1
|
Wang X, Lin R, Li D, Ye W, Yang Z, Wu N, Wen Q, Tan J, Sun C, Yin Z, Lu H, Yang H. Modulation of γδ T cells by USF3: Implications for liver fibrosis and immune regulation. Int Immunopharmacol 2025; 148:114100. [PMID: 39870010 DOI: 10.1016/j.intimp.2025.114100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
Previous studies have established that γδ T cells play a significant role in liver fibrosis. However, their specific functions and mechanisms in fibrotic liver tissue remain unclear. Using online microarray expression profiles, we observed that USF3 was upregulated in patients with liver fibrosis and was associated with immune cells. Additionally, increases in the expression of USF3 correlated with elevated levels of interferon-gamma (IFN-γ) in γδ T cells. However, the regulatory impact of USF3 on T cells, particularly in relation to fibrosis, has not been sufficiently elucidated. In this study, we employed conditional knockout mice (USF3f/f; CD2-cre) to investigate the role of USF3 in γδ T cells. The conditional knockout of USF3 resulted in an increase in both the number and proliferation of γδ T cells, which was associated with mTOR signaling pathway activation. The absence of USF3 significantly enhanced the expression of Eomes in γδ T cells, leading to an increase in IFN-γ production. Importantly, liver fibrosis was alleviated in USF3 conditional knockout mice, which was potentially linked to the enhanced proliferation of γδ T cells and the elevated expression of cytotoxic molecules, including IFN-γ. In summary, targeting USF3 in γδ T cells may represent a promising immunotherapeutic approach for liver fibrosis.
Collapse
Affiliation(s)
- Xianghong Wang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Rong Lin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China
| | - Dehai Li
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Weiyuan Ye
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Zhe Yang
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Niujian Wu
- Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China
| | - Qiong Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China
| | - Jingyi Tan
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China
| | - Chuanchuan Sun
- Department of Nephrology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China
| | - Zhinan Yin
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| | - Hongyun Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; Department of Endocrinology and Metabolism, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Zhuhai 519000, China.
| | - Hengwen Yang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai People's Hospital (The Affiliated Hospital of Beijing Institute of Technology, Zhuhai Clinical Medical College of Jinan University), Jinan University, Zhuhai 519000, China; State Key Laboratory of Bioactive Molecules and Druggability Assessment, The Biomedical Translational Research Institute, Health Science Center (School of Medicine), Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China.
| |
Collapse
|
2
|
Li Y, Luo Z, Liu Z, Zhu X, Reinach PS, Li L, Chen W. IL-23 Promotes γδT Cell Activity in Dry Eye Disease Progression. Invest Ophthalmol Vis Sci 2025; 66:10. [PMID: 39903182 PMCID: PMC11801388 DOI: 10.1167/iovs.66.2.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 01/10/2025] [Indexed: 02/06/2025] Open
Abstract
Purpose Conjunctival-resident γδT cells, the predominant ocular source of interleukin-17A (IL-17A), play crucial roles in dry eye disease (DED) pathogenesis. The upstream regulators of these cells are unknown. This study evaluated the role of conjunctival IL-23 expression in mediating γδT cell generation and elucidated its contribution to dry eye inflammatory responses. Methods Single-cell RNA sequencing (scRNA-seq) was used to identify and quantify conjunctival mRNA molecules in γδT cells in mice. The IL-23 level increased in wild-type (WT) and decreased in γδT-deficient (TCRδ-/-) mice after dry eye was induced via an intelligently controlled environmental system (ICES). Flow cytometry and transcriptome sequencing were used to investigate the impact of the changes in IL-23 expression on human γδT cells. Results The expression of the IL-23 receptor (IL-23R) was greater in γδT cells than in other conjunctival cell types, such as CD4+ T cells, CD8+ T cells and epithelial cells. An increase in IL-23 led to an increase in γδT cell density, which was proportional to dry eye severity. However, in the TCRδ-/- mice, the upregulation of IL-23 failed to increase the expression level of IL-17A and the severity of dry eye. Furthermore, increases in the expression of IL-23 and the number of γδT cells were evident in the ocular surface cells of patients who developed visual display terminal syndrome. Conclusions An increase in conjunctival IL-23 expression contributes to the induction of the DED inflammatory response through interactions with its cognate receptor on γδT cells and the promotion of their proliferation. The findings of this study suggest that the suppression of IL-17A through the blockade of IL-23R activation may be a viable target for improving the management of inflammation in DED patients.
Collapse
Affiliation(s)
- Yanxiao Li
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zan Luo
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Zihao Liu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xinhao Zhu
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Peter S. Reinach
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Ling Li
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, China
- Ningbo Eye Institute, Ningbo Eye Hospital, Wenzhou Medical University, Ningbo, China
| |
Collapse
|
3
|
Hou Y, Zak J, Shi Y, Pratumchai I, Dinner B, Wang W, Qin K, Weber EW, Teijaro JR, Wu P. Transient EZH2 Suppression by Tazemetostat during In Vitro Expansion Maintains T-Cell Stemness and Improves Adoptive T-Cell Therapy. Cancer Immunol Res 2025; 13:47-65. [PMID: 39365901 PMCID: PMC11717634 DOI: 10.1158/2326-6066.cir-24-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/13/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
The histone methyltransferase enhancer of zeste homolog 2 (EZH2) plays important roles in T-cell differentiation, proliferation, and function. Previous studies have demonstrated that genetic deletion of EZH2 in CD8+ or total T cells impairs their antiviral and antitumor activities, cytokine production, and ability to expand upon rechallenge. Contrary to the detrimental role of deleting T cell-intrinsic EZH2, in this study, we demonstrated that transient inhibition of EZH2 in T cells prior to the phenotypic onset of exhaustion with a clinically approved inhibitor, tazemetostat (Taz), delayed their dysfunctional progression and preserved T-cell stemness and polyfunctionality but had no negative impact on cell proliferation. Taz-induced T-cell epigenetic reprogramming increased the expression of the self-renewal T-cell transcription factor TCF1 by reducing H3K27 methylation at its promoter preferentially in rapidly dividing T cells. In a murine melanoma model, T cells depleted of EZH2 induced poor tumor control, whereas adoptively transferred T cells pretreated with Taz exhibited superior antitumor immunity, especially when used in combination with anti-PD-1 blockade. Collectively, these data highlight the potential of transient epigenetic reprogramming by EZH2 inhibition to enhance adoptive T-cell immunotherapy.
Collapse
Affiliation(s)
- Yingqin Hou
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
- Authors contributed equally
| | - Jaroslav Zak
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Authors contributed equally
| | - Yujie Shi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Isaraphorn Pratumchai
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brandon Dinner
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wenjian Wang
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ke Qin
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Evan W. Weber
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, 19104, USA
| | - John R. Teijaro
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Xie H, Xi X, Lei T, Liu H, Xia Z. CD8 + T cell exhaustion in the tumor microenvironment of breast cancer. Front Immunol 2024; 15:1507283. [PMID: 39717767 PMCID: PMC11663851 DOI: 10.3389/fimmu.2024.1507283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024] Open
Abstract
CD8+ T cells are crucial cytotoxic components of the tumor immune system. In chronic inflammation, they become low-responsive, a state known as T cell exhaustion (TEX). The aim of immune checkpoint blockade is to counteract TEX, yet its dynamics in breast cancer remain poorly understood. This review defines CD8+ TEX and outlines its features and underlying mechanisms. It also discusses the primary mechanisms of CD8+ TEX in breast cancer, covering inhibitory receptors, immunosuppressive cells, cytokines, transcriptomic and epigenetic alterations, metabolic reprogramming, and exosome pathways, offering insights into potential immunotherapy strategies for breast cancer.
