1
|
Stoikov D, Ivanov A, Shafigullina I, Gavrikova M, Padnya P, Shiabiev I, Stoikov I, Evtugyn G. Flow-Through Amperometric Biosensor System Based on Functionalized Aryl Derivative of Phenothiazine and PAMAM-Calix-Dendrimers for the Determination of Uric Acid. BIOSENSORS 2024; 14:120. [PMID: 38534227 DOI: 10.3390/bios14030120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
A flow-through biosensor system for the determination of uric acid was developed on the platform of flow-through electrochemical cell manufactured by 3D printing from poly(lactic acid) and equipped with a modified screen-printed graphite electrode (SPE). Uricase was immobilized to the inner surface of a replaceable reactor chamber. Its working volume was reduced to 10 μL against a previously reported similar cell. SPE was modified independently of the enzyme reactor with carbon black, pillar[5]arene, poly(amidoamine) dendrimers based on the p-tert-butylthiacalix[4]arene (PAMAM-calix-dendrimers) platform and electropolymerized 3,7-bis(4-aminophenylamino) phenothiazin-5-ium chloride. Introduction of the PAMAM-calix-dendrimers into the electrode coating led to a fivefold increase in the redox currents of the electroactive polymer. It was found that higher generations of the PAMAM-calix-dendrimers led to a greater increase in the currents measured. Coatings consisted of products of the electropolymerization of the phenothiazine with implemented pillar[5]arene and PAMAM-calix-dendrimers showing high efficiency in the electrochemical reduction of hydrogen peroxide that was formed in the enzymatic oxidation of uric acid. The presence of PAMAM-calix-dendrimer G2 in the coating increased the redox signal related to the uric acid assay by more than 1.5 times. The biosensor system was successfully applied for the enzymatic determination of uric acid in chronoamperometric mode. The following optimal parameters for the chronoamperometric determination of uric acid in flow-through conditions were established: pH 8.0, flow rate 0.2 mL·min-1, 5 U of uricase per reactor. Under these conditions, the biosensor system made it possible to determine from 10 nM to 20 μM of uric acid with the limit of detection (LOD) of 4 nM. Glucose (up to 1 mM), dopamine (up to 0.5 mM), and ascorbic acid (up to 50 μM) did not affect the signal of the biosensor toward uric acid. The biosensor was tested on spiked artificial urine samples, and showed 101% recovery for tenfold diluted samples. The ease of assembly of the flow cell and the low cost of the replacement parts make for a promising future application of the biosensor system in routine clinical analyses.
Collapse
Affiliation(s)
- Dmitry Stoikov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Alexey Ivanov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Insiya Shafigullina
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Milena Gavrikova
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Pavel Padnya
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Igor Shiabiev
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Ivan Stoikov
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
| | - Gennady Evtugyn
- Alexander Butlerov Institute of Chemistry, Kazan Federal University, 18 Kremlevskaya Street, Kazan 420008, Russia
- Analytical Chemistry Department, Chemical Technology Institute, Ural Federal University, 19 Mira Street, Ekaterinburg 620002, Russia
| |
Collapse
|
2
|
Papiano I, De Zio S, Hofer A, Malferrari M, Mínguez Bacho I, Bachmann J, Rapino S, Vogel N, Magnabosco G. Nature-inspired functional porous materials for low-concentration biomarker detection. MATERIALS HORIZONS 2023; 10:4380-4388. [PMID: 37465878 DOI: 10.1039/d3mh00553d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
Nanostructuration is a promising tool for enhancing the performance of sensors based on electrochemical transduction. Nanostructured materials allow for increasing the surface area of the electrode and improving the limit of detection (LOD). In this regard, inverse opals possess ideal features to be used as substrates for developing sensors, thanks to their homogeneous, interconnected pore structure and the possibility to functionalize their surface. However, overcoming the insulating nature of conventional silica inverse opals fabricated via sol-gel processes is a key challenge for their application as electrode materials. In this work, colloidal assembly, atomic layer deposition and selective surface functionalization are combined to design conductive inverse opals as an electrode material for novel glucose sensing platforms. An insulating inverse opal scaffold is coated with uniform layers of conducting aluminum zinc oxide and platinum, and subsequently functionalized with glucose oxidase embedded in a polypyrrole layer. The final device can sense glucose at concentrations in the nanomolar range and is not affected by the presence of common interferents gluconolactone and pyruvate. This method may also be applied to different conductive materials and enzymes to generate a new class of highly efficient biosensors.
Collapse
Affiliation(s)
- Irene Papiano
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Simona De Zio
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - André Hofer
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Marco Malferrari
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Ignacio Mínguez Bacho
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Julien Bachmann
- Chair 'Chemistry of Thin Film Materials' (CTFM), Friedrich-Alexander University Erlangen-Nürnberg (FAU), IZNF, Cauerstraße 3, 91058 Erlangen, Germany
| | - Stefania Rapino
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Nicolas Vogel
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| | - Giulia Magnabosco
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Cauerstraße 4, 91058 Erlangen, Germany.
| |
Collapse
|
3
|
Jalalvand AR. Chemometrics-assisted electrochemical biosensing of cholesterol as the sole precursor of steroids by a novel electrochemical biosensor. Steroids 2023; 190:109159. [PMID: 36566822 DOI: 10.1016/j.steroids.2022.109159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
This project was performed with the aims of increasing the sensitivity of differential pulse voltammetry (DPV) which itself is a sensitive electroanalytical technique, and also to compare the area under peak (univariate calibration), height of peak (univariate calibration) and whole of vector (multivariate calibration) for calibration purposes. These topics were investigated by fabrication of a novel electrochemical biosensor for determination of cholesterol (CHO). The procedure used in this project was based on the synthesis of molecularly imprinted polymers (MIPs) to the preconcentration of CHO and its biosensing by a rotating glassy carbon electrode (GCE) modified by co-immobilization of cholesterol oxidase (CO), cholesterol esterase (CE) and horseradish peroxidase (HP) onto multiwalled carbon nanotubes-ionic liquid (COCEHP/MWCNTs-IL/GCE). The results showed that the hydrodynamic DPV (HYDPV) was much more sensitive than DPV and using the area under peak for univariate calibration purposes was more suitable than height of peak. Adsorption at the electrode surface is an important trouble which affects the height and position of voltammetric peaks, but the area under peak is not affected by adsorption therefore, it can be more suitable for univariate calibration purposes. The biosensor response was also calibrated by chronoamperometry and the results confirmed that the HYDPV was more sensitive than chronoamperometry. The next attempt was based on recording the biosensor responses based on second-order HYDPV data and modeling of them (whole of vectors) by three-way calibration methods which showed the best performance among the tested methods for determination of CHO. The biosensor response was long-term stable, repeatable and reproducible which was successfully applied to the analysis of serum sample towards determination of CHO whose results were comparable with a reference method.
