1
|
Gahlot S, Schmitt JL, Chevalier A, Villa M, Roy M, Ceroni P, Lehn JM, Gingras M. "The Sulfur Dance" Around Arenes and Heteroarenes - the Reversible Nature of Nucleophilic Aromatic Substitutions. Chemistry 2024; 30:e202400231. [PMID: 38289151 DOI: 10.1002/chem.202400231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Indexed: 02/20/2024]
Abstract
We disclose the features of a category of reversible nucleophilic aromatic substitutions in view of their significance and generality in dynamic aromatic chemistry. Exchange of sulfur components surrounding arenes and heteroarenes may occur at 25 °C, in a process that one may call a "sulfur dance". These SNAr systems present their own features, apart from common reversible reactions utilized in dynamic covalent chemistry (DCC). By varying conditions, covalent dynamics may operate to provide libraries of thiaarenes with some selectivity, or conversion of a hexa(thio)benzene asterisk into another one. The reversible nature of SNAr is confirmed by three methods: a convergence of the products distribution in reversible SNAr systems, a related product redistribution between two per(thio)benzenes by using a thiolate promoter, and from kinetic/thermodynamic data. A four-component dynamic covalent system further illustrates the thermodynamically-driven formation of a thiacalix[2]arene[2]pyrimidine by sulfur component exchanges. This work stimulates the implementation of reversible SNAr in aromatic chemistry and in DCC.
Collapse
Affiliation(s)
- Sapna Gahlot
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
| | - Jean-Louis Schmitt
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Aline Chevalier
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Marco Villa
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
- Department of Chemistry ("Giacomo Ciamician"), University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Myriam Roy
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, 75005, Paris, France
| | - Paola Ceroni
- Department of Chemistry ("Giacomo Ciamician"), University of Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Jean-Marie Lehn
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 allée Gaspard Monge, BP 70028, 67083, Strasbourg Cedex, France
| | - Marc Gingras
- Aix Marseille Univ, CNRS, CINaM, 13288, Marseille, France
| |
Collapse
|
2
|
Blanco-Gómez A, Díaz-Abellás M, Montes de Oca I, Peinador C, Pazos E, García MD. Host-Guest Stimuli-Responsive Click Chemistry. Chemistry 2024; 30:e202400743. [PMID: 38597381 DOI: 10.1002/chem.202400743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/11/2024]
Abstract
Click chemistry has reached its maturity as the weapon of choice for the irreversible ligation of molecular fragments, with over 20 years of research resulting in the development or improvement of highly efficient kinetically controlled conjugation reactions. Nevertheless, traditional click reactions can be disadvantageous not only in terms of efficiency (side products, slow kinetics, air/water tolerance, etc.), but also because they completely avoid the possibility to reversibly produce and control bound/unbound states. Recently, non-covalent click chemistry has appeared as a more efficient alternative, in particular by using host-guest self-assembled systems of high thermodynamic stability and kinetic lability. This review discusses the implementation of molecular switches in the development of such non-covalent ligation processes, resulting in what we have termed stimuli-responsive click chemistry, in which the bound/unbound constitutional states of the system can be favored by external stimulation, in particular using host-guest complexes. As we exemplify with handpicked selected examples, these supramolecular systems are well suited for the development of human-controlled molecular conjugation, by coupling thermodynamically regulated processes with appropriate temporally resolved extrinsic control mechanisms, thus mimicking nature and advancing our efforts to develop a more function-oriented chemical synthesis.
Collapse
Affiliation(s)
- Arturo Blanco-Gómez
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Mauro Díaz-Abellás
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Iván Montes de Oca
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Carlos Peinador
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Elena Pazos
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| | - Marcos D García
- CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, 15071, A Coruña, Spain
| |
Collapse
|
3
|
Jadhav T, Dhokale B, Saeed ZM, Hadjichristidis N, Mohamed S. Dynamic Covalent Chemistry of Enamine-Ones: Exploring Tunable Reactivity in Vitrimeric Polymers and Covalent Organic Frameworks. CHEMSUSCHEM 2024:e202400356. [PMID: 38842466 DOI: 10.1002/cssc.202400356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Dynamic covalent chemistry (DCC) has revolutionized the field of polymer science by offering new opportunities for the synthesis, processability, and recyclability of polymers as well as in the development of new materials with interesting properties such as vitrimers and covalent organic frameworks (COFs). Many DCC linkages have been explored for this purpose, but recently, enamine-ones have proven to be promising dynamic linkages because of their facile reversible transamination reactions under thermodynamic control. Their high stability, stimuli-responsive properties, and tunable kinetics make them promising dynamic cross-linkers in network polymers. Given the rapid developments in the field in recent years, this review provides a critical and up-to-date overview of recent developments in enamine-one chemistry, including factors that control their dynamics. The focus of the review will be on the utility of enamine-ones in designing a variety of processable and self-healable polymers with important applications in vitrimers and recyclable closed-loop polymers. The use of enamine-one linkages in crystalline polymers, known as COFs and their applications are also summarized. Finally, we provide an outlook for future developments in this field.
Collapse
Affiliation(s)
- Thaksen Jadhav
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, PO Box, Abu Dhabi, 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, PO Box, Abu Dhabi, 127788, United Arab Emirates
| | - Bhausaheb Dhokale
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, PO Box, Abu Dhabi, 127788, United Arab Emirates
- Department of Chemistry, University of Wyoming, Laramie, Wyoming 82071, United States of America
| | - Zeinab M Saeed
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, PO Box, Abu Dhabi, 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, PO Box, Abu Dhabi, 127788, United Arab Emirates
| | - Nikos Hadjichristidis
- Chemistry Program, KAUST Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Sharmarke Mohamed
- Department of Chemistry, Green Chemistry & Materials Modelling Laboratory, Khalifa University of Science and Technology, PO Box, Abu Dhabi, 127788, United Arab Emirates
- Center for Catalysis and Separations, Khalifa University of Science and Technology, PO Box, Abu Dhabi, 127788, United Arab Emirates
| |
Collapse
|
4
|
Lu H, Ye H, You L. Photoswitchable Cascades for Allosteric and Bidirectional Control over Covalent Bonds and Assemblies. J Am Chem Soc 2024. [PMID: 38620077 DOI: 10.1021/jacs.4c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Studies of complex systems and emerging properties to mimic biosystems are at the forefront of chemical research. Dynamic multistep cascades, especially those exhibiting allosteric regulation, are challenging. Herein, we demonstrate a versatile platform of photoswitchable covalent cascades toward remote and bidirectional control of reversible covalent bonds and ensuing assemblies. The relay of a photochromic switch, keto-enol equilibrium, and ring-chain equilibrium allows light-mediated reversible allosteric structural changes. The accompanying distinct reactivity further enables photoswitchable dynamic covalent bonding and release of substrates bidirectionally through alternating two wavelengths of light, essentially realizing light-mediated signaling cycles. The downfall of energy by covalent bond formation/scission upon photochemical reactions offers the driving force for the controlled direction of the cascade. To show the molecular diversity, photoswitchable on-demand assembly/disassembly of covalent polymers, including structurally reconfigurable polymers, was realized. This work achieves photoswitchable allosteric regulation of covalent architectures within dynamic multistep cascades, which has rarely been reported before. The results resemble allosteric control within biological signaling networks and should set the stage for many endeavors, such as dynamic assemblies, molecular motors, responsive polymers, and intelligent materials.