Collapse
Affiliation(s)
- Hanghang Xie
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Xiaowei Xi
- Technical University of Munich (TUM) School of Medicine and Health, Munich, Germany
| | - Ting Lei
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Hongli Liu
- Xi’an People’s Hospital (Xi’an Fourth Hospital), Affiliated People’s Hospital of Northwest University, Xi’an, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians University, Munich, Germany
| |
Collapse
|
5
|
Liu J, Wu M, Yang Y, Mei X, Wang L, Wang J, Wang Z, He S, Liu H, Jiang H, Qu S, Zhang Y, Chen Y, Tian X, Huang Y, Wang H. BTN3A1 expressed in cervical cancer cells promotes Vγ9Vδ2 T cells exhaustion through upregulating transcription factors NR4A2/3 downstream of TCR signaling. Cell Commun Signal 2024; 22:459. [PMID: 39342337 PMCID: PMC11439235 DOI: 10.1186/s12964-024-01834-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Clinical trials have shown that immunotherapy based on Vγ9Vδ2 T cells (Vδ2 T cells) is safe and well-tolerated for various cancers including cervical cancer (CC), but its overall treatment efficacy remains limited. Therefore, exploring the mechanisms underlying the suboptimal efficacy of Vδ2 T cell-based cancer immunotherapy is crucial for enabling its successful clinical translation. METHODS Tumor samples from CC patients and CC cell line-derived xenograft (CDX) mice were analyzed using flow cytometry to examine the exhausted phenotype of tumor-infiltrating Vδ2 T cells. The interrelationship between BTN3A1 expression and Vδ2 T cells in CC, along with their correlation with patient prognosis, was analyzed using data from The Cancer Genome Atlas (TCGA) database. CC cell lines with BTN3A1 knockout (KO) and overexpression (OE) were constructed through lentivirus transduction, which were then co-cultured with expanded Vδ2 T cells, followed by detecting the function of Vδ2 T cells using flow cytometry. The pathways and transcription factors (TFs) related to BTN3A1-induced Vδ2 T cells exhaustion and the factors affecting BTN3A1 expression were identified by RNA-seq analysis, which was confirmed by flow cytometry, Western Blot, and gene manipulation. RESULTS Tumor-infiltrating Vδ2 T cells exhibited an exhausted phenotype in both CC patients and CDX mice. BTN3A1 expressed in CC is highly enhancing exhaustion markers, while reducing the secretion of effector molecules in Vδ2 T cells. Blocking TCR or knocking down nuclear receptor subfamily 4 group A (NR4A) 2/3 can reverse BTN3A1-induced exhaustion in Vδ2 T cells. On the other hand, IFN-γ secreted by Vδ2 T cells promoted the expression of BTN3A1 and PD-L1. CONCLUSIONS Through binding γδ TCRs, BTN3A1 expressed on tumor cells, which is induced by IFN-γ, can promote Vδ2 T cells to upregulate the expression of TFs NR4A2/3, thereby affecting their activation and expression of exhaustion-related molecules in the tumor microenvironment (TME). Therefore, targeting BTN3A1 might overcome the immunosuppressive effect of the TME on Vδ2 T cells in CC.
Collapse
MESH Headings
- Humans
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/pathology
- Uterine Cervical Neoplasms/immunology
- Uterine Cervical Neoplasms/metabolism
- Female
- Animals
- Up-Regulation
- Signal Transduction
- Mice
- Cell Line, Tumor
- Butyrophilins/genetics
- Butyrophilins/metabolism
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Receptors, Thyroid Hormone/genetics
- Receptors, Thyroid Hormone/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Gene Expression Regulation, Neoplastic
- Receptors, Steroid
Collapse
Affiliation(s)
- Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyu Mei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liming Wang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyu Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Wang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan He
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hangyu Liu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Han Jiang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shen Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuwei Zhang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430014, China.
| | - Yafei Huang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
6
|
Samuel BER, Diaz FE, Maina TW, Corbett RJ, Tuggle CK, McGill JL. Evidence of innate training in bovine γδ T cells following subcutaneous BCG administration. Front Immunol 2024; 15:1423843. [PMID: 39100669 PMCID: PMC11295143 DOI: 10.3389/fimmu.2024.1423843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
The Bacillus Calmette Guerin (BCG) vaccine has been shown to induce non-specific protection against diseases other than tuberculosis in vaccinated individuals, attributed to the induction of trained immunity. We have previously demonstrated that BCG administration induces innate immune training in mixed peripheral blood mononuclear cells and monocytes in calves. Gamma Delta (γδ) T cells are non-conventional T cells that exhibit innate and adaptive immune system features. They are in higher proportion in the peripheral blood of cattle than humans or rodents and play an essential role in bovine immune response to pathogens. In the current study, we determined if BCG administration induced innate immune training in bovine γδ T cells. A group of 16 pre-weaned Holstein calves (2-4 d age) were enrolled in the study and randomly assigned to vaccine and control groups (n=8/group). The vaccine group received two doses of 106 colony forming units (CFU) BCG Danish strain subcutaneously, separated by 2 weeks. The control group remained unvaccinated. Gamma delta T cells were purified from peripheral blood using magnetic cell sorting three weeks after receiving the 1st BCG dose. We observed functional changes in the γδ T cells from BCG-treated calves shown by increased IL-6 and TNF-α cytokine production in response to in vitro stimulation with Escherichia coli LPS and PAM3CSK4. ATAC-Seq analysis of 78,278 regions of open chromatin (peaks) revealed that γδ T cells from BCG-treated calves had an altered epigenetic status compared to cells from the control calves. Differentially accessible peaks (DAP) found near the promoters of innate immunity-related genes like Siglec14, Irf4, Ifna2, Lrrfip1, and Tnfrsf10d were 1 to 4-fold more accessible in cells from BCG-treated calves. MOTIF enrichment analysis of the sequences within DAPs, which explores transcription factor binding motifs (TFBM) upstream of regulatory elements, revealed TFBM for Eomes and IRF-5 were among the most enriched transcription factors. GO enrichment analysis of genes proximal to the DAPs showed enrichment of pathways such as regulation of IL-2 production, T-cell receptor signaling pathway, and other immune regulatory pathways. In conclusion, our study shows that subcutaneous BCG administration in pre-weaned calves can induce innate immune memory in the form of trained immunity in γδ T cells. This memory is associated with increased chromatin accessibility of innate immune response-related genes, thereby inducing a functional trained immune response evidenced by increased IL-6 and TNF-α cytokine production.
Collapse
Affiliation(s)
- Beulah Esther Rani Samuel
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Fabian E. Diaz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Teresia W. Maina
- Immunology, Cargill Animal Nutrition & Health, Elk River, MN, United States
| | - Ryan J. Corbett
- Center for Data Driven Discovery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
7
|
Wiesheu R, Edwards SC, Hedley A, Hall H, Tosolini M, Fares da Silva MGF, Sumaria N, Castenmiller SM, Wardak L, Optaczy Y, Lynn A, Hill DG, Hayes AJ, Hay J, Kilbey A, Shaw R, Whyte D, Walsh PJ, Michie AM, Graham GJ, Manoharan A, Halsey C, Blyth K, Wolkers MC, Miller C, Pennington DJ, Jones GW, Fournie JJ, Bekiaris V, Coffelt SB. IL-27 maintains cytotoxic Ly6C + γδ T cells that arise from immature precursors. EMBO J 2024; 43:2878-2907. [PMID: 38816652 PMCID: PMC11251046 DOI: 10.1038/s44318-024-00133-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
In mice, γδ-T lymphocytes that express the co-stimulatory molecule, CD27, are committed to the IFNγ-producing lineage during thymic development. In the periphery, these cells play a critical role in host defense and anti-tumor immunity. Unlike αβ-T cells that rely on MHC-presented peptides to drive their terminal differentiation, it is unclear whether MHC-unrestricted γδ-T cells undergo further functional maturation after exiting the thymus. Here, we provide evidence of phenotypic and functional diversity within peripheral IFNγ-producing γδ T cells. We found that CD27+ Ly6C- cells convert into CD27+Ly6C+ cells, and these CD27+Ly6C+ cells control cancer progression in mice, while the CD27+Ly6C- cells cannot. The gene signatures of these two subsets were highly analogous to human immature and mature γδ-T cells, indicative of conservation across species. We show that IL-27 supports the cytotoxic phenotype and function of mouse CD27+Ly6C+ cells and human Vδ2+ cells, while IL-27 is dispensable for mouse CD27+Ly6C- cell and human Vδ1+ cell functions. These data reveal increased complexity within IFNγ-producing γδ-T cells, comprising immature and terminally differentiated subsets, that offer new insights into unconventional T-cell biology.
