes/drug effects
- B-Lymphocyte Subsets/metabolism
- B-Lymphocyte Subsets/immunology
- Case-Control Studies
Collapse
Affiliation(s)
- Jonas Martin
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Qingyu Cheng
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Sarah A. Laurent
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
| | - Franziska S. Thaler
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Anne Elisabeth Beenken
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany (F.S.T.); (E.M.)
- Biomedical Center (BMC), Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany
| | - Gerhard Krönke
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Falk Hiepe
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| | - Tobias Alexander
- Department of Rheumatology and Clinical Immunology, Charité—Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.M.); (Q.C.); (A.E.B.); (G.K.); (F.H.)
- Deutsches Rheuma-Forschungszentrum Berlin, a Leibniz Institute, 10117 Berlin, Germany
| |
Collapse
|
2
|
Thi K, Del Toro K, Licon-Munoz Y, Sayaman RW, Hines WC. Comprehensive identification, isolation, and culture of human breast cell types. J Biol Chem 2024; 300:107637. [PMID: 39122004 PMCID: PMC11459906 DOI: 10.1016/j.jbc.2024.107637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Tissues are formed and shaped by cells of many different types and are orchestrated through countless interactions. Deciphering a tissue's biological complexity thus requires studying it at cell-level resolution, where molecular and biochemical features of different cell types can be explored and thoroughly dissected. Unfortunately, the lack of comprehensive methods to identify, isolate, and culture each cell type from many tissues has impeded progress. Here, we present a method for the breadth of cell types composing the human breast. Our goal has long been to understand the essence of each of these different breast cell types, to reveal the underlying biology explaining their intrinsic features, the consequences of interactions, and their contributions to the tissue. This biological exploration has required cell purification, deep-RNA sequencing, and a thorough dissection of the genes and pathways defining each cell type. While the molecular analysis is presented in an adjoining article, we present here an exhaustive cellular dissection of the human breast and explore its cellular composition and histological organization. Moreover, we introduce a novel FACS antibody panel and rigorous gating strategy capable of isolating each of the 12 major breast cell types to purity. Finally, we describe the creation of primary cell models from nearly every breast cell type-some the first of their kind-and submit these as critical tools for studying the dynamic cellular interactions within breast tissues and tumors. Together, this body of work delivers a unique perspective of the breast, revealing insights into its cellular, molecular, and biochemical composition.
Collapse
Affiliation(s)
- Kate Thi
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Katelyn Del Toro
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Yamhilette Licon-Munoz
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Rosalyn W Sayaman
- Life Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - William C Hines
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA.
| |
Collapse
|
3
|
Arrigucci R, Patterson A, Dube P. OMIP-107: 8-color whole blood immunophenotyping panel for the characterization and quantification of lymphocyte subsets and monocytes in swine. Cytometry A 2024; 105:737-740. [PMID: 39269192 DOI: 10.1002/cyto.a.24897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/13/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
We developed this whole blood immunophenotyping panel with the aim to monitor and quantify major lymphocyte subsets (CD4+, CD8+, CD4+CD8+ αβ T cells, γδ-T cells, B and NK cells) and monocytes in pigs. The panel involved the use of commercially available reagents, avoiding secondary antibody staining or in-house antibody conjugations, with the aim to make the assay accessible and reproducible across laboratories. The assay is accurate, robust and represents a useful tool for immune monitoring of swine in the pharmacology and toxicology fields, or to monitor the immune status in response to vaccination and diseases.
Collapse
Affiliation(s)
| | - Abby Patterson
- Boehringer Ingelheim Animal Health USA, Inc., Ames, Iowa, USA
| | - Peter Dube
- Boehringer Ingelheim Animal Health USA, Inc., Ames, Iowa, USA
| |
Collapse
|
4
|
Hammer Q, Perica K, Mbofung RM, van Ooijen H, Martin KE, Momayyezi P, Varady E, Pan Y, Jelcic M, Groff B, Abujarour R, Krokeide SZ, Lee T, Williams A, Goodridge JP, Valamehr B, Önfelt B, Sadelain M, Malmberg KJ. Genetic ablation of adhesion ligands mitigates rejection of allogeneic cellular immunotherapies. Cell Stem Cell 2024; 31:1376-1386.e8. [PMID: 38981470 DOI: 10.1016/j.stem.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 04/10/2024] [Accepted: 06/14/2024] [Indexed: 07/11/2024]
Abstract
Allogeneic cellular immunotherapies hold promise for broad clinical implementation but face limitations due to potential rejection of donor cells by the host immune system. Silencing of beta-2 microglobulin (B2M) expression is commonly employed to evade T cell-mediated rejection by the host, although the absence of B2M is expected to trigger missing-self responses by host natural killer (NK) cells. Here, we demonstrate that genetic deletion of the adhesion ligands CD54 and CD58 in B2M-deficient chimeric antigen receptor (CAR) T cells and multi-edited induced pluripotent stem cell (iPSC)-derived CAR NK cells reduces their susceptibility to rejection by host NK cells in vitro and in vivo. The absence of adhesion ligands limits rejection in a unidirectional manner in B2M-deficient and B2M-sufficient settings without affecting the antitumor functionality of the engineered donor cells. Thus, these data suggest that genetic ablation of adhesion ligands effectively alleviates rejection by host immune cells, facilitating the implementation of universal immunotherapy.
Collapse
Affiliation(s)
- Quirin Hammer
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.
| | - Karlo Perica
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA; Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Cell Therapy Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Hanna van Ooijen
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Karen E Martin
- Precision Immunotherapy Alliance, Institute for Cancer Research, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Pouria Momayyezi
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden
| | | | - Yijia Pan
- Fate Therapeutics, Inc., San Diego, CA, USA
| | | | | | | | - Silje Z Krokeide
- Precision Immunotherapy Alliance, Institute for Cancer Research, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Tom Lee
- Fate Therapeutics, Inc., San Diego, CA, USA
| | | | | | | | - Björn Önfelt
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Solna, Sweden
| | - Michel Sadelain
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karl-Johan Malmberg
- Center for Infectious Medicine, Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden; Precision Immunotherapy Alliance, Institute for Cancer Research, University of Oslo, Oslo, Norway; Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
5
|
Fisch L, Heming M, Schulte-Mecklenbeck A, Gross CC, Zumdick S, Barkhau C, Emden D, Ernsting J, Leenings R, Sarink K, Winter NR, Dannlowski U, Wiendl H, Hörste GMZ, Hahn T. GateNet: A novel neural network architecture for automated flow cytometry gating. Comput Biol Med 2024; 179:108820. [PMID: 39002319 DOI: 10.1016/j.compbiomed.2024.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/12/2024] [Accepted: 06/25/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND AND OBJECTIVE Flow cytometry is a widely used technique for identifying cell populations in patient-derived fluids, such as peripheral blood (PB) or cerebrospinal fluid (CSF). Despite its ubiquity in research and clinical practice, the process of gating, i.e., manually identifying cell types, is labor-intensive and error-prone. The objective of this study is to address this challenge by introducing GateNet, a neural network architecture designed for fully end-to-end automated gating without the need for correcting batch effects. METHODS For this study a unique dataset is used which comprises over 8,000,000 events from N = 127 PB and CSF samples which were manually labeled independently by four experts. Applying cross-validation, the classification performance of GateNet is compared to the human experts performance. Additionally, GateNet is applied to a publicly available dataset to evaluate generalization. The classification performance is measured using the F1 score. RESULTS GateNet achieves F1 scores ranging from 0.910 to 0.997 demonstrating human-level performance on samples unseen during training. In the publicly available dataset, GateNet confirms its generalization capabilities with an F1 score of 0.936. Importantly, we also show that GateNet only requires ≈10 samples to reach human-level performance. Finally, gating with GateNet only takes 15 microseconds per event utilizing graphics processing units (GPU). CONCLUSIONS GateNet enables fully end-to-end automated gating in flow cytometry, overcoming the labor-intensive and error-prone nature of manual adjustments. The neural network achieves human-level performance on unseen samples and generalizes well to diverse datasets. Notably, its data efficiency, requiring only ∼10 samples to reach human-level performance, positions GateNet as a widely applicable tool across various domains of flow cytometry.
Collapse
Affiliation(s)
- Lukas Fisch
- University of Münster, Institute for Translational Psychiatry, Münster, Germany.
| | - Michael Heming
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
| | - Stefan Zumdick
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Carlotta Barkhau
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Daniel Emden
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Jan Ernsting
- University of Münster, Institute for Translational Psychiatry, Münster, Germany; Institute for Geoinformatics, University of Münster, Germany; Faculty of Mathematics and Computer Science, University of Münster, Germany
| | - Ramona Leenings
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Kelvin Sarink
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Nils R Winter
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Udo Dannlowski
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
| | - Tim Hahn
- University of Münster, Institute for Translational Psychiatry, Münster, Germany
| |
Collapse
|
6
|
Gulati GS, D'Silva JP, Liu Y, Wang L, Newman AM. Profiling cell identity and tissue architecture with single-cell and spatial transcriptomics. Nat Rev Mol Cell Biol 2024:10.1038/s41580-024-00768-2. [PMID: 39169166 DOI: 10.1038/s41580-024-00768-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
Single-cell transcriptomics has broadened our understanding of cellular diversity and gene expression dynamics in healthy and diseased tissues. Recently, spatial transcriptomics has emerged as a tool to contextualize single cells in multicellular neighbourhoods and to identify spatially recurrent phenotypes, or ecotypes. These technologies have generated vast datasets with targeted-transcriptome and whole-transcriptome profiles of hundreds to millions of cells. Such data have provided new insights into developmental hierarchies, cellular plasticity and diverse tissue microenvironments, and spurred a burst of innovation in computational methods for single-cell analysis. In this Review, we discuss recent advancements, ongoing challenges and prospects in identifying and characterizing cell states and multicellular neighbourhoods. We discuss recent progress in sample processing, data integration, identification of subtle cell states, trajectory modelling, deconvolution and spatial analysis. Furthermore, we discuss the increasing application of deep learning, including foundation models, in analysing single-cell and spatial transcriptomics data. Finally, we discuss recent applications of these tools in the fields of stem cell biology, immunology, and tumour biology, and the future of single-cell and spatial transcriptomics in biological research and its translation to the clinic.
Collapse
Affiliation(s)
- Gunsagar S Gulati
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Yunhe Liu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Aaron M Newman
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| |
Collapse
|
7
|
Tzeng HE, Lee YW, Lin CT, Chuang SS, Li CC, Chuang WH, Hsu CA, Wang YH, Tien HF, Wu SJ. Multicolour and lineage-specific interphase chromosome Flow-FISH: method development and clinical validation. Pathology 2024; 56:671-680. [PMID: 38852040 DOI: 10.1016/j.pathol.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/01/2024] [Accepted: 04/14/2024] [Indexed: 06/10/2024]
Abstract
Flow cytometry can be applied in the detection of fluorescence in situ hybridisation (FISH) signals to efficiently analyse chromosomal aberrations. However, such interphase chromosome (IC) Flow-FISH protocols are currently limited to detecting a single colour. Furthermore, combining IC Flow-FISH with conventional multicolour flow cytometry is difficult because the DNA-denaturation step in FISH assay also disrupts cellular integrity and protein structures, precluding subsequent antigen-antibody binding and hindering concurrent labeling of surface antigens and FISH signals. We developed a working protocol for concurrent multicolour flow cytometry detection of nuclear IC FISH signals and cell surface markers. The protocol was validated by assaying sex chromosome content of blood cells, which was indicative of chimerism status in patients who had received sex-mismatched allogeneic haematopoietic stem cell transplants (allo-HSCT). The method was also adapted to detect trisomy 12 in chronic lymphocytic leukaemia (CLL) subjects. We first demonstrated the feasibility of this protocol in detecting multiple colours and concurrent nuclear and surface signals with high agreement. In clinical validation experiments, chimerism status was identified in clinical samples (n=56) using the optimised IC Flow-FISH method; the results tightly corresponded to those of conventional slide-based FISH (R2=0.9649 for XX cells and 0.9786 for XY cells). In samples from patients who received sex-mismatched allo-HSCT, individual chimeric statuses in different lineages could be clearly distinguished with high flexibility in gating strategies. Furthermore, in CLL samples with trisomy 12, this method could demonstrate that enriched trisomy 12 FISH signal was present in B cells rather than in T cells. Finally, by performing combined labelling of chromosome 12, X chromosome, and surface markers, we could detect rare residual recipient CLL cells with trisomy 12 after allo-HSCT. This adaptable protocol for multicolour and lineage-specific IC Flow-FISH advances the technique to allow for its potential application in various clinical contexts where conventional FISH assays are currently being utilised.