Collapse
Affiliation(s)
- Ali R Jalalvand
- Research Center of Oils and Fats, Research Institute for Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
4
|
Nikitina VN, Karastsialiova AR, Karyakin AA. Glucose test strips with the largest linear range made via single step modification by glucose oxidase-hexacyanoferrate-chitosan mixture. Biosens Bioelectron 2022; 220:114851. [DOI: 10.1016/j.bios.2022.114851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 11/02/2022]
|
5
|
Pilo MI, Baluta S, Loria AC, Sanna G, Spano N. Poly(Thiophene)/Graphene Oxide-Modified Electrodes for Amperometric Glucose Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2840. [PMID: 36014704 PMCID: PMC9413253 DOI: 10.3390/nano12162840] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/13/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
The availability of fast and non-expensive analytical methods for the determination of widespread interest analytes such as glucose is an object of large relevance; this is so not only in the field of analytical chemistry, but also in medicinal and in food chemistry. In this context, electrochemical biosensors have been proposed in different arrangements, according to the mode of electron transfer between the bioreceptor and the electrode. An efficient immobilization of an enzyme on the electrode surface is essential to assure satisfactory analytical performances of the biosensor in terms of sensitivity, limit of detection, selectivity, and linear range of employment. Here, we report the use of a thiophene monomer, (2,5-di(2-thienyl)thieno [3,2-b]thiophene (dTT-bT), as a precursor of an electrogenerated conducting film to immobilize the glucose oxidase (GOx) enzyme on Pt, glassy carbon (GC), and Au electrode surfaces. In addition, the polymer film electrochemically synthetized on a glassy carbon electrode was modified with graphene oxide before the deposition of GOx; the analytical performances of both the arrangements (without and with graphene oxide) in the glucose detection were compared. The biosensor containing graphene oxide showed satisfactory values of linear dynamic range (1.0-10 mM), limit of detection (0.036 mM), and sensitivity (9.4 µA mM-1 cm-2). Finally, it was tested in the determination of glucose in fruit juices; the interference from fructose, saccharose, and ascorbic acid was evaluated.
Collapse
Affiliation(s)
- Maria I. Pilo
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Sylwia Baluta
- Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Anna C. Loria
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Gavino Sanna
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Nadia Spano
- Dipartimento di Scienze Chimiche, Fisiche, Matematiche e Naturali, Università di Sassari, Via Vienna 2, 07100 Sassari, Italy
| |
Collapse
|
6
|
Hassan MH, Vyas C, Grieve B, Bartolo P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. SENSORS (BASEL, SWITZERLAND) 2021; 21:4672. [PMID: 34300412 PMCID: PMC8309655 DOI: 10.3390/s21144672] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/28/2021] [Accepted: 07/06/2021] [Indexed: 11/17/2022]
Abstract
The detection of glucose is crucial in the management of diabetes and other medical conditions but also crucial in a wide range of industries such as food and beverages. The development of glucose sensors in the past century has allowed diabetic patients to effectively manage their disease and has saved lives. First-generation glucose sensors have considerable limitations in sensitivity and selectivity which has spurred the development of more advanced approaches for both the medical and industrial sectors. The wide range of application areas has resulted in a range of materials and fabrication techniques to produce novel glucose sensors that have higher sensitivity and selectivity, lower cost, and are simpler to use. A major focus has been on the development of enzymatic electrochemical sensors, typically using glucose oxidase. However, non-enzymatic approaches using direct electrochemistry of glucose on noble metals are now a viable approach in glucose biosensor design. This review discusses the mechanisms of electrochemical glucose sensing with a focus on the different generations of enzymatic-based sensors, their recent advances, and provides an overview of the next generation of non-enzymatic sensors. Advancements in manufacturing techniques and materials are key in propelling the field of glucose sensing, however, significant limitations remain which are highlighted in this review and requires addressing to obtain a more stable, sensitive, selective, cost efficient, and real-time glucose sensor.
Collapse
Affiliation(s)
- Mohamed H. Hassan
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Cian Vyas
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| | - Bruce Grieve
- Department of Electrical & Electronic Engineering, University of Manchester, Manchester M13 9PL, UK;
| | - Paulo Bartolo
- Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, UK; (M.H.H.); (C.V.)
| |
Collapse
|
7
|
Modified electrodes for electrochemical determination of metronidazole in drug formulations and biological samples: An overview. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Liu Y, Cánovas R, Crespo GA, Cuartero M. Thin-Layer Potentiometry for Creatinine Detection in Undiluted Human Urine Using Ion-Exchange Membranes as Barriers for Charged Interferences. Anal Chem 2020; 92:3315-3323. [PMID: 31971373 DOI: 10.1021/acs.analchem.9b05231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Herein, thin-layer potentiometry combined with ion-exchange membranes as barriers for charged interferences is demonstrated for the analytical detection of creatinine (CRE) in undiluted human urine. Briefly, CRE diffuses through an anion-exchange membrane (AEM) from a sample contained in one fluidic compartment to a second reservoir, containing the enzyme CRE deiminase. There, CRE reacts with the enzyme, and the formation of ammonium is dynamically monitored by potentiometric ammonium-selective electrodes. This analytical concept is integrated into a lab-on-a-chip microfluidic cell that allows for a high sample throughput and the operation under stop-flow mode, which allows CRE to passively diffuse across the AEM. Conveniently, positively charged species (i.e., potassium, sodium, and ammonium, among others) are repelled by the AEM and never reach the ammonium-selective electrodes; thus, possible interference in the response can be avoided. As a result, the dynamic potential response of the electrodes is entirely ascribed to the stoichiometric formation of ammonium. The new CRE biosensor exhibits a Nernstian slope, within a linear range of response from 1 to 50 mM CRE concentration. As expected, the response time (15-60 min) primarily depends on the CRE diffusion across the AEM. CRE analysis in urine samples displayed excellent results, without requiring sample pretreatment (before the introduction of the sample in the microfluidic chip) and with high compatibility with development into a potential point-of-care clinical tool. In an attempt to decrease the analysis time, the presented analytical methodology for CRE detection is translated into an all-solid-state platform, in which the enzyme is immobilized on the surface of the ammonium-selective electrode and with the AEM on top. While more work is necessary in this direction, the CRE sensor appears to be promising for CRE analysis in both urine and blood.