Collapse
MESH Headings
- Animals
- Mice
- Antigens, Ly/metabolism
- Antigens, Ly/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 7/genetics
- Tumor Necrosis Factor Receptor Superfamily, Member 7/immunology
- Humans
- Receptors, Antigen, T-Cell, gamma-delta/metabolism
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Interferon-gamma/metabolism
- Interferon-gamma/immunology
- Interleukin-27/metabolism
- Interleukin-27/genetics
- Cell Differentiation/immunology
- Mice, Inbred C57BL
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
Collapse
Affiliation(s)
- Robert Wiesheu
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Sarah C Edwards
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Ann Hedley
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Holly Hall
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Marie Tosolini
- Cancer Research Centre of Toulouse, University of Toulouse, Toulouse, France
| | | | - Nital Sumaria
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Suzanne M Castenmiller
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Leyma Wardak
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | | | - Amy Lynn
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - David G Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Alan J Hayes
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Jodie Hay
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Anna Kilbey
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Robin Shaw
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Declan Whyte
- Cancer Research UK Scotland Institute, Glasgow, UK
| | | | - Alison M Michie
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gerard J Graham
- School of Infection & Immunity, University of Glasgow, Glasgow, UK
| | - Anand Manoharan
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Christina Halsey
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Karen Blyth
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Monika C Wolkers
- Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department Of Hematopoiesis, Sanquin Research, Amsterdam, The Netherlands
- Oncode Institute, Utrecht, The Netherlands
| | - Crispin Miller
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Cancer Research UK Scotland Institute, Glasgow, UK
| | - Daniel J Pennington
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gareth W Jones
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | | | - Vasileios Bekiaris
- Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Seth B Coffelt
- School of Cancer Sciences, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
- Cancer Research UK Scotland Institute, Glasgow, UK.
| |
Collapse
|
8
|
Liu J, Wu M, Yang Y, Wang Z, He S, Tian X, Wang H. γδ T cells and the PD-1/PD-L1 axis: a love-hate relationship in the tumor microenvironment. J Transl Med 2024; 22:553. [PMID: 38858763 PMCID: PMC11163710 DOI: 10.1186/s12967-024-05327-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Gamma delta (γδ) T cells demonstrate strong cytotoxicity against diverse cancer cell types in an MHC-independent manner, rendering them promising contenders for cancer therapy. Although amplification and adoptive transfer of γδ T cells are being evaluated in the clinic, their therapeutic efficacy remains unsatisfactory, primarily due to the influence of the immunosuppressive tumor microenvironment (TME). Currently, the utilization of targeted therapeutic antibodies against inhibitory immune checkpoint (ICP) molecules is a viable approach to counteract the immunosuppressive consequences of the TME. Notably, PD-1/PD-L1 checkpoint inhibitors are considered primary treatment options for diverse malignancies, with the objective of preserving the response of αβ T cells. However, γδ T cells also infiltrate various human cancers and are important participants in cancer immunity, thereby influencing patient prognosis. Hence, it is imperative to comprehend the reciprocal impact of the PD-1/PD-L1 axis on γδ T cells. This understanding can serve as a therapeutic foundation for improving γδ T cells adoptive transfer therapy and may offer a novel avenue for future combined immunotherapeutic approaches.
Collapse
Affiliation(s)
- Jian Liu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yifan Yang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zixuan Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan He
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, Hubei, China.
| | - Hui Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gynecologic Oncology, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
9
|
Chen D, Mo F, Liu M, Liu L, Xing J, Xiao W, Gong Y, Tang S, Tan Z, Liang G, Xie H, Huang J, Shen J, Pan X. Characteristics of splenic PD-1 + γδT cells in Plasmodium yoelii nigeriensis infection. Immunol Res 2024; 72:383-394. [PMID: 38265549 PMCID: PMC11217126 DOI: 10.1007/s12026-023-09441-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/21/2023] [Indexed: 01/25/2024]
Abstract
Although the functions of programmed death-1 (PD-1) on αβ T cells have been extensively reported, a role for PD-1 in regulating γδT cell function is only beginning to emerge. Here, we investigated the phenotypic and functional characteristics of PD-1-expressing γδT cells, and the molecular mechanism was also explored in the Plasmodium yoelii nigeriensis (P. yoelii NSM)-infected mice. Flow cytometry and single-cell RNA sequencing (scRNA-seq) were performed. An inverse agonist of RORα, SR3335, was used to investigate the role of RORα in regulating PD-1+ γδT cells. The results indicated that γδT cells continuously upregulated PD-1 expression during the infection period. Higher levels of CD94, IL-10, CX3CR1, and CD107a; and lower levels of CD25, CD69, and CD127 were found in PD-1+ γδT cells from infected mice than in PD-1- γδT cells. Furthermore, GO enrichment analysis revealed that the marker genes in PD-1+ γδT cells were involved in autophagy and processes utilizing autophagic mechanisms. ScRNA-seq results showed that RORα was increased significantly in PD-1+ γδT cells. GSEA identified that RORα was mainly involved in the regulation of I-kappaB kinase/NF-κB signaling and the positive regulation of cytokine production. Consistent with this, PD-1-expressing γδT cells upregulated RORα following Plasmodium yoelii infection. Additionally, in vitro studies revealed that higher levels of p-p65 were found in PD-1+ γδT cells after treatment with a RORα selective synthetic inhibitor. Collectively, these data suggest that RORα-mediated attenuation of NF-κB signaling may be fundamental for PD-1-expressing γδT cells to modulate host immune responses in the spleen of Plasmodium yoelii nigeriensis-infected C57BL/6 mice, and it requires further investigation.
Collapse
Affiliation(s)
- Dianhui Chen
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Feng Mo
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Meiling Liu
- Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Lin Liu
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Junmin Xing
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Wei Xiao
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yumei Gong
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Shanni Tang
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhengrong Tan
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Guikuan Liang
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hongyan Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China
| | - Jun Huang
- China Sino-French Hoffmann Institute, Department of basic Medical Science, Guangzhou Medical University, Guangzhou, 511436, China.
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou, China.
| | - Juan Shen
- Kingmed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, Guangdong, 510182, People's Republic of China.
| | - Xingfei Pan
- Department of Infectious Diseases, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology; The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Katsnelson EN, Spengler A, Domenico J, Couts KL, Loh L, Gapin L, McCarter MD, Tobin RP. Dysfunctional states of unconventional T-cell subsets in cancer. J Leukoc Biol 2024; 115:36-46. [PMID: 37837379 PMCID: PMC10843843 DOI: 10.1093/jleuko/qiad129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
Unconventional T cells represent a promising therapeutic agent to overcome the current limitations of immunotherapies due to their universal T-cell receptors, ability to respond directly to cytokine stimulation, and capacity to recruit and modulate conventional immune cells in the tumor microenvironment. Like conventional T cells, unconventional T cells can enter a dysfunctional state, and the functional differences associated with this state may provide insight into the discrepancies observed in their role in antitumor immunity in various cancers. The exhaustive signature of unconventional T cells differs from conventional αβ T cells, and understanding the differences in the mechanisms underlying exhaustive differentiation in these cell types may aid in the discovery of new treatments to improve sustained antitumor responses. Ongoing clinical trials investigating therapies that leverage unconventional T-cell populations have shown success in treating hematologic malignancies and reducing the immunosuppressive tumor environment. However, several hurdles remain to extend these promising results into solid tumors. Here we discuss the current knowledge on unconventional T-cell function/dysfunction and consider how the incorporation of therapies that modulate unconventional T-cell exhaustion may aid in overcoming the current limitations of immunotherapy. Additionally, we discuss how components of the tumor microenvironment alter the functions of unconventional T cells and how these changes can affect tumor infiltration by lymphocytes and alter conventional T-cell responses.
Collapse
Affiliation(s)
- Elizabeth N Katsnelson
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Andrea Spengler
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Joanne Domenico
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Kasey L Couts
- Department of Medicine, Division of Medical Oncology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Liyen Loh
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Laurent Gapin
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Martin D McCarter
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| | - Richard P Tobin
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, United States
| |
Collapse
|
11
|
Nah J, Lee Y, Seong RH. PRDM16 regulates γδT17 cell differentiation via controlling type 17 program and lipid-dependent cell fitness. Front Immunol 2024; 14:1332386. [PMID: 38239368 PMCID: PMC10794300 DOI: 10.3389/fimmu.2023.1332386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 12/13/2023] [Indexed: 01/22/2024] Open
Abstract
γδT17 cells are a subset of γδT cells producing IL-17, which is crucial for protection against bacterial and fungal infections. It has recently been shown that γδT17 cells have enriched lipid storage and lipid metabolism. However, the regulation of γδT17 cell function and differentiation with respect to lipids remains unknown. Here, we report that PRDM16 is a critical regulator of γδT17 cell differentiation, controlling type 17 immunity gene expression program and lipid-dependent cell fitness. We demonstrated that γδT17 cells have higher lipid-dependent cell fitness, which is negatively correlated with the expression of Prdm16. Loss of Prdm16 enhances the function and differentiation of γδT17 cells, and increases their fitness in lipid-rich environments. Specifically, loss of Prdm16 exacerbates development of psoriasis in the skin, a lipid-rich organ, and Prdm16 controls lipid-mediated differentiation of Vγ4+ γδT17 cells, which are the major source of IL-17 during the onset of psoriasis. Our study highlights the potential impact of PRDM16 on lipid-dependent fitness and protective immune function of γδT cells and also on the immunotherapy of psoriasis and inflammatory diseases.