Collapse
MESH Headings
- Humans
- In Situ Hybridization, Fluorescence/methods
- Flow Cytometry/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Interphase
- Female
- Male
- Hematopoietic Stem Cell Transplantation
- Trisomy/diagnosis
- Trisomy/genetics
- Middle Aged
- Chromosomes, Human, Pair 12/genetics
Collapse
Affiliation(s)
- Huey-En Tzeng
- Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung City, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, and Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Department of Post-Baccalaureate Medicine, College of Medicine, National Chung-Hsing University, Taichung, Taiwan
| | - Yi-Wei Lee
- Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Chien-Ting Lin
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan, Taiwan; Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chi-Cheng Li
- Center of Stem Cell and Precision Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Wen-Hui Chuang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Cheng-An Hsu
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Hua Wang
- Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Hwei-Fang Tien
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, Far-East Memorial Hospital, New Taipei City, Taiwan
| | - Shang-Ju Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Hematological Oncology, National Taiwan University Cancer Center, Taipei, Taiwan.
| |
Collapse
|
8
|
Ziccheddu B, Giannotta C, D'Agostino M, Bertuglia G, Saraci E, Oliva S, Genuardi E, Papadimitriou M, Diamond B, Corradini P, Coffey D, Landgren O, Bolli N, Bruno B, Boccadoro M, Massaia M, Maura F, Larocca A. Genomic and immune determinants of resistance to daratumumab-based therapy in relapsed refractory multiple myeloma. Blood Cancer J 2024; 14:117. [PMID: 39030183 PMCID: PMC11271515 DOI: 10.1038/s41408-024-01096-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Targeted immunotherapy combinations, including the anti-CD38 monoclonal antibody (MoAb) daratumumab, have shown promising results in patients with relapsed/refractory multiple myeloma (RRMM), leading to a considerable increase in progression-free survival. However, a large fraction of patients inevitably relapse. To understand this, we investigated 32 relapsed MM patients treated with daratumumab, lenalidomide, and dexamethasone (Dara-Rd; NCT03848676). We conducted an integrated analysis using whole-genome sequencing (WGS) and flow cytometry in patients with RRMM. WGS before and after treatment pinpointed genomic drivers associated with early progression, including RPL5 loss, APOBEC mutagenesis, and gain of function structural variants involving MYC and chromothripsis. Flow cytometry on 202 blood samples, collected every 3 months until progression for 31 patients, revealed distinct immune changes significantly impacting clinical outcomes. Progressing patients exhibited significant depletion of CD38-positive NK cells, persistence of T-cell exhaustion, and reduced depletion of regulatory T cells over time. These findings underscore the influence of immune composition and daratumumab-induced immune changes in promoting MM resistance. Integrating genomics and flow cytometry unveiled associations between adverse genomic features and immune patterns. Overall, this study sheds light on the intricate interplay between genomic complexity and the immune microenvironment driving resistance to Dara-Rd in patients with RRMM.
Collapse
Affiliation(s)
- Bachisio Ziccheddu
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Claudia Giannotta
- Laboratory of Blood Tumor Immunology, Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, Università di Torino, Torino, Italy
| | - Mattia D'Agostino
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Giuseppe Bertuglia
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Elona Saraci
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Stefania Oliva
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Elisa Genuardi
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | - Marios Papadimitriou
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Benjamin Diamond
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Paolo Corradini
- Division of Hematology and Bone Marrow Transplant, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - David Coffey
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Ola Landgren
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA
| | - Niccolò Bolli
- Hematology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Oncology and Onco-Hematology, University of Milan, Milan, Italy
| | - Benedetto Bruno
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| | | | - Massimo Massaia
- Laboratory of Blood Tumor Immunology, Molecular Biotechnology Center "Guido Tarone", Department of Molecular Biotechnology and Health Sciences, Università di Torino, Torino, Italy
- SC Ematologia, AO S. Croce e Carle, Cuneo, Italy
| | - Francesco Maura
- Myeloma Division, University of Miami, Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Alessandra Larocca
- Division of Hematology, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, University of Torino, Torino, Italy
| |
Collapse
|
9
|
Shukla S, Bansal A, Aggarwal S, Singh A. Adipocyte ABCA1 expression analysis using flow cytometry. Biotechniques 2024; 76:405-410. [PMID: 39016203 DOI: 10.1080/07366205.2024.2376466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/27/2024] [Indexed: 07/18/2024] Open
Abstract
Adipocyte characterization and assessing membrane proteins using flow cytometry has been proven to be challenging as adipocytes are fragile, especially in subjects with high BMI. We overcame these challenges through a protocol optimizing tissue digestion time by reducing intermediate steps to minimize adipocyte friction and breakage. We avoided requirement for specialized instrument configuration and used a modified gating strategy to prevent inclusion of lipid droplets during analysis. Up to 90% of the cell population were available in the gating area. We checked the expression level of ABCA1, a membrane protein reaffirming adipocyte selection. In summary, this protocol requires lesser tissue sample improving feasibility and cost efficiency. Thus, our flow cytometry method is an improvement for studying adipocyte membrane characteristics.
Collapse
Affiliation(s)
| | - Ashutosh Bansal
- Department of Cardiac Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Archna Singh
- Department of Biochemistry, AIIMS, New Delhi, India
| |
Collapse
|
10
|
Burchert JP, Frohn J, Rölleke U, Bruns H, Yu B, Gleber SC, Stange R, Busse M, Osterhoff M, Salditt T, Köster S. X-ray phase-contrast tomography of cells manipulated with an optical stretcher. JOURNAL OF SYNCHROTRON RADIATION 2024; 31:923-935. [PMID: 38861370 PMCID: PMC11226146 DOI: 10.1107/s1600577524003618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/21/2024] [Indexed: 06/13/2024]
Abstract
X-rays can penetrate deeply into biological cells and thus allow for examination of their internal structures with high spatial resolution. In this study, X-ray phase-contrast imaging and tomography is combined with an X-ray-compatible optical stretcher and microfluidic sample delivery. Using this setup, individual cells can be kept in suspension while they are examined with the X-ray beam at a synchrotron. From the recorded holograms, 2D phase shift images that are proportional to the projected local electron density of the investigated cell can be calculated. From the tomographic reconstruction of multiple such projections the 3D electron density can be obtained. The cells can thus be studied in a hydrated or even living state, thus avoiding artifacts from freezing, drying or embedding, and can in principle also be subjected to different sample environments or mechanical strains. This combination of techniques is applied to living as well as fixed and stained NIH3T3 mouse fibroblasts and the effect of the beam energy on the phase shifts is investigated. Furthermore, a 3D algebraic reconstruction scheme and a dedicated mathematical description is used to follow the motion of the trapped cells in the optical stretcher for multiple rotations.
Collapse
Affiliation(s)
- Jan-Philipp Burchert
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)University of GöttingenGermany
| | - Jasper Frohn
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Ulrike Rölleke
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Hendrik Bruns
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Boram Yu
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Sophie-Charlotte Gleber
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | | | - Madleen Busse
- Biomedical Physics, School of ScienceTechnical University MunichBoltzmannstraße 1185748GarchingGermany
- Munich Institute of Biomedical EngineeringTechnical University MunichBoltzmannstraße 1185748GarchingGermany
| | - Markus Osterhoff
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
| | - Tim Salditt
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)University of GöttingenGermany
| | - Sarah Köster
- Institute for X-ray PhysicsUniversity of GöttingenFriedrich-Hund-Platz 137077GöttingenGermany
- Cluster of Excellence Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells (MBExC)University of GöttingenGermany
| |
Collapse
|
11
|
Xu X, Li J, Setrerrahmane S, Zhang J, Shi S, Hu Y, Lin D, Xu H. A multifunctional antibody fusion protein 57103 targeting CD24, IL-4R, and α vβ 3 for treating cancer and regulating the tumor microenvironment. Biomed Pharmacother 2024; 175:116714. [PMID: 38761419 DOI: 10.1016/j.biopha.2024.116714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024] Open
Abstract
Cancer is one of the top 10 fatal diseases worldwide, among which advanced metastatic carcinoma has the highest mortality rate. Sunitinib and immune checkpoint blockers are commonly used to treat metastatic renal carcinoma with limited efficacy. Therefore, there is an urgent need to develop novel targeted therapies for metastatic renal cancer. In this study, we designed an antibody fusion protein, 57103, that simultaneously targeted the cluster of differentiation 24 (CD24), interleukin 4 receptor (IL-4R), and integrin receptors αvβ3 and α5β1. In vitro assays showed that 57103 significantly suppressed the proliferation, migration, invasion, colony formation, and adhesion abilities of renal cancer cells, resulting in a comprehensive and significant antitumor effect. Furthermore, 57103 inhibited angiogenesis, promoted THP1-derived M0-type macrophage phagocytosis, and enhanced the antibody-dependent cellular cytotoxicity of peripheral blood mononuclear and NK92MI-CD16a cells. In vivo experiments revealed significant inhibition of tumor growth in ACHN cell xenograft nude mice and an MC38-hCD24 tumor-bearing mouse model. Immunohistochemical analysis showed that 57103 decreased the proliferation and induced the apoptosis of renal cancer cells, while inhibiting angiogenesis. The MC38-hPDL1 and MC38-hCD24-hPDL1 tumor-bearing mouse models further offer the possibility of combining 57103 with the PDL1 antagonist atezolizumab. In conclusion, 57103 is a potential candidate drug for the treatment of metastatic renal carcinoma or PDL1-overexpressing cancer.
Collapse
Affiliation(s)
- Xiaowei Xu
- State Key Laboratory of Natural Medicines, Ministry of Education, the Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jian Li
- Research and Development Center of Biopharmaceuticals, Tasly Academy, Tasly Pharmaceutical Co., Ltd., Tianjin, China
| | | | - Juan Zhang
- Antibody Engineering Laboratory, School of Life Science & Technology, China Pharmaceutical University, Nanjing 210009, China
| | - Suoqin Shi
- Jiangsu Rongtai Biotechnology Co., LTD, Nanjing 210033, China
| | - Yahui Hu
- Jiangsu Rongtai Biotechnology Co., LTD, Nanjing 210033, China
| | - Dong Lin
- Jiangsu Rongtai Biotechnology Co., LTD, Nanjing 210033, China
| | - Hanmei Xu
- State Key Laboratory of Natural Medicines, Ministry of Education, the Engineering Research Center of Synthetic Polypeptide Drug Discovery and Evaluation of Jiangsu Province, Department of Marine Pharmacy, China Pharmaceutical University, Nanjing 211198, China; The Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation of Jiangsu Province, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
12
|
Abdolmohammadi-Vahid S, Baradaran B, Sadeghi A, Bezemer GFG, Kiaee F, Adcock IM, Folkerts G, Garssen J, Mortaz E. Effects of toll-like receptor agonists and SARS-CoV-2 antigens on interferon (IFN) expression by peripheral blood CD3 + T cells from COVID-19 patients. Exp Mol Pathol 2024; 137:104897. [PMID: 38691979 DOI: 10.1016/j.yexmp.2024.104897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/09/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Signaling by toll-like receptors (TLRs) initiates important immune responses against viral infection. The role of TLRs in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is not well elucidated. Thus, we investigated the interaction of TLRs agonists and SARS-COV-2 antigens with immune cells in vitro. MATERIAL & METHODS 30 coronavirus disease 2019 (COVID-19) patients (15 severe and 15 moderate) and 10 age and sex-matched healthy control (HC) were enrolled. Peripheral blood mononuclear cells (PBMCs) were isolated and activated with TLR3, 7, 8, and 9 agonists, the spike protein (SP) of SARS-CoV-2, and the receptor binding domain (RBD) of SP. Frequencies of CD3+IFN-β+ T cells, and CD3+IFN-γ+ T cells were evaluated by flow cytometry. Interferon (IFN)-β gene expression was assessed by qRT-PCR. RESULTS The frequency of CD3+IFN-β+ T cells was higher in PBMCs from moderate (p < 0.0001) and severe (p = 0.009) patients at baseline in comparison with HCs. The highest increase in the frequency of CD3+IFN-β+ T cells in cell from moderate patients was induced by TLR8 agonist and SP (p < 0.0001 for both) when compared to HC, while, the highest increase of the frequency of CD3+IFN-β+ T cells in sample of severe patients was seen with TLR8 and TLR7 agonists (both p = 0.002). The frequency of CD3+IFN-γ+ T cells was significantly increased upon stimulation with TLR agonists in cell from patients with moderate and severe COVID-19, compared with HC (all p < 0.01), except with TLR7 and TLR8 agonists. The TLR8 agonist did not significantly increase the frequency of CD3+IFN-γ+ T cells in PBMCs of severe patients, but did so in cells from patients with moderate disease (p = 0.01). Moreover, IFN-β gene expression was significantly upregulated in CD3+T cells from moderate (p < 0.0001) and severe (p = 0.002) COVID-19 patients, compared to HC after stimulation with the TLR8 agonist, while, stimulation of T cells with SP, significantly up-regulated IFN-β mRNA expression in cells from patients with moderate (p = 0.0003), but not severe disease. CONCLUSION Stimulation of PBMCs from COVID-19 patients, especially patients with moderate disease, with TLR8 agonist and SP increased the frequency of IFN-β-producing T cells and IFN-β gene expression.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Armin Sadeghi
- Tuberculosis and Lung Disease Research Center of Tabriz University of Medical Sciences, Tabriz, Iran
| | - Gillina F G Bezemer
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Impact Station, Hilversum, the Netherlands
| | - Fatemeh Kiaee
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Immune Health Program at Hunter Medical Research Institute and the College of Health and Medicine at the University of Newcastle, NSW, Australia
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Johan Garssen
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Chen P, Zhang L, Cao X, Jin X, Chen N, Zhang L, Zhu J, Pan B, Wang B, Guo W. Detection of circulating plasma cells in peripheral blood using deep learning-based morphological analysis. Cancer 2024; 130:1884-1893. [PMID: 38236717 DOI: 10.1002/cncr.35202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/06/2023] [Accepted: 12/19/2023] [Indexed: 05/01/2024]
Abstract
BACKGROUND The presence of circulating plasma cells (CPCs) is an important laboratory indicator for the diagnosis, staging, risk stratification, and progression monitoring of multiple myeloma (MM). Early detection of CPCs in the peripheral blood (PB) followed by timely interventions can significantly improve MM prognosis and delay its progression. Although the conventional cell morphology examination remains the predominant method for CPC detection because of accessibility, its sensitivity and reproducibility are limited by technician expertise and cell quantity constraints. This study aims to develop an artificial intelligence (AI)-based automated system for a more sensitive and efficient CPC morphology detection. METHODS A total of 137 bone marrow smears and 72 PB smears from patients with at Zhongshan Hospital, Fudan University, were retrospectively reviewed. Using an AI-powered digital pathology platform, Morphogo, 305,019 cell images were collected for training. Morphogo's efficacy in CPC detection was evaluated with additional 184 PB smears (94 from patients with MM and 90 from those with other hematological malignancies) and compared with manual microscopy. RESULTS Morphogo achieved 99.64% accuracy, 89.03% sensitivity, and 99.68% specificity in classifying CPCs. At a 0.60 threshold, Morphogo achieved a sensitivity of 96.15%, which was approximately twice that of manual microscopy, with a specificity of 78.03%. Patients with CPCs detected by AI scanning had a significantly shorter median progression-free survival compared with those without CPC detection (18 months vs. 34 months, p< .01). CONCLUSIONS Morphogo is a highly sensitive system for the automated detection of CPCs, with potential applications in initial screening, prognosis prediction, and posttreatment monitoring for MM patients. PLAIN LANGUAGE SUMMARY Diagnosing and monitoring multiple myeloma (MM), a type of blood cancer, requires identifying and quantifying specific cells called circulating plasma cells (CPCs) in the blood. The conventional method for detecting CPCs is manual microscopic examination, which is time-consuming and lacks sensitivity. This study introduces a highly sensitive CPC detection method using an artificial intelligence-based system, Morphogo. It demonstrated remarkable sensitivity and accuracy, surpassing conventional microscopy. This advanced approach suggests that early and accurate CPC detection is achievable by morphology examination, making efficient CPC screening more accessible for patients with MM. This innovative system has the potential to be used in the diagnosis and risk assessment of MM.