Collapse
Affiliation(s)
- Hanwei Lu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hebo Ye
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| |
Collapse
|
5
|
Kirchner P, Schramm L, Ivanova S, Shoyama K, Würthner F, Beuerle F. A Water-Stable Boronate Ester Cage. J Am Chem Soc 2024; 146:5305-5315. [PMID: 38325811 PMCID: PMC10910528 DOI: 10.1021/jacs.3c12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 02/09/2024]
Abstract
The reversible condensation of catechols and boronic acids to boronate esters is a paradigm reaction in dynamic covalent chemistry. However, facile backward hydrolysis is detrimental for stability and has so far prevented applications for boronate-based materials. Here, we introduce cubic boronate ester cages 6 derived from hexahydroxy tribenzotriquinacenes and phenylene diboronic acids with ortho-t-butyl substituents. Due to steric shielding, dynamic exchange at the Lewis acidic boron sites is feasible only under acid or base catalysis but fully prevented at neutral conditions. For the first time, boronate ester cages 6 tolerate substantial amounts of water or alcohols both in solution and solid state. The unprecedented applicability of these materials under ambient and aqueous conditions is showcased by efficient encapsulation and on-demand release of β-carotene dyes and heterogeneous water oxidation catalysis after the encapsulation of ruthenium catalysts.
Collapse
Affiliation(s)
- Philipp
H. Kirchner
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Louis Schramm
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Svetlana Ivanova
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Kazutaka Shoyama
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Frank Würthner
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
| | - Florian Beuerle
- Institut
für Organische Chemie, Julius-Maximilians-Universität
Würzburg, Am Hubland, Würzburg 97074, Germany
- Center
for Nanosystems Chemistry (CNC), Julius-Maximilians-Universität
Würzburg, Theodor-Boveri-Weg, Würzburg 97074, Germany
- Institut
für Organische Chemie, Eberhard Karls
Universität Tübingen, Auf der Morgenstelle 18, Tübingen 72076, Germany
| |
Collapse
|
6
|
Hollstein S, von Delius M. The Dynamic Chemistry of Orthoesters and Trialkoxysilanes: Making Supramolecular Hosts Adaptive, Fluxional, and Degradable. Acc Chem Res 2024. [PMID: 38286767 PMCID: PMC10882968 DOI: 10.1021/acs.accounts.3c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
ConspectusThe encapsulation of ions into macro(bi)cyclic hosts lies at the core of supramolecular chemistry. While chemically inert hosts such as crown ethers (synthesis) and cyclodextrins (Febreze) have enabled real-world applications, there is a wider and accelerating trend toward functional molecules and materials that are stimuli-responsive, degradable, or recyclable. To endow supramolecular hosts with these properties, a deviation from ether C-O bonds is required, and functional groups that engage in equilibrium reactions under relatively mild conditions are needed.In this Account, we describe our group's work on supramolecular hosts that comprise orthoester and trialkoxysilane bridgeheads. In their simplest structural realization, these compounds resemble both Cram's crown ethers (macrocycles with oxygen donor atoms) and Lehn's cryptands (macrobicycles with 3-fold symmetry). It is therefore not surprising that these new hosts were found to have a natural propensity to bind cations relatively strongly. In recent work, we were also able to create anion-binding hosts by placing disubstituted urea motifs at the center of the tripodal architecture. Structural modifications of either the terminal substituents (e.g., H vs CH3 on the bridgehead), the diol (e.g., chiral), or the bridgehead atom itself (Si vs C) were found to have profound implications on the guest-binding properties.What makes orthoester/trialkoxysilane hosts truly unique is their dynamic covalent chemistry. The ability to conduct exchange reactions with alcohols at the bridgehead carbon or silicon atom is first and foremost an opportunity to develop highly efficient syntheses. Indeed, all hosts presented in this Account were prepared via templated self-assembly in yields of up to 90%. This efficiency is remarkable because the macrobicyclic architecture is established in one single step from at least five components. A second opportunity presented by dynamic bridgeheads is that suitable mixtures of orthoester hosts or their subcomponents can be adaptive, i.e. they respond to the presence of guests such that the addition of a certain guest can dictate the formation of a preferred host. In an extreme example of dynamic adaptivity, we found that ammonium ions can fulfill the dual role of catalyst for orthoester exchange and cationic template for efficient host formation, representing an unprecedented example of a fluxional supramolecular complex. The third implication of dynamic bridgeheads is due to the reaction of orthoesters and trialkoxysilanes with water instead of alcohols. We describe in detail how the hydrolysis rate differs strongly between O,O,O-orthoesters, S,S,S-trithioorthoesters, and trialkoxysilanes and how it is tunable by the choice of substituents and pH.We expect that the fundamental insights into exchange and degradation kinetics described in this Account will be useful far beyond supramolecular chemistry.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
7
|
Chang X, Xu Y, von Delius M. Recent advances in supramolecular fullerene chemistry. Chem Soc Rev 2024; 53:47-83. [PMID: 37853792 PMCID: PMC10759306 DOI: 10.1039/d2cs00937d] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Indexed: 10/20/2023]
Abstract
Fullerene chemistry has come a long way since 1990, when the first bulk production of C60 was reported. In the past decade, progress in supramolecular chemistry has opened some remarkable and previously unexpected opportunities regarding the selective (multiple) functionalization of fullerenes and their (self)assembly into larger structures and frameworks. The purpose of this review article is to provide a comprehensive overview of these recent developments. We describe how macrocycles and cages that bind strongly to C60 can be used to block undesired addition patterns and thus allow the selective preparation of single-isomer addition products. We also discuss how the emergence of highly shape-persistent macrocycles has opened opportunities for the study of photoactive fullerene dyads and triads as well as the preparation of mechanically interlocked compounds. The preparation of two- or three-dimensional fullerene materials is another research area that has seen remarkable progress over the past few years. Due to the rapidly decreasing price of C60 and C70, we believe that these achievements will translate into all fields where fullerenes have traditionally (third-generation solar cells) and more recently been applied (catalysis, spintronics).
Collapse
Affiliation(s)
- Xingmao Chang
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| | - Youzhi Xu
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China.
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Ulm 89081, Germany.
| |
Collapse
|
8
|
Bouffard J, Coelho F, Sakai N, Matile S. Dynamic Phosphorus: Thiolate Exchange Cascades with Higher Phosphorothioates. Angew Chem Int Ed Engl 2023:e202313931. [PMID: 37847524 DOI: 10.1002/anie.202313931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/18/2023]
Abstract
In this study, we introduce phosphorus, a pnictogen, as an exchange center for dynamic covalent chemistry. Cascade exchange of neutral phosphorotri- and -tetrathioates with thiolates is demonstrated in organic solvents, aqueous micellar systems, and in living cells. Exchange rates increase with the pH value, electrophilicity of the exchange center, and nucleophilicity of the exchangers. Molecular walking of the dynamic phosphorus center along Hammett gradients is simulated by the sequential addition of thiolate exchangers. Compared to phosphorotrithioates, tetrathioates are better electrophiles with higher exchange rates. Dynamic phosphorotri- and -tetrathioates are non-toxic to HeLa Kyoto cells and participate in the dynamic networks that account for thiol-mediated uptake into living cells.
Collapse
Affiliation(s)
- Jules Bouffard
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Filipe Coelho
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- Department of Organic Chemistry, University of Geneva, Geneva, Switzerland
| |
Collapse
|
9
|
Blanke M, Neumann T, Gutierrez Suburu ME, Prymak O, Wölper C, Strassert CA, Giese M. Tuning the Fluorescence in Dynamic Covalent Bonded Liquid Crystals. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55864-55872. [PMID: 36508612 DOI: 10.1021/acsami.2c16209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
A series of emissive liquid crystalline materials based on salicylidene derivatives is reported and investigated with respect to their thermoresponsive and mechanochromic properties. Single-crystal analysis and temperature-dependent powder X-ray diffraction measurements allowed us to correlate the intermolecular organization of the mesogens with thermoresponsive changes in the fluorescence behavior. As a proof-of-principle study, we employed the dynamics of the imine bond in transamination reactions for postsynthetic tuning of the fluorescence behavior as a further step toward the development of adaptive materials.