Collapse
Affiliation(s)
| | | | - Rho H. Seong
- School of Biological Sciences, Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Yang T, Barros-Martins J, Wang Z, Wencker M, Zhang J, Smout J, Gambhir P, Janssen A, Schimrock A, Georgiev H, León-Lara X, Weiss S, Huehn J, Prinz I, Krueger A, Foerster R, Walzer T, Ravens S. RORγt + c-Maf + Vγ4 + γδ T cells are generated in the adult thymus but do not reach the periphery. Cell Rep 2023; 42:113230. [PMID: 37815917 DOI: 10.1016/j.celrep.2023.113230] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/30/2023] [Accepted: 09/21/2023] [Indexed: 10/12/2023] Open
Abstract
T cell receptor (TCR) Vγ4-expressing γδ T cells comprise interferon γ (IFNγ)- and interleukin-17 (IL-17)-producing effector subsets, with a preference for IL-17 effector fate decisions during early ontogeny. The existence of adult-thymus-derived IL-17+ T cells (γδ17) remains controversial. Here, we use a mouse model in which T cells are generated exclusively in the adult thymus and employ single-cell chromatin state analysis to study their development. We identify adult-thymus-derived Vγ4 T cells that have all the molecular programs to become IL-17 producers. However, they have reduced IL-17 production capabilities and rarely reach the periphery. Moreover, this study provides high-resolution profiles of Vγ4 T cells in the adult thymus and lymph nodes and identifies Zeb1 as a potential γδ17 cell regulator. Together, this study provides valuable insights into the developmental traits of Vγ4 T cells during adulthood and supports the idea of age-specific signals required for thymic export and/or peripheral maturation of γδ17 cells.
Collapse
Affiliation(s)
- Tao Yang
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | | | - Ziqing Wang
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Wencker
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Jiang Zhang
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Justine Smout
- Experimental Immunology, Helmholtz Centre for Infection Research, 39124 Braunschweig, Germany
| | - Prerna Gambhir
- Molecular Immunology, Justus-Liebig-University, 35392 Gießen, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Ximena León-Lara
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Siegfried Weiss
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, 39124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Hamburg-Eppendorf, 20246 Hamburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Krueger
- Molecular Immunology, Justus-Liebig-University, 35392 Gießen, Germany
| | - Reinhold Foerster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Thierry Walzer
- Centre International de Recherche en Infectiologie, INSERM U1111, École Normale Supérieure de Lyon, Claude Bernard University Lyon 1, CNRS, UMR 5308, 69365 Lyon, France
| | - Sarina Ravens
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
13
|
Bhat SA, Elnaggar M, Hall TJ, McHugo GP, Reid C, MacHugh DE, Meade KG. Preferential differential gene expression within the WC1.1 + γδ T cell compartment in cattle naturally infected with Mycobacterium bovis. Front Immunol 2023; 14:1265038. [PMID: 37942326 PMCID: PMC10628470 DOI: 10.3389/fimmu.2023.1265038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 10/02/2023] [Indexed: 11/10/2023] Open
Abstract
Bovine tuberculosis (bTB), caused by infection with Mycobacterium bovis, continues to cause significant issues for the global agriculture industry as well as for human health. An incomplete understanding of the host immune response contributes to the challenges of control and eradication of this zoonotic disease. In this study, high-throughput bulk RNA sequencing (RNA-seq) was used to characterise differential gene expression in γδ T cells - a subgroup of T cells that bridge innate and adaptive immunity and have known anti-mycobacterial response mechanisms. γδ T cell subsets are classified based on expression of a pathogen-recognition receptor known as Workshop Cluster 1 (WC1) and we hypothesised that bTB disease may alter the phenotype and function of specific γδ T cell subsets. Peripheral blood was collected from naturally M. bovis-infected (positive for single intradermal comparative tuberculin test (SICTT) and IFN-γ ELISA) and age- and sex-matched, non-infected control Holstein-Friesian cattle. γδ T subsets were isolated using fluorescence activated cell sorting (n = 10-12 per group) and high-quality RNA extracted from each purified lymphocyte subset (WC1.1+, WC1.2+, WC1- and γδ-) was used to generate transcriptomes using bulk RNA-seq (n = 6 per group, representing a total of 48 RNA-seq libraries). Relatively low numbers of differentially expressed genes (DEGs) were observed between most cell subsets; however, 189 genes were significantly differentially expressed in the M. bovis-infected compared to the control groups for the WC1.1+ γδ T cell compartment (absolute log2 FC ≥ 1.5 and FDR P adj. ≤ 0.1). The majority of these DEGs (168) were significantly increased in expression in cells from the bTB+ cattle and included genes encoding transcription factors (TBX21 and EOMES), chemokine receptors (CCR5 and CCR7), granzymes (GZMA, GZMM, and GZMH) and multiple killer cell immunoglobulin-like receptor (KIR) proteins indicating cytotoxic functions. Biological pathway overrepresentation analysis revealed enrichment of genes with multiple immune functions including cell activation, proliferation, chemotaxis, and cytotoxicity of lymphocytes. In conclusion, γδ T cells have important inflammatory and regulatory functions in cattle, and we provide evidence for preferential differential activation of the WC1.1+ specific subset in cattle naturally infected with M. bovis.
Collapse
Affiliation(s)
- Sajad A. Bhat
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - Mahmoud Elnaggar
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - Thomas J. Hall
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Gillian P. McHugo
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Cian Reid
- Animal and Bioscience Research Department, Animal and Grassland Research and Innovation Centre, Teagasc, Dunsany, Ireland
| | - David E. MacHugh
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Kieran G. Meade
- UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
- UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- UCD Institute of Food and Health, University College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Le Floch AC, Rouvière MS, Salem N, Ben Amara A, Orlanducci F, Vey N, Gorvel L, Chretien AS, Olive D. Prognostic Immune Effector Signature in Adult Acute Lymphoblastic Leukemia Patients Is Dominated by γδ T Cells. Cells 2023; 12:1693. [PMID: 37443727 PMCID: PMC10340700 DOI: 10.3390/cells12131693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/07/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
The success of immunotherapy has highlighted the critical role of the immune microenvironment in acute lymphoblastic leukemia (ALL); however, the immune landscape in ALL remains incompletely understood and most studies have focused on conventional T cells or NK cells. This study investigated the prognostic impact of circulating γδ T-cell alterations using high-dimensional analysis in a cohort of newly diagnosed adult ALL patients (10 B-ALL; 9 Philadelphia+ ALL; 9 T-ALL). Our analysis revealed common alterations in CD8+ T cells and γδ T cells of relapsed patients, including accumulation of early stage differentiation and increased expression of BTLA and CD73. We demonstrated that the circulating γδ T-cell signature was the most discriminating between relapsed and disease-free groups. In addition, Vδ2 T-cell alterations strongly discriminated patients by relapse status. Taken together, these data highlight the role of ɣδ T cells in adult ALL patients, among whom Vδ2 T cells may be a pivotal contributor to T-cell immunity in ALL. Our findings provide a strong rationale for further monitoring and potentiating Vδ2 T cells in ALL, including in the autologous setting.
Collapse
Affiliation(s)
- Anne-Charlotte Le Floch
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Marie-Sarah Rouvière
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Nassim Salem
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Amira Ben Amara
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Florence Orlanducci
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Norbert Vey
- Département d’Hématologie, CRCM, INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France
| | - Laurent Gorvel
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Anne-Sophie Chretien
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| | - Daniel Olive
- Equipe Immunité et Cancer, Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR7258, Institut Paoli-Calmettes, Aix-Marseille Université, UM 105, 13009 Marseille, France; (A.-C.L.F.)
- Plateforme d’Immunomonitoring, Institut Paoli-Calmettes, 13009 Marseille, France
| |
Collapse
|
15
|
Khired ZA, Kattan SW, Alzahrani AK, Milebary AJ, Hussein MH, Qusti SY, Alshammari EM, Toraih EA, Fawzy MS. Analysis of MIR27A (rs11671784) Variant Association with Systemic Lupus Erythematous. Life (Basel) 2023; 13:701. [PMID: 36983856 PMCID: PMC10058767 DOI: 10.3390/life13030701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple microRNAs (miRs) are associated with systemic autoimmune disease susceptibility/phenotype, including systemic lupus erythematosus (SLE). With this work, we aimed to unravel the association of the miR-27a gene (MIR27A) rs11671784G/A variant with SLE risk/severity. One-hundred sixty-three adult patients with SLE and matched controls were included. A TaqMan allelic discrimination assay was applied for MIR27A genotyping. Logistic regression models were run to test the association with SLE susceptibility/risk. Genotyping of 326 participants revealed that the heterozygote form was the most common genotype among the study cohort, accounting for 72% of the population (n = 234), while A/A and G/G represented 15% (n = 49) and 13% (n = 43), respectively. Similarly, the most prevalent genotype among cases was the A/G genotype, which was present in approximately 93.3% of cases (n = 152). In contrast, only eight and three patients had A/A and G/G genotypes, respectively. The MIR27A rs11671784 variant conferred protection against the development of SLE in several genetic models, including heterozygous (G/A vs. A/A; OR = 0.10, 95% CI = 0.05-0.23), dominant (G/A + G/G vs. AA; OR = 0.15, 95% CI = 0.07-0.34), and overdominant (G/A vs. A/A + G/G; OR = 0.07, 95% CI = 0.04-0.14) models. However, the G/G genotype was associated with increased SLE risk in the recessive model (G/G vs. A/A+ G/G; OR = 17.34, 95% CI = 5.24-57.38). Furthermore, the variant showed significant associations with musculoskeletal and mucocutaneous manifestations in the patient cohort (p = 0.035 and 0.009, respectively) and platelet and white blood cell counts (p = 0.034 and 0.049, respectively). In conclusion, the MIR27A rs11671784 variant showed a potentially significant association with SLE susceptibility/risk in the studied population. Larger-scale studies on multiethnic populations are recommended to verify the results.