Collapse
Affiliation(s)
- Pu Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyi Cao
- Department of Medical Development, Hangzhou Zhiwei Information and Technology Co., Ltd., Hangzhou, China
| | - Xinyi Jin
- Department of Medical Development, Hangzhou Zhiwei Information and Technology Co., Ltd., Hangzhou, China
| | - Nan Chen
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianfeng Zhu
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Baishen Pan
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Nolan A, Heaton RA, Adamova P, Cole P, Turton N, Gillham SH, Owens DJ, Sexton DW. Fluorescent characterization of differentiated myotubes using flow cytometry. Cytometry A 2024; 105:332-344. [PMID: 38092660 DOI: 10.1002/cyto.a.24822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/23/2023] [Accepted: 12/11/2023] [Indexed: 12/27/2023]
Abstract
Flow cytometry is routinely used in the assessment of skeletal muscle progenitor cell (myoblast) populations. However, a full gating strategy, inclusive of difficult to interpret forward and side scatter data, which documents cytometric analysis of differentiated myoblasts (myotubes) has not been reported. Beyond changes in size and shape, there are substantial metabolic and protein changes in myotubes allowing for their potential identification within heterogenous cell suspensions. To establish the utility of flow cytometry for determination of myoblasts and myotubes, C2C12 murine cell populations were assessed for cell morphology and metabolic reprogramming. Laser scatter, both forward (FSC; size) and side (SSC; granularity), measured cell morphology, while mitochondrial mass, reactive oxygen species (ROS) generation and DNA content were quantified using the fluorescent probes, MitoTracker green, CM-H2DCFDA and Vybrant DyeCycle, respectively. Immunophenotyping for myosin heavy chain (MyHC) was utilized to confirm myotube differentiation. Cellular viability was determined using Annexin V/propidium iodide dual labelling. Fluorescent microscopy was employed to visualize fluorescence and morphology. Myotube and myoblast populations were resolvable through non-intuitive interpretation of laser scatter-based morphology assessment and mitochondrial mass and activity assessment. Myotubes appeared to have similar sizes to the myoblasts based on laser scatter but exhibited greater mitochondrial mass (159%, p < 0.0001), ROS production (303%, p < 0.0001), DNA content (18%, p < 0.001) and expression of MyHC (147%, p < 0.001) compared to myoblasts. Myotube sub-populations contained a larger viable cluster of cells which were unable to be fractionated from myoblast populations and a smaller population cluster which likely contains apoptotic bodies. Imaging of differentiated myoblasts that had transited through the flow cytometer revealed the presence of intact, 'rolled-up' myotubes, which would alter laser scatter properties and potential transit through the laser beam. Our results indicate that myotubes can be analyzed successfully using flow cytometry. Increased mitochondrial mass, ROS and DNA content are key features that correlate with MyHC expression but due to myotubes 'rolling up' during flow cytometric analysis, laser scatter determination of size is not positively correlated; a phenomenon observed with some size determination particles and related to surface properties of said particles. We also note a greater heterogeneity of myotubes compared to myoblasts as evidenced by the 2 distinct sub-populations. We suggest that acoustic focussing may prove effective in identifying myotube sub populations compared to traditional hydrodynamic focussing.
Collapse
Affiliation(s)
- Andy Nolan
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Robert A Heaton
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Petra Adamova
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Paige Cole
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Scott H Gillham
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Daniel J Owens
- Research Institute for Sport and Exercise Sciences, Liverpool John Moores University, Liverpool, UK
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| |
Collapse
|
15
|
Pellico J, Vass L, Carrascal-Miniño A, Man F, Kim J, Sunassee K, Parker D, Blower PJ, Marsden PK, T M de Rosales R. In vivo real-time positron emission particle tracking (PEPT) and single particle PET. NATURE NANOTECHNOLOGY 2024; 19:668-676. [PMID: 38242986 PMCID: PMC11106003 DOI: 10.1038/s41565-023-01589-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/30/2023] [Indexed: 01/21/2024]
Abstract
Positron emission particle tracking (PEPT) enables 3D localization and tracking of single positron-emitting radiolabelled particles with high spatiotemporal resolution. The translation of PEPT to the biomedical imaging field has been limited due to the lack of methods to radiolabel biocompatible particles with sufficient specific activity and protocols to isolate a single particle in the sub-micrometre size range, below the threshold for capillary embolization. Here we report two key developments: the synthesis and 68Ga-radiolabelling of homogeneous silica particles of 950 nm diameter with unprecedented specific activities (2.1 ± 1.4 kBq per particle), and the isolation and manipulation of a single particle. We have combined these developments to perform in vivo PEPT and dynamic positron emission tomography (PET) imaging of a single radiolabelled sub-micrometre size particle using a pre-clinical positron emission tomography/computed tomography scanner. This work opens possibilities for quantitative assessment of haemodynamics in vivo in real time, at the whole-body level using minimal amounts of injected radioactive dose and material.
Collapse
Affiliation(s)
- Juan Pellico
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Laurence Vass
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Amaia Carrascal-Miniño
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Francis Man
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Jana Kim
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Kavitha Sunassee
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - David Parker
- School of Physics and Astronomy, University of Birmingham, Birmingham, UK
| | - Philip J Blower
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Paul K Marsden
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Rafael T M de Rosales
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
| |
Collapse
|
16
|
Kotsifaki A, Maroulaki S, Armakolas A. Exploring the Immunological Profile in Breast Cancer: Recent Advances in Diagnosis and Prognosis through Circulating Tumor Cells. Int J Mol Sci 2024; 25:4832. [PMID: 38732051 PMCID: PMC11084220 DOI: 10.3390/ijms25094832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
This review offers a comprehensive exploration of the intricate immunological landscape of breast cancer (BC), focusing on recent advances in diagnosis and prognosis through the analysis of circulating tumor cells (CTCs). Positioned within the broader context of BC research, it underscores the pivotal role of the immune system in shaping the disease's progression. The primary objective of this investigation is to synthesize current knowledge on the immunological aspects of BC, with a particular emphasis on the diagnostic and prognostic potential offered by CTCs. This review adopts a thorough examination of the relevant literature, incorporating recent breakthroughs in the field. The methodology section succinctly outlines the approach, with a specific focus on CTC analysis and its implications for BC diagnosis and prognosis. Through this review, insights into the dynamic interplay between the immune system and BC are highlighted, with a specific emphasis on the role of CTCs in advancing diagnostic methodologies and refining prognostic assessments. Furthermore, this review presents objective and substantiated results, contributing to a deeper understanding of the immunological complexity in BC. In conclusion, this investigation underscores the significance of exploring the immunological profile of BC patients, providing valuable insights into novel advances in diagnosis and prognosis through the utilization of CTCs. The objective presentation of findings emphasizes the crucial role of the immune system in BC dynamics, thereby opening avenues for enhanced clinical management strategies.
Collapse
Affiliation(s)
| | | | - Athanasios Armakolas
- Physiology Laboratory, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (A.K.); (S.M.)
| |
Collapse
|
17
|
Jiménez C, Garrote-de-Barros A, López-Portugués C, Hernández-Sánchez M, Díez P. Characterization of Human B Cell Hematological Malignancies Using Protein-Based Approaches. Int J Mol Sci 2024; 25:4644. [PMID: 38731863 PMCID: PMC11083628 DOI: 10.3390/ijms25094644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The maturation of B cells is a complex, multi-step process. During B cell differentiation, errors can occur, leading to the emergence of aberrant versions of B cells that, finally, constitute a malignant tumor. These B cell malignancies are classified into three main groups: leukemias, myelomas, and lymphomas, the latter being the most heterogeneous type. Since their discovery, multiple biological studies have been performed to characterize these diseases, aiming to define their specific features and determine potential biomarkers for diagnosis, stratification, and prognosis. The rise of advanced -omics approaches has significantly contributed to this end. Notably, proteomics strategies appear as promising tools to comprehensively profile the final molecular effector of these cells. In this narrative review, we first introduce the main B cell malignancies together with the most relevant proteomics approaches. Then, we describe the core studies conducted in the field and their main findings and, finally, we evaluate the advantages and drawbacks of flow cytometry, mass cytometry, and mass spectrometry for the profiling of human B cell disorders.
Collapse
Affiliation(s)
- Cristina Jiménez
- Hematology Department, University Hospital of Salamanca (HUS/IBSAL), CIBERONC and Cancer Research Institute of Salamanca-IBMCC (USAL-CSIC), 37007 Salamanca, Spain;
| | - Alba Garrote-de-Barros
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Carlos López-Portugués
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
| | - María Hernández-Sánchez
- Department of Biochemistry and Molecular Biology, Pharmacy School, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-d.-B.); (M.H.-S.)
- Department of Translational Hematology, Instituto de Investigación Hospital 12 de Octubre (imas12), Hematological Malignancies Clinical Research Unit H12O-CNIO, 28029 Madrid, Spain
| | - Paula Díez
- Department of Physical and Analytical Chemistry Chemistry, Faculty of Chemistry, University of Oviedo, 33006 Oviedo, Spain;
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Functional Biology, Faculty of Medicine and Health Science, University of Oviedo, 33006 Oviedo, Spain
| |
Collapse
|
18
|
Huang Z, Pan T, Xu L, Shi L, Ma X, Zhou L, Wang L, Wang J, Zhu G, Chen D, Song L, Pan X, Wang X, Li X, Luo Y, Chen Y. FGF4 protects the liver from immune-mediated injury by activating CaMKK β-PINK1 signal pathway to inhibit hepatocellular apoptosis. Acta Pharm Sin B 2024; 14:1605-1623. [PMID: 38572102 PMCID: PMC10985030 DOI: 10.1016/j.apsb.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 04/05/2024] Open
Abstract
Immune-mediated liver injury (ILI) is a condition where an aberrant immune response due to various triggers causes the destruction of hepatocytes. Fibroblast growth factor 4 (FGF4) was recently identified as a hepatoprotective cytokine; however, its role in ILI remains unclear. In patients with autoimmune hepatitis (type of ILI) and mouse models of concanavalin A (ConA)- or S-100-induced ILI, we observed a biphasic pattern in hepatic FGF4 expression, characterized by an initial increase followed by a return to basal levels. Hepatic FGF4 deficiency activated the mitochondria-associated intrinsic apoptotic pathway, aggravating hepatocellular apoptosis. This led to intrahepatic immune hyper-reactivity, inflammation accentuation, and subsequent liver injury in both ILI models. Conversely, administration of recombinant FGF4 reduced hepatocellular apoptosis and rectified immune imbalance, thereby mitigating liver damage. The beneficial effects of FGF4 were mediated by hepatocellular FGF receptor 4, which activated the Ca2+/calmodulin-dependent protein kinasekinase 2 (CaMKKβ) and its downstream phosphatase and tensin homologue-induced putative kinase 1 (PINK1)-dependent B-cell lymphoma 2-like protein 1-isoform L (Bcl-XL) signalling axis in the mitochondria. Hence, FGF4 serves as an early response factor and plays a protective role against ILI, suggesting a therapeutic potential of FGF4 and its analogue for treating clinical immune disorder-related liver injuries.