Collapse
Affiliation(s)
- Yujie Liu
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 10044 Stockholm , Sweden
| | - Rocío Cánovas
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 10044 Stockholm , Sweden
| | - Gastón A Crespo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 10044 Stockholm , Sweden
| | - María Cuartero
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health , KTH Royal Institute of Technology , 10044 Stockholm , Sweden
| |
Collapse
|
9
|
Karimi-Maleh H, Karimi F, Alizadeh M, Sanati AL. Electrochemical Sensors, a Bright Future in the Fabrication of Portable Kits in Analytical Systems. CHEM REC 2019; 20:682-692. [PMID: 31845511 DOI: 10.1002/tcr.201900092] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022]
Abstract
Analysis of food, pharmaceutical, and environmental compounds is an inevitable issue to evaluate quality of the compounds used in human life. Quality of drinking water, food products, and pharmaceutical compounds is directly associated with human health. Presence of forbidden additives in food products, toxic compounds in water samples and drugs with low quality lead to important problems for human health. Therefore, attention to analytical strategy for investigation of quality of food, pharmaceutical, and environmental compounds and monitoring presence of forbidden compounds in materials used by humans has increased in recent years. Analytical methods help to identify and quantify both permissible and unauthorized compounds present in the materials used in human daily life. Among analytical methods, electrochemical methods have been shown to have more advantages compared to other analytical methods due to their portability and low cost. Most of big companies have applied this type of analytical methods because of their fast and selective analysis. Due to simple operation and high diversity of electroanalytical sensors, these types of sensors are expected to be the future generation of analytical systems. Therefore, many scientists and researchers have focused on designing and fabrication of electroanalytical sensors with good selectivity and high sensitivity for different types of compounds such as drugs, food, and environmental pollutants. In this paper, we described the mechanism and different examples of DNA, enzymatic and electro-catalytic methods for electroanalytical determination of drug, food and environmental compounds.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Enviroment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, P.R. China.,Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa
| | - Fatemeh Karimi
- School of Resources and Enviroment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, P.R. China.,Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, Quchan, Iran
| | - Marzieh Alizadeh
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, PO Box 71345-1583, Iran
| | | |
Collapse
|
10
|
Ou Y, Buchanan AM, Witt CE, Hashemi P. Frontiers in Electrochemical Sensors for Neurotransmitter Detection: Towards Measuring Neurotransmitters as Chemical Diagnostics for Brain Disorders. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2019; 11:2738-2755. [PMID: 32724337 PMCID: PMC7386554 DOI: 10.1039/c9ay00055k] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is extremely challenging to chemically diagnose disorders of the brain. There is hence great interest in designing and optimizing tools for direct detection of chemical biomarkers implicated in neurological disorders to improve diagnosis and treatment. Tools that are capable of monitoring brain chemicals, neurotransmitters in particular, need to be biocompatible, perform with high spatiotemporal resolution, and ensure high selectivity and sensitivity. Recent advances in electrochemical methods are addressing these criteria; the resulting devices demonstrate great promise for in vivo neurotransmitter detection. None of these devices are currently used for diagnostic purposes, however these cutting-edge technologies are promising more sensitive, selective, faster, and less invasive measurements. Via this review we highlight significant technical advances and in vivo studies, performed in the last 5 years, that we believe will facilitate the development of diagnostic tools for brain disorders.
Collapse
Affiliation(s)
- Yangguang Ou
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Anna Marie Buchanan
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Colby E. Witt
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| | - Parastoo Hashemi
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia SC
| |
Collapse
|
11
|
Rashidi K, Mahmoudi M, Mohammadi G, Zangeneh MM, Korani S, Goicoechea HC, Gu HW, Jalalvand AR. Simultaneous co-immobilization of three enzymes onto a modified glassy carbon electrode to fabricate a high-performance amperometric biosensor for determination of total cholesterol. Int J Biol Macromol 2018; 120:587-595. [PMID: 30170050 DOI: 10.1016/j.ijbiomac.2018.08.163] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/11/2018] [Accepted: 08/27/2018] [Indexed: 12/25/2022]
Abstract
In this work, we have fabricated a novel amperometric cholesterol (CHO) biosensor because of the importance of determination of CHO levels in blood which is an important parameter for diagnosis and prevention of disease. To achieve this goal, cholesterol oxidase, cholesterol esterase and horseradish peroxidase were simultaneously co-immobilized onto a glassy carbon electrode (GCE) modified with gold nanoparticles/chitin-ionic liquid/poly(3,4-ethylenedioxypyrrole)/graphene-multiwalled carbon nanotubes-1,1'-ferrocenedicarboxylic acid-ionic liquid. Modifications applied to the bare GCE were characterized by cyclic voltammetry, electrochemical impedance spectroscopy and scanning electron microscopy. The biosensor detected CHO in linear ranges of 0.1-25 μM and 25-950 μM with a detection limit of 0.07 μM. The sensitivity of the biosensor was estimated to be 6.6 μA μM-1 cm-2, its response time was <5 s and Michaelis-Menten constant was calculated to be 0.12 μM. Results obtained in this study revealed that the biosensor was selective, sensitive, stable, repeatable and reproducible. Finally, the biosensor was successfully applied to the determination of CHO levels in rats plasma.
Collapse
Affiliation(s)
- Khodabakhsh Rashidi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Majid Mahmoudi
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ghobad Mohammadi
- Department of Pharmaceutics, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Mahdi Zangeneh
- Department of Clinical Science, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran; Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahla Korani
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hector C Goicoechea
- Laboratorio de Desarrollo Analítico y Quimiometría (LADAQ), Catedra de Química Analítica I, Universidad Nacional del Litoral, Ciudad Universitaria, CC 242, S3000ZAA Santa Fe, Argentina
| | - Hui-Wen Gu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, China
| | - Ali R Jalalvand
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
12
|
Sheppard JB, Hambly B, Pendley B, Lindner E. Voltammetric determination of diffusion coefficients in polymer membranes. Analyst 2017; 142:930-937. [DOI: 10.1039/c6an02671k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The diffusion-controlled transport of ions and molecules through polymer membranes utilized in chemical and biosensors is often the key factor determining the response characteristics of these sensors. A simple voltammetric method utilizing a planar electrochemical cell allows the rapid determination of diffusion coefficients in resistive polymer membranes.