Collapse
Affiliation(s)
- Zenat Ahmed Khired
- Department of Surgery, College of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Shahad W. Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46423, Saudi Arabia
| | - Ahmad Khuzaim Alzahrani
- Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar 91431, Saudi Arabia
| | - Ahmad J. Milebary
- Department of Medical Laboratory, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| | - Mohammad H. Hussein
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Safaa Y. Qusti
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Eida M. Alshammari
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Medical Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| |
Collapse
|
16
|
Chen D, Guo Y, Jiang J, Wu P, Zhang T, Wei Q, Huang J, Wu D. γδ T cell exhaustion: Opportunities for intervention. J Leukoc Biol 2022; 112:1669-1676. [PMID: 36000310 PMCID: PMC9804355 DOI: 10.1002/jlb.5mr0722-777r] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 07/25/2022] [Indexed: 01/05/2023] Open
Abstract
T lymphocytes are the key protective contributors in chronic infection and tumor, but experience exhaustion by persistent antigen stimulation. As an unconventional lineage of T cells, γδ T cells can rapidly response to varied infectious and tumor challenges in a non-MHC-restricted manner and play key roles in immune surveillance via pleiotropic effector functions, showing promising as candidates for cellular tumor immunotherapy. Activated γδ T cells can also acquire exhaustion signature with elevated expression of immune checkpoints, such as PD-1, decreased cytokine production, and functional impairment. However, the exhaustion features of γδ T cells are distinct from conventional αβ T cells. Here, we review the researches regarding the characteristics, heterogeneity, and mechanisms of γδ T cell exhaustion. These studies provide insights into the combined strategies to overcome the exhaustion of γδ T cells and enhance antitumor immunity. Summary sentence: Review of the characteristics, heterogeneity, and mechanisms of γδ T cell exhaustion provides insights into the combined strategies to enhance γδ T cell-based antitumor immunotherapy.
Collapse
Affiliation(s)
- Di Chen
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Yinglu Guo
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jiahuan Jiang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Department of Breast Surgery, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Pin Wu
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Department of Thoracic Surgery, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Ting Zhang
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Qichun Wei
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Jian Huang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Department of Breast Surgery, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| | - Dang Wu
- Department of Radiation Oncology, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina,Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, National Ministry of Education), Second Affiliated HospitalZhejiang University School of Medicine, Zhejiang UniversityHangzhouChina
| |
Collapse
|
17
|
Nezhad Shamohammadi F, Yazdanifar M, Oraei M, Kazemi MH, Roohi A, Mahya Shariat Razavi S, Rezaei F, Parvizpour F, Karamlou Y, Namdari H. Controversial role of γδ T cells in pancreatic cancer. Int Immunopharmacol 2022; 108:108895. [PMID: 35729831 DOI: 10.1016/j.intimp.2022.108895] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
γδ T cells are rare lymphocytes with cogent impact on immune responses. These cells are one of the earliest cells to be recruited in the sites of infection or tumors and play a critical role in coordinating innate and adaptive immune responses. The anti-tumor activity of γδ T cells have been numerously reported; nonetheless, there is controversy among published studies regarding their anti-tumor vs pro-tumor effect- especially in pancreatic cancer. A myriad of studies has confirmed that activated γδ T cells can potently lyse a broad variety of solid tumors and leukemia/lymphoma cells and produce an array of cytokines; however, early γδ T cell-based clinical trials did not lead to optimal efficacy, despite acceptable safety. Depending on the local micromilieu, γδ T cells can differentiate into tumor promoting or suppressing cells such as Th1-, Th2-, or Th17-like cells and produce prototypical cytokines such as interferon-γ (IFNγ) and interleukin (IL)-4/-10, IL-9, or IL-17. In an abstruse tumor such as pancreatic cancer- also known as immunologically cold tumor- γδ T cells are more likely to switch to their immunosuppressive phenotype. In this review we will adduce the accumulated knowledge on these two controversial aspects of γδ T cells in cancers- with a focus on solid tumors and pancreatic cancer. In addition, we propose strategies for enhancing the anti-tumor function of γδ T cells in cancers and discuss the potential future directions.
Collapse
Affiliation(s)
| | - Mahboubeh Yazdanifar
- Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Mona Oraei
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad H Kazemi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Immunology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Roohi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Rezaei
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Farzad Parvizpour
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yalda Karamlou
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Haideh Namdari
- Iranian Tissue Bank and Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Kabeerdoss J, Danda D, Goel R, Mohan H, Danda S, Scofield RH. Genome-Wide DNA Methylation Profiling in CD8 T-Cells and Gamma Delta T-Cells of Asian Indian Patients With Takayasu Arteritis. Front Cell Dev Biol 2022; 10:843413. [PMID: 35813204 PMCID: PMC9259853 DOI: 10.3389/fcell.2022.843413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Takayasu’s Arteritis (TA) is a chronic inflammatory disease that affects aorta and its main branches at their origin. Genetic, pathological and functional studies have shown that CD8 and Gamma delta (γ/δ) T-lymphocytes are involved in inflammatory processes in affected regions of arteries causing vascular damage. The molecular function of these lymphocytes remains unclear and currently no epigenetic studies are available in TA. We primarily performed genome wide methylation analysis in CD8 T cells and γδ T cells of patients with TA and compared with healthy controls. Methods: We recruited 12 subjects in each group namely TA patient and healthy controls. Blood samples were collected after obtaining informed written consent. CD8 T cells and γδ T cells were separated from whole blood. DNA extracted from these cells and were subjected to bisulfite treatment. Finally, bisulfite treated DNA was loaded in Infinium Methylation EPIC array. Bioinformatics analysis was used to identify differential methylation regions which were then mapped to genes. Results: Interleukin (IL)-32 and Lymphotoxin-A were genes significantly hypomethylated in CD8 T-cells. Anti-inflammatory cytokine genes, IL-10, IL-1RN and IL-27 were hypomethylated in γδ T cells of TA patients as compared to healthy controls. Gene enrichment analysis using Gene Ontology (GO) database and Kyoto Encyclopaedia of Genes and Genomes (KEGG) identified that genes involved in T-cell receptor signalling pathways were hypomethylated in CD8 T-cells and hypermethylated in γδ T cells of TA patients. Conclusion: CD8 T-cells might play a major role in immunopathogenesis of inflammation in TA, whereas γδ T cells may play a regulatory role.
Collapse
Affiliation(s)
- Jayakanthan Kabeerdoss
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, India
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
- *Correspondence: Debashish Danda, ; Jayakanthan Kabeerdoss,
| | - Debashish Danda
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, India
- *Correspondence: Debashish Danda, ; Jayakanthan Kabeerdoss,
| | - Ruchika Goel
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, India
| | - Hindhumathi Mohan
- Department of Clinical Immunology and Rheumatology, Christian Medical College, Vellore, India
| | - Sumita Danda
- Department of Medical Genetics, Christian Medical College, Vellore, India
| | - R. Hal Scofield
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States
- Department of Veterans Affairs, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
19
|
Park JH, Kang I, Lee HK. γδ T Cells in Brain Homeostasis and Diseases. Front Immunol 2022; 13:886397. [PMID: 35693762 PMCID: PMC9181321 DOI: 10.3389/fimmu.2022.886397] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
γδ T cells are a distinct subset of T cells expressing γδ T cell receptor (TCR) rather than αβTCR. Since their discovery, the critical roles of γδ T cells in multiple physiological systems and diseases have been investigated. γδ T cells are preferentially located at mucosal surfaces, such as the gut, although a small subset of γδ T cells can circulate the blood. Additionally, a subset of γδ T cells reside in the meninges in the central nervous system. Recent findings suggest γδ T cells in the meninges have critical roles in brain function and homeostasis. In addition, several lines of evidence have shown γδ T cells can infiltrate the brain parenchyma and regulate inflammatory responses in multiple diseases, including neurodegenerative diseases. Although the importance of γδ T cells in the brain is well established, their roles are still incompletely understood due to the complexity of their biology. Because γδ T cells rapidly respond to changes in brain status and regulate disease progression, understanding the role of γδ T cells in the brain will provide critical information that is essential for interpreting neuroimmune modulation. In this review, we summarize the complex role of γδ T cells in the brain and discuss future directions for research.