Collapse
Affiliation(s)
- Zhifeng Huang
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Tongtong Pan
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Liang Xu
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University & Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou Medical University, Wenzhou 325035, China
| | - Lu Shi
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, China
| | - Liya Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Luyao Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jiaojiao Wang
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Guoqing Zhu
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Dazhi Chen
- Hangzhou Medical College, Hangzhou 311300, China
| | - Lingtao Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaomin Pan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaodong Wang
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaokun Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongde Luo
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) & School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yongping Chen
- Hepatology Diagnosis and Treatment Center, Zhejiang Provincial Key Laboratory for Accurate Diagnosis and Treatment of Chronic Liver Diseases, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
19
|
Patel VJ, Joharapurkar A, Jain MR. The Perspective of Using Flow Cytometry for Unpuzzling Hypoxia-Inducible Factors Signalling. Drug Res (Stuttg) 2024; 74:113-122. [PMID: 38350634 DOI: 10.1055/a-2248-9180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Hypoxia-inducible factors (HIFs) are transcription factors that are responsible for adapting to the changes in oxygen levels in the cellular environment. HIF activity determines the expression of cellular proteins that control the development and physiology of the cells and pathophysiology of a disease. Understanding the role of specific HIF (HIF-1-3) in cellular function is essential for development of the HIF-targeted therapies. In this review, we have discussed the use of flow cytometry in analysing HIF function in cells. Proper understanding of HIF-signalling will help to design pharmacological interventions HIF-mediated therapy. We have discussed the role of HIF-signalling in various diseases such as cancer, renal and liver diseases, ulcerative colitis, arthritis, diabetes and diabetic complications, psoriasis, and wound healing. We have also discussed protocols that help to decipher the role of HIFs in these diseases that would eventually help to design promising therapies.
Collapse
Affiliation(s)
- Vishal J Patel
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Moraiya, Ahmedabad, India
| | - Amit Joharapurkar
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Moraiya, Ahmedabad, India
| | - Mukul R Jain
- Department of Pharmacology and Toxicology, Zydus Research Centre, Zydus Lifesciences Limited, Moraiya, Ahmedabad, India
| |
Collapse
|
20
|
Perez-Shibayama C, Gil-Cruz C, Cadosch N, Lütge M, Cheng HW, De Martin A, Frischmann K, Joachimbauer A, Onder L, Papadopoulou I, Papadopoulou C, Ring S, Krebs P, Vu VP, Nägele MP, Rossi VA, Parianos D, Zsilavecz VW, Cooper LT, Flammer A, Ruschitzka F, Rainer PP, Schmidt D, Ludewig B. Bone morphogenic protein-4 availability in the cardiac microenvironment controls inflammation and fibrosis in autoimmune myocarditis. NATURE CARDIOVASCULAR RESEARCH 2024; 3:301-316. [PMID: 39196111 PMCID: PMC11358008 DOI: 10.1038/s44161-024-00432-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 01/19/2024] [Indexed: 08/29/2024]
Abstract
Myocarditis is an inflammatory heart disease that leads to loss of cardiomyocytes and frequently precipitates fibrotic remodeling of the myocardium, culminating in heart failure. However, the molecular mechanisms underlying immune cell control and maintenance of tissue integrity in the inflamed cardiac microenvironment remain elusive. In this study, we found that bone morphogenic protein-4 (BMP4) gradients maintain cardiac tissue homeostasis by single-cell transcriptomics analyses of inflamed murine and human myocardial tissues. Cardiac BMP pathway dysregulation was reflected by reduced BMP4 serum concentration in patients with myocarditis. Restoration of BMP signaling by antibody-mediated neutralization of the BMP inhibitors gremlin-1 and gremlin-2 ameliorated T cell-induced myocardial inflammation in mice. Moreover, progression to inflammatory cardiomyopathy was blocked through the reduction of fibrotic remodeling and preservation of cardiomyocyte integrity. These results unveil the BMP4-gremlin axis as a druggable pathway for the treatment of myocardial inflammation, limiting the severe sequelae of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
| | - Cristina Gil-Cruz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Nadine Cadosch
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Angelina De Martin
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Kira Frischmann
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Anna Joachimbauer
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Iliana Papadopoulou
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Chrysa Papadopoulou
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Sandra Ring
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Philippe Krebs
- Institute of Pathology, University of Bern, Bern, Switzerland
| | - Vivian P Vu
- Institute of Pathology, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Matthias P Nägele
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Valentina A Rossi
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Danaë Parianos
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | - Leslie T Cooper
- Department of Cardiovascular Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Andreas Flammer
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Frank Ruschitzka
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Peter P Rainer
- Division of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- St. Johann in Tirol General Hospital, St. Johann in Tirol, Austria
| | - Dörthe Schmidt
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
- University Heart Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| |
Collapse
|
21
|
Kapanadze T, Gamrekelashvili J, Sablotny S, Schroth FN, Xu Y, Chen R, Rong S, Shushakova N, Gueler F, Haller H, Limbourg FP. Validation of CSF-1 receptor (CD115) staining for analysis of murine monocytes by flow cytometry. J Leukoc Biol 2024; 115:573-582. [PMID: 38038378 DOI: 10.1093/jleuko/qiad147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 10/18/2023] [Accepted: 11/09/2023] [Indexed: 12/02/2023] Open
Abstract
CD115, the receptor for colony stimulating factor 1, is essential for survival and differentiation of monocytes and macrophages and is therefore frequently used to define monocyte subsets and their progenitors in immunological assays. However, CD115 surface expression and detection by flow cytometry is greatly influenced by cell isolation and processing methods, organ source, and disease context. In a systematic analysis of murine monocytes, we define experimental conditions that preserve or limit CD115 surface expression and staining by flow cytometry. We also find that, independent of conditions, CD115 surface levels are consistently lower in Ly6Clo monocytes than in Ly6Chi monocytes, with the exception of Ly6Clo monocytes in the bone marrow. Furthermore, in contrast to IL-34, the presence of colony stimulating factor 1 impairs CD115 antibody staining in a dose-dependent manner, which, in a model of ischemic kidney injury with elevated levels of colony stimulating factor 1, influenced quantification of kidney monocytes. Thus, staining and experimental conditions affect quantitative and qualitative analysis of monocytes and may influence experimental conclusions.
Collapse
Affiliation(s)
- Tamar Kapanadze
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Jaba Gamrekelashvili
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Stefan Sablotny
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Frauline Nicole Schroth
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Yuangao Xu
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Rongjun Chen
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Song Rong
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Nelli Shushakova
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
- Phenos GmbH, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Hermann Haller
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| | - Florian P Limbourg
- Vascular Medicine Research, Department of Nephrology and Hypertension, Hannover Medical School, Hannover, D 30625, Germany
- Department of Nephrology and Hypertension, Hannover Medical School, Hannover D 30625, Germany
| |
Collapse
|
22
|
Dott T, Culina S, Chemali R, Mansour CA, Dubois F, Jagla B, Doisne JM, Rogge L, Huetz F, Jönsson F, Commere PH, Di Santo J, Terrier B, Quintana-Murci L, Duffy D, Hasan M. Standardized high-dimensional spectral cytometry protocol and panels for whole blood immune phenotyping in clinical and translational studies. Cytometry A 2024; 105:124-138. [PMID: 37751141 DOI: 10.1002/cyto.a.24801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
Flow cytometry is the method of choice for immunophenotyping in the context of clinical, translational, and systems immunology studies. Among the latter, the Milieu Intérieur (MI) project aims at defining the boundaries of a healthy immune response to identify determinants of immune response variation. MI used immunophenotyping of a 1000 healthy donor cohort by flow cytometry as a principal outcome for immune variance at steady state. New generation spectral cytometers now enable high-dimensional immune cell characterization from small sample volumes. Therefore, for the MI 10-year follow up study, we have developed two high-dimensional spectral flow cytometry panels for deep characterization of innate and adaptive whole blood immune cells (35 and 34 fluorescent markers, respectively). We have standardized the protocol for sample handling, staining, acquisition, and data analysis. This approach enables the reproducible quantification of over 182 immune cell phenotypes at a single site. We have applied the protocol to discern minor differences between healthy and patient samples and validated its value for application in immunomonitoring studies. Our protocol is currently used for characterization of the impact of age and environmental factors on peripheral blood immune phenotypes of >400 donors from the initial MI cohort.
Collapse
Affiliation(s)
- Tom Dott
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Slobodan Culina
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - Rene Chemali
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Florian Dubois
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Bernd Jagla
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, Paris, France
| | - Jean Marc Doisne
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Lars Rogge
- Immunoregulation Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - François Huetz
- Unit of Antibodies in Therapy and Pathology, INSERM UMR1222, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Friederike Jönsson
- Unit of Antibodies in Therapy and Pathology, INSERM UMR1222, Institut Pasteur, Université de Paris Cité, Paris, France
- CNRS, Paris, France
| | - Pierre-Henri Commere
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| | - James Di Santo
- Innate Immunity Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | | | - Lluis Quintana-Murci
- Human Evolutionary Genetics Unit, CNRS, Institut Pasteur, Université Paris Cité, UMR2000, Paris, France
| | - Darragh Duffy
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
- Translational Immunology Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Milena Hasan
- Cytometry and Biomarkers UTechS, Institut Pasteur, Université Paris Cité, Paris, France
| |
Collapse
|
23
|
Martín-Cano FE, Gaitskell-Phillips G, Becerro-Rey L, da Silva E, Masot J, Redondo E, Silva-Rodríguez A, Ortega-Ferrusola C, Gil MC, Peña FJ. Pyruvate enhances stallion sperm function in high glucose media improving overall metabolic efficiency. Theriogenology 2024; 215:113-124. [PMID: 38029686 DOI: 10.1016/j.theriogenology.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023]
Abstract
If a mechanism of more efficient glycolysis depending on pyruvate is present in stallion spermatozoa, detrimental effects of higher glucose concentrations that are common in current commercial extenders could be counteracted. To test this hypothesis, spermatozoa were incubated in a 67 mM Glucose modified Tyrode's media in the presence of 1- or 10-mM pyruvate and in the Tyrode's basal media which contains 5 mM glucose. Spermatozoa incubated for 3 h at 37 °C in 67 mM Tyrode's media with 10 mM pyruvate showed increased motility in comparison with aliquots incubated in Tyrode's 5 mM glucose and Tyrode's 67 mM glucose (57.1 ± 3.5 and 58.1 ± 1.9 to 73.0 ± 1.1 %; P < 0.01). Spermatozoa incubated in Tyrode's with 67 mM glucose 10 mM pyruvate maintained the viability along the incubation (64.03 ± 15.4 vs 61.3 ± 10.2), while spermatozoa incubated in 67 mM Glucose-Tyrode's showed a decrease in viability (38.01 ± 11.2, P < 0.01). 40 mM oxamate, an inhibitor of the lactate dehydrogenase LDH, reduced sperm viability (P < 0.05, from 76 ± 5 in 67 mM Glucose/10 mM pyruvate to 68.0 ± 4.3 %, P < 0.05). Apoptotic markers increased in the presence of oxamate. (P < 0.01). UHPLC/MS/MS showed that 10 mM pyruvate increased pyruvate, lactate, ATP and NAD+ while phosphoenolpyruvate decreased. The mechanisms that explain the improvement of in presence of 10 mM pyruvate involve the conversion of lactate to pyruvate and increased NAD+ enhancing the efficiency of the glycolysis.
Collapse
Affiliation(s)
- Francisco E Martín-Cano
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Gemma Gaitskell-Phillips
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Laura Becerro-Rey
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eva da Silva
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Javier Masot
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Eloy Redondo
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Antonio Silva-Rodríguez
- Facility of Innovation and Analysis in Animal Source Foodstuffs, University of Extremadura, Cáceres, Spain
| | - Cristina Ortega-Ferrusola
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - María Cruz Gil
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain
| | - Fernando J Peña
- Laboratory of Equine Reproduction and Equine Spermatology, Veterinary Teaching Hospital, University of Extremadura, Cáceres, Spain.
| |
Collapse
|
24
|
Aslan MK, Meng Y, Zhang Y, Weiss T, Stavrakis S, deMello AJ. Ultrahigh-Throughput, Real-Time Flow Cytometry for Rare Cell Quantification from Whole Blood. ACS Sens 2024; 9:474-482. [PMID: 38171016 DOI: 10.1021/acssensors.3c02268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
We present an ultrahigh-throughput, real-time fluorescence cytometer comprising a viscoelastic microfluidic system and a complementary metal-oxide-semiconductor (CMOS) linear image sensor-based detection system. The flow cytometer allows for real-time quantification of a variety of fluorescence species, including micrometer-sized particles and cells, at analytical throughputs in excess of 400,000 species per second. The platform integrates a custom C++ control program and graphical user interface (GUI) to allow for the processing of raw signals, adjustment of processing parameters, and display of fluorescence intensity histograms in real time. To demonstrate the efficacy of the platform for rare event detection and its utility as a basic clinical tool, we measure and quantify patient-derived circulating tumor cells (CTCs) in peripheral blood, realizing that detection has a sensitivity of 6 CTCs per million blood cells (0.000006%) with a volumetric throughput of over 3 mL/min.