Collapse
Affiliation(s)
| | - Bradley Hambly
- Department of Biomedical Engineering
- University of Memphis
- Memphis
- USA
| | - Bradford Pendley
- Department of Biomedical Engineering
- University of Memphis
- Memphis
- USA
| | - Erno Lindner
- Department of Biomedical Engineering
- University of Memphis
- Memphis
- USA
| |
Collapse
|
13
|
Singh VV. Recent Advances in Electrochemical Sensors for Detecting Weapons of Mass Destruction. A Review. ELECTROANAL 2016. [DOI: 10.1002/elan.201501088] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
The Evolution of Point-of-Care Testing. POINT OF CARE 2015. [DOI: 10.1097/poc.0000000000000071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Rathee K, Dhull V, Dhull R, Singh S. Biosensors based on electrochemical lactate detection: A comprehensive review. Biochem Biophys Rep 2015; 5:35-54. [PMID: 28955805 PMCID: PMC5600356 DOI: 10.1016/j.bbrep.2015.11.010] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/08/2015] [Accepted: 11/10/2015] [Indexed: 01/19/2023] Open
Abstract
Lactate detection plays a significant role in healthcare, food industries and is specially necessitated in conditions like hemorrhage, respiratory failure, hepatic disease, sepsis and tissue hypoxia. Conventional methods for lactate determination are not accurate and fast so this accelerated the need of sensitive biosensors for high-throughput screening of lactate in different samples. This review focuses on applications and developments of various electrochemical biosensors based on lactate detection as lactate being essential metabolite in anaerobic metabolic pathway. A comparative study to summarize the L-lactate biosensors on the basis of different analytical properties in terms of fabrication, sensitivity, detection limit, linearity, response time and storage stability has been done. It also addresses the merits and demerits of current enzyme based lactate biosensors. Lactate biosensors are of two main types – lactate oxidase (LOD) and lactate dehydrogenase (LDH) based. Different supports tried for manufacturing lactate biosensors include membranes, polymeric matrices-conducting or non-conducting, transparent gel matrix, hydrogel supports, screen printed electrodes and nanoparticles. All the examples in these support categories have been aptly discussed. Finally this review encompasses the conclusion and future emerging prospects of lactate sensors. Different enzymes used in lactate bio sensing have been studied. Support used for fabrication biosensors have been discussed. The linearity range, response time, detection limit, etc. have been studied. Merits and demerits of different supports are also discussed.
Collapse
Affiliation(s)
- Kavita Rathee
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Vikas Dhull
- Department of Bio & Nano Technology, Guru Jambheshwar University of Science & Technology, Hisar 125001, India
| | - Rekha Dhull
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| |
Collapse
|
16
|
SANFORD EM, TORI ME, SMELTZER TM, BEAUDOIN CK, BOWSER BH, ANDERSON ME, BROWN KL. Cyclic Voltammetric, Chronocoulometric, and Spectroelectrochemical Studies of Electropolymerized Films Based on (3,4-Ethylenedioxythiophene)-Substituted 3,6-Dithiophen-2-yl-2,5-dihydropyrrole[3,4-c]pyrrole-1,4-dione. ELECTROCHEMISTRY 2015. [DOI: 10.5796/electrochemistry.83.1061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
17
|
Hui N, Wang W, Xu G, Luo X. Graphene oxide doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for high performance nonenzymatic sensing of glucose. J Mater Chem B 2015; 3:556-561. [DOI: 10.1039/c4tb01831a] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A highly sensitive and stable nonenzymatic glucose sensor was developed through the electrochemical deposition of Cu nanoparticles onto an electrodeposited nanocomposite of conducting polymer PEDOT doped with graphene oxide.
Collapse
Affiliation(s)
- Ni Hui
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Wenting Wang
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Guiyun Xu
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| | - Xiliang Luo
- Key Laboratory of Sensor Analysis of Tumor Marker
- Ministry of Education
- College of Chemistry and Molecular Engineering
- Qingdao University of Science and Technology
- Qingdao 266042
| |
Collapse
|
18
|
Mayorga-Martinez CC, Chamorro-García A, Serrano L, Rivas L, Quesada-Gonzalez D, Altet L, Francino O, Sánchez A, Merkoçi A. An iridium oxide nanoparticle and polythionine thin film based platform for sensitive Leishmania DNA detection. J Mater Chem B 2015; 3:5166-5171. [DOI: 10.1039/c5tb00545k] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel impedimetric label-free genosensor for highly sensitive DNA detection using a sensing platform based on thionine and iridium oxide nanoparticles.
Collapse
Affiliation(s)
- Carmen C. Mayorga-Martinez
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
| | - Alejandro Chamorro-García
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Autonomous University of Barcelona
| | - Lorena Serrano
- Vetgenomics
- Edifici Eureka
- Parc de Recerca UAB
- 08193 Bellaterra (Barcelona)
- Spain
| | - Lourdes Rivas
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Autonomous University of Barcelona
| | - Daniel Quesada-Gonzalez
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Autonomous University of Barcelona
| | - Laura Altet
- Vetgenomics
- Edifici Eureka
- Parc de Recerca UAB
- 08193 Bellaterra (Barcelona)
- Spain
| | - Olga Francino
- Autonomous University of Barcelona
- 08193 Bellaterra
- Spain
- Vetgenomics
- Edifici Eureka
| | - Armand Sánchez
- Vetgenomics
- Edifici Eureka
- Parc de Recerca UAB
- 08193 Bellaterra (Barcelona)
- Spain
| | - Arben Merkoçi
- Nanobioelectronics & Biosensors Group
- Institut Catala de Nanociencia i Nanotecnologia (ICN2)
- Bellaterra (Barcelona) 08193
- Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA)
| |
Collapse
|
19
|
Iminodiacetic acid functionalized polypyrrole modified electrode as Pb(II) sensor: Synthesis and DPASV studies. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.06.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Shul G, Weissmann M, Bélanger D. Electrochemical formation of an ultrathin electroactive film from 1,10-phenanthroline on a glassy carbon electrode in acidic electrolyte. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6612-6621. [PMID: 24811121 DOI: 10.1021/la500349t] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The electrochemical reduction of 1,10-phenanthroline in aqueous acidic electrolyte at a glassy carbon electrode led to the covalent modification of the electrode. Thereafter, the deposited film can be switched to an electroactive form by electrochemical oxidation. An electroactive film can be also generated by alternate reductive and oxidative voltammetric cycling in a 1,10-phenanthroline/aqueous sulfuric acid solution. First, the electrochemical procedure for the formation of a film is presented. Second, the morphology and chemical structure of 1,10-phenanthroline coatings were investigated by atomic force microscopy, time-of-flight secondary ion mass spectrometry, X-ray photoelectron spectroscopy, and electrochemical techniques. The ultrathin (<15 nm) electrodeposited films consist of oligomeric species. The coatings deposited in alternate and/or continuous reductive and oxidative steps contain oxygen atoms incorporated into the oligomer backbone. The preliminary results point out the formation of a dione derivative that is responsible for the electroactivity of the grafted layer.