Collapse
Affiliation(s)
- Meik Blanke
- Organic Chemistry and CeNIDE, University of Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
| | - Thorben Neumann
- Organic Chemistry and CeNIDE, University of Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
| | - Matias Ezequiel Gutierrez Suburu
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- CeNTech, SoN, CiMIC, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Münster, Germany
| | - Oleg Prymak
- Institute of Inorganic Chemistry and CeNIDE, University of Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
| | - Christoph Wölper
- Institute of Inorganic Chemistry and CeNIDE, University of Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
| | - Cristian A Strassert
- Institut für Anorganische und Analytische Chemie, Westfälische Wilhelms-Universität Münster, Corrensstraße 28/30, 48149 Münster, Germany
- CeNTech, SoN, CiMIC, Westfälische Wilhelms-Universität Münster, Heisenbergstraße 11, D-48149 Münster, Germany
| | - Michael Giese
- Organic Chemistry and CeNIDE, University of Duisburg-Essen, Universitätsstraße 7, 45141 Essen, Germany
| |
Collapse
|
10
|
Del Giudice D, Spatola E, Valentini M, Ercolani G, Di Stefano S. Dissipative Dynamic Libraries (DDLs) and Dissipative Dynamic Combinatorial Chemistry (DDCC). CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| | - Emanuele Spatola
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| | - Matteo Valentini
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| | - Gianfranco Ercolani
- Dipartimento di Scienze e Tecnologie Chimiche Università di Roma Tor Vergata Via della Ricerca Scientifica 00133 Roma Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Università di Roma La Sapienza and ISB-CNR Sede Secondaria di Roma – Meccanismi di Reazione P.le A. Moro 5 I-00185 Roma Italy
| |
Collapse
|
11
|
Hollstein S, Shyshov O, Hanževački M, Zhao J, Rudolf T, Jäger CM, von Delius M. Dynamic Covalent Self-Assembly of Chloride- and Ion-Pair-Templated Cryptates. Angew Chem Int Ed Engl 2022; 61:e202201831. [PMID: 35384202 PMCID: PMC9400851 DOI: 10.1002/anie.202201831] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 12/17/2022]
Abstract
While supramolecular hosts capable of binding and transporting anions and ion pairs are now widely available, self-assembled architectures are still rare, even though they offer an inherent mechanism for the release of the guest ion(s). In this work, we report the dynamic covalent self-assembly of tripodal, urea-based anion cryptates that are held together by two orthoester bridgeheads. These hosts exhibit affinity for anions such as Cl- , Br- or I- in the moderate range that is typically advantageous for applications in membrane transport. In unprecedented experiments, we were able to dissociate the Cs⋅Cl ion pair by simultaneously assembling suitably sized orthoester hosts around the Cs+ and the Cl- ion.
Collapse
Affiliation(s)
- Selina Hollstein
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Oleksandr Shyshov
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Marko Hanževački
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Jie Zhao
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Tamara Rudolf
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| | - Christof M. Jäger
- Department of Chemical and Environmental EngineeringUniversity of Nottingham University ParkNottinghamNG7 2RDUK
| | - Max von Delius
- Institute of Organic ChemistryUlm UniversityAlbert-Einstein-Allee 1189081UlmGermany
| |
Collapse
|
12
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202201168. [PMID: 35447003 DOI: 10.1002/anie.202201168] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Indexed: 12/21/2022]
Abstract
Sulfur has been important in dynamic covalent chemistry (DCC) since the beginning of the field. Mainly as part of disulfides and thioesters, dynamic sulfur-based bonds (DSBs) have a leading role in several remarkable reactions. Part of this success is due to the almost ideal properties of DSBs for the preparation of dynamic covalent systems, including high reactivity and good reversibility under mild aqueous conditions, the possibility of exploiting supramolecular interactions, access to isolable structures, and easy experimental control to turn the reaction on/off. DCC is currently witnessing an increase in the importance of DSBs. The chemical flexibility offered by DSBs opens the door to multiple applications. This Review presents an overview of all the DSBs used in DCC, their applications, and remarks on the interesting properties that they confer on dynamic chemical systems, especially those containing several DSBs.
Collapse
Affiliation(s)
- A Gastón Orrillo
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| | - Ricardo L E Furlan
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, CONICET, Suipacha 531, Rosario, S2002LRK, Argentina
| |
Collapse
|
13
|
Hollstein S, Shyshov O, Hanževački M, Zhao J, Rudolf T, Jäger CM, Delius M. Dynamisch kovalente Selbstassemblierung von Chlorid‐ und Ionenpaar‐templierten Kryptaten. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Selina Hollstein
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Oleksandr Shyshov
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Marko Hanževački
- Department of Chemical and Environmental Engineering University of Nottingham University Park Nottingham NG7 2RD Großbritannien
| | - Jie Zhao
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Tamara Rudolf
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Christof M. Jäger
- Department of Chemical and Environmental Engineering University of Nottingham University Park Nottingham NG7 2RD Großbritannien
| | - Max Delius
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
14
|
Del Giudice D, Valentini M, Melchiorre G, Spatola E, Di Stefano S. Dissipative Dynamic Covalent Chemistry (DDCvC) Based on the Transimination Reaction. Chemistry 2022; 28:e202200685. [DOI: 10.1002/chem.202200685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Daniele Del Giudice
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Matteo Valentini
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Gabriele Melchiorre
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Emanuele Spatola
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| | - Stefano Di Stefano
- Dipartimento di Chimica Università degli Studi di Roma “La Sapienza” P.le A. Moro 5 00185 Rome Italy
| |
Collapse
|
15
|
Orrillo AG, Furlan RLE. Sulfur in Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alfredo Gastón Orrillo
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| | - Ricardo L. E. Furlan
- Universidad Nacional de Rosario Facultad de Ciencias Bioquimicas y Farmaceuticas Organic Chemistry Suipacha 530 2000 Rosario ARGENTINA
| |
Collapse
|
16
|
Blanke M, Postulka L, Ciara I, D'Acierno F, Hildebrandt M, Gutmann JS, Dong RY, Michal CA, Giese M. Manipulation of Liquid Crystalline Properties by Dynamic Covalent Chemistry─En Route to Adaptive Materials. ACS APPLIED MATERIALS & INTERFACES 2022; 14:16755-16763. [PMID: 35377595 DOI: 10.1021/acsami.2c03241] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Dynamic covalent bonds bear great potential for the development of adaptive and self-healing materials. Herein, we introduce a versatile concept not only for the design of low-molecular-weight liquid crystals but also for their in situ postsynthetic modification by using the dynamic covalent nature of imine bonds. The methodology allows systematic investigations of structure-property relationships as well as the manipulation of the materials' behavior (liquid crystallinity) and the introduction of additional properties (here, fluorescence) by a solvent-free method. For the first time, the transamination reaction is followed by variable-temperature 19F solid-state NMR in the mesophase, providing insights into the reaction dynamics in a liquid crystalline material. Finally, the application potential for the design of liquid crystalline materials with adaptive properties is demonstrated by a sequential combination of these reactions.
Collapse
Affiliation(s)
- Meik Blanke
- Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Leona Postulka
- Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Isabelle Ciara
- Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| | - Francesco D'Acierno
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC V6T 1Z1, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver BC V6T 1Z1, Canada
| | - Marcus Hildebrandt
- Physical Chemistry, University of Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany
| | - Jochen S Gutmann
- Physical Chemistry, University of Duisburg-Essen, Universitätsstraße 2, 45117 Essen, Germany
| | - Ronald Y Dong
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver BC V6T 1Z1, Canada
| | - Carl A Michal
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver BC V6T 1Z1, Canada
- Department of Physics and Astronomy, University of British Columbia, 6224 Agricultural Road, Vancouver BC V6T 1Z1, Canada
| | - Michael Giese
- Organic Chemistry, University of Duisburg-Essen, Universitätsstraße 7, 45117 Essen, Germany
| |
Collapse
|
17
|
Debiais M, Gimenez Molina A, Müller S, Vasseur JJ, Barvik I, Baraguey C, Smietana M. Design and NMR characterization of reversible head-to-tail boronate-linked macrocyclic nucleic acids. Org Biomol Chem 2022; 20:2889-2895. [PMID: 35319560 DOI: 10.1039/d2ob00232a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Inspired by the ability of boronic acids to bind with compounds containing diol moieties, we envisioned the formation in solution of boronate ester-based macrocycles by the head-to-tail assembly of a nucleosidic precursor that contains both a boronic acid and the natural 2',3'-diol of ribose. DOSY NMR spectroscopy experiments in water and anhydrous DMF revealed the dynamic assembly of this precursor into dimeric and trimeric macrocycles in a concentration-dependent fashion as well as the reversibility of the self-assembly process. NMR experimental values and quantum mechanics calculations provided further insight into the sugar pucker conformation profile of these macrocycles.