Collapse
Affiliation(s)
- Mahmut Kamil Aslan
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Yingchao Meng
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Yanan Zhang
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Tobias Weiss
- Department of Neurology, University Hospital Zürich, 8091 Zürich, Switzerland
- Clinical Neuroscience Center, University of Zürich, 8091 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg 1, Zürich 8093, Switzerland
| |
Collapse
|
25
|
Shi X, Fan W, Mehrpouyan M, Chen Y, D'Cruz LM, Widmann SJ, Tyznik AJ. Flow cytometry analysis of protein expression using antibody-derived tags followed by CITE-Seq. Cytometry A 2024; 105:62-73. [PMID: 37772953 DOI: 10.1002/cyto.a.24792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/13/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq) is a single-cell phenotyping method that uses antibody-derived tags (ADTs) to quantitatively detect cell surface protein expression and generate transcriptomic data at the single-cell level. Despite the increased popularity of this technique to study cellular heterogeneity and dynamics, detailed methods on how to choose ADT markers and ensuring reagent performance in biological relevant systems prior to sequencing is not available. Here we describe a novel and easy-to-use multiplex flow proxy assay in which multiple protein markers can be measured simultaneously using a combination of ADT reagents and dye-oligo conjugates by flow cytometry. Using dye-oligo conjugates with sequences complementary to the ADT reagents, we can achieve specific binding and evaluate protein marker expression in a multiplex way. This quality control assay is useful for guiding ADT marker choice and confirming protein expression prior to sequencing. Importantly, the labeled cells can be directly isolated based on the specific fluorescence from dye-oligo conjugates using a flow cytometry cell sorter and processed for downstream single-cell multiomics. Using this streamlined workflow, we sorted natural killer cells and T cells efficiently using only ADT and dye-oligo reagents, avoiding the possibility of decreased marker resolution from co-staining cells with ADT and fluorescent antibodies. This novel workflow provides a viable option for improving ADT marker choice and cell sorting efficiency, allowing subsequent CITE-Seq.
Collapse
Affiliation(s)
- Xiaoshan Shi
- Applied Research & Technology, Medical Scientific Affairs, BD Biosciences, San Jose, California, USA
| | - Wei Fan
- Chemistry Development, BD Biosciences, San Jose, California, USA
| | - Majid Mehrpouyan
- Chemistry Development, BD Biosciences, San Jose, California, USA
| | - Yu Chen
- Chemistry Development, BD Biosciences, San Diego, California, USA
| | - Louise M D'Cruz
- Applied Research & Technology, Medical Scientific Affairs, BD Biosciences, San Diego, California, USA
| | - Stephanie J Widmann
- Applied Research & Technology, Medical Scientific Affairs, BD Biosciences, San Diego, California, USA
| | - Aaron J Tyznik
- Applied Research & Technology, Medical Scientific Affairs, BD Biosciences, San Diego, California, USA
| |
Collapse
|
26
|
Salimzadeh L, Burton AR, Le Bert N. Ex Vivo Fluorescent Labeling of HBV-Specific B Cells in Chronic Hepatitis B Patients. Methods Mol Biol 2024; 2837:241-255. [PMID: 39044090 DOI: 10.1007/978-1-0716-4027-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Fluorescently conjugated antigen-bait systems have been extensively used to identify antigen-specific B cells and probe humoral immunity across different settings. Following this approach, we used HBV antigens to bind the B cell receptor (BCR), permitting antigen-specific B cell detection by flow cytometry. Fluorochromes can either be attached covalently via chemical conjugation to the antigen or attached non-covalently by biotinylating the antigen. Dual-staining antigen-baits (where an antigen is directly conjugated to two distinct fluorochromes) have now been used to identify HBsAg- and HBcAg-specific B cells with a high degree of reliability and specificity. This system can be used to detect and characterize cells ex vivo or adapted to isolate antigen-specific cells using fluorescence-activated cell sorting.
Collapse
Affiliation(s)
- Loghman Salimzadeh
- Schwartz-Reisman Liver Research Centre, University Health Network, Toronto, ON, Canada.
- Toronto Centre for Liver Disease, University Health Network, Toronto, ON, Canada.
| | - Alice R Burton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Nina Le Bert
- Emerging Infectious Diseases Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
27
|
Dang C, Donaghy L, Macnab A, Gholipour-Kanani H. Optimising flow-cytometry methods for marine mollusc haemocytes using the pearl oyster Pinctada maxima as a model. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109220. [PMID: 37977546 DOI: 10.1016/j.fsi.2023.109220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Flow-cytometry has become increasingly popular to assess the haemocytes morphology and functions of marine molluscs. Indeed, haemocytes are the first line of defence of the immune system in molluscs and are used as a proxy for oyster health. Authors publishing in the field of flow-cytometry and molluscs health seemed to utilise the same methods for all model species used, independently of their geographical location in the world (temperate, tropical, etc.). Hence, this paper dived into flow-cytometry methodology and investigated if using different plates, different thresholds, different incubation times and temperatures as well as different fluorochromes concentrations affected the results. This study revealed that the cell count did not change when using different thresholds on the FSC-H parameter of the instrument but was affected by the plate type, the temperature of incubation, and the time of incubation. Indeed, non-adherent plates yielded the highest cell count and lower cell counts were associated with a higher temperature and a longer time of incubation. Furthermore, the haemocytes functions such as the phagocytosis, the lysosomal content, the intracellular oxidative activity, and the mitochondria activity were also affected by the temperature and the time of incubation. An increase in the phagocytosis capacity, lysosomal content and mitochondria activity was observed with a higher temperature. At the exception of the phagocytosis rate, all the other parameters such as the phagocytosis capacity, the intracellular oxidative activity, and the lysosomal content increased with a longer incubation time. We also showed that it is best to optimise the amount of fluorochromes used to avoid unnecessary background or non-specific staining.
Collapse
Affiliation(s)
- Cecile Dang
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, Western Australia, 6000, Australia.
| | - Ludovic Donaghy
- Department of Marine Life Science (BK21 Four), Jeju National University, Jeju, 63243, Republic of Korea
| | - Annie Macnab
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, Western Australia, 6000, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, Murdoch, Western Australia, 6150, Australia
| | - Hosna Gholipour-Kanani
- Department of Primary Industries and Regional Development, Government of Western Australia, Perth, Western Australia, 6000, Australia
| |
Collapse
|
28
|
Martínez-Banaclocha H, García-Palenciano C, Martínez-Alarcón L, Amores-Iniesta J, Martín-Sánchez F, Ercole GA, González-Lisorge A, Fernández-Pacheco J, Martínez-Gil P, Padilla-Rodríguez J, Baroja-Mazo A, Pelegrín P, Martínez-García JJ. Purinergic P2X7 receptor expression increases in leukocytes from intra-abdominal septic patients. Front Immunol 2023; 14:1297249. [PMID: 38094297 PMCID: PMC10716420 DOI: 10.3389/fimmu.2023.1297249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammation is a tightly coordinated response of the host immune system to bacterial and viral infections, triggered by the production of inflammatory cytokines. Sepsis is defined as a systemic inflammatory response followed by immunosuppression of the host and organ dysfunction. This imbalance of the immune response increases the risk of mortality of patients with sepsis, making it a major problem for critical care units worldwide. The P2X7 receptor plays a crucial role in activating the immune system by inducing the activation of peripheral blood mononuclear cells. In this study, we analyzed a cohort of abdominal origin septic patients and found that the expression of the P2X7 receptor in the plasma membrane is elevated in the different subsets of lymphocytes. We observed a direct relationship between the percentage of P2X7-expressing lymphocytes and the early inflammatory response in sepsis. Additionally, in patients whose lymphocytes presented a higher percentage of P2X7 surface expression, the total lymphocytes populations proportionally decreased. Furthermore, we found a correlation between elevated soluble P2X7 receptors in plasma and inflammasome-dependent cytokine IL-18. In summary, our work demonstrates that P2X7 expression is highly induced in lymphocytes during sepsis, and this correlates with IL-18, along with other inflammatory mediators such as IL-6, IL-8, and procalcitonin.
Collapse
Affiliation(s)
- Helios Martínez-Banaclocha
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Carlos García-Palenciano
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
- Unidad de Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Laura Martínez-Alarcón
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Joaquín Amores-Iniesta
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Fátima Martín-Sánchez
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Giovanni A. Ercole
- Unidad de Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Ada González-Lisorge
- Unidad de Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - José Fernández-Pacheco
- Unidad de Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Piedad Martínez-Gil
- Unidad de Reanimación, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | | | - Alberto Baroja-Mazo
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
| | - Pablo Pelegrín
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| | - Juan José Martínez-García
- Biomedical Research Institute of Murcia (IMIB), University Clinical Hospital Virgen Arrixaca, Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain
| |
Collapse
|
29
|
Wagner TM, Romero-Saavedra F, Laverde D, Johannessen M, Hübner J, Hegstad K. Enterococcal Membrane Vesicles as Vaccine Candidates. Int J Mol Sci 2023; 24:16051. [PMID: 38003243 PMCID: PMC10671723 DOI: 10.3390/ijms242216051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Enterococcus faecium is a leading cause of nosocomial infections, particularly in immunocompromised patients. The rise of multidrug-resistant E. faecium, including Vancomycin-Resistant Enterococci (VRE), is a major concern. Vaccines are promising alternatives to antibiotics, but there is currently no vaccine available against enterococci. In a previous study, we identified six protein vaccine candidates associated with extracellular membrane vesicles (MVs) produced by nosocomial E. faecium. In this study, we immunized rabbits with two different VRE-derived MV preparations and characterized the resulting immune sera. Both anti-MV sera exhibited high immunoreactivity towards the homologous strain, three additional VRE strains, and eight different unrelated E. faecium strains representing different sequence types (STs). Additionally, we demonstrated that the two anti-MV sera were able to mediate opsonophagocytic killing of not only the homologous strain but also three unrelated heterologous VRE strains. Altogether, our results indicate that E. faecium MVs, regardless of the purification method for obtaining them, are promising vaccine candidates against multidrug-resistant E. faecium and suggest that these naturally occurring MVs can be used as a multi-antigen platform to elicit protective immune responses against enterococcal infections.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
| | - Felipe Romero-Saavedra
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Diana Laverde
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Mona Johannessen
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
| | - Johannes Hübner
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children’s Hospital, Ludwig Maximilians University, 80337 Munich, Germany; (F.R.-S.); (D.L.); (J.H.)
| | - Kristin Hegstad
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, N-9037 Tromsø, Norway; (T.M.W.); (M.J.)
- Norwegian National Advisory Unit on Detection of Antimicrobial Resistance, Department of Microbiology and Infection Control, University Hospital of North Norway, N-9038 Tromsø, Norway
| |
Collapse
|
30
|
Abinti M, Favi E, Alfieri CM, Zanoni F, Armelloni S, Ferraresso M, Cantaluppi V, Castellano G. Update on current and potential application of extracellular vesicles in kidney transplantation. Am J Transplant 2023; 23:1673-1693. [PMID: 37517555 DOI: 10.1016/j.ajt.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/28/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Kidney transplantation (KT) is the best treatment for end-stage kidney disease. However, early diagnosis of graft injury remains challenging, mainly because of the lack of accurate and noninvasive diagnostic techniques. Improving graft outcomes is equally demanding, as is the development of innovative therapies. Many research efforts are focusing on extracellular vesicles, cellular particles free in each body fluid that have shown promising results as precise markers of damage and potential therapeutic targets in many diseases, including the renal field. In fact, through their receptors and cargo, they act in damage response and immune modulation. In transplantation, they may be used to determine organ quality and aging, the presence of delayed graft function, rejection, and many other transplant-related pathologies. Moreover, their low immunogenicity and safe profile make them ideal for drug delivery and the development of therapies to improve KT outcomes. In this review, we summarize current evidence about extracellular vesicles in KT, starting with their characteristics and major laboratory techniques for isolation and characterization. Then, we discuss their use as potential markers of damage and as therapeutic targets, discussing their promising use in clinical practice as a form of liquid biopsy.
Collapse
Affiliation(s)
- Matteo Abinti
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Evaldo Favi
- Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Carlo Maria Alfieri
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Francesca Zanoni
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Division of Nephrology, Department of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, New York, USA
| | - Silvia Armelloni
- Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Mariano Ferraresso
- Kidney Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Vincenzo Cantaluppi
- Nephrology and Kidney Transplant Unit, Department of Translational Medicine (DIMET), University of Piemonte Orientale (UPO), "Maggiore della Carita" University Hospital, Novara, Italy
| | - Giuseppe Castellano
- Nephrology, Dialysis and Transplantation, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
31
|
Freund P, Skopnik CM, Metzke D, Goerlich N, Klocke J, Grothgar E, Prskalo L, Hiepe F, Enghard P. Addition of formaldehyde releaser imidazolidinyl urea and MOPS buffer to urine samples enables delayed processing for flow cytometric analysis of urinary cells: A simple, two step conservation method of urinary cells for flow cytometry. CYTOMETRY. PART B, CLINICAL CYTOMETRY 2023; 104:417-425. [PMID: 36880455 DOI: 10.1002/cyto.b.22117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 03/08/2023]
Abstract
INTRODUCTION Kidney diseases are a major health concern worldwide. Currently there is a large unmet need for novel biomarkers to non-invasively diagnose and monitor kidney diseases. Urinary cells are promising biomarkers and their analysis by flow cytometry has demonstrated its utility in diverse clinical settings. However, up to date this methodology depends on fresh samples, as cellular event counts and the signal-to-noise-ratio deter over time. Here we developed an easy-to-use two-step preservation method for conservation of urine samples for subsequent flow cytometry. METHODS The protocol utilizes a combination of the formaldehyde releasing agent imidazolidinyl urea (IU) and MOPS buffer, leading to gentle fixation of urinary cells. RESULTS The preservation method increases acceptable storing time of urine samples from several hours to up to 6 days. Cellular event counts and staining properties of cells remain comparable to fresh untreated samples. OUTLOOK The hereby presented preservation method facilitates future investigations on flow cytometry of urinary cells as potential biomarkers and may enable broad implementation in clinical practice.