Collapse
|
20
|
Warrier NM, Agarwal P, Kumar P. Integrative Analysis to Identify Genes Associated with Stemness and Immune Infiltration in Glioblastoma. Cells 2021; 10:2765. [PMID: 34685742 PMCID: PMC8534801 DOI: 10.3390/cells10102765] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/15/2022] Open
Abstract
It is imperative to identify the mechanisms that confer stemness to the cancer cells for more effective targeting. Moreover, there are not many studies on the link between stemness characteristics and the immune response in tumours. Therefore, in the current study involving GBM, we started with the study of BIRC5 (one of the rare genes differentially expressed in normal and cancer cells) and CXCR4 (gene involved in the survival and proliferation of CSCs). Together, these genes have not been systematically explored. We used a set of 27 promoter methylated regions in GBM. Our analysis showed that four genes corresponding to these regions, namely EOMES, BDNF, HLA-A, and PECAM1, were involved with BIRC5 and CXCR4. Interestingly, we found EOMES to be very significantly involved in stemness and immunology and it was positively correlated to CXCR4. Additionally, BDNF, which was significant in methylation, was negatively correlated to BIRC5.
Collapse
Affiliation(s)
- Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| | - Prasoon Agarwal
- KTH Royal Institute of Technology, School of Electrical Engineering and Computer Science, 10044 Stockholm, Sweden
- Science for Life Laboratory, 17121 Solna, Sweden
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India;
| |
Collapse
|
21
|
González-Stegmaier R, Peña A, Villarroel-Espíndola F, Aguila P, Oliver C, MacLeod-Carey D, Rozas-Serri M, Enriquez R, Figueroa J. Full recombinant flagellin B from Vibrio anguillarum (rFLA) and its recombinant D1 domain (rND1) promote a pro-inflammatory state and improve vaccination against P. salmonis in Atlantic salmon (S. salar). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 117:103988. [PMID: 33359361 DOI: 10.1016/j.dci.2020.103988] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/20/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Flagellin is the major component of the flagellum, and a ligand for Toll-like receptor 5. As reported, recombinant flagellin (rFLA) from Vibrio anguillarum and its D1 domain (rND1) are able to promote in vitro an upregulation of pro-inflammatory genes in gilthead seabream (Sparus aurata) and rainbow trout (Oncorhynchus mykiss) macrophages. This study evaluated the in vitro and in vivo stimulatory/adjuvant effect for rFLA and rND1 during P. salmonis vaccination in Atlantic salmon (Salmo salar). We demonstrated that rFLA and rND1 are molecules able to generate an acute upregulation of pro-inflammatory cytokines (IL-1β, IL-8, IL-12β), allowing the expression of genes associated with T-cell activation (IL-2, CD4, CD8β), and differentiation (IFNγ, IL-4/13, T-bet, Eomes, GATA3), in a differential manner, tissue/time dependent way. Altogether, our results suggest that rFLA and rND1 are valid candidates to be used as an immuno-stimulant or adjuvants with existing vaccines in farmed salmon.
Collapse
Affiliation(s)
- Roxana González-Stegmaier
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Laboratorio Medicina Traslacional. Instituto Clínico Oncológico. Fundación Arturo López Pérez, Santiago, Chile.
| | - Andrea Peña
- Laboratorio Pathovet Ltda, Puerto Montt, Chile
| | - Franz Villarroel-Espíndola
- Laboratorio Medicina Traslacional. Instituto Clínico Oncológico. Fundación Arturo López Pérez, Santiago, Chile
| | - Patricia Aguila
- Escuela de Tecnología Médica, Universidad Austral de Chile, Sede Puerto Montt, Chile
| | - Cristian Oliver
- Laboratorio de Inmunología y estrés de Organismos Acuáticos, Departamento de Patología Animal, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - Desmond MacLeod-Carey
- Universidad Autónoma de Chile, Facultad de Ingeniería, Instituto de Ciencias Químicas Aplicadas, Polymers and Macromolecules Center, El Llano Subercaseaux, 2801, Santiago, Chile
| | | | - Ricardo Enriquez
- Laboratorio de Biotecnología y Patología Acuática, Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Figueroa
- Laboratorio de Biología Molecular de Peces, Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
22
|
Reyes RM, Deng Y, Zhang D, Ji N, Mukherjee N, Wheeler K, Gupta HB, Padron AS, Kancharla A, Zhang C, Garcia M, Kornepati AVR, Boyman O, Conejo-Garcia JR, Svatek RS, Curiel TJ. CD122-directed interleukin-2 treatment mechanisms in bladder cancer differ from αPD-L1 and include tissue-selective γδ T cell activation. J Immunother Cancer 2021; 9:e002051. [PMID: 33849925 PMCID: PMC8051418 DOI: 10.1136/jitc-2020-002051] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2020] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Anti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αIL-2 complexes (IL-2c) that preferentially target IL-2 receptor β (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1. METHODS We studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites. RESULTS IL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or protumor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells. CONCLUSIONS Mechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.
Collapse
Affiliation(s)
- Ryan Michael Reyes
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, Texas, USA
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Yilun Deng
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Deyi Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- National Heart, Blood, and Lung Institute, National Institutes of Health, Bethesda, MD, USA
| | - Niannian Ji
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Neelam Mukherjee
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Karen Wheeler
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Harshita B Gupta
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Alvaro S Padron
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Aravind Kancharla
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Chenghao Zhang
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Myrna Garcia
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Anand V R Kornepati
- South Texas Medical Scientist Training Program, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | | | - Robert S Svatek
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
- Department of Urology, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Tyler J Curiel
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas, USA
- Division of Hematology/Oncology, Department of Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Clayton Foundation for Research, Houston, Texas, USA
| |
Collapse
|
23
|
Eomes cannot replace its paralog T-bet during expansion and differentiation of CD8 effector T cells. PLoS Pathog 2020; 16:e1008870. [PMID: 32991634 PMCID: PMC7546498 DOI: 10.1371/journal.ppat.1008870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/09/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
The two T-box transcription factors T-bet and Eomesodermin (Eomes) are important regulators of cytotoxic lymphocytes (CTLs), such as activated CD8 T cells, which are essential in the fight against intracellular pathogens and tumors. Both transcription factors share a great degree of homology based on sequence analysis and as a result exert partial functional redundancy during viral infection. However, the actual degree of redundancy between T-bet and Eomes remains a matter of debate and is further confounded by their distinct spatiotemporal expression pattern in activated CD8 T cells. To directly investigate the functional overlap of these transcription factors, we generated a new mouse model in which Eomes expression is under the transcriptional control of the endogenous Tbx21 (encoding for T-bet) locus. Applying this model, we demonstrate that the induction of Eomes in lieu of T-bet cannot rescue T-bet deficiency in CD8 T cells during acute lymphocytic choriomeningitis virus (LCMV) infection. We found that the expression of Eomes instead of T-bet was not sufficient for early cell expansion or effector cell differentiation. Finally, we show that imposed expression of Eomes after acute viral infection promotes some features of exhaustion but must act in concert with other factors during chronic viral infection to establish all hallmarks of exhaustion. In summary, our results clearly underline the importance of T-bet in guiding canonical CTL development during acute viral infections. According to the World Health Organization infectious diseases kill over 17 million people per year. At the same time highly infectious viral diseases, such as Ebola and COVID-19 that are lacking specific treatments, are emerging to pose additional threats. It is therefore pivotal to precisely understand how our immune system responds towards pathogens to develop new treatment options. Here we have investigated the role of two related molecules, named T-bet and Eomes, that guide the development and function of lymphocytes in their fight against intracellular pathogens. We specifically focused on cytotoxic lymphocytes as these cells dominate the early phase of viral containment. We show that T-bet is essential for the expansion of cytotoxic lymphocytes and equip lymphocytes with the ability to efficiently eliminate virus-infected cells. Hence, our study provides new insights into the importance and specific actions of T-bet during acute viral infections and how this might be harnessed for future therapeutic interventions.