Collapse
Affiliation(s)
- Mégane Debiais
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Alejandro Gimenez Molina
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Sabine Müller
- University Greifswald, Institute for Biochemistry, Greifswald, Germany
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Ivan Barvik
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, Prague 2, 121 16, Czech Republic
| | - Carine Baraguey
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| | - Michael Smietana
- Institut des Biomolécules Max Mousseron, Université de Montpellier, CNRS, ENSCM, 1919 route de Mende, 34095 Montpellier, France.
| |
Collapse
|
18
|
Shear TA, Mayhugh JT, Zocchi LJ, Demachkie IS, Trubinstein HJ, Zakharov LN, Johnson DW. Expanding the Scope of Pnictogen‐Assisted Cyclophane Self‐Assembly. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Luca J. Zocchi
- University of Oregon Chemistry & Biochemistry UNITED STATES
| | | | | | | | - Darren William Johnson
- University of Oregon Department of Chemistry 1253 University of Oregon 97403-1253 Eugene UNITED STATES
| |
Collapse
|
19
|
Harders P, Griebenow T, Businski A, Kaus AJ, Pietsch L, Näther C, McConnell A. The Dynamic Covalent Chemistry of Amidoboronates: Tuning the rac5/rac6 Ratio via the B‑N and B‐O Dynamic Covalent Bonds. Chempluschem 2022; 87:e202200022. [DOI: 10.1002/cplu.202200022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Patrick Harders
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Thomas Griebenow
- Christian Albrechts Universität zu Kiel: Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Artjom Businski
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Anton J. Kaus
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Lorenz Pietsch
- Christian-Albrechts-Universitat zu Kiel Otto Diels Institute of Organic Chemistry GERMANY
| | - Christian Näther
- Christian-Albrechts-Universitat zu Kiel Institute of Inorganic Chemistry GERMANY
| | - Anna McConnell
- Kiel University Institute of Organic Chemistry Otto-Hahn-Platz 4 24098 Kiel GERMANY
| |
Collapse
|
20
|
Li Z, Zhang L, Zhou Y, Zha D, Hai Y, You L. Dynamic Covalent Reactions Controlled by Ring‐Chain Tautomerism of 2‐Formylbenzoic Acid. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ziyi Li
- College of Chemistry and Material Science Fujian Normal University Fuzhou Fujian 350007 China
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Ling Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yuntao Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Daijun Zha
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
| | - Yu Hai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lei You
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou Fujian 350108 China
| |
Collapse
|
21
|
García-Calvo J, López-Andarias J, Maillard J, Mercier V, Roffay C, Roux A, Fürstenberg A, Sakai N, Matile S. HydroFlipper membrane tension probes: imaging membrane hydration and mechanical compression simultaneously in living cells. Chem Sci 2022; 13:2086-2093. [PMID: 35308858 PMCID: PMC8849034 DOI: 10.1039/d1sc05208j] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/22/2022] [Indexed: 12/29/2022] Open
Abstract
HydroFlippers are introduced as the first fluorescent membrane tension probes that report simultaneously on membrane compression and hydration. The probe design is centered around a sensing cycle that couples the mechanical planarization of twisted push–pull fluorophores with the dynamic covalent hydration of their exocyclic acceptor. In FLIM images of living cells, tension-induced deplanarization is reported as a decrease in fluorescence lifetime of the dehydrated mechanophore. Membrane hydration is reported as the ratio of the photon counts associated to the hydrated and dehydrated mechanophores in reconvoluted lifetime frequency histograms. Trends for tension-induced decompression and hydration of cellular membranes of interest (MOIs) covering plasma membrane, lysosomes, mitochondria, ER, and Golgi are found not to be the same. Tension-induced changes in mechanical compression are rather independent of the nature of the MOI, while the responsiveness to changes in hydration are highly dependent on the intrinsic order of the MOI. These results confirm the mechanical planarization of push–pull probes in the ground state as most robust mechanism to routinely image membrane tension in living cells, while the availability of simultaneous information on membrane hydration will open new perspectives in mechanobiology. HydroFlippers respond to membrane compression and hydration in the same fluorescence lifetime imaging microscopy histogram: the responses do not correlate.![]()
Collapse
Affiliation(s)
- José García-Calvo
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Javier López-Andarias
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Jimmy Maillard
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Chloé Roffay
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Aurélien Roux
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Alexandre Fürstenberg
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
22
|
Kravchenko A, Timmer BJJ, Inge AK, Biedermann M, Ramström O. Stable CAAC‐based Ruthenium Complexes for Dynamic Olefin Metathesis Under Mild Conditions. ChemCatChem 2021. [DOI: 10.1002/cctc.202101172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alexander Kravchenko
- Department of Chemistry KTH – Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
| | - Brian J. J. Timmer
- Department of Chemistry KTH – Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
| | - A. Ken Inge
- Stockholm University Department of Materials and Environmental Chemistry Svante Arrhenius väg 16 C S-10691 Stockholm Sweden
| | - Maurice Biedermann
- Department of Chemistry KTH – Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
| | - Olof Ramström
- Department of Chemistry KTH – Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
- Department of Chemistry University of Massachusetts Lowell One University Ave. Lowell MA 01854 USA
- Department of Chemistry and Biomedical Sciences Linnaeus University SE-39182 Kalmar Sweden
| |
Collapse
|
23
|
Jin J, Miao J, Cheng C. Mono-mercapto-functionalized pillar[5]arene: a host-guest complexation accelerated reversible redox dimerization. Chem Commun (Camb) 2021; 57:7950-7953. [PMID: 34286743 DOI: 10.1039/d1cc03010h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A mono-mercapto-functionalized pillar[5]arene and its dimer, capable of being reversibly interconverted, were successfully synthesized. Fascinatingly, a faster reversible redox conversion involving a dynamic disulfide bond was observed between their host-guest complexes compared with the hosts themselves.
Collapse
Affiliation(s)
- Jianbing Jin
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Jiarong Miao
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| | - Chuyang Cheng
- College of Chemistry, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
24
|
|
25
|
Lutz E, Moulin E, Tchakalova V, Benczédi D, Herrmann A, Giuseppone N. Design of Stimuli-Responsive Dynamic Covalent Delivery Systems for Volatile Compounds (Part 1): Controlled Hydrolysis of Micellar Amphiphilic Imines in Water. Chemistry 2021; 27:13457-13467. [PMID: 34270124 DOI: 10.1002/chem.202102049] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Indexed: 12/29/2022]
Abstract
Despite their intrinsic hydrolysable character, imine bonds can become remarkably stable in water when self-assembled in amphiphilic micellar structures. In this work, we systematically studied some of these structures and the influence of various parameters that can be used to take control of their hydrolysis, including pH, concentration, the position of the imine function in the amphiphilic structure, relative lengths of the linked hydrophilic and hydrophobic moieties. Thermodynamic and kinetic data led us to the rational design of stable imines in water, partly based on the location of the imine function within the hydrophobic part of the amphiphile and on a predictable quantitative term that we define as the total hydrophilic-lipophilic balance (HLB). In addition, we show that such stable systems are also stimuli-responsive and therefore, of potential interest in trapping and releasing micellar components on demand.