Collapse
Affiliation(s)
- Paul Freund
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Christopher M Skopnik
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Diana Metzke
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Nina Goerlich
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Jan Klocke
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Emil Grothgar
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Luka Prskalo
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| | - Falk Hiepe
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
- Department of Rheumatology and Clinical Immunology, Charite - Universital Hospital Berlin, Berlin, Germany
| | - Philipp Enghard
- Department of Nephrology and Medical Intensive Care, Charité - Universital Hospital Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Rheumatism Research Center Berlin (DRFZ), An Institute of the Leibniz Foundation, Berlin, Germany
| |
Collapse
|
32
|
Tansey M, Boles J, Uriarte Huarte O. Microfluidics-free single-cell genomics reveals complex central-peripheral immune crosstalk in the mouse brain during peripheral inflammation. RESEARCH SQUARE 2023:rs.3.rs-3428910. [PMID: 37886510 PMCID: PMC10602178 DOI: 10.21203/rs.3.rs-3428910/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Inflammation is a realized detriment to brain health in a growing number of neurological diseases, but querying neuroinflammation in its cellular complexity remains a challenge. This manuscript aims to provide a reliable and accessible strategy for examining the brain's immune system. We compare the efficacy of cell isolation methods in producing ample and pure immune samples from mouse brains. Then, with the high-input single-cell genomics platform PIPseq, we generate a rich neuroimmune dataset containing microglia and many peripheral immune populations. To demonstrate this strategy's utility, we interrogate the well-established model of LPS-induced neuroinflammation with single-cell resolution. We demonstrate the activation of crosstalk between microglia and peripheral phagocytes and highlight the unique contributions of microglia and peripheral immune cells to neuroinflammation. Our approach enables the high-depth evaluation of inflammation in longstanding rodent models of neurological disease to reveal novel insight into the contributions of the immune system to brain health.
Collapse
|
33
|
Hammer Q, Perica K, van Ooijen H, Mbofung R, Momayyezi P, Varady E, Martin KE, Pan Y, Jelcic M, Groff B, Abujarour R, Krokeide S, Lee T, Williams A, Goodridge JP, Valamehr B, Önfelt B, Sadelain M, Malmberg KJ. Genetic ablation of adhesion ligands averts rejection of allogeneic immune cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.09.557143. [PMID: 37873468 PMCID: PMC10592662 DOI: 10.1101/2023.10.09.557143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Allogeneic cell therapies hold promise for broad clinical implementation, but face limitations due to potential rejection by the recipient immune system. Silencing of beta-2-microglobulin ( B2M ) expression is commonly employed to evade T cell-mediated rejection, although absence of B2M triggers missing-self responses by recipient natural killer (NK) cells. Here, we demonstrate that deletion of the adhesion ligands CD54 and CD58 on targets cells robustly dampens NK cell reactivity across all sub-populations. Genetic deletion of CD54 and CD58 in B2M -deficient allogeneic chimeric antigen receptor (CAR) T and multi-edited induced pluripotent stem cell (iPSC)-derived NK cells reduces their susceptibility to rejection by NK cells in vitro and in vivo without affecting their anti-tumor effector potential. Thus, these data suggest that genetic ablation of adhesion ligands effectively alleviates rejection of allogeneic immune cells for immunotherapy.
Collapse
|
34
|
Hargarten JC, Hu G, Elsegeiny W, Williamson PR. Measurement of SQSTM1 by flow cytometry. Autophagy 2023; 19:2789-2799. [PMID: 37335017 PMCID: PMC10472860 DOI: 10.1080/15548627.2023.2224074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 05/23/2023] [Accepted: 06/07/2023] [Indexed: 06/21/2023] Open
Abstract
Macroautophagy/autophagy is a regulated cellular degradation process essential as a pro-survival mechanism and integral to the regulation of diverse cellular processes in eukaryotes. During cellular stress and nutrient sensing, SQSTM1/p62 (sequestosome 1) functions as a key receptor for selective autophagy by shuttling ubiquitinated cargoes toward autophagic degradation making it a useful marker for monitoring autophagic flux. We present a straightforward and rapid flow cytometric assay for the quantitative measurement of intracellular SQSTM1 with improved sensitivity to conventional immunoblotting and with the benefit of higher throughput and reduced requirements for starting cellular materials for adequate analysis. We demonstrate that flow cytometry is able to detect similar trends in the measurement of intracellular SQSTM1 levels following serum starvation, genetic manipulations, and bafilomycin A1/chloroquine treatments. The assays utilizes readily available reagents and equipment without the need for transfection and utilizes standard flow cytometry equipment. In the present studies, expression of reporter proteins was applied to a range of SQSTM1 expression levels generated by genetic and chemical manipulation in both mouse as well as human cells. In combination with appropriate controls and attention to cautionary issues, this assay offers the ability to assess an important measure of autophagic capacity and flux.Abbreviations: ATG5: autophagy related 5 ATG7: autophagy related 7 BafA: bafilomycin A1 BMDM: bone marrow-derived macrophages CQ: chloroquine EBV: Epstein-Barr Virus EDTA: ethylenediaminetetraacetic acid FBS: fetal bovine serum gMFI: geometric mean fluorescent intensity HD: healthy donor MAP1LC3/LC3/Atg8: microtubule associated protein 1 light chain 3 MedianFI: median fluorescent intensity NTC: non-target control PBMC: peripheral blood mononuclear cells RPMI: Roswell Park Memorial Institution SQSTM1/p62: sequestosome 1 WT: wild type.
Collapse
Affiliation(s)
- Jessica C. Hargarten
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guowu Hu
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Waleed Elsegeiny
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter R. Williamson
- Translational Mycology Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Miquel CH, Abbas F, Cenac C, Foret-Lucas C, Guo C, Ducatez M, Joly E, Hou B, Guéry JC. B cell-intrinsic TLR7 signaling is required for neutralizing antibody responses to SARS-CoV-2 and pathogen-like COVID-19 vaccines. Eur J Immunol 2023; 53:e2350437. [PMID: 37438976 DOI: 10.1002/eji.202350437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 05/16/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023]
Abstract
Toll-like receptor 7 (TLR7) triggers antiviral immune responses through its capacity to recognize single-stranded RNA. TLR7 loss-of-function mutants are associated with life-threatening pneumonia in severe COVID-19 patients. Whereas TLR7-driven innate induction of type I IFN appears central to control SARS-CoV2 virus spreading during the first days of infection, the impact of TLR7-deficiency on adaptive B-cell immunity is less clear. In the present study, we examined the role of TLR7 in the adaptive B cells response to various pathogen-like antigens (PLAs). We used inactivated SARS-CoV2 and a PLA-based COVID-19 vaccine candidate designed to mimic SARS-CoV2 with encapsulated bacterial ssRNA as TLR7 ligands and conjugated with the RBD of the SARS-CoV2 Spike protein. Upon repeated immunization with inactivated SARS-CoV2 or PLA COVID-19 vaccine, we show that Tlr7-deficiency abolished the germinal center (GC)-dependent production of RBD-specific class-switched IgG2b and IgG2c, and neutralizing antibodies to SARS-CoV2. We also provide evidence for a non-redundant role for B-cell-intrinsic TLR7 in the promotion of RBD-specific IgG2b/IgG2c and memory B cells. Together, these data demonstrate that the GC reaction and class-switch recombination to the Myd88-dependent IgG2b/IgG2c in response to SARS-CoV2 or PLAs is strictly dependent on cell-intrinsic activation of TLR7 in B cells.
Collapse
Affiliation(s)
- Charles-Henry Miquel
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
- Arthritis R&D, Neuilly-Sur-Seine, France
| | - Flora Abbas
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Claire Cenac
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| | - Charlotte Foret-Lucas
- Interactions Hôtes Agents Pathogènes (IHAP), UMR1225, Université de Toulouse, INRAe, ENVT, Toulouse, France
| | - Chang Guo
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Mariette Ducatez
- Interactions Hôtes Agents Pathogènes (IHAP), UMR1225, Université de Toulouse, INRAe, ENVT, Toulouse, France
| | - Etienne Joly
- Institute of Pharmacology and Structural Biology (IPBS), University of Toulouse, CNRS, Toulouse, France
| | - Baidong Hou
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Charles Guéry
- Institut Toulousain des Maladies Infectieuses et Inflammatoires (INFINITY), Université de Toulouse, INSERM, CNRS, UPS, Toulouse, France
| |
Collapse
|
36
|
Hindle MS, Cheah LT, Yates DM, Naseem KM. Preanalytical conditions for multiparameter platelet flow cytometry. Res Pract Thromb Haemost 2023; 7:102205. [PMID: 37854456 PMCID: PMC10579537 DOI: 10.1016/j.rpth.2023.102205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 10/20/2023] Open
Abstract
Background Flow cytometry is an important technique for understanding multiple aspects of blood platelet biology. Despite the widespread use of the platform for assessing platelet function, the optimization and careful consideration of preanalytical conditions, sample processing techniques, and data analysis strategies should be regularly assessed. When set up and designed with optimal conditions, it can ensure the acquisition of robust and reproducible flow cytometry data. However, these parameters are rarely described despite their importance. Objectives We aimed to characterize the effects of several preanalytical variables on the analysis of blood platelets by multiparameter fluorescent flow cytometry. Methods We assessed anticoagulant choice, sample material, sample processing, and storage times on 4 distinct and commonly used markers of platelet activation, including fibrinogen binding, expression of CD62P and CD42b, and phosphatidylserine exposure. Results The use of suboptimal conditions led to increases in basal platelet activity and reduced sensitivities to stimulation; however, the use of optimal conditions protected the platelets from artifactual stimulation and preserved basal activity and sensitivity to activation. Conclusion The optimal preanalytical conditions identified here for the measurement of platelet phenotype by flow cytometry suggest a framework for future development of multiparameter platelet assays for high-quality data sets and advanced analysis.
Collapse
Affiliation(s)
- Matthew S. Hindle
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, UK
- Centre for Biomedical Science Research, School of Health, Leeds Beckett University, UK
| | - Lih T. Cheah
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, UK
| | - Daisie M. Yates
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, UK
| | - Khalid M. Naseem
- Discovery and Translational Science Department, Leeds Institute of Cardiovascular & Metabolic Medicine, University of Leeds, UK
| |
Collapse
|
37
|
Limoges MA, Lortie A, Demontier É, Quenum AJI, Lessard F, Drouin Z, Carrier N, Nguimbus LM, Beaulieu MC, Boire G, Piché A, Allard-Chamard H, Ramanathan S, Roux S. SARS-CoV-2 mRNA vaccine-induced immune responses in rheumatoid arthritis. J Leukoc Biol 2023; 114:358-367. [PMID: 37478373 PMCID: PMC10533224 DOI: 10.1093/jleuko/qiad086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 07/15/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
Our objective was to characterize T and B cell responses to vaccination with SARS-CoV-2 antigens in immunocompromised rheumatoid arthritis (RA) patients. In 22 RA patients, clinical and biological variables were analyzed before and 4 weeks after each of 3 messenger RNA (mRNA) vaccine doses and compared with unmatched healthy individuals. Sequentially sampled peripheral blood mononuclear cells and sera were collected to determine immune profiles and to analyze the T cell response to a spike peptide pool and B cell specificity to the receptor-binding domain (RBD). Anti-spike antibodies were detectable in 6 of 22 RA patients after 1 dose of vaccine with increasing titers after each booster dose, although the overall response was lower compared with that in healthy control individuals. Responding patients after the first dose were more likely to have RA antibodies and a higher baseline proportion of circulating follicular B cells. In RA patients, the mRNA vaccine elicited a robust CD4+ T response to a spike peptide pool following the first and second doses. Consistent with the serologies, RBD-specific B cells exhibited a modest increase after the first dose and the second dose resulted in marked increases only in a fraction of the RA patients to both ancestral and omicron RBD. Our results highlight the importance of multidose COVID-19 vaccination in RA patients to develop a protective humoral response. However, these patients rapidly develop specific T CD4+ responses, despite delayed B cell responses.