Collapse
Affiliation(s)
- Galyna Shul
- Département de Chimie, Université du Québec à Montréal , CP8888, Succ. Centre-Ville, Montréal, Québec Canada H3C 3P8
| | | | | |
Collapse
|
21
|
Biofabrication Using Pyrrole Electropolymerization for the Immobilization of Glucose Oxidase and Lactate Oxidase on Implanted Microfabricated Biotransducers. Bioengineering (Basel) 2014; 1:85-110. [PMID: 28955018 DOI: 10.3390/bioengineering1010085] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 03/01/2014] [Accepted: 03/12/2014] [Indexed: 11/16/2022] Open
Abstract
The dual responsive Electrochemical Cell-on-a-Chip Microdisc Electrode Array (ECC MDEA 5037) is a recently developed electrochemical transducer for use in a wireless, implantable biosensor system for the continuous measurement of interstitial glucose and lactate. Fabrication of the biorecognition membrane via pyrrole electropolymerization and both in vitro and in vivo characterization of the resulting biotransducer is described. The influence of EDC-NHS covalent conjugation of glucose oxidase with 4-(3-pyrrolyl) butyric acid (monomerization) and with 4-sulfobenzoic acid (sulfonization) on biosensor performance was examined. As the extent of enzyme conjugation was increased sensitivity decreased for monomerized enzymes but increased for sulfonized enzymes. Implanted biotransducers were examined in a Sprague-Dawley rat hemorrhage model. Resection after 4 h and subsequent in vitro re-characterization showed a decreased sensitivity from 0.68 (±0.40) to 0.22 (±0.17) µA·cm-2·mM-1, an increase in the limit of detection from 0.05 (±0.03) to 0.27 (±0.27) mM and a six-fold increase in the response time from 41 (±18) to 244 (±193) s. This evidence reconfirms the importance of biofouling at the bio-abio interface and the need for mitigation strategies to address the foreign body response.
Collapse
|
22
|
|
23
|
Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S. Recent advances in electrochemical glucose biosensors: a review. RSC Adv 2013. [DOI: 10.1039/c2ra22351a] [Citation(s) in RCA: 578] [Impact Index Per Article: 48.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
24
|
Nanopore array derived from l-cysteine oxide/gold hybrids: Enhanced sensing platform for hydroquinone and catechol determination. Electrochim Acta 2013. [DOI: 10.1016/j.electacta.2012.10.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Pundir CS, Chauhan N. Acetylcholinesterase inhibition-based biosensors for pesticide determination: a review. Anal Biochem 2012; 429:19-31. [PMID: 22759777 DOI: 10.1016/j.ab.2012.06.025] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 06/25/2012] [Indexed: 01/28/2023]
Abstract
Pesticides released intentionally into the environment and through various processes contaminate the environment. Although pesticides are associated with many health hazards, there is a lack of monitoring of these contaminants. Traditional chromatographic methods-high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry-are effective for the analysis of pesticides in the environment but have certain limitations such as complexity, time-consuming sample preparation, and the requirement of expensive apparatus and trained persons to operate. Over the past decades, acetylcholinesterase (AChE) inhibition-based biosensors have emerged as simple, rapid, and ultra-sensitive tools for pesticide analysis in environmental monitoring, food safety, and quality control. These biosensors have the potential to complement or replace the classical analytical methods by simplifying or eliminating sample preparation and making field-testing easier and faster with significant decrease in cost per analysis. This article reviews the recent developments in AChE inhibition-based biosensors, which include various immobilization methods, different strategies for biosensor construction, the advantages and roles of various matrices used, analytical performance, and application methods for constructing AChE biosensors. These AChE biosensors exhibited detection limits and linearity in the ranges of 1.0×10(-11) to 42.19 μM (detection limits) and 1.0×10(-11)-1.0×10(-2) to 74.5-9.9×10(3)μM (linearity). These biosensors were stable for a period of 2 to 120days. The future prospects for the development of better AChE biosensing systems are also discussed.
Collapse
Affiliation(s)
- Chandra Shekhar Pundir
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124 001, Haryana, India.
| | | |
Collapse
|
26
|
Borgmann S, Schulte A, Neugebauer S, Schuhmann W. Amperometric Biosensors. ADVANCES IN ELECTROCHEMICAL SCIENCES AND ENGINEERING 2011. [DOI: 10.1002/9783527644117.ch1] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Simultaneous determination of N-acetyl-p-aminophenol and p-aminophenol with poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode. Talanta 2011; 85:1376-82. [DOI: 10.1016/j.talanta.2011.06.019] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2011] [Revised: 06/10/2011] [Accepted: 06/10/2011] [Indexed: 02/05/2023]
|
28
|
Huang C, Brisbois E, Meyerhoff ME. Flow injection measurements of S-nitrosothiols species in biological samples using amperometric nitric oxide sensor and soluble organoselenium catalyst reagent. Anal Bioanal Chem 2011; 400:1125-35. [PMID: 21416401 PMCID: PMC3190598 DOI: 10.1007/s00216-011-4840-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/23/2011] [Accepted: 02/24/2011] [Indexed: 02/07/2023]
Abstract
A novel flow injection analysis (FIA) system suitable for measurement of S-nitrosothiols (RSNOs) in blood plasma is described. In the proposed (FIA) system, samples and standards containing RSNO species are injected into a buffer carrier stream that is mixed with the reagent stream containing 3,3'-dipropionicdiselenide (SeDPA) and glutathione (GSH). SeDPA has been shown previously to catalytically decompose RSNOs in the presence of a reducing agent, such as GSH, to produce nitric oxide (NO). The liberated NO is then detected downstream by an amperometric NO sensor. This sensor is prepared using an electropolymerized m-phenylenediamine (m-PD)/resorcinol and Nafion composite films at the surface of a platinum electrode. Using optimized flow rates and reagent concentrations, detection of various RSNOs at levels in the range of 0.25-20 μM is possible. For plasma samples, detection of background sensor interference levels within the samples must first be carried out using an identical FIA arrangement, but without the added SeDPA and GSH reagents. Subtraction of this background sensor current response allows good analytical recovery of RSNOs spiked into animal plasma samples, with recoveries in the range of 90.4-101.0%.