Collapse
Affiliation(s)
- Eric Lutz
- SAMS Research Group, Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Emilie Moulin
- SAMS Research Group, Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - Vera Tchakalova
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Daniel Benczédi
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Andreas Herrmann
- Firmenich SA, Corporate R&D Division, Rue de la Bergère 7, 1242, Satigny, Switzerland
| | - Nicolas Giuseppone
- SAMS Research Group, Institut Charles Sadron, CNRS, University of Strasbourg, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| |
Collapse
|
26
|
Zhao D, Peng J, Jian G, Liu C, Chen H, Zhou Y, Zhou Y. Thermal Healing of Copolyacrylate Elastomer Based on Catalyst‐Free Transketalization. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dan Zhao
- School of Chemistry and Chemical Engineering Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 China
| | - Jiayu Peng
- School of Chemistry and Chemical Engineering Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 China
| | - Guodong Jian
- School of Chemistry and Chemical Engineering Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 China
| | - Chang Liu
- School of Chemistry and Chemical Engineering Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 China
| | - Hongxiang Chen
- School of Chemistry and Chemical Engineering Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 China
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science South‐Central University for Nationalities Wuhan 430074 China
| | - Yu Zhou
- School of Chemistry and Chemical Engineering Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials Wuhan University of Science and Technology Wuhan 430081 China
| | - Yang Zhou
- School of Textile Science and Engineering National Engineering Laboratory for Advanced Yarn and Clean Production Wuhan Textile University Wuhan 430200 China
| |
Collapse
|
27
|
Carbajo D, Ruiz-Sánchez AJ, Nájera F, Pérez-Inestrosa E, Alfonso I. Spontaneous macrocyclization through multiple dynamic cyclic aminal formation. Chem Commun (Camb) 2021; 57:1190-1193. [PMID: 33448267 DOI: 10.1039/d0cc07184f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of aminals in dynamic covalent chemistry is slightly underexplored, probably due to their inherent instability. Here we report the spontaneous [2+2] macrocyclization of tetrakis(aminals). Their unexpected stability and structural modularity, the dynamic nature of the connections and their water tolerance make them appealing systems for future applications as stimulus-responsive materials.
Collapse
Affiliation(s)
- Daniel Carbajo
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/Jordi Girona 18-26, Barcelona, 08034, Spain.
| | - Antonio Jesús Ruiz-Sánchez
- Universidad de Málaga-IBIMA, Departamento de Química Orgánica, Campus de Teatinos s/n, Málaga-29071, Spain. and Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, Málaga-29590, Spain
| | - Francisco Nájera
- Universidad de Málaga-IBIMA, Departamento de Química Orgánica, Campus de Teatinos s/n, Málaga-29071, Spain. and Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, Málaga-29590, Spain
| | - Ezequiel Pérez-Inestrosa
- Universidad de Málaga-IBIMA, Departamento de Química Orgánica, Campus de Teatinos s/n, Málaga-29071, Spain. and Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Parque Tecnológico de Andalucía, c/Severo Ochoa, 35, Málaga-29590, Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia, IQAC-CSIC c/Jordi Girona 18-26, Barcelona, 08034, Spain.
| |
Collapse
|
28
|
Ren Y, Kravchenko O, Ramström O. Configurational and Constitutional Dynamics of Enamine Molecular Switches. Chemistry 2020; 26:15654-15663. [PMID: 33044767 PMCID: PMC7756271 DOI: 10.1002/chem.202003478] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 12/11/2022]
Abstract
Dual configurational and constitutional dynamics in systems based on enamine molecular switches has been systematically studied. pH-responsive moieties, such as 2-pyridyl and 2-quinolinyl units, were required on the "stator" part, also providing enamine stability through intramolecular hydrogen-bonding (IMHB) effects. Upon protonation or deprotonation, forward and backward switching could be rapidly achieved. Extension of the stator π-system in the 2-quinolinyl derivative provided a higher E-isomeric equilibrium ratio under neutral conditions, pointing to a means to achieve quantitative forward/backward isomerization processes. The "rotor" part of the enamine switches exhibited constitutional exchange ability with primary amines. Interestingly, considerably higher exchange rates were observed with amines containing ester groups, indicating potential stabilization of the transition state through IMHB. Acids, particularly BiIII , were found to efficiently catalyze the constitutional dynamic processes. In contrast, the enamine and the formed dynamic enamine system showed excellent stability under basic conditions. This coupled configurational and constitutional dynamics expands the scope of dynamic C-C and C-N bonds and potentiates further studies and applications in the fields of molecular machinery and systems chemistry.
Collapse
Affiliation(s)
- Yansong Ren
- Department of ChemistryKTH—Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Oleksandr Kravchenko
- Department of ChemistryKTH—Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Olof Ramström
- Department of ChemistryKTH—Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave.LowellMA01854USA
- Department of Chemistry and Biomedical SciencesLinnaeus University39182KalmarSweden
| |
Collapse
|
29
|
Balakrishna B, Menon A, Cao K, Gsänger S, Beil SB, Villalva J, Shyshov O, Martin O, Hirsch A, Meyer B, Kaiser U, Guldi DM, von Delius M. Dynamic Covalent Formation of Concave Disulfide Macrocycles Mechanically Interlocked with Single-Walled Carbon Nanotubes. Angew Chem Int Ed Engl 2020; 59:18774-18785. [PMID: 32544289 PMCID: PMC7590186 DOI: 10.1002/anie.202005081] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 02/02/2023]
Abstract
The formation of discrete macrocycles wrapped around single-walled carbon nanotubes (SWCNTs) has recently emerged as an appealing strategy to functionalize these carbon nanomaterials and modify their properties. Here, we demonstrate that the reversible disulfide exchange reaction, which proceeds under mild conditions, can install relatively large amounts of mechanically interlocked disulfide macrocycles on the one-dimensional nanotubes. Size-selective functionalization of a mixture of SWCNTs of different diameters were observed, presumably arising from error correction and the presence of relatively rigid, curved π-systems in the key building blocks. A combination of UV/Vis/NIR, Raman, photoluminescence excitation, and transient absorption spectroscopy indicated that the small (6,4)-SWCNTs were predominantly functionalized by the small macrocycles 12 , whereas the larger (6,5)-SWCNTs were an ideal match for the larger macrocycles 22 . This size selectivity, which was rationalized computationally, could prove useful for the purification of nanotube mixtures, since the disulfide macrocycles can be removed quantitatively under mild reductive conditions.
Collapse
Affiliation(s)
- Bugga Balakrishna
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Arjun Menon
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Kecheng Cao
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Sebastian Gsänger
- Interdisciplinary Center for Molecular Materials (ICMM) & Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Sebastian B Beil
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Julia Villalva
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Oleksandr Shyshov
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Oliver Martin
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Andreas Hirsch
- Department of Chemistry and Pharmacy & Joint Institute of Advanced Materials and Processes (ZMP), Friedrich-Alexander University Erlangen-Nürnberg, Nikolaus-Fiebiger-Strasse 10, 91058, Erlangen, Germany
| | - Bernd Meyer
- Interdisciplinary Center for Molecular Materials (ICMM) & Computer-Chemistry-Center (CCC), Friedrich-Alexander University Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052, Erlangen, Germany
| | - Ute Kaiser
- Electron Microscopy of Materials Science, Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Dirk M Guldi
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander University Erlangen-Nürnberg, Egerlandstrasse 3, 91058, Erlangen, Germany
| | - Max von Delius
- Institute of Organic Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
30
|
Palmer U, Puchta R. Wirt-Gast-Komplexe von [bfu.bfu.bfu]: Vorhersage von Ionenselektivitäten mittels quantenchemischer Rechnungen XIII. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2020. [DOI: 10.1515/znb-2020-0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The CH2–O–C2H4–O–CH2 moieties in Lehn’s cryptand [2.2.2] have been substituted by 2,2′-bifurane groups to get the cryptand [bfu.bfu.bfu]. The ion selectivity of this new cryptand was investigated by DFT calculations (RB3LYP/LANL2DZp, RB3LYP/LACVP*, RBP86/LANL2DZp and RBP86/LACVP*) based on model equations and analysis of the [M ⊂ bfu.bfu.bfu]
n+ cryptate structures. The cryptand [bfu.bfu.bfu] is best suited for the alkali cations Na+ and K+, and the alkaline earth cation Sr2+ followed by Ca2+. The cavity of [bfu.bfu.bfu] is thus similar to that in [phen.phen.phen] or [bpy.bpy.bpy]. The selectivity of [bfu.bfu.bfu] is due to the flexibility of the OCCO und CN···NC dihedral angles. The results are independent of the selected DFT methods.