Collapse
|
24
|
Dienz O, DeVault VL, Musial SC, Mistri SK, Mei L, Baraev A, Dragon JA, Krementsov D, Veillette A, Boyson JE. Critical Role for SLAM/SAP Signaling in the Thymic Developmental Programming of IL-17- and IFN-γ-Producing γδ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1521-1534. [PMID: 32024701 PMCID: PMC7065973 DOI: 10.4049/jimmunol.1901082] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/04/2020] [Indexed: 12/14/2022]
Abstract
During thymic development, mouse γδ T cells commit to either an IFN-γ- or an IL-17-producing phenotype through mechanisms that remain unclear. In this study, we investigated the extent to which the SLAM/SAP signaling pathway regulates the functional programming of γδ T cells. Characterization of SLAM family receptor expression revealed that thymic γδ T cell subsets were each marked by distinct coexpression profiles of SLAMF1, SLAMF4, and SLAMF6. In the thymus, Vγ1 and Vγ4 T cells that exhibited an SLAMF1+SLAMF6+ double positive phenotype were largely contained within immature CD24+CD73- and CD24+CD73+ subsets, whereas SLAMF1 single positive, SLAMF6 single positive, or SLAMF1SLAMF6 double negative cells were found within mature CD24-CD73+ and CD24-CD73- subsets. In the periphery, SLAMF1 and SLAMF6 expression distinguished IL-17- and IFN-γ-producing γδ T cells, respectively. Disruption of SLAM family receptor signaling through deletion of SAP resulted in impaired thymic Vγ1 and Vγ4 T cell maturation at the CD24+CD73-SLAMF1+SLAMF6+ double positive stage that was associated with a decreased frequency of CD44+RORγt+ γδ T cells. Impaired development was in turn associated with decreased γδ T cell IL-17 and IFN-γ production in the thymus as well as in peripheral tissues. The role for SAP was subset-specific, as Vγ1Vδ6.3, Vγ4, Vγ5, but not Vγ6 subsets were SAP-dependent. Together, these data suggest that the SLAM/SAP signaling pathway plays a larger role in γδ T cell development than previously appreciated and represents a critical checkpoint in the functional programming of both IL-17- and IFN-γ-producing γδ T cell subsets.
Collapse
Affiliation(s)
- Oliver Dienz
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Victoria L DeVault
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Shawn C Musial
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Somen K Mistri
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Linda Mei
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Aleksandr Baraev
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405
| | - Julie A Dragon
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405
| | - Dimitry Krementsov
- Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405; and
| | - Andre Veillette
- Montreal Clinical Research Institute, Montreal, Quebec H2W 1R7, Canada
| | - Jonathan E Boyson
- Department of Surgery, Larner College of Medicine, University of Vermont, Burlington, VT 05405;
| |
Collapse
|
25
|
Chi H, Sørmo KG, Diao J, Dalmo RA. T-box transcription factor eomesodermin/Tbr2 in Atlantic cod (Gadus morhua L.): Molecular characterization, promoter structure and function analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 93:28-38. [PMID: 31302288 DOI: 10.1016/j.fsi.2019.07.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Eomesodermin (Eomes) is a member of T-box transcription factor family and plays an important role in the regulation of a wide variety of developmental processes and immune response in animals. Here we report cloning and characterization of the full-length cDNA of Atlantic cod Eomes (GmEomes), which possesses a TBOX_3 domain similar to its counterpart in mammals. The regulated expression was observed in head kidney and spleen in response to live Vibrio anguillarum infection in vivo, and spleen leukocytes in vitro after PMA and poly I:C stimulation. Furthermore, we determined a 694 bp sequence, upstream of the transcriptional start site (TSS), to contain a number of sequence motifs that matched known transcription factor-binding sites. Activities of the presumptive regulatory gene were assessed by transfecting different 5'-deletion constructs in CHSE-214 cells. The results showed that the basal promoters and positive transcriptional regulator activities of GmEomes were dependent by sequences located from -694 to -376 bp upstream of TSS. Furthermore, we found that some Eomes binding sites were present in the 5'-flanking regions of the cod IFNγ gene predicted by bioinformatics. However, Co-transfection of eomesodermin overexpression plasmids with INFγ reporter vector into CHSE-214 cells determined that Atlantic cod eomesodermin played a minor role in activation of the INFγ promoter.
Collapse
Affiliation(s)
- Heng Chi
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, N-9037, Tromsø, Norway; Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, China; Key Laboratory of Experimental Marine Biology, Chinese Academy of Sciences, Institute of Oceanology, 266071, Qingdao, China.
| | - Kristian Gillebo Sørmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, N-9037, Tromsø, Norway
| | - Jing Diao
- Shandong Key Laboratory of Disease Control in Mariculture, Marine Biology Institute of Shandong Province, 266104, Qingdao, China
| | - Roy Ambli Dalmo
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT the Arctic University of Norway, N-9037, Tromsø, Norway.
| |
Collapse
|
26
|
Chen H, Eling N, Martinez‐Jimenez CP, O'Brien LM, Carbonaro V, Marioni JC, Odom DT, de la Roche M. IL-7-dependent compositional changes within the γδ T cell pool in lymph nodes during ageing lead to an unbalanced anti-tumour response. EMBO Rep 2019; 20:e47379. [PMID: 31283095 PMCID: PMC6680116 DOI: 10.15252/embr.201847379] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/29/2019] [Accepted: 06/05/2019] [Indexed: 12/21/2022] Open
Abstract
How the age-associated decline of immune function leads to increased cancer incidence is poorly understood. Here, we have characterised the cellular composition of the γδ T-cell pool in peripheral lymph nodes (pLNs) upon ageing. We find that ageing has minimal cell-intrinsic effects on function and global gene expression of γδ T cells, and γδTCR diversity remains stable. However, ageing alters TCRδ chain usage and clonal structure of γδ T-cell subsets. Importantly, IL-17-producing γδ17 T cells dominate the γδ T-cell pool of aged mice-mainly due to the selective expansion of Vγ6+ γδ17 T cells and augmented γδ17 polarisation of Vγ4+ T cells. Expansion of the γδ17 T-cell compartment is mediated by increased IL-7 expression in the T-cell zone of old mice. In a Lewis lung cancer model, pro-tumourigenic Vγ6+ γδ17 T cells are exclusively activated in the tumour-draining LN and their infiltration into the tumour correlates with increased tumour size in aged mice. Thus, upon ageing, substantial compositional changes in γδ T-cell pool in the pLN lead to an unbalanced γδ T-cell response in the tumour that is associated with accelerated tumour growth.
Collapse
MESH Headings
- Aging/genetics
- Aging/immunology
- Animals
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Cell Differentiation
- Cell Lineage/genetics
- Cell Lineage/immunology
- Gene Expression Regulation, Neoplastic
- Immunophenotyping
- Interleukin-17/genetics
- Interleukin-17/immunology
- Interleukin-7/genetics
- Interleukin-7/immunology
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Mice
- Mice, Inbred C57BL
- Receptors, Antigen, T-Cell, gamma-delta/classification
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Signal Transduction
- T-Lymphocyte Subsets/classification
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/pathology
- Tumor Burden/genetics
- Tumor Burden/immunology
Collapse
Affiliation(s)
- Hung‐Chang Chen
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | - Nils Eling
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Genome CampusCambridgeUK
| | - Celia Pilar Martinez‐Jimenez
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
- Helmholtz Pioneer Campus, Helmholtz Zentrum MünchenNeuherbergGermany
| | | | | | - John C Marioni
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI), Wellcome Genome CampusCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
| | - Duncan T Odom
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Wellcome Sanger Institute, Wellcome Genome CampusCambridgeUK
- Division of Signalling and Functional GenomicsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Maike de la Roche
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| |
Collapse
|
27
|
Rodríguez-Gómez IM, Talker SC, Käser T, Stadler M, Reiter L, Ladinig A, Milburn JV, Hammer SE, Mair KH, Saalmüller A, Gerner W. Expression of T-Bet, Eomesodermin, and GATA-3 Correlates With Distinct Phenotypes and Functional Properties in Porcine γδ T Cells. Front Immunol 2019; 10:396. [PMID: 30915070 PMCID: PMC6421308 DOI: 10.3389/fimmu.2019.00396] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 02/15/2019] [Indexed: 11/25/2022] Open
Abstract
Unlike mice and humans, porcine γδ T cells represent a prominent subset of T cells in blood and secondary lymphatic organs. GATA-3, T-bet and Eomesodermin (Eomes) are transcription factors with crucial functions in T-cell development and functional differentiation, but their expression has not been investigated in porcine γδ T cells so far. We analyzed the expression of these transcription factors in γδ thymocytes, mature γδ T cells from blood, spleen, lymph nodes, and lung tissue as well as in vitro stimulated γδ T cells on the protein level by flow cytometry. GATA-3 was present in more than 80% of all γδ-thymocytes. Extra-thymic CD2− γδ T cells expressed high levels of GATA-3 in all investigated organs and had a CD8α−/dimCD27+perforin− phenotype. T-bet expression was mainly found in a subset of CD2+ γδ T cells with an opposing CD8αhighCD27dim/−perforin+ phenotype. Eomes+ γδ T cells were also found within CD2+ γδ T cells but were heterogeneous in regard to expression of CD8α, CD27, and perforin. Eomes+ γδ T cells frequently co-expressed T-bet and dominated in the spleen. During aging, CD2−GATA-3+ γδ T cells strongly prevailed in young pigs up to an age of about 2 years but declined in older animals where CD2+T-bet+ γδ T cells became more prominent. Despite high GATA-3 expression levels, IL-4 production could not be found in γδ T cells by intracellular cytokine staining. Experiments with sorted and ConA + IL-2 + IL-12 + IL-18-stimulated CD2− γδ T cells showed that proliferating cells start expressing CD2 and T-bet, produce IFN-γ, but retain GATA-3 expression. In summary, our data suggest a role for GATA-3 in the development of γδ-thymocytes and in the function of peripheral CD2−CD8α−/dimCD27+perforin− γδ T cells. In contrast, T-bet expression appears to be restricted to terminal differentiation stages of CD2+ γδ T cells, frequently coinciding with perforin expression. The functional relevance of high GATA-3 expression levels in extra-thymic CD2− γδ T cells awaits further clarification. However, their unique phenotype suggests that they represent a thymus-derived separate lineage of γδ T cells in the pig for which currently no direct counterpart in rodents or humans has been described.