Collapse
Affiliation(s)
- Chuncui Huang
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA; Key Laboratory of Cluster Science of Ministry of Education and Department of Chemistry, Beijing Institute of Technology, Beijing 100081, China
| | - Elizabeth Brisbois
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| | - Mark E. Meyerhoff
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, MI 48109-1055, USA
| |
Collapse
|
29
|
Safavi A, Farjami F. Electrodeposition of gold-platinum alloy nanoparticles on ionic liquid-chitosan composite film and its application in fabricating an amperometric cholesterol biosensor. Biosens Bioelectron 2010; 26:2547-52. [PMID: 21145225 DOI: 10.1016/j.bios.2010.11.002] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/30/2010] [Accepted: 11/07/2010] [Indexed: 11/30/2022]
Abstract
An electrodeposition method was applied to form gold-platinum (AuPt) alloy nanoparticles on the glassy carbon electrode (GCE) modified with a mixture of an ionic liquid (IL) and chitosan (Ch) (AuPt-Ch-IL/GCE). AuPt nanoparticles were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and electrochemical methods. AuPt-Ch-IL/GCE electrocatalyzed the reduction of H(2)O(2) and thus was suitable for the preparation of biosensors. Cholesterol oxidase (ChOx) was then, immobilized on the surface of the electrode by cross-linking ChOx and chitosan through addition of glutaraldehyde (ChOx/AuPt-Ch-IL/GCE). The fabricated biosensor exhibited two wide linear ranges of responses to cholesterol in the concentration ranges of 0.05-6.2 mM and 6.2-11.2 mM. The sensitivity of the biosensor was 90.7 μA mM(-1) cm(-2) and the limit of detection was 10 μM of cholesterol. The response time was less than 7 s. The Michaelis-Menten constant (K(m)) was found as 0.24 mM. The effect of the addition of 1 mM ascorbic acid and glucose was tested on the amperometric response of 0.5 mM cholesterol and no change in response current of cholesterol was observed.
Collapse
Affiliation(s)
- Afsaneh Safavi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 71454, Iran.
| | | |
Collapse
|
30
|
Wan D, Yuan S, Li GL, Neoh KG, Kang ET. Glucose biosensor from covalent immobilization of chitosan-coupled carbon nanotubes on polyaniline-modified gold electrode. ACS APPLIED MATERIALS & INTERFACES 2010; 2:3083-3091. [PMID: 20964413 DOI: 10.1021/am100591t] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
An amperometric glucose biosensor was prepared using polyaniline (PANI) and chitosan-coupled carbon nanotubes (CS-CNTs) as the signal amplifiers and glucose oxidase (GOD) as the glucose detector on a gold electrode (the Au-g-PANI-c-(CS-CNTs)-GOD biosensor). The PANI layer was prepared via oxidative graft polymerization of aniline from the gold electrode surface premodified by self-assembled monolayer of 4-aminothiophenol. CS-CNTs were covalently coupled to the PANI-modified gold substrate using glutaradehyde as a bifunctional linker. GOD was then covalently bonded to the pendant hydroxyl groups of chitosan using 1,4-carbonyldiimidazole as the bifunctional linker. The surface functionalization processes were ascertained by X-ray photoelectron spectroscopy (XPS) analyses. The field emission scanning electron microscopy (FESEM) images of the Au-g-PANI-c-(CS-CNTs) electrode revealed the formation of a three-dimensional surface network structure. The electrode could thus provide a more spatially biocompatible microenvironment to enhance the amount and biocatalytic activity of the immobilized enzyme and to better mediate the electron transfer. The resulting Au-g-PANI-c-(CS-CNTs)-GOD biosensor exhibited a linear response to glucose in the concentration range of 1-20 mM, good sensitivity (21 μA/(mM·cm(2))), good reproducibility, and retention of >80% of the initial response current after 2 months of storage.
Collapse
Affiliation(s)
- Dong Wan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore
| | | | | | | | | |
Collapse
|
31
|
Zhou DM, Dai YQ, Shiu KK. Poly(phenylenediamine) film for the construction of glucose biosensors based on platinized glassy carbon electrode. J APPL ELECTROCHEM 2010. [DOI: 10.1007/s10800-010-0179-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Johannessen E, Krushinitskaya O, Sokolov A, Philipp H, Hoogerwerf A, Hinderling C, Kautio K, Lenkkeri J, Strömmer E, Kondratyev V, Tønnessen TI, Mollnes TE, Jakobsen H, Zimmer E, Akselsen B. Toward an injectable continuous osmotic glucose sensor. J Diabetes Sci Technol 2010; 4:882-92. [PMID: 20663452 PMCID: PMC2909520 DOI: 10.1177/193229681000400417] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND The growing pandemic of diabetes mellitus places a stringent social and economic burden on the society. A tight glycemic control circumvents the detrimental effects, but the prerogative is the development of new more effective tools capable of longterm tracking of blood glucose (BG) in vivo. Such discontinuous sensor technologies will benefit from an unprecedented marked potential as well as reducing the current life expectancy gap of eight years as part of a therapeutic regime. METHOD A sensor technology based on osmotic pressure incorporates a reversible competitive affinity assay performing glucose-specific recognition. An absolute change in particles generates a pressure that is proportional to the glucose concentration. An integrated pressure transducer and components developed from the silicon micro- and nanofabrication industry translate this pressure into BG data. RESULTS An in vitro model based on a 3.6 x 8.7 mm large pill-shaped implant is equipped with a nanoporous membrane holding 4-6 nm large pores. The affinity assay offers a dynamic range of 36-720 mg/dl with a resolution of +/-16 mg/dl. An integrated 1 x 1 mm(2) large control chip samples the sensor signals for data processing and transmission back to the reader at a total power consumption of 76 microW. CONCLUSIONS Current studies have demonstrated the design, layout, and performance of a prototype osmotic sensor in vitro using an affinity assay solution for up to four weeks. The small physical size conforms to an injectable device, forming the basis of a conceptual monitor that offers a tight glycemic control of BG.