Collapse
Affiliation(s)
- Ursula Palmer
- Anorganische Chemie, Department Chemie und Pharmazie , Universität Erlangen-Nürnberg , Egerlandstr. 1, 91058 Erlangen , Germany
| | - Ralph Puchta
- Anorganische Chemie, Department Chemie und Pharmazie , Universität Erlangen-Nürnberg , Egerlandstr. 1, 91058 Erlangen , Germany
- Computer Chemie Center, Department Chemie und Pharmazie , Universität Erlangen-Nürnberg , Nägelsbachstr. 25, 91052 Erlangen , Germany
- Zentralinstitut für Scientific Computing (ZISC) , Universität Erlangen-Nürnberg , Martensstr. 5a, 91058 Erlangen , Germany
| |
Collapse
|
31
|
Balakrishna B, Menon A, Cao K, Gsänger S, Beil SB, Villalva J, Shyshov O, Martin O, Hirsch A, Meyer B, Kaiser U, Guldi DM, Delius M. Mechanische Verzahnung von einwandigen Kohlenstoffnanoröhren durch dynamisch‐kovalente Bildung von konkaven Disulfidmakrozyklen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202005081] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Bugga Balakrishna
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Arjun Menon
- Department Chemie und Pharmazie & Interdisziplinäres Zentrum für Molekulare Materialien Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Deutschland
| | - Kecheng Cao
- Elektronenmikroskopie der Materialwissenschaften Zentrale Einrichtung für Elektronenmikroskopie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Sebastian Gsänger
- Interdisziplinäres Zentrum für Molekulare Materialien & Computer-Chemie-Zentrum (CCC) Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstrasse 25 91052 Erlangen Deutschland
| | - Sebastian B. Beil
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Julia Villalva
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Oleksandr Shyshov
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Oliver Martin
- Department Chemie und Pharmazie & Gemeinsames Institut für Angewandte Materialien und Prozesse (ZMP) Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| | - Andreas Hirsch
- Department Chemie und Pharmazie & Gemeinsames Institut für Angewandte Materialien und Prozesse (ZMP) Friedrich-Alexander-Universität Erlangen-Nürnberg Nikolaus-Fiebiger-Strasse 10 91058 Erlangen Deutschland
| | - Bernd Meyer
- Interdisziplinäres Zentrum für Molekulare Materialien & Computer-Chemie-Zentrum (CCC) Friedrich-Alexander-Universität Erlangen-Nürnberg Nägelsbachstrasse 25 91052 Erlangen Deutschland
| | - Ute Kaiser
- Elektronenmikroskopie der Materialwissenschaften Zentrale Einrichtung für Elektronenmikroskopie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| | - Dirk M. Guldi
- Department Chemie und Pharmazie & Interdisziplinäres Zentrum für Molekulare Materialien Friedrich-Alexander-Universität Erlangen-Nürnberg Egerlandstrasse 3 91058 Erlangen Deutschland
| | - Max Delius
- Institut für Organische Chemie Universität Ulm Albert-Einstein-Allee 11 89081 Ulm Deutschland
| |
Collapse
|
32
|
García-Calvo J, Maillard J, Fureraj I, Strakova K, Colom A, Mercier V, Roux A, Vauthey E, Sakai N, Fürstenberg A, Matile S. Fluorescent Membrane Tension Probes for Super-Resolution Microscopy: Combining Mechanosensitive Cascade Switching with Dynamic-Covalent Ketone Chemistry. J Am Chem Soc 2020; 142:12034-12038. [PMID: 32609500 DOI: 10.1021/jacs.0c04942] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report the design, synthesis, and evaluation of fluorescent flipper probes for single-molecule super-resolution imaging of membrane tension in living cells. Reversible switching from bright-state ketones to dark-state hydrates, hemiacetals, and hemithioacetals is demonstrated for twisted and planarized mechanophores in solution and membranes. Broadband femtosecond fluorescence up-conversion spectroscopy evinces ultrafast chalcogen-bonding cascade switching in the excited state in solution. According to fluorescence lifetime imaging microscopy, the new flippers image membrane tension in live cells with record red shifts and photostability. Single-molecule localization microscopy with the new tension probes resolves membranes well below the diffraction limit.
Collapse
Affiliation(s)
- José García-Calvo
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Jimmy Maillard
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Ina Fureraj
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Karolina Strakova
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Adai Colom
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Vincent Mercier
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Aurelien Roux
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Eric Vauthey
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Naomi Sakai
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Alexandre Fürstenberg
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| | - Stefan Matile
- School of Chemistry and Biochemistry, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
33
|
Löw H, Mena-Osteritz E, Mullen KM, Jäger CM, von Delius M. Self-Assembly, Adaptive Response, and in,out-Stereoisomerism of Large Orthoformate Cryptands. Chempluschem 2020; 85:1008-1012. [PMID: 32347636 DOI: 10.1002/cplu.202000254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/16/2020] [Indexed: 12/19/2022]
Abstract
We report on triethylene glycol-based orthoformate cryptands, which adapt their bridgehead configurations in response to metal templates and intramolecular hydrogen bonding in a complex manner. In contrast to smaller 1.1.1-orthoformate cryptands, the inversion from out,out-2.2.2 to in,in-2.2.2 occurs spontaneously by thermal homeomorphic isomerization, i. e., without bond breakage. The global thermodynamic minimum of the entire network, which includes an unprecedented third isomer (in,out-2.2.2), could only be reached under conditions that facilitate dynamic covalent exchange. Both inversion processes were studied in detail, including DFT calculations and MD simulations, which were particularly helpful for explaining differences between equilibrium compositions in solvents chloroform and acetonitrile. Unexpectedly, the system could be driven to the in,out-2.2.2 state by using a metal template with a size mismatch with respect to the out,out-2.2.2 cage.
Collapse
Affiliation(s)
- Henrik Löw
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Kathleen M Mullen
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom
| | - Max von Delius
- Institute of Organic Chemistry, University of Ulm, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| |
Collapse
|
34
|
Bhawal BN, Morandi B. Catalytic Isofunctional Reactions—Expanding the Repertoire of Shuttle and Metathesis Reactions. Angew Chem Int Ed Engl 2019; 58:10074-10103. [DOI: 10.1002/anie.201803797] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Indexed: 12/16/2022]
Affiliation(s)
- Benjamin N. Bhawal
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr Germany
- Laboratorium für Organische ChemieETH Zürich 8093 Zürich Switzerland
| | - Bill Morandi
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr Germany
- Laboratorium für Organische ChemieETH Zürich 8093 Zürich Switzerland
| |
Collapse
|
35
|
Abellán-Flos M, Timmer BJJ, Altun S, Aastrup T, Vincent SP, Ramström O. QCM sensing of multivalent interactions between lectins and well-defined glycosylated nanoplatforms. Biosens Bioelectron 2019; 139:111328. [PMID: 31136921 DOI: 10.1016/j.bios.2019.111328] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 12/29/2022]
Abstract
Quartz crystal microbalance (QCM) methodology has been adopted to unravel important factors contributing to the "cluster glycoside effect" observed in carbohydrate-lectin interactions. Well-defined, glycosylated nanostructures of precise sizes, geometries and functionalization patterns were designed and synthesized, and applied to analysis of the interaction kinetics and thermodynamics with immobilized lectins. The nanostructures were based on Borromean rings, dodecaamine cages, and fullerenes, each of which carrying a defined number of carbohydrate ligands at precise locations. The synthesis of the Borromeates and dodecaamine cages was easily adjustable due to the modular assembly of the structures, resulting in variations in presentation mode. The binding properties of the glycosylated nanoplatforms were evaluated using flow-through QCM technology, as well as hemagglutination inhibition assays, and compared with dodecaglycosylated fullerenes and a monovalent reference. With the QCM setup, the association and dissociation rate constants and the associated equilibrium constants of the interactions could be estimated, and the results used to delineate the multivalency effects of the lectin-nanostructure interactions.