Collapse
Affiliation(s)
- Marc-André Limoges
- Department of Immunology and Cell Biology, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Audrey Lortie
- Division of Rheumatology, Department of Medicine, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Élodie Demontier
- Division of Rheumatology, Department of Medicine, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Akouavi Julite Irmine Quenum
- Department of Immunology and Cell Biology, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Félix Lessard
- Division of Rheumatology, Department of Medicine, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Zacharie Drouin
- Division of Rheumatology, Department of Medicine, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Nathalie Carrier
- Division of Rheumatology, Department of Medicine, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Leopold Mbous Nguimbus
- Division of Rheumatology, Department of Medicine, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Marie-Claude Beaulieu
- Department of Family and Emergency Medicine, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Gilles Boire
- Division of Rheumatology, Department of Medicine, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Alain Piché
- Division of Infectious Diseases, Department of Medicine, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Hugues Allard-Chamard
- Division of Rheumatology, Department of Medicine, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| | - Sophie Roux
- Division of Rheumatology, Department of Medicine, Centre de Recherche du Centre Hospitalier de l’Université de Sherbrooke, 3001, 12th avenue N, Sherbrooke, PQ, Canada, J1H5N4
| |
Collapse
|
38
|
Jodhawat N, Bargir UA, Setia P, Taur P, Bala N, Madkaikar A, Yadav RM, Dalvi A, Shinde S, Gupta M, Shelar S, Kambli P, Gowri V, Lokeshwar M, Satoskar P, Desai M, Madkaikar M. Normative data for paediatric lymphocyte subsets: A pilot study from western India. Indian J Med Res 2023; 158:161-174. [PMID: 37787259 PMCID: PMC10645029 DOI: 10.4103/ijmr.ijmr_3282_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Indexed: 10/04/2023] Open
Abstract
Background & objectives Accurate diagnosis of immunodeficiencies requires a critical comparison of values with age-matched controls. In India, the existing reference values for rare lymphocyte subsets are currently not available and we rely on the data originating from other countries for the interpretation of the results. Furthermore, there is limited information on normal variation for these rare-subset parameters in Indian children. So, this study aimed to establish normative values for clinically important lymphocyte subsets in Indian children at different age groups. Methods 148 children aged ≥16 yr were enrolled in this study. The study population included 61 per cent males and 39 per cent females and was divided into the following groups: cord blood (n=18), 0-6 months (n=9), 6-12 months (n=13), 1-2 yr (n=19), 2-5 yr (n=27), 5-10 yr (n=25) and 10-16 yr (n=37). The absolute and relative percentage of lymphocytes, T, B, natural killer cell, along with activated, naïve and memory subsets, was determined by flow cytometry. Results Median values and the 10th and 90th percentiles were obtained for 34 lymphocyte sub-populations. The T and B naïve compartments showed a decreasing trend, whereas memory cells showed an increase with age. The activated T cell subset shows an increasing pattern up to one year and then declines gradually. Double negative T cells are relatively stable. TCRgd+T cell percentage increases with age. Interpretation & conclusions This single-centre pilot study provides preliminary data that justifies the need for future large-scale multi centric studies to generate a reference range for interpreting extended immunophenotyping profiles in the paediatric age group, making it possible for clinicians to assess the immunological status in inborn errors of immunity, infectious and autoimmune diseases.
Collapse
Affiliation(s)
- Neha Jodhawat
- Department of Pediatric Immunology & Leukocyte Biology, Indian Council of Medical Research - National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Umair Ahmed Bargir
- Department of Pediatric Immunology & Leukocyte Biology, Indian Council of Medical Research - National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Priyanka Setia
- Department of Pediatric Immunology & Leukocyte Biology, Indian Council of Medical Research - National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Prasad Taur
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Nidhi Bala
- Department of Obstetrics & Gynaecology, Nowrosjee Wadia Maternity Hospital, Mumbai, Maharashtra, India
| | - Aditi Madkaikar
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam, India
| | - Reetika Malik Yadav
- Department of Pediatric Immunology & Leukocyte Biology, Indian Council of Medical Research - National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Aparna Dalvi
- Department of Pediatric Immunology & Leukocyte Biology, Indian Council of Medical Research - National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Shweta Shinde
- Department of Pediatric Immunology & Leukocyte Biology, Indian Council of Medical Research - National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Maya Gupta
- Department of Pediatric Immunology & Leukocyte Biology, Indian Council of Medical Research - National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Shraddha Shelar
- Department of Pediatric Immunology & Leukocyte Biology, Indian Council of Medical Research - National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Priyanka Kambli
- Department of Pediatric Immunology & Leukocyte Biology, Indian Council of Medical Research - National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| | - Vijaya Gowri
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Madhukar Lokeshwar
- Department of Paediatrics, Kashyap Nursing Home, Mumbai, Maharashtra, India
| | - Purnima Satoskar
- Department of Obstetrics & Gynaecology, Nowrosjee Wadia Maternity Hospital, Mumbai, Maharashtra, India
| | - Mukesh Desai
- Division of Immunology, Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Manisha Madkaikar
- Department of Pediatric Immunology & Leukocyte Biology, Indian Council of Medical Research - National Institute of Immunohaematology, KEM Hospital, Mumbai, Maharashtra, India
| |
Collapse
|
39
|
Altube A, Marsol N, Rey Deutsch AC, Malusardi C, Sciaccaluga D, Cabral C, Auat M. Detection of normal B cell precursors in lymph nodes samples. Int J Lab Hematol 2023; 45:592-595. [PMID: 36797825 DOI: 10.1111/ijlh.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/24/2023] [Indexed: 02/18/2023]
Affiliation(s)
- Alejandra Altube
- Flow Cytometry Laboratory, Hematology Division, Hospital de Clínicas "José de San Martín", University of Buenos Aires, Buenos Aires, Argentina
| | - Nicolás Marsol
- Hematology Division, Hospital de Clínicas "José de San Martín", University of Buenos Aires, Buenos Aires, Argentina
| | - Ana Clara Rey Deutsch
- Hematology Division, Hospital de Clínicas "José de San Martín", University of Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Malusardi
- Flow Cytometry Laboratory, Hematology Division, Hospital de Clínicas "José de San Martín", University of Buenos Aires, Buenos Aires, Argentina
| | - Dolores Sciaccaluga
- Pathology Department, Hospital de Clínicas "José de San Martín", University of Buenos Aires, Buenos Aires, Argentina
| | - Cecilia Cabral
- Pathology Department, Hospital de Clínicas "José de San Martín", University of Buenos Aires, Buenos Aires, Argentina
| | - Mariangeles Auat
- Flow Cytometry Laboratory, Hematology Division, Hospital de Clínicas "José de San Martín", University of Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
40
|
Kizilbash N, Suhail N, Alzahrani AK, Basha WJ, Soliman M. Natural regulatory T cells increase significantly in pediatric patients with parasitic infections: Flow cytometry study. INDIAN J PATHOL MICR 2023; 66:556-559. [PMID: 37530338 DOI: 10.4103/ijpm.ijpm_1262_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Background The most accepted definition of regulatory T cells (Tregs) relies on the expression of several biomarkers, including CD4, CD25, and transcription factor, Foxp3. The Tregs maintain tolerance to self-antigens and prevent autoimmune diseases. Aim The purpose of this study was to determine the difference in natural Treg levels in Entamoeba histolytica, Schistosoma mansoni, Giardia lamblia, Enterobius vermicularis, and Hymenolepis nana infected patients. Setting and Design Fifty-one pediatric subjects (29 males and 22 females) were recruited from a tertiary care hospital, and were divided into infected and non-infected (control) groups. The mean age of the subjects was 8.7 years. Materials and Methods Blood samples were collected from infected and non-infected groups, and change in the level of Tregs in these subjects was investigated by flow cytometry. Statistical Analysis Used The statistical analysis of data was performed by SPSS software. Quantitative data used in this study included mean and standard deviation. Data from the two groups were compared by the Student's t-test. The age of the patient and infection status were used for multivariate logistic regression analysis. Odds ratios (ORs) were estimated within a 95% confidence interval, and a P value of <0.05 was considered significant. Results and Conclusions The levels of natural regulatory T cells, indicated by the biomarkers, CD4+, CD25+, and Foxp3+, increase significantly in patients infected by Entamoeba histolytica, Schistosoma mansoni, Giardia lamblia, Enterobius vermicularis, and Hymenolepis nana as compared to controls. They also increase in cases of mixed infection as compared to infection by a single parasite.
Collapse
Affiliation(s)
- Nadeem Kizilbash
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Nida Suhail
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - A Khuzaim Alzahrani
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - W Jamith Basha
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| | - Mohamed Soliman
- Department of Microbiology, Faculty of Medicine, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
41
|
Baldzhieva A, Burnusuzov HA, Murdjeva MA, Dimcheva TD, Taskov HB. A concise review of flow cytometric methods for minimal residual disease assessment in childhood B-cell precursor acute lymphoblastic leukemia. Folia Med (Plovdiv) 2023; 65:355-361. [PMID: 38351809 DOI: 10.3897/folmed.65.e96440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/04/2023] [Indexed: 02/16/2024] Open
Abstract
Minimal residual disease refers to a leukemia cell population that is resistant to chemotherapy or radiotherapy and leads to disease relapse. The assessment of MRD is crucial for making an accurate prognosis of the disease and for the choice of optimal treatment strategy. Here, we review the advantages and disadvantages of the available genetic and phenotypic methods and focus on the multiparametric flow cytometry as a promising method with greater sensitivity, speed, and standardization options. In addition, we discuss how the application of automated data analysis outweighs the use of complex combinations of windows and gates in classical analysis, thus eliminating subjective evaluation.
Collapse
|
42
|
Zhang Z, Wiencke JK, Kelsey KT, Koestler DC, Molinaro AM, Pike SC, Karra P, Christensen BC, Salas LA. Hierarchical deconvolution for extensive cell type resolution in the human brain using DNA methylation. Front Neurosci 2023; 17:1198243. [PMID: 37404460 PMCID: PMC10315586 DOI: 10.3389/fnins.2023.1198243] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction The human brain comprises heterogeneous cell types whose composition can be altered with physiological and pathological conditions. New approaches to discern the diversity and distribution of brain cells associated with neurological conditions would significantly advance the study of brain-related pathophysiology and neuroscience. Unlike single-nuclei approaches, DNA methylation-based deconvolution does not require special sample handling or processing, is cost-effective, and easily scales to large study designs. Existing DNA methylation-based methods for brain cell deconvolution are limited in the number of cell types deconvolved. Methods Using DNA methylation profiles of the top cell-type-specific differentially methylated CpGs, we employed a hierarchical modeling approach to deconvolve GABAergic neurons, glutamatergic neurons, astrocytes, microglial cells, oligodendrocytes, endothelial cells, and stromal cells. Results We demonstrate the utility of our method by applying it to data on normal tissues from various brain regions and in aging and diseased tissues, including Alzheimer's disease, autism, Huntington's disease, epilepsy, and schizophrenia. Discussion We expect that the ability to determine the cellular composition in the brain using only DNA from bulk samples will accelerate understanding brain cell type composition and cell-type-specific epigenetic states in normal and diseased brain tissues.
Collapse
Affiliation(s)
- Ze Zhang
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - John K. Wiencke
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Karl T. Kelsey
- Department of Epidemiology, Department of Pathology and Laboratory Medicine, Brown University School of Public Health, Providence, RI, United States
| | - Devin C. Koestler
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, KS, United States
| | - Annette M. Molinaro
- Department of Neurological Surgery, Institute for Human Genetics, University of California, San Francisco, San Francisco, CA, United States
| | - Steven C. Pike
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Neurology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Prasoona Karra
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Brock C. Christensen
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| | - Lucas A. Salas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, United States
| |
Collapse
|
43
|
Runge A, Straif S, Banki Z, Borena W, Muellauer B, Brunner J, Gottfried T, Schmutzhard J, Dudas J, Risslegger B, Randhawa A, Lass-Flörl C, von Laer D, Riechelmann H. Viral infection in chronic otitis media with effusion in children. Front Pediatr 2023; 11:1124567. [PMID: 37234860 PMCID: PMC10208354 DOI: 10.3389/fped.2023.1124567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/17/2023] [Indexed: 05/28/2023] Open
Abstract
Background The role of respiratory viruses in chronic otitis media with effusion (COME) in children is not clearly defined. In our study we aimed to investigate the detection of respiratory viruses in middle ear effusions (MEE) as well as the association with local bacteria, respiratory viruses in the nasopharynx and cellular immune response of children with COME. Methods This 2017-2019 cross-sectional study included 69 children aged 2-6 undergoing myringotomy for COME. MEE and nasopharyngeal swabs were analyzed via PCR and CT-values for the genome and loads of typical respiratory viruses. Immune cell populations and exhaustion markers in MEE related to respiratory virus detection were studied via FACS. Clinical data including the BMI was correlated. Results Respiratory viruses were detected in MEE of 44 children (64%). Rhinovirus (43%), Parainfluenzavirus (26%) and Bocavirus (10%) were detected most frequently. Average Ct values were 33.6 and 33.5 in MEE and nasopharynx, respectively. Higher detection rates correlated with elevated BMI. Monocytes were elevated in MEE (9.5 ± 7.3%/blood leucocytes). Exhaustion markers were elevated on CD4+ and CD8+ T cells and monocytes in MEE. Conclusion Respiratory viruses are associated with pediatric COME. Elevated BMI was associated with increased rates of virus associated COME. Changes in cell proportions of innate immunity and expression of exhaustion markers may be related to chronic viral infection.