Collapse
|
33
|
Afonso AS, Goulart LR, Goulart IMB, Machado AEH, Madurro JM, Brito-Madurro AG. A promising bioelectrode based on gene of Mycobacterium leprae immobilized onto poly(4-aminophenol). J Appl Polym Sci 2010. [DOI: 10.1002/app.32595] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Akyilmaz E, Kozgus O, Türkmen H, Çetinkaya B. A mediated polyphenol oxidase biosensor immobilized by electropolymerization of 1,2-diamino benzene. Bioelectrochemistry 2010; 78:135-40. [DOI: 10.1016/j.bioelechem.2009.09.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 11/24/2022]
|
35
|
Application of polypyrrole/GOx film to glucose biosensor based on electrochemical-surface plasmon resonance technique. Mikrochim Acta 2010. [DOI: 10.1007/s00604-010-0344-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Pardieu E, Cheap H, Vedrine C, Lazerges M, Lattach Y, Garnier F, Remita S, Pernelle C. Molecularly imprinted conducting polymer based electrochemical sensor for detection of atrazine. Anal Chim Acta 2009; 649:236-45. [DOI: 10.1016/j.aca.2009.07.029] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 07/08/2009] [Accepted: 07/10/2009] [Indexed: 10/20/2022]
|
37
|
Fischer AE, McEvoy TM, Long JW. Characterization of ultrathin electroactive films synthesized via the self-limiting electropolymerization of o-methoxyaniline. Electrochim Acta 2009. [DOI: 10.1016/j.electacta.2008.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Otero TF. Soft, wet, and reactive polymers. Sensing artificial muscles and conformational energy. ACTA ACUST UNITED AC 2009. [DOI: 10.1039/b809485c] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Rolison DR, Long JW, Lytle JC, Fischer AE, Rhodes CP, McEvoy TM, Bourg ME, Lubers AM. Multifunctional 3D nanoarchitectures for energy storage and conversion. Chem Soc Rev 2008; 38:226-52. [PMID: 19088976 DOI: 10.1039/b801151f] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The design and fabrication of three-dimensional multifunctional architectures from the appropriate nanoscale building blocks, including the strategic use of void space and deliberate disorder as design components, permits a re-examination of devices that produce or store energy as discussed in this critical review. The appropriate electronic, ionic, and electrochemical requirements for such devices may now be assembled into nanoarchitectures on the bench-top through the synthesis of low density, ultraporous nanoarchitectures that meld high surface area for heterogeneous reactions with a continuous, porous network for rapid molecular flux. Such nanoarchitectures amplify the nature of electrified interfaces and challenge the standard ways in which electrochemically active materials are both understood and used for energy storage. An architectural viewpoint provides a powerful metaphor to guide chemists and materials scientists in the design of energy-storing nanoarchitectures that depart from the hegemony of periodicity and order with the promise--and demonstration--of even higher performance (265 references).
Collapse
Affiliation(s)
- Debra R Rolison
- Surface Chemistry Branch, Code 6170, US Naval Research Laboratory, Washington, DC 20375, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Baxamusa SH, Montero L, Dubach JM, Clark HA, Borros S, Gleason KK. Protection of sensors for biological applications by photoinitiated chemical vapor deposition of hydrogel thin films. Biomacromolecules 2008; 9:2857-62. [PMID: 18783272 DOI: 10.1021/bm800632d] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We report photoinitiated chemical vapor deposition (piCVD), a gentle synthetic method for the preparation of ultrathin films (approximately 100 nm) of the hydrogel poly(hydroxyethyl methacrylate) (pHEMA). piCVD occurs near room temperature and requires only mild vacuum conditions. The deposited films swell rapidly and reversibly in buffer solution, and the swelling properties can be controlled via the deposition conditions. Analysis of the swelling data indicates that the mesh size of the hydrogel creates a selectively permeable coating. The mesh is large enough to allow small molecule analytes to permeate the film but small enough to prevent the transport of large biomolecules such as proteins. X-ray photoelectron spectroscopy (XPS) shows that the films decrease nonspecific adhesion of the protein albumin by nearly 8-fold over bare silicon. A dry process, piCVD is suitable for coating particles with diameters as small as 5 microm. The absence of solvents and plasmas in piCVD allows films to be directly synthesized on optode sensors without degradation of sensitivity or response time.
Collapse
Affiliation(s)
- Salmaan H Baxamusa
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
41
|
Male KB, Hrapovic S, Luong JHT. Electrochemically-assisted deposition of oxidases on platinum nanoparticle/multi-walled carbon nanotube-modified electrodes. Analyst 2008; 132:1254-61. [PMID: 18318287 DOI: 10.1039/b712478c] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Platinum nanoparticles were electrodeposited by a multi-potential step technique onto a multi-walled carbon nanotube (MWCNT) film pre-casted on a glassy carbon (GC) or boron-doped diamond (BDD) electrode. The MWCNT network consisted of Pt nanoparticles with an average diameter of 120 nm after an optimization of 36 deposition cycles. The resulting electrochemical sensors were capable of detecting hydrogen peroxide as low as 25 nM. Five different enzymes: glucose, lactate, glutamate, amino acid and xanthine oxidases, respectively, were deposited by a constant current technique for 5-10 min to form a stable and active biolayer for the analysis of their corresponding analytes. The glucose oxidase-based biosensor was linear up to 10 mM glucose with a detection limit of 250 nM and a response time of 5 s. Similar response times and detection limits were observed with glutamate, lactate, and amino acid oxidase despite the fact that the linear ranges were noticeably narrower. The mechanism of deposition was attributed to the decrease of local pH, created by oxygen evolution and effected enzyme precipitation.
Collapse
Affiliation(s)
- Keith B Male
- Biotechnology Research Institute, National Research Council Canada, Montreal, Quebec, Canada H4P 2R2
| | | | | |
Collapse
|
42
|
Savale PA, Kharat HJ, Datta K, Ghosh P, Shirsat MD. Development of a POA/DBS/GOx Biosensor for the Determination of Glucose. INT J POLYM MATER PO 2008. [DOI: 10.1080/00914030801963333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Lu L, Lin X. Selective determination of uric acid with DNA doped polymers modified carbon fiber microelectrode. Electrochem commun 2008. [DOI: 10.1016/j.elecom.2008.02.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Gooding J. Advances in Interfacial Design for Electrochemical Biosensors and Sensors: Aryl Diazonium Salts for Modifying Carbon and Metal Electrodes. ELECTROANAL 2008. [DOI: 10.1002/elan.200704124] [Citation(s) in RCA: 221] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
45
|
Belluzo MS, Ribone ME, Lagier CM. Assembling Amperometric Biosensors for Clinical Diagnostics. SENSORS (BASEL, SWITZERLAND) 2008; 8:1366-1399. [PMID: 27879771 PMCID: PMC3663002 DOI: 10.3390/s8031366] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 02/14/2008] [Indexed: 11/17/2022]
Abstract
Clinical diagnosis and disease prevention routinely require the assessment ofspecies determined by chemical analysis. Biosensor technology offers several benefits overconventional diagnostic analysis. They include simplicity of use, specificity for the targetanalyte, speed to arise to a result, capability for continuous monitoring and multiplexing,together with the potentiality of coupling to low-cost, portable instrumentation. This workfocuses on the basic lines of decisions when designing electron-transfer-based biosensorsfor clinical analysis, with emphasis on the strategies currently used to improve the deviceperformance, the present status of amperometric electrodes for biomedicine, and the trendsand challenges envisaged for the near future.