Collapse
Affiliation(s)
- Marta Abellán-Flos
- University of Namur, Départment de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, B-5000, Namur, Belgium
| | - Brian J J Timmer
- KTH - Royal Institute of Technology, Department of Chemistry, Teknikringen 36, S-100 44, Stockholm, Sweden
| | - Samuel Altun
- Attana AB, Björnnäsvägen 21, SE-114, 19 Stockholm, Sweden
| | - Teodor Aastrup
- Attana AB, Björnnäsvägen 21, SE-114, 19 Stockholm, Sweden.
| | - Stéphane P Vincent
- University of Namur, Départment de Chimie, Laboratoire de Chimie Bio-Organique, rue de Bruxelles 61, B-5000, Namur, Belgium.
| | - Olof Ramström
- KTH - Royal Institute of Technology, Department of Chemistry, Teknikringen 36, S-100 44, Stockholm, Sweden; University of Massachusetts Lowell, Department of Chemistry, One University Ave., Lowell, MA, 01854, USA; Linnaeus University, Department of Chemical and Biomedical Sciences, SE-39182, Kalmar, Sweden.
| |
Collapse
|
36
|
Kawakami Y, Ogishima T, Kawara T, Yamauchi S, Okamoto K, Nikaido S, Souma D, Jin RH, Kabe Y. Silane catecholates: versatile tools for self-assembled dynamic covalent bond chemistry. Chem Commun (Camb) 2019; 55:6066-6069. [PMID: 31066388 DOI: 10.1039/c9cc02103e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shape-persistent macrocycles and 3D nanocages have been prepared in one-pot under MeCN-promoted dynamic covalent bond conditions starting from silane catecholates, whose structures were confirmed by X-ray crystallography. Cation-exchange reactions of macrocycles and nanocages were performed along with the encapsulation of ammonium ions within the cavity of an anionic macrocycle and a tetrahedral nanocage.
Collapse
Affiliation(s)
- Yoshiteru Kawakami
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946, Tsuchiya, Hiratsuka 259-1293, Japan.
| | - Tsuyoshi Ogishima
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946, Tsuchiya, Hiratsuka 259-1293, Japan.
| | - Tomoki Kawara
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946, Tsuchiya, Hiratsuka 259-1293, Japan.
| | - Shota Yamauchi
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946, Tsuchiya, Hiratsuka 259-1293, Japan.
| | - Kazuhiko Okamoto
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946, Tsuchiya, Hiratsuka 259-1293, Japan.
| | - Singo Nikaido
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946, Tsuchiya, Hiratsuka 259-1293, Japan.
| | - Daiki Souma
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-2-7, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Ren-Hua Jin
- Department of Material and Life Chemistry, Faculty of Engineering, Kanagawa University, 3-2-7, Rokkakubashi, Kanagawa-ku, Yokohama 221-8686, Japan
| | - Yoshio Kabe
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946, Tsuchiya, Hiratsuka 259-1293, Japan.
| |
Collapse
|
37
|
Bhawal BN, Morandi B. Katalytische, isofunktionelle Reaktionen – Erweiterung des Repertoires an Shuttle‐ und Metathesereaktionen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201803797] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Benjamin N. Bhawal
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr Deutschland
- Laboratorium für Organische ChemieETH Zürich 8093 Zürich Schweiz
| | - Bill Morandi
- Max-Planck-Institut für Kohlenforschung 45470 Mülheim an der Ruhr Deutschland
- Laboratorium für Organische ChemieETH Zürich 8093 Zürich Schweiz
| |
Collapse
|
38
|
Saretia S, Machatschek R, Schulz B, Lendlein A. Reversible 2D networks of oligo(
ε
-caprolactone) at the air–water interface. Biomed Mater 2019; 14:034103. [DOI: 10.1088/1748-605x/ab0cef] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
39
|
Van Damme J, van den Berg O, Brancart J, Van Assche G, Du Prez F. A novel donor-π-acceptor anthracene monomer: Towards faster and milder reversible dimerization. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Löw H, Mena-Osteritz E, von Delius M. Self-templated synthesis of an orthoformate in,in-cryptand and its bridgehead inversion by dynamic covalent exchange. Chem Commun (Camb) 2019; 55:11434-11437. [DOI: 10.1039/c9cc05968g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We report the template-free dynamic covalent self-assembly of a small orthoformate cryptand, which appears to be driven by the formation of two sets of intramolecular, four-centre hydrogen bonds.
Collapse
Affiliation(s)
- Henrik Löw
- Institute of Organic Chemistry
- University of Ulm
- 89081 Ulm
- Germany
| | | | - Max von Delius
- Institute of Organic Chemistry
- University of Ulm
- 89081 Ulm
- Germany
| |
Collapse
|
41
|
Keyzer EN, Sava A, Ronson TK, Nitschke JR, McConnell AJ. Post-Assembly Reactivity of N-Aryl Iminoboronates: Reversible Radical Coupling and Unusual B-N Dynamic Covalent Chemistry. Chemistry 2018; 24:12000-12005. [PMID: 29972260 PMCID: PMC6175077 DOI: 10.1002/chem.201802790] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/28/2018] [Indexed: 12/11/2022]
Abstract
Post-assembly reaction of a dynamic covalent iminoboronate system following addition of Cp2 Co resulted in the formation of a series of new reductively coupled dianionic dimers via C-C bond formation. The dimers formed as a mixture of BN-containing isomeric products: diastereomers rac5 and meso5, with coupled five-membered rings, and enantiomeric rac6, with a fused six-membered ring bicyclic system from C-C bond formation and rearrangement of the B-N bonds. Each isomer was identified using 1 H NMR spectroscopy in combination with single crystal X-ray structure determination. Interestingly, interconversion between the coupled five-membered rings (rac5 ) and fused bicyclic systems (rac6 ) was found to occur through an unprecedented breaking and reforming of the B-N covalent bond. Further, the coupled products could be converted quantitatively back to their iminoboronate precursors with addition of the electron abstractor Ph3 C+ .
Collapse
Affiliation(s)
- Evan N. Keyzer
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | - Alexandru Sava
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | - Tanya K. Ronson
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
| | | | - Anna J. McConnell
- Department of ChemistryUniversity of CambridgeLensfield RdCambridgeCB2 1EWUK
- Otto Diels Institute of Organic ChemistryUniversity of Kiel24118KielGermany
| |
Collapse
|
42
|
Affiliation(s)
- Masahito Murai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuki Origuchi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Kazuhiko Takai
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
43
|
Löw H, Mena-Osteritz E, von Delius M. Self-assembled orthoester cryptands: orthoester scope, post-functionalization, kinetic locking and tunable degradation kinetics. Chem Sci 2018; 9:4785-4793. [PMID: 29910929 PMCID: PMC5982201 DOI: 10.1039/c8sc01750f] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 04/26/2018] [Indexed: 01/01/2023] Open
Abstract
Dynamic adaptability and biodegradability are key features of functional, 21st century host-guest systems. We have recently discovered a class of tripodal supramolecular hosts, in which two orthoesters act as constitutionally dynamic bridgeheads. Having previously demonstrated the adaptive nature of these hosts, we now report the synthesis and characterization - including eight solid state structures - of a diverse set of orthoester cages, which provides evidence for the broad scope of this new host class. With the same set of compounds, we demonstrated that the rates of orthoester exchange and hydrolysis can be tuned over a remarkably wide range, from rapid hydrolysis at pH 8 to nearly inert at pH 1, and that the Taft parameter of the orthoester substituent allows an adequate prediction of the reaction kinetics. Moreover, the synthesis of an alkyne-capped cryptand enabled the post-functionalization of orthoester cryptands by Sonogashira and CuAAC "click" reactions. The methylation of the resulting triazole furnished a cryptate that was kinetically inert towards orthoester exchange and hydrolysis at pH > 1, which is equivalent to the "turnoff" of constitutionally dynamic imines by means of reduction. These findings indicate that orthoester cages may be more broadly useful than anticipated, e.g. as drug delivery agents with precisely tunable biodegradability or, thanks to the kinetic locking strategy, as ion sensors.