Collapse
Affiliation(s)
- Irene M Rodríguez-Gómez
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Stephanie C Talker
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Tobias Käser
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Maria Stadler
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Lisa Reiter
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jemma V Milburn
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.,Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sabine E Hammer
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Kerstin H Mair
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.,Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Armin Saalmüller
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Wilhelm Gerner
- Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria.,Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
28
|
Gruarin P, Maglie S, Simone M, Häringer B, Vasco C, Ranzani V, Bosotti R, Noddings JS, Larghi P, Facciotti F, Sarnicola ML, Martinovic M, Crosti M, Moro M, Rossi RL, Bernardo ME, Caprioli F, Locatelli F, Rossetti G, Abrignani S, Pagani M, Geginat J. Eomesodermin controls a unique differentiation program in human IL‐10 and IFN‐γ coproducing regulatory T cells. Eur J Immunol 2018; 49:96-111. [DOI: 10.1002/eji.201847722] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/28/2018] [Accepted: 11/09/2018] [Indexed: 01/13/2023]
Affiliation(s)
- Paola Gruarin
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Stefano Maglie
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Marco Simone
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Barbara Häringer
- German Rheumatology Research Center DRFZ Berlin Germany
- Charitè Research Center for Immunosciences RCIS Berlin Germany
| | - Chiara Vasco
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Valeria Ranzani
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Roberto Bosotti
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Johanna S. Noddings
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Paola Larghi
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Federica Facciotti
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Maria L. Sarnicola
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Martina Martinovic
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Mariacristina Crosti
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Monica Moro
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Riccardo L. Rossi
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Maria E. Bernardo
- Ospedale Pediatrico Bambino Gesù Dipartimento Onco–Ematologia e Medicina Trasfusionale Rome Italy
| | - Flavio Caprioli
- Unità Operativa di Gastroenterologia ed Endoscopia Fondazione Ca’ Granda Ospedale Maggiore Policlinico Milan Italy
| | - Franco Locatelli
- Ospedale Pediatrico Bambino Gesù Dipartimento Onco–Ematologia e Medicina Trasfusionale Rome Italy
| | - Grazisa Rossetti
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| | - Sergio Abrignani
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
- Department of Clinical Science and Community Health (DISCCO) University of Milan Milan Italy
| | - Massimiliano Pagani
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
- Department of Medical Biotechnology and Translational Medicine University of Milan Milan Italy
| | - Jens Geginat
- INGM‐National Institute of Molecular Genetics “Romeo ed Enrica Invernizzi” Milan Italy
| |
Collapse
|
29
|
Van Acker HH, Campillo-Davo D, Roex G, Versteven M, Smits EL, Van Tendeloo VF. The role of the common gamma-chain family cytokines in γδ T cell-based anti-cancer immunotherapy. Cytokine Growth Factor Rev 2018; 41:54-64. [PMID: 29773448 DOI: 10.1016/j.cytogfr.2018.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 12/28/2022]
Abstract
Cytokines of the common gamma-chain receptor family, comprising interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15 and IL-21, are vital with respect to organizing and sustaining healthy immune cell functions. Supporting the anti-cancer immune response, these cytokines inspire great interest for their use as vaccine adjuvants and cancer immunotherapies. It is against this background that gamma delta (γδ) T cells, as special-force soldiers and natural contributors of the tumor immunosurveillance, also received a lot of attention the last decade. As γδ T cell-based cancer trials are coming of age, this present review focusses on the effects of the different cytokines of the common gamma-chain receptor family on γδ T cells with respect to boosting γδ T cells as a therapeutic target in cancer immunotherapy. This review also gathers data that IL-15 in particular exhibits key features for augmenting the anti-tumor activity of effector killer γδ T cells whilst overcoming the myriad of immune escape mechanisms used by cancer cells.
Collapse
Affiliation(s)
- Heleen H Van Acker
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium.
| | - Diana Campillo-Davo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Gils Roex
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Maarten Versteven
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium; Center for Cell Therapy & Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, Tumor Immunology Group (TIGR), Vaccine & Infectious Disease Institute (VAXINFECTIO), University of Antwerp, Faculty of Medicine and Health Sciences, Antwerp, Belgium
| |
Collapse
|
30
|
Monteiro A, Cruto C, Rosado P, Martinho A, Rosado L, Fonseca M, Paiva A. Characterization of circulating gamma-delta T cells in relapsing vs remission multiple sclerosis. J Neuroimmunol 2018; 318:65-71. [DOI: 10.1016/j.jneuroim.2018.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 12/23/2022]
|
31
|
Xu K, Yang WY, Nanayakkara GK, Shao Y, Yang F, Hu W, Choi ET, Wang H, Yang X. GATA3, HDAC6, and BCL6 Regulate FOXP3+ Treg Plasticity and Determine Treg Conversion into Either Novel Antigen-Presenting Cell-Like Treg or Th1-Treg. Front Immunol 2018; 9:45. [PMID: 29434588 PMCID: PMC5790774 DOI: 10.3389/fimmu.2018.00045] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 12/17/2022] Open
Abstract
We conducted an experimental database analysis to determine the expression of 61 CD4+ Th subset regulators in human and murine tissues, cells, and in T-regulatory cells (Treg) in physiological and pathological conditions. We made the following significant findings: (1) adipose tissues of diabetic patients with insulin resistance upregulated various Th effector subset regulators; (2) in skin biopsy from patients with psoriasis, and in blood cells from patients with lupus, effector Th subset regulators were more upregulated than downregulated; (3) in rosiglitazone induced failing hearts in ApoE-deficient (KO) mice, various Th subset regulators were upregulated rather than downregulated; (4) aortic endothelial cells activated by proatherogenic stimuli secrete several Th subset-promoting cytokines; (5) in Treg from follicular Th (Tfh)-transcription factor (TF) Bcl6 KO mice, various Th subset regulators were upregulated; whereas in Treg from Th2-TF GATA3 KO mice and HDAC6 KO mice, various Th subset regulators were downregulated, suggesting that Bcl6 inhibits, GATA3 and HDAC6 promote, Treg plasticity; and (6) GATA3 KO, and Bcl6 KO Treg upregulated MHC II molecules and T cell co-stimulation receptors, suggesting that GATA3 and BCL6 inhibit Treg from becoming novel APC-Treg. Our data implies that while HDAC6 and Bcl6 are important regulators of Treg plasticity, GATA3 determine the fate of plastic Tregby controlling whether it will convert in to either Th1-Treg or APC-T-reg. Our results have provided novel insights on Treg plasticity into APC-Treg and Th1-Treg, and new therapeutic targets in metabolic diseases, autoimmune diseases, and inflammatory disorders.
Collapse
Affiliation(s)
- Keman Xu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Cardiovascular Research & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - William Y Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Cardiovascular Research & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Gayani Kanchana Nanayakkara
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Cardiovascular Research & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Ying Shao
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Cardiovascular Research & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Fan Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Wenhui Hu
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Pathology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Eric T Choi
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Center for Cardiovascular Research & Thrombosis Research, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States.,Department of Pharmacology, Microbiology and Immunology, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, United States
| |
Collapse
|