Collapse
Affiliation(s)
- María Soledad Belluzo
- Analytical Chemistry Department, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario -2000, Argentina
| | - María Elida Ribone
- Analytical Chemistry Department, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario -2000, Argentina
| | - Claudia Marina Lagier
- Analytical Chemistry Department, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 531, Rosario -2000, Argentina.
| |
Collapse
|
46
|
Affiliation(s)
- Johan Bobacka
- Åbo Akademi University, Process Chemistry Centre, c/o Laboratory of Analytical Chemistry, Biskopsgatan 8, FI-20500 Turku-Åbo, Finland; Faculty of Material Science and Ceramics, AGH-University of Science and Technology, Al. Mickiewicza 30, PL-30059 Cracow, Poland; and Åbo Akademi University, Process Chemistry Centre, c/o Center for Process Analytical Chemistry and Sensor Technology (ProSens), Biskopsgatan 8, FI-20500 Turku-Åbo, Finland
| | - Ari Ivaska
- Åbo Akademi University, Process Chemistry Centre, c/o Laboratory of Analytical Chemistry, Biskopsgatan 8, FI-20500 Turku-Åbo, Finland; Faculty of Material Science and Ceramics, AGH-University of Science and Technology, Al. Mickiewicza 30, PL-30059 Cracow, Poland; and Åbo Akademi University, Process Chemistry Centre, c/o Center for Process Analytical Chemistry and Sensor Technology (ProSens), Biskopsgatan 8, FI-20500 Turku-Åbo, Finland
| | - Andrzej Lewenstam
- Åbo Akademi University, Process Chemistry Centre, c/o Laboratory of Analytical Chemistry, Biskopsgatan 8, FI-20500 Turku-Åbo, Finland; Faculty of Material Science and Ceramics, AGH-University of Science and Technology, Al. Mickiewicza 30, PL-30059 Cracow, Poland; and Åbo Akademi University, Process Chemistry Centre, c/o Center for Process Analytical Chemistry and Sensor Technology (ProSens), Biskopsgatan 8, FI-20500 Turku-Åbo, Finland
| |
Collapse
|
47
|
Individually addressable microelectrode array for monitoring oxygen and nitric oxide release. Anal Bioanal Chem 2008; 390:1379-87. [DOI: 10.1007/s00216-007-1803-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2007] [Revised: 12/07/2007] [Accepted: 12/12/2007] [Indexed: 10/22/2022]
|
48
|
Kumar SA, Chen SM. Electroanalysis of NADH Using Conducting and Redox Active Polymer/Carbon Nanotubes Modified Electrodes-A Review. SENSORS (BASEL, SWITZERLAND) 2008; 8:739-766. [PMID: 27879732 PMCID: PMC3927499 DOI: 10.3390/s8020739] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 01/30/2008] [Indexed: 01/20/2023]
Abstract
Past few decades, conducting and redox active polymers play a critical role in the development of transducers for biosensing. It has been evidenced by increasing numerous reports on conducting and redox active polymers incorporated electrodes for assay of biomolcules. This review highlights the potential uses of electrogenerated polymer modified electrodes and polymer/carbon nanotubes composite modified electrodes for electroanalysis of reduced form of nicotinamide adenine dinuceltoide (NADH). In addition, carbon electrodes modified with organic and inorganic materials as modifier have been discussed in detail for the quantification of NADH based on mediator or mediator-less methods.
Collapse
Affiliation(s)
- S Ashok Kumar
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan (ROC).
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan (ROC).
| |
Collapse
|
49
|
Affiliation(s)
- Joseph Wang
- Biodesign Institute, Center for Bioelectronics and Biosensors, Department of Chemical Engineering, Arizona State University, Tempe, AZ 85287-5801, USA.
| |
Collapse
|
50
|
Mutation of Tyr-218 to Phe in Thermoanaerobacter ethanolicus secondary alcohol dehydrogenase: effects on bioelectronic interface performance. Appl Biochem Biotechnol 2007; 143:1-15. [PMID: 18025592 DOI: 10.1007/s12010-007-0027-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2006] [Revised: 11/06/2006] [Accepted: 01/24/2007] [Indexed: 10/23/2022]
Abstract
Bioelectronic interfaces that facilitate electron transfer between the electrode and a dehydrogenase enzyme have potential applications in biosensors, biocatalytic reactors, and biological fuel cells. The secondary alcohol dehydrogenase (2 degrees ADH) from Thermoanaerobacter ethanolicus is especially well suited for the development of such bioelectronic interfaces because of its thermostability and facile production and purification. However, the natural cofactor for the enzyme, beta-nicotinamide adenine dinucleotide phosphate (NADP+), is more expensive and less stable than beta-nicotinamide adenine dinucleotide (NAD+). PCR-based, site-directed mutagenesis was performed on 2 degrees ADH in an attempt to adjust the cofactor specificity toward NAD+ by mutating Tyr218 to Phe (Y218F 2 degrees ADH). This mutation increased the Km(app) for NADP+ 200-fold while decreasing the Km(app) for NAD+ 2.5-fold. The mutant enzyme was incorporated into a bioelectronic interface that established electrical communication between the enzyme, the NAD+, the electron mediator toluidine blue O (TBO), and a gold electrode. Cyclic voltammetry, impedance spectroscopy, gas chromatography, mass spectrometry, constant potential amperometry, and chronoamperometry were used to characterize the mutant and wild-type enzyme incorporated in the bioelectronic interface. The Y218F 2 degrees ADH exhibited a fourfold increase in the turnover ratio compared to the wild type in the presence of NAD+. The electrochemical and kinetic measurements support the prediction that the Rossmann fold of the enzyme binds to the phosphate moiety of the cofactor. During the 45 min of continuous operation, NAD+ was electrically recycled 6.7 x 10(4) times, suggesting that the Y218F 2 degrees ADH-modified bioelectronic interface is stable.
Collapse
|