Collapse
Affiliation(s)
- Henrik Löw
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| | - Elena Mena-Osteritz
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| | - Max von Delius
- Institute of Organic Chemistry and Advanced Materials , University of Ulm , Albert-Einstein-Allee 11 , 89081 Ulm , Germany .
| |
Collapse
|
44
|
Cai K, Ying H, Cheng J. Dynamic Ureas with Fast and pH-Independent Hydrolytic Kinetics. Chemistry 2018; 24:7345-7348. [PMID: 29624762 DOI: 10.1002/chem.201801138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/29/2018] [Indexed: 12/13/2022]
Abstract
Low cost, high performance hydrolysable polymers are of great importance in biomedical applications and materials industries. While many applications require materials to have a degradation profile insensitive to external pH to achieve consistent release profiles under varying conditions, hydrolysable chemistry techniques developed so far have pH-dependent hydrolytic kinetics. This work reports the design and synthesis of a new type of hydrolysable polymer that has identical hydrolysis kinetics from pH 3 to 11. The unprecedented pH independent hydrolytic kinetics of the aryl ureas were shown to be related to the dynamic bond dissociation controlled hydrolysis mechanism; the resulting hindered poly(aryl urea) can be degraded with a hydrolysis half-life of 10 min in solution. More importantly, these fast degradable hindered aromatic polyureas can be easily prepared by addition polymerization from commercially available monomers and are resistant to hydrolysis in solid form for months under ambient storage conditions. The combined features of good stability in solid state and fast hydrolysis at various pH values is unprecedented in polyurea material, and will have implications for materials design and applications, such as sacrificial coatings and biomaterials.
Collapse
Affiliation(s)
- Kaimin Cai
- Department of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801, USA
| | - Hanze Ying
- Department of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801, USA
| | - Jianjun Cheng
- Department of Materials Science and Engineering, 1304 W. Green St., Urbana, IL 61801, USA.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.,Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
45
|
Ren Y, Svensson PH, Ramström O. A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201802994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yansong Ren
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Per H. Svensson
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Research Institutes of Sweden RISE Bioscience and Materials Forskargatan 18 15136 Södertälje Sweden
| | - Olof Ramström
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of Chemistry University of Massachusetts Lowell 1 University Avenue Lowell MA 01854 USA
| |
Collapse
|
46
|
Ren Y, Svensson PH, Ramström O. A Multicontrolled Enamine Configurational Switch Undergoing Dynamic Constitutional Exchange. Angew Chem Int Ed Engl 2018; 57:6256-6260. [DOI: 10.1002/anie.201802994] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Yansong Ren
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Per H. Svensson
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Research Institutes of Sweden RISE Bioscience and Materials Forskargatan 18 15136 Södertälje Sweden
| | - Olof Ramström
- Department of Chemistry KTH—Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of Chemistry University of Massachusetts Lowell 1 University Avenue Lowell MA 01854 USA
| |
Collapse
|
47
|
Janica I, Patroniak V, Samorì P, Ciesielski A. Imine-Based Architectures at Surfaces and Interfaces: From Self-Assembly to Dynamic Covalent Chemistry in 2D. Chem Asian J 2018; 13:465-481. [DOI: 10.1002/asia.201701629] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Iwona Janica
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
- Centre for Advanced Technologies; Adam Mickiewicz University; Umultowska 89c 61-614 Poznań Poland
| | - Violetta Patroniak
- Faculty of Chemistry; Adam Mickiewicz University; Umultowska 89b 61-614 Poznań Poland
| | - Paolo Samorì
- CNRS, ISIS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| | - Artur Ciesielski
- CNRS, ISIS; Université de Strasbourg; 8 allée Gaspard Monge 67000 Strasbourg France
| |
Collapse
|
48
|
Schaufelberger F, Timmer BJJ, Ramström O. Resolving a Reactive Organometallic Intermediate from Dynamic Directing Group Systems by Selective C-H Activation. Chemistry 2018; 24:101-104. [PMID: 29149517 PMCID: PMC5836886 DOI: 10.1002/chem.201705273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Indexed: 12/12/2022]
Abstract
Catalyst discovery from systems of potential precursors is a challenging endeavor. Herein, a new strategy applying dynamic chemistry to the identification of catalyst precursors from C-H activation of imines is proposed and evaluated. Using hydroacylation of imines as a model reaction, the selection of an organometallic reactive intermediate from a dynamic imine system, involving many potential directing group/metal entities, is demonstrated. The identity of the amplified reaction intermediate with the best directing group could be resolved in situ by ESI-MS, and coupling of the procedure to an iterative deconvolution protocol generated a system with high screening efficiency.
Collapse
Affiliation(s)
- Fredrik Schaufelberger
- Department of ChemistryKTH–Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Brian J. J. Timmer
- Department of ChemistryKTH–Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Olof Ramström
- Department of ChemistryKTH–Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
- Department of ChemistryUniversity of Massachusetts Lowell1 University Ave.LowellMA01854USA
| |
Collapse
|
49
|
Zhang Y, Xie S, Yan M, Ramström O. Dynamic Covalent Chemistry of Aldehyde Enamines: Bi III - and Sc III -Catalysis of Amine-Enamine Exchange. Chemistry 2017; 23:11908-11912. [PMID: 28722305 PMCID: PMC5656824 DOI: 10.1002/chem.201702363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Indexed: 01/09/2023]
Abstract
The dynamic exchange of enamines from secondary amines and enolizable aldehydes has been demonstrated in organic solvents. The enamine exchange with amines was efficiently catalyzed by Bi(OTf)3 and Sc(OTf)3 (2 mol %) and the equilibria (60 mm) could be attained within hours at room temperature. The formed dynamic covalent systems displayed high stabilities in basic environment with <2 % by-product formation within one week after complete equilibration. This study expands the scope of dynamic C-N bonds from imine chemistry to enamines, enabling further dynamic methodologies in exploration of this important class of structures in systems chemistry.
Collapse
Affiliation(s)
- Yang Zhang
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Sheng Xie
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| | - Mingdi Yan
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
- Department of ChemistryUniversity of Massachusetts Lowell1 University Ave.LowellMA01854USA
| | - Olof Ramström
- Department of ChemistryKTH-Royal Institute of TechnologyTeknikringen 3610044StockholmSweden
| |
Collapse
|
50
|
Orrillo AG, Escalante AM, Furlan RLE. Host Amplification in a Dithioacetal-Based Dynamic Covalent Library. Org Lett 2017; 19:1446-1449. [DOI: 10.1021/acs.orglett.7b00401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- A. Gastón Orrillo
- Instituto de Investigaciones
para el Descubrimiento de Fármacos de Rosario (UNR-CONICET), Ocampo y Esmeralda, Rosario (2000), Argentina
| | - Andrea. M. Escalante
- Instituto de Investigaciones
para el Descubrimiento de Fármacos de Rosario (UNR-CONICET), Ocampo y Esmeralda, Rosario (2000), Argentina
| | - Ricardo L. E. Furlan
- Instituto de Investigaciones
para el Descubrimiento de Fármacos de Rosario (UNR-CONICET), Ocampo y Esmeralda, Rosario (2000), Argentina
- Farmacognosia,
Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario (2000), Argentina
| |
Collapse
|