Collapse
Affiliation(s)
- Annette Runge
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Sonja Straif
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Zoltan Banki
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Muellauer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Juergen Brunner
- Department of Pediatrics, Medical University of Innsbruck, Innsbruck, Austria
- Faculty of Medicine and Dental Medicine, Danube Private Univeristy Krems, Krems-Stein, Austria
| | - Timo Gottfried
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Joachim Schmutzhard
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Jozsef Dudas
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| | - Brigitte Risslegger
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Avneet Randhawa
- Department of Otolaryngology—Head and Neck Surgery, Rutgers New Jersey Medical School, Newark, United States
| | - Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Innsbruck, Austria
| | - Herbert Riechelmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
44
|
Zhang Y, Sun H, Lian X, Tang J, Zhu F. ANPELA: Significantly Enhanced Quantification Tool for Cytometry-Based Single-Cell Proteomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207061. [PMID: 36950745 DOI: 10.1002/advs.202207061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Indexed: 05/27/2023]
Abstract
ANPELA is widely used for quantifying traditional bulk proteomic data. Recently, there is a clear shift from bulk proteomics to the single-cell ones (SCP), for which powerful cytometry techniques demonstrate the fantastic capacity of capturing cellular heterogeneity that is completely overlooked by traditional bulk profiling. However, the in-depth and high-quality quantification of SCP data is still challenging and severely affected by the large numbers of quantification workflows and extreme performance dependence on the studied datasets. In other words, the proper selection of well-performing workflow(s) for any studied dataset is elusory, and it is urgently needed to have a significantly enhanced and accelerated tool to address this issue. However, no such tool is developed yet. Herein, ANPELA is therefore updated to its 2.0 version (https://idrblab.org/anpela/), which is unique in providing the most comprehensive set of quantification alternatives (>1000 workflows) among all existing tools, enabling systematic performance evaluation from multiple perspectives based on machine learning, and identifying the optimal workflow(s) using overall performance ranking together with the parallel computation. Extensive validation on different benchmark datasets and representative application scenarios suggest the great application potential of ANPELA in current SCP research for gaining more accurate and reliable biological insights.
Collapse
Affiliation(s)
- Ying Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Huaicheng Sun
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jing Tang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, 330110, China
| |
Collapse
|
45
|
Amezcua-Guerra LM, Espinosa-Bautista F, Hopf-Estandía K, Valdivieso-Ruiz M, Coronel D, Robledo S, Ramos-Rosillo V, Del Rocío Martínez-Alvarado M, Patlán M, Páez A, Silveira LH, Tavera-Alonso C, Massó F, Soto-Fajardo C, Pineda C. Senescent CD4 +CD28 null cells are increased in chronic hyperuricemia, show aberrant effector phenotypes, and are reversed after allopurinol therapy: a proof-of-concept pilot study. Clin Rheumatol 2023:10.1007/s10067-023-06595-8. [PMID: 37072512 DOI: 10.1007/s10067-023-06595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/20/2023]
Abstract
To characterize CD4+CD28null cells in chronic hyperuricemia and investigate whether allopurinol could restore CD28 expression and the balance of T helper phenotypes. Asymptomatic individuals with chronic hyperuricemia and ultrasonographic findings evocative of urate deposition in the joints. Age- and gender-matched normouricemic individuals were also studied. Oral allopurinol at 150 mg/day for 4 weeks, followed by 300 mg/day through week 12. Color-flow cytometry on peripheral blood mononuclear cells (PBMC) with antibodies against CD4, CD28, T-bet (Th1), GATA-3 (Th2), and RORγt (Th17). Six patients (five men, median age of 53 years) and seven controls were studied. At baseline, hyperuricemic patients had more CD4+CD28null/CD4+ cells than normouricemic subjects (36.8% vs. 6.1%; p = 0.001), with a predominance of T-bet+ cells (98.5% vs. 6.6%; p = 0.001) and few RORγt+ cells (0.7% vs. 89.4%; p = 0.014). In hyperuricemic patients, the number of CD4+ cells/10,000 PBMC was similar before and after allopurinol (3378 vs. 3954; p = 0.843). Conversely, CD4+CD28null cells decreased from 36.8% (23.0-43.7) to 15.8% (4.7-28.1; p = 0.031). CD4+CD28nullT-bet+ cells decreased from 98.5% (95.0-99.4) to 88.3% (75.2-98.9; p = 0.062), CD4+CD28nullGATA-3+ cells increased from 0% (0-4.0) to 2.8% (0.1-15.6; p = 0.156), and CD4+CD28nullRORγt+ cells increased from 0.7% (0.4-7.0) to 4.5% (1.3-28.1; p = 0.031). The CD4+CD28null cell subset is abnormally expanded in chronic hyperuricemia, despite the absence of overt urate-related disease. Allopurinol may partially restore CD28 expression on CD4+ cells while enhancing the homeostatic balance of T helper phenotypes. ClinicalTrials.gov, number NCT04012294.
Collapse
Affiliation(s)
- Luis M Amezcua-Guerra
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico.
- Health Care Department, Universidad Autónoma Metropolitana Xochimilco, Mexico City, Mexico.
| | - Fernanda Espinosa-Bautista
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
- Master in Chemobiological Sciences, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Red MEDICI, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Karen Hopf-Estandía
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Melisa Valdivieso-Ruiz
- Rheumatology Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Dania Coronel
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | - Sandra Robledo
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
- Master in Chemobiological Sciences, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
- Red MEDICI, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Varna Ramos-Rosillo
- Immunology Department, Instituto Nacional de Cardiología Ignacio Chávez, Juan Badiano 1, Sección XVI, Tlalpan, 14080, Mexico City, Mexico
| | | | - Mariana Patlán
- UNAM/INC Translational Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Araceli Páez
- UNAM/INC Translational Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Luis H Silveira
- Rheumatology Department, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | | | - Felipe Massó
- UNAM/INC Translational Research Unit, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Carina Soto-Fajardo
- Rheumatology Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| | - Carlos Pineda
- Rheumatology Division, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City, Mexico
| |
Collapse
|
46
|
Yong J, Mellick AS, Whitelock J, Wang J, Liang K. A Biomolecular Toolbox for Precision Nanomotors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2205746. [PMID: 36055646 DOI: 10.1002/adma.202205746] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/31/2022] [Indexed: 06/15/2023]
Abstract
The application of nanomotors for cancer diagnosis and therapy is a new and exciting area of research, which when combined with precision nanomedicine, promises to solve many of the issues encountered by previous development of passive nanoparticles. The goal of this article is to introduce nanomotor and nanomedicine researchers to the deep pool of knowledge available regarding cancer cell biology and biochemistry, as well as provide a greater appreciation of the complexity of cell membrane compositions, extracellular surfaces, and their functional consequences. A short description of the nanomotor state-of-art for cancer therapy and diagnosis is first provided, as well as recommendations for future directions of the field. Then, a biomolecular targeting toolbox has been collated for researchers looking to apply their nanomaterial of choice to a biological setting, as well as providing a glimpse into currently available clinical therapies and technologies. This toolbox contains an overview of different classes of targeting molecules available for high affinity and specific targeting and cell surface targets to aid researchers in the selection of a clinical disease model and targeting methodology. It is hoped that this review will provide biological context, inspiration, and direction to future nanomotor and nanomedicine research.
Collapse
Affiliation(s)
- Joel Yong
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Albert S Mellick
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, 2170, Australia
| | - John Whitelock
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kang Liang
- School of Chemical Engineering and Australian Centre for NanoMedicine, The University of New South Wales, Kensington, New South Wales, 2052, Australia
- Graduate School of Biomedical Engineering, The University of New South Wales, Kensington, New South Wales, 2052, Australia
| |
Collapse
|
47
|
Mini-αA-Crystallin Stifled Melittin-Induced Haemolysis and Lymphocyte Lysis. Int J Pept Res Ther 2023. [DOI: 10.1007/s10989-023-10502-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
AbstractMelittin, the most potent pharmacological ingredient of honey bee venom, induces haemolysis, lymphocyte lysis, long-term pain, localised inflammation, and hyperalgesia. In this study, efforts were made to subdue the melittin’s ill effects using a chaperone peptide called ‘mini-αA-crystallin’ (MAC) derived from eye lens αA-crystallin. Haemolytic test on human red blood cells, percentage viability, and DNA diffusion assay on Human peripheral blood lymphocytes (HPBLs) were performed with melittin in the presence or absence of MAC. Propidium iodide and Annexin V-FITC dual staining were performed to analyse quantitative levels of necrotic and apoptotic induction by melittin in the presence or absence of MAC on HPBLs using a flow cytometer. A computational study to find out the interactions between MAC and melittin was undertaken by modelling the structure of MAC using a PEP-FOLD server. The result showed that MAC inhibited melittin-induced lysis in nucleated (lymphocytes) and enucleated (RBC) cells. Flow cytometric analysis revealed a substantial increase in the necrotic and late apoptotic cells after treating HPBLs with melittin (4 µg/ml) for 24 h. Treatment with MAC at a 2:1 molar ratio prevented HPBLs from developing melittin-induced necrosis and late apoptosis. In the docking study, hydrogen, van der Waals, π-π stacking, and salt bridges were observed between the MAC and melittin complex, confirming a strong interaction between them. The MAC-melittin complex was stable during molecular dynamics simulation. These findings may be beneficial in developing a medication for treating severe cases of honeybee stings.
Collapse
|
48
|
El-Hajjar L, Ali Ahmad F, Nasr R. A Guide to Flow Cytometry: Components, Basic Principles, Experimental Design, and Cancer Research Applications. Curr Protoc 2023; 3:e721. [PMID: 36946745 DOI: 10.1002/cpz1.721] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Flow cytometry (FCM) is a state-of-the-art technique for the qualitative and quantitative assessment of cells and other particles' physical and biological properties. These cells are suspended within a high-velocity fluid stream and pass through a laser beam in single file. The main principle of the FCM instrument is the light scattering and fluorescence emission upon the interaction of the fluorescent particle with the laser beam. It also allows for the physical sorting of particles depending on different parameters. A flow cytometer comprises different components, including fluidic, optics, and electronics systems. This article briefly explains the mechanism of all components of a flow cytometer to clarify the FCM technique's general principles, provides some useful guidelines for the proper design of FCM panels, and highlights some general applications and important applications in cancer research. © 2023 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Layal El-Hajjar
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fatima Ali Ahmad
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rihab Nasr
- Office of Basic/Translational Research and Graduate Studies, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
49
|
Peng X, Li L, Xing J, Cheng C, Hu M, Luo Y, Shi S, Liu Y, Cui Z, Yu X. Cross-linking porcine peritoneum by oxidized konjac glucomannan: a novel method to improve the properties of cardiovascular substitute material. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2023. [DOI: 10.1186/s42825-023-00114-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
AbstractThe use of natural polysaccharide crosslinkers for decellularized matrices is an effective approach to prepare cardiovascular substitute materials. In this research, NaIO4 was applied to oxidize konjac glucomannan to prepare the polysaccharide crosslinker oxidized konjac glucomannan (OKGM). The as-prepared crosslinker was then used to stabilize collagen-rich decellularized porcine peritoneum (DPP) to construct a cardiovascular substitute material (OKGM-fixed DPP). The results demonstrated that compared with GA-fixed DPP and GNP-fixed DPP, 3.75% OKGM [1:1.5 (KGM: NaIO4)]-fixed DPP demonstrated suitable mechanical properties, as well as good hemocompatibility, excellent anti-calcification capability, and anti-enzymolysis in vitro. Furthermore, 3.75% OKGM [1:1.5 (KGM: NaIO4)]-fixed DPP was suitable for vascular endothelial cell adhesion and rapid proliferation, and a single layer of endothelial cells was formed on the fifth day of culture. The in vivo experimental results also showed excellent histocompatibility. The current results demonstrted that OKGM was a novel polysaccharide cross-linking reagent for crosslinking natural tissues featured with rich collagen content, and 3.75% OKGM [1:1.5 (KGM: NaIO4)]-fixed DPP was a potential cardiovascular substitute material.
Graphical Abstract
Collapse
|
50
|
Sedney CJ, Caulfield A, Dewan KK, Blas-Machado U, Callender M, Manley NR, Harvill ET. Novel murine model reveals an early role for pertussis toxin in disrupting neonatal immunity to Bordetella pertussis. Front Immunol 2023; 14:1125794. [PMID: 36855631 PMCID: PMC9968397 DOI: 10.3389/fimmu.2023.1125794] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/26/2023] [Indexed: 02/10/2023] Open
Abstract
The increased susceptibility of neonates to specific pathogens has previously been attributed to an underdeveloped immune system. More recent data suggest neonates have effective protection against most pathogens but are particularly susceptible to those that target immune functions specific to neonates. Bordetella pertussis (Bp), the causative agent of "whooping cough", causes more serious disease in infants attributed to its production of pertussis toxin (PTx), although the neonate-specific immune functions it targets remain unknown. Problematically, the rapid development of adult immunity in mice has confounded our ability to study interactions of the neonatal immune system and its components, such as virtual memory T cells which are prominent prior to the maturation of the thymus. Here, we examine the rapid change in susceptibility of young mice and define a period from five- to eight-days-old during which mice are much more susceptible to Bp than mice even a couple days older. These more narrowly defined "neonatal" mice display significantly increased susceptibility to wild type Bp but very rapidly and effectively respond to and control Bp lacking PTx, more rapidly even than adult mice. Thus, PTx efficiently blocks some very effective form(s) of neonatal protective immunity, potentially providing a tool to better understand the neonatal immune system. The rapid clearance of the PTx mutant correlates with the early accumulation of neutrophils and T cells and suggests a role for PTx in disrupting their accumulation. These results demonstrate a striking age-dependent response to Bp, define an early age of extreme susceptibility to Bp, and demonstrate that the neonatal response can be more efficient than the adult response in eliminating bacteria from the lungs, but these neonatal functions are substantially blocked by PTx. This refined definition of "neonatal" mice may be useful in the study of other pathogens that primarily infect neonates, and PTx may prove a particularly valuable tool for probing the poorly understood neonatal immune system.
Collapse
Affiliation(s)
- Colleen J. Sedney
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Amanda Caulfield
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kaylan K. Dewan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Uriel Blas-Machado
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Maiya Callender
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Nancy R. Manley
- Department of Genetics, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, United States
| | - Eric T. Harvill